Btrfs: check unused against how much space we actually want
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
blobfd65f6bc676c9c5e0d2b0c900e7f95fc9b5c63e4
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
56 * Control how reservations are dealt with.
58 * RESERVE_FREE - freeing a reservation.
59 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
60 * ENOSPC accounting
61 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
62 * bytes_may_use as the ENOSPC accounting is done elsewhere
64 enum {
65 RESERVE_FREE = 0,
66 RESERVE_ALLOC = 1,
67 RESERVE_ALLOC_NO_ACCOUNT = 2,
70 static int update_block_group(struct btrfs_trans_handle *trans,
71 struct btrfs_root *root,
72 u64 bytenr, u64 num_bytes, int alloc);
73 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
74 struct btrfs_root *root,
75 u64 bytenr, u64 num_bytes, u64 parent,
76 u64 root_objectid, u64 owner_objectid,
77 u64 owner_offset, int refs_to_drop,
78 struct btrfs_delayed_extent_op *extra_op);
79 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
80 struct extent_buffer *leaf,
81 struct btrfs_extent_item *ei);
82 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
83 struct btrfs_root *root,
84 u64 parent, u64 root_objectid,
85 u64 flags, u64 owner, u64 offset,
86 struct btrfs_key *ins, int ref_mod);
87 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, struct btrfs_disk_key *key,
91 int level, struct btrfs_key *ins);
92 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
93 struct btrfs_root *extent_root, u64 alloc_bytes,
94 u64 flags, int force);
95 static int find_next_key(struct btrfs_path *path, int level,
96 struct btrfs_key *key);
97 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
98 int dump_block_groups);
99 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
100 u64 num_bytes, int reserve);
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 smp_mb();
106 return cache->cached == BTRFS_CACHE_FINISHED;
109 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 return (cache->flags & bits) == bits;
114 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 atomic_inc(&cache->count);
119 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 if (atomic_dec_and_test(&cache->count)) {
122 WARN_ON(cache->pinned > 0);
123 WARN_ON(cache->reserved > 0);
124 kfree(cache->free_space_ctl);
125 kfree(cache);
130 * this adds the block group to the fs_info rb tree for the block group
131 * cache
133 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
134 struct btrfs_block_group_cache *block_group)
136 struct rb_node **p;
137 struct rb_node *parent = NULL;
138 struct btrfs_block_group_cache *cache;
140 spin_lock(&info->block_group_cache_lock);
141 p = &info->block_group_cache_tree.rb_node;
143 while (*p) {
144 parent = *p;
145 cache = rb_entry(parent, struct btrfs_block_group_cache,
146 cache_node);
147 if (block_group->key.objectid < cache->key.objectid) {
148 p = &(*p)->rb_left;
149 } else if (block_group->key.objectid > cache->key.objectid) {
150 p = &(*p)->rb_right;
151 } else {
152 spin_unlock(&info->block_group_cache_lock);
153 return -EEXIST;
157 rb_link_node(&block_group->cache_node, parent, p);
158 rb_insert_color(&block_group->cache_node,
159 &info->block_group_cache_tree);
160 spin_unlock(&info->block_group_cache_lock);
162 return 0;
166 * This will return the block group at or after bytenr if contains is 0, else
167 * it will return the block group that contains the bytenr
169 static struct btrfs_block_group_cache *
170 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
171 int contains)
173 struct btrfs_block_group_cache *cache, *ret = NULL;
174 struct rb_node *n;
175 u64 end, start;
177 spin_lock(&info->block_group_cache_lock);
178 n = info->block_group_cache_tree.rb_node;
180 while (n) {
181 cache = rb_entry(n, struct btrfs_block_group_cache,
182 cache_node);
183 end = cache->key.objectid + cache->key.offset - 1;
184 start = cache->key.objectid;
186 if (bytenr < start) {
187 if (!contains && (!ret || start < ret->key.objectid))
188 ret = cache;
189 n = n->rb_left;
190 } else if (bytenr > start) {
191 if (contains && bytenr <= end) {
192 ret = cache;
193 break;
195 n = n->rb_right;
196 } else {
197 ret = cache;
198 break;
201 if (ret)
202 btrfs_get_block_group(ret);
203 spin_unlock(&info->block_group_cache_lock);
205 return ret;
208 static int add_excluded_extent(struct btrfs_root *root,
209 u64 start, u64 num_bytes)
211 u64 end = start + num_bytes - 1;
212 set_extent_bits(&root->fs_info->freed_extents[0],
213 start, end, EXTENT_UPTODATE, GFP_NOFS);
214 set_extent_bits(&root->fs_info->freed_extents[1],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 return 0;
219 static void free_excluded_extents(struct btrfs_root *root,
220 struct btrfs_block_group_cache *cache)
222 u64 start, end;
224 start = cache->key.objectid;
225 end = start + cache->key.offset - 1;
227 clear_extent_bits(&root->fs_info->freed_extents[0],
228 start, end, EXTENT_UPTODATE, GFP_NOFS);
229 clear_extent_bits(&root->fs_info->freed_extents[1],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 static int exclude_super_stripes(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
236 u64 bytenr;
237 u64 *logical;
238 int stripe_len;
239 int i, nr, ret;
241 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
242 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
243 cache->bytes_super += stripe_len;
244 ret = add_excluded_extent(root, cache->key.objectid,
245 stripe_len);
246 BUG_ON(ret);
249 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
250 bytenr = btrfs_sb_offset(i);
251 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
252 cache->key.objectid, bytenr,
253 0, &logical, &nr, &stripe_len);
254 BUG_ON(ret);
256 while (nr--) {
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, logical[nr],
259 stripe_len);
260 BUG_ON(ret);
263 kfree(logical);
265 return 0;
268 static struct btrfs_caching_control *
269 get_caching_control(struct btrfs_block_group_cache *cache)
271 struct btrfs_caching_control *ctl;
273 spin_lock(&cache->lock);
274 if (cache->cached != BTRFS_CACHE_STARTED) {
275 spin_unlock(&cache->lock);
276 return NULL;
279 /* We're loading it the fast way, so we don't have a caching_ctl. */
280 if (!cache->caching_ctl) {
281 spin_unlock(&cache->lock);
282 return NULL;
285 ctl = cache->caching_ctl;
286 atomic_inc(&ctl->count);
287 spin_unlock(&cache->lock);
288 return ctl;
291 static void put_caching_control(struct btrfs_caching_control *ctl)
293 if (atomic_dec_and_test(&ctl->count))
294 kfree(ctl);
298 * this is only called by cache_block_group, since we could have freed extents
299 * we need to check the pinned_extents for any extents that can't be used yet
300 * since their free space will be released as soon as the transaction commits.
302 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
303 struct btrfs_fs_info *info, u64 start, u64 end)
305 u64 extent_start, extent_end, size, total_added = 0;
306 int ret;
308 while (start < end) {
309 ret = find_first_extent_bit(info->pinned_extents, start,
310 &extent_start, &extent_end,
311 EXTENT_DIRTY | EXTENT_UPTODATE);
312 if (ret)
313 break;
315 if (extent_start <= start) {
316 start = extent_end + 1;
317 } else if (extent_start > start && extent_start < end) {
318 size = extent_start - start;
319 total_added += size;
320 ret = btrfs_add_free_space(block_group, start,
321 size);
322 BUG_ON(ret);
323 start = extent_end + 1;
324 } else {
325 break;
329 if (start < end) {
330 size = end - start;
331 total_added += size;
332 ret = btrfs_add_free_space(block_group, start, size);
333 BUG_ON(ret);
336 return total_added;
339 static noinline void caching_thread(struct btrfs_work *work)
341 struct btrfs_block_group_cache *block_group;
342 struct btrfs_fs_info *fs_info;
343 struct btrfs_caching_control *caching_ctl;
344 struct btrfs_root *extent_root;
345 struct btrfs_path *path;
346 struct extent_buffer *leaf;
347 struct btrfs_key key;
348 u64 total_found = 0;
349 u64 last = 0;
350 u32 nritems;
351 int ret = 0;
353 caching_ctl = container_of(work, struct btrfs_caching_control, work);
354 block_group = caching_ctl->block_group;
355 fs_info = block_group->fs_info;
356 extent_root = fs_info->extent_root;
358 path = btrfs_alloc_path();
359 if (!path)
360 goto out;
362 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365 * We don't want to deadlock with somebody trying to allocate a new
366 * extent for the extent root while also trying to search the extent
367 * root to add free space. So we skip locking and search the commit
368 * root, since its read-only
370 path->skip_locking = 1;
371 path->search_commit_root = 1;
372 path->reada = 1;
374 key.objectid = last;
375 key.offset = 0;
376 key.type = BTRFS_EXTENT_ITEM_KEY;
377 again:
378 mutex_lock(&caching_ctl->mutex);
379 /* need to make sure the commit_root doesn't disappear */
380 down_read(&fs_info->extent_commit_sem);
382 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
383 if (ret < 0)
384 goto err;
386 leaf = path->nodes[0];
387 nritems = btrfs_header_nritems(leaf);
389 while (1) {
390 if (btrfs_fs_closing(fs_info) > 1) {
391 last = (u64)-1;
392 break;
395 if (path->slots[0] < nritems) {
396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
397 } else {
398 ret = find_next_key(path, 0, &key);
399 if (ret)
400 break;
402 if (need_resched() ||
403 btrfs_next_leaf(extent_root, path)) {
404 caching_ctl->progress = last;
405 btrfs_release_path(path);
406 up_read(&fs_info->extent_commit_sem);
407 mutex_unlock(&caching_ctl->mutex);
408 cond_resched();
409 goto again;
411 leaf = path->nodes[0];
412 nritems = btrfs_header_nritems(leaf);
413 continue;
416 if (key.objectid < block_group->key.objectid) {
417 path->slots[0]++;
418 continue;
421 if (key.objectid >= block_group->key.objectid +
422 block_group->key.offset)
423 break;
425 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
426 total_found += add_new_free_space(block_group,
427 fs_info, last,
428 key.objectid);
429 last = key.objectid + key.offset;
431 if (total_found > (1024 * 1024 * 2)) {
432 total_found = 0;
433 wake_up(&caching_ctl->wait);
436 path->slots[0]++;
438 ret = 0;
440 total_found += add_new_free_space(block_group, fs_info, last,
441 block_group->key.objectid +
442 block_group->key.offset);
443 caching_ctl->progress = (u64)-1;
445 spin_lock(&block_group->lock);
446 block_group->caching_ctl = NULL;
447 block_group->cached = BTRFS_CACHE_FINISHED;
448 spin_unlock(&block_group->lock);
450 err:
451 btrfs_free_path(path);
452 up_read(&fs_info->extent_commit_sem);
454 free_excluded_extents(extent_root, block_group);
456 mutex_unlock(&caching_ctl->mutex);
457 out:
458 wake_up(&caching_ctl->wait);
460 put_caching_control(caching_ctl);
461 btrfs_put_block_group(block_group);
464 static int cache_block_group(struct btrfs_block_group_cache *cache,
465 struct btrfs_trans_handle *trans,
466 struct btrfs_root *root,
467 int load_cache_only)
469 struct btrfs_fs_info *fs_info = cache->fs_info;
470 struct btrfs_caching_control *caching_ctl;
471 int ret = 0;
473 smp_mb();
474 if (cache->cached != BTRFS_CACHE_NO)
475 return 0;
478 * We can't do the read from on-disk cache during a commit since we need
479 * to have the normal tree locking. Also if we are currently trying to
480 * allocate blocks for the tree root we can't do the fast caching since
481 * we likely hold important locks.
483 if (trans && (!trans->transaction->in_commit) &&
484 (root && root != root->fs_info->tree_root)) {
485 spin_lock(&cache->lock);
486 if (cache->cached != BTRFS_CACHE_NO) {
487 spin_unlock(&cache->lock);
488 return 0;
490 cache->cached = BTRFS_CACHE_STARTED;
491 spin_unlock(&cache->lock);
493 ret = load_free_space_cache(fs_info, cache);
495 spin_lock(&cache->lock);
496 if (ret == 1) {
497 cache->cached = BTRFS_CACHE_FINISHED;
498 cache->last_byte_to_unpin = (u64)-1;
499 } else {
500 cache->cached = BTRFS_CACHE_NO;
502 spin_unlock(&cache->lock);
503 if (ret == 1) {
504 free_excluded_extents(fs_info->extent_root, cache);
505 return 0;
509 if (load_cache_only)
510 return 0;
512 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
513 BUG_ON(!caching_ctl);
515 INIT_LIST_HEAD(&caching_ctl->list);
516 mutex_init(&caching_ctl->mutex);
517 init_waitqueue_head(&caching_ctl->wait);
518 caching_ctl->block_group = cache;
519 caching_ctl->progress = cache->key.objectid;
520 /* one for caching kthread, one for caching block group list */
521 atomic_set(&caching_ctl->count, 2);
522 caching_ctl->work.func = caching_thread;
524 spin_lock(&cache->lock);
525 if (cache->cached != BTRFS_CACHE_NO) {
526 spin_unlock(&cache->lock);
527 kfree(caching_ctl);
528 return 0;
530 cache->caching_ctl = caching_ctl;
531 cache->cached = BTRFS_CACHE_STARTED;
532 spin_unlock(&cache->lock);
534 down_write(&fs_info->extent_commit_sem);
535 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
536 up_write(&fs_info->extent_commit_sem);
538 btrfs_get_block_group(cache);
540 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
542 return ret;
546 * return the block group that starts at or after bytenr
548 static struct btrfs_block_group_cache *
549 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
551 struct btrfs_block_group_cache *cache;
553 cache = block_group_cache_tree_search(info, bytenr, 0);
555 return cache;
559 * return the block group that contains the given bytenr
561 struct btrfs_block_group_cache *btrfs_lookup_block_group(
562 struct btrfs_fs_info *info,
563 u64 bytenr)
565 struct btrfs_block_group_cache *cache;
567 cache = block_group_cache_tree_search(info, bytenr, 1);
569 return cache;
572 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
573 u64 flags)
575 struct list_head *head = &info->space_info;
576 struct btrfs_space_info *found;
578 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
579 BTRFS_BLOCK_GROUP_METADATA;
581 rcu_read_lock();
582 list_for_each_entry_rcu(found, head, list) {
583 if (found->flags & flags) {
584 rcu_read_unlock();
585 return found;
588 rcu_read_unlock();
589 return NULL;
593 * after adding space to the filesystem, we need to clear the full flags
594 * on all the space infos.
596 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
598 struct list_head *head = &info->space_info;
599 struct btrfs_space_info *found;
601 rcu_read_lock();
602 list_for_each_entry_rcu(found, head, list)
603 found->full = 0;
604 rcu_read_unlock();
607 static u64 div_factor(u64 num, int factor)
609 if (factor == 10)
610 return num;
611 num *= factor;
612 do_div(num, 10);
613 return num;
616 static u64 div_factor_fine(u64 num, int factor)
618 if (factor == 100)
619 return num;
620 num *= factor;
621 do_div(num, 100);
622 return num;
625 u64 btrfs_find_block_group(struct btrfs_root *root,
626 u64 search_start, u64 search_hint, int owner)
628 struct btrfs_block_group_cache *cache;
629 u64 used;
630 u64 last = max(search_hint, search_start);
631 u64 group_start = 0;
632 int full_search = 0;
633 int factor = 9;
634 int wrapped = 0;
635 again:
636 while (1) {
637 cache = btrfs_lookup_first_block_group(root->fs_info, last);
638 if (!cache)
639 break;
641 spin_lock(&cache->lock);
642 last = cache->key.objectid + cache->key.offset;
643 used = btrfs_block_group_used(&cache->item);
645 if ((full_search || !cache->ro) &&
646 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
647 if (used + cache->pinned + cache->reserved <
648 div_factor(cache->key.offset, factor)) {
649 group_start = cache->key.objectid;
650 spin_unlock(&cache->lock);
651 btrfs_put_block_group(cache);
652 goto found;
655 spin_unlock(&cache->lock);
656 btrfs_put_block_group(cache);
657 cond_resched();
659 if (!wrapped) {
660 last = search_start;
661 wrapped = 1;
662 goto again;
664 if (!full_search && factor < 10) {
665 last = search_start;
666 full_search = 1;
667 factor = 10;
668 goto again;
670 found:
671 return group_start;
674 /* simple helper to search for an existing extent at a given offset */
675 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
677 int ret;
678 struct btrfs_key key;
679 struct btrfs_path *path;
681 path = btrfs_alloc_path();
682 if (!path)
683 return -ENOMEM;
685 key.objectid = start;
686 key.offset = len;
687 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
688 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
689 0, 0);
690 btrfs_free_path(path);
691 return ret;
695 * helper function to lookup reference count and flags of extent.
697 * the head node for delayed ref is used to store the sum of all the
698 * reference count modifications queued up in the rbtree. the head
699 * node may also store the extent flags to set. This way you can check
700 * to see what the reference count and extent flags would be if all of
701 * the delayed refs are not processed.
703 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
704 struct btrfs_root *root, u64 bytenr,
705 u64 num_bytes, u64 *refs, u64 *flags)
707 struct btrfs_delayed_ref_head *head;
708 struct btrfs_delayed_ref_root *delayed_refs;
709 struct btrfs_path *path;
710 struct btrfs_extent_item *ei;
711 struct extent_buffer *leaf;
712 struct btrfs_key key;
713 u32 item_size;
714 u64 num_refs;
715 u64 extent_flags;
716 int ret;
718 path = btrfs_alloc_path();
719 if (!path)
720 return -ENOMEM;
722 key.objectid = bytenr;
723 key.type = BTRFS_EXTENT_ITEM_KEY;
724 key.offset = num_bytes;
725 if (!trans) {
726 path->skip_locking = 1;
727 path->search_commit_root = 1;
729 again:
730 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
731 &key, path, 0, 0);
732 if (ret < 0)
733 goto out_free;
735 if (ret == 0) {
736 leaf = path->nodes[0];
737 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
738 if (item_size >= sizeof(*ei)) {
739 ei = btrfs_item_ptr(leaf, path->slots[0],
740 struct btrfs_extent_item);
741 num_refs = btrfs_extent_refs(leaf, ei);
742 extent_flags = btrfs_extent_flags(leaf, ei);
743 } else {
744 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
745 struct btrfs_extent_item_v0 *ei0;
746 BUG_ON(item_size != sizeof(*ei0));
747 ei0 = btrfs_item_ptr(leaf, path->slots[0],
748 struct btrfs_extent_item_v0);
749 num_refs = btrfs_extent_refs_v0(leaf, ei0);
750 /* FIXME: this isn't correct for data */
751 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
752 #else
753 BUG();
754 #endif
756 BUG_ON(num_refs == 0);
757 } else {
758 num_refs = 0;
759 extent_flags = 0;
760 ret = 0;
763 if (!trans)
764 goto out;
766 delayed_refs = &trans->transaction->delayed_refs;
767 spin_lock(&delayed_refs->lock);
768 head = btrfs_find_delayed_ref_head(trans, bytenr);
769 if (head) {
770 if (!mutex_trylock(&head->mutex)) {
771 atomic_inc(&head->node.refs);
772 spin_unlock(&delayed_refs->lock);
774 btrfs_release_path(path);
777 * Mutex was contended, block until it's released and try
778 * again
780 mutex_lock(&head->mutex);
781 mutex_unlock(&head->mutex);
782 btrfs_put_delayed_ref(&head->node);
783 goto again;
785 if (head->extent_op && head->extent_op->update_flags)
786 extent_flags |= head->extent_op->flags_to_set;
787 else
788 BUG_ON(num_refs == 0);
790 num_refs += head->node.ref_mod;
791 mutex_unlock(&head->mutex);
793 spin_unlock(&delayed_refs->lock);
794 out:
795 WARN_ON(num_refs == 0);
796 if (refs)
797 *refs = num_refs;
798 if (flags)
799 *flags = extent_flags;
800 out_free:
801 btrfs_free_path(path);
802 return ret;
806 * Back reference rules. Back refs have three main goals:
808 * 1) differentiate between all holders of references to an extent so that
809 * when a reference is dropped we can make sure it was a valid reference
810 * before freeing the extent.
812 * 2) Provide enough information to quickly find the holders of an extent
813 * if we notice a given block is corrupted or bad.
815 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
816 * maintenance. This is actually the same as #2, but with a slightly
817 * different use case.
819 * There are two kinds of back refs. The implicit back refs is optimized
820 * for pointers in non-shared tree blocks. For a given pointer in a block,
821 * back refs of this kind provide information about the block's owner tree
822 * and the pointer's key. These information allow us to find the block by
823 * b-tree searching. The full back refs is for pointers in tree blocks not
824 * referenced by their owner trees. The location of tree block is recorded
825 * in the back refs. Actually the full back refs is generic, and can be
826 * used in all cases the implicit back refs is used. The major shortcoming
827 * of the full back refs is its overhead. Every time a tree block gets
828 * COWed, we have to update back refs entry for all pointers in it.
830 * For a newly allocated tree block, we use implicit back refs for
831 * pointers in it. This means most tree related operations only involve
832 * implicit back refs. For a tree block created in old transaction, the
833 * only way to drop a reference to it is COW it. So we can detect the
834 * event that tree block loses its owner tree's reference and do the
835 * back refs conversion.
837 * When a tree block is COW'd through a tree, there are four cases:
839 * The reference count of the block is one and the tree is the block's
840 * owner tree. Nothing to do in this case.
842 * The reference count of the block is one and the tree is not the
843 * block's owner tree. In this case, full back refs is used for pointers
844 * in the block. Remove these full back refs, add implicit back refs for
845 * every pointers in the new block.
847 * The reference count of the block is greater than one and the tree is
848 * the block's owner tree. In this case, implicit back refs is used for
849 * pointers in the block. Add full back refs for every pointers in the
850 * block, increase lower level extents' reference counts. The original
851 * implicit back refs are entailed to the new block.
853 * The reference count of the block is greater than one and the tree is
854 * not the block's owner tree. Add implicit back refs for every pointer in
855 * the new block, increase lower level extents' reference count.
857 * Back Reference Key composing:
859 * The key objectid corresponds to the first byte in the extent,
860 * The key type is used to differentiate between types of back refs.
861 * There are different meanings of the key offset for different types
862 * of back refs.
864 * File extents can be referenced by:
866 * - multiple snapshots, subvolumes, or different generations in one subvol
867 * - different files inside a single subvolume
868 * - different offsets inside a file (bookend extents in file.c)
870 * The extent ref structure for the implicit back refs has fields for:
872 * - Objectid of the subvolume root
873 * - objectid of the file holding the reference
874 * - original offset in the file
875 * - how many bookend extents
877 * The key offset for the implicit back refs is hash of the first
878 * three fields.
880 * The extent ref structure for the full back refs has field for:
882 * - number of pointers in the tree leaf
884 * The key offset for the implicit back refs is the first byte of
885 * the tree leaf
887 * When a file extent is allocated, The implicit back refs is used.
888 * the fields are filled in:
890 * (root_key.objectid, inode objectid, offset in file, 1)
892 * When a file extent is removed file truncation, we find the
893 * corresponding implicit back refs and check the following fields:
895 * (btrfs_header_owner(leaf), inode objectid, offset in file)
897 * Btree extents can be referenced by:
899 * - Different subvolumes
901 * Both the implicit back refs and the full back refs for tree blocks
902 * only consist of key. The key offset for the implicit back refs is
903 * objectid of block's owner tree. The key offset for the full back refs
904 * is the first byte of parent block.
906 * When implicit back refs is used, information about the lowest key and
907 * level of the tree block are required. These information are stored in
908 * tree block info structure.
911 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
912 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
913 struct btrfs_root *root,
914 struct btrfs_path *path,
915 u64 owner, u32 extra_size)
917 struct btrfs_extent_item *item;
918 struct btrfs_extent_item_v0 *ei0;
919 struct btrfs_extent_ref_v0 *ref0;
920 struct btrfs_tree_block_info *bi;
921 struct extent_buffer *leaf;
922 struct btrfs_key key;
923 struct btrfs_key found_key;
924 u32 new_size = sizeof(*item);
925 u64 refs;
926 int ret;
928 leaf = path->nodes[0];
929 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
931 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
932 ei0 = btrfs_item_ptr(leaf, path->slots[0],
933 struct btrfs_extent_item_v0);
934 refs = btrfs_extent_refs_v0(leaf, ei0);
936 if (owner == (u64)-1) {
937 while (1) {
938 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
939 ret = btrfs_next_leaf(root, path);
940 if (ret < 0)
941 return ret;
942 BUG_ON(ret > 0);
943 leaf = path->nodes[0];
945 btrfs_item_key_to_cpu(leaf, &found_key,
946 path->slots[0]);
947 BUG_ON(key.objectid != found_key.objectid);
948 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
949 path->slots[0]++;
950 continue;
952 ref0 = btrfs_item_ptr(leaf, path->slots[0],
953 struct btrfs_extent_ref_v0);
954 owner = btrfs_ref_objectid_v0(leaf, ref0);
955 break;
958 btrfs_release_path(path);
960 if (owner < BTRFS_FIRST_FREE_OBJECTID)
961 new_size += sizeof(*bi);
963 new_size -= sizeof(*ei0);
964 ret = btrfs_search_slot(trans, root, &key, path,
965 new_size + extra_size, 1);
966 if (ret < 0)
967 return ret;
968 BUG_ON(ret);
970 ret = btrfs_extend_item(trans, root, path, new_size);
972 leaf = path->nodes[0];
973 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
974 btrfs_set_extent_refs(leaf, item, refs);
975 /* FIXME: get real generation */
976 btrfs_set_extent_generation(leaf, item, 0);
977 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
978 btrfs_set_extent_flags(leaf, item,
979 BTRFS_EXTENT_FLAG_TREE_BLOCK |
980 BTRFS_BLOCK_FLAG_FULL_BACKREF);
981 bi = (struct btrfs_tree_block_info *)(item + 1);
982 /* FIXME: get first key of the block */
983 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
984 btrfs_set_tree_block_level(leaf, bi, (int)owner);
985 } else {
986 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
988 btrfs_mark_buffer_dirty(leaf);
989 return 0;
991 #endif
993 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
995 u32 high_crc = ~(u32)0;
996 u32 low_crc = ~(u32)0;
997 __le64 lenum;
999 lenum = cpu_to_le64(root_objectid);
1000 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1001 lenum = cpu_to_le64(owner);
1002 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1003 lenum = cpu_to_le64(offset);
1004 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1006 return ((u64)high_crc << 31) ^ (u64)low_crc;
1009 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1010 struct btrfs_extent_data_ref *ref)
1012 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1013 btrfs_extent_data_ref_objectid(leaf, ref),
1014 btrfs_extent_data_ref_offset(leaf, ref));
1017 static int match_extent_data_ref(struct extent_buffer *leaf,
1018 struct btrfs_extent_data_ref *ref,
1019 u64 root_objectid, u64 owner, u64 offset)
1021 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1022 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1023 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1024 return 0;
1025 return 1;
1028 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1029 struct btrfs_root *root,
1030 struct btrfs_path *path,
1031 u64 bytenr, u64 parent,
1032 u64 root_objectid,
1033 u64 owner, u64 offset)
1035 struct btrfs_key key;
1036 struct btrfs_extent_data_ref *ref;
1037 struct extent_buffer *leaf;
1038 u32 nritems;
1039 int ret;
1040 int recow;
1041 int err = -ENOENT;
1043 key.objectid = bytenr;
1044 if (parent) {
1045 key.type = BTRFS_SHARED_DATA_REF_KEY;
1046 key.offset = parent;
1047 } else {
1048 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1049 key.offset = hash_extent_data_ref(root_objectid,
1050 owner, offset);
1052 again:
1053 recow = 0;
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret < 0) {
1056 err = ret;
1057 goto fail;
1060 if (parent) {
1061 if (!ret)
1062 return 0;
1063 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1064 key.type = BTRFS_EXTENT_REF_V0_KEY;
1065 btrfs_release_path(path);
1066 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067 if (ret < 0) {
1068 err = ret;
1069 goto fail;
1071 if (!ret)
1072 return 0;
1073 #endif
1074 goto fail;
1077 leaf = path->nodes[0];
1078 nritems = btrfs_header_nritems(leaf);
1079 while (1) {
1080 if (path->slots[0] >= nritems) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 err = ret;
1084 if (ret)
1085 goto fail;
1087 leaf = path->nodes[0];
1088 nritems = btrfs_header_nritems(leaf);
1089 recow = 1;
1092 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093 if (key.objectid != bytenr ||
1094 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1095 goto fail;
1097 ref = btrfs_item_ptr(leaf, path->slots[0],
1098 struct btrfs_extent_data_ref);
1100 if (match_extent_data_ref(leaf, ref, root_objectid,
1101 owner, offset)) {
1102 if (recow) {
1103 btrfs_release_path(path);
1104 goto again;
1106 err = 0;
1107 break;
1109 path->slots[0]++;
1111 fail:
1112 return err;
1115 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1116 struct btrfs_root *root,
1117 struct btrfs_path *path,
1118 u64 bytenr, u64 parent,
1119 u64 root_objectid, u64 owner,
1120 u64 offset, int refs_to_add)
1122 struct btrfs_key key;
1123 struct extent_buffer *leaf;
1124 u32 size;
1125 u32 num_refs;
1126 int ret;
1128 key.objectid = bytenr;
1129 if (parent) {
1130 key.type = BTRFS_SHARED_DATA_REF_KEY;
1131 key.offset = parent;
1132 size = sizeof(struct btrfs_shared_data_ref);
1133 } else {
1134 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1135 key.offset = hash_extent_data_ref(root_objectid,
1136 owner, offset);
1137 size = sizeof(struct btrfs_extent_data_ref);
1140 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1141 if (ret && ret != -EEXIST)
1142 goto fail;
1144 leaf = path->nodes[0];
1145 if (parent) {
1146 struct btrfs_shared_data_ref *ref;
1147 ref = btrfs_item_ptr(leaf, path->slots[0],
1148 struct btrfs_shared_data_ref);
1149 if (ret == 0) {
1150 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1151 } else {
1152 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1153 num_refs += refs_to_add;
1154 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1156 } else {
1157 struct btrfs_extent_data_ref *ref;
1158 while (ret == -EEXIST) {
1159 ref = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_extent_data_ref);
1161 if (match_extent_data_ref(leaf, ref, root_objectid,
1162 owner, offset))
1163 break;
1164 btrfs_release_path(path);
1165 key.offset++;
1166 ret = btrfs_insert_empty_item(trans, root, path, &key,
1167 size);
1168 if (ret && ret != -EEXIST)
1169 goto fail;
1171 leaf = path->nodes[0];
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175 if (ret == 0) {
1176 btrfs_set_extent_data_ref_root(leaf, ref,
1177 root_objectid);
1178 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1179 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1180 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1181 } else {
1182 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1183 num_refs += refs_to_add;
1184 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1187 btrfs_mark_buffer_dirty(leaf);
1188 ret = 0;
1189 fail:
1190 btrfs_release_path(path);
1191 return ret;
1194 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root,
1196 struct btrfs_path *path,
1197 int refs_to_drop)
1199 struct btrfs_key key;
1200 struct btrfs_extent_data_ref *ref1 = NULL;
1201 struct btrfs_shared_data_ref *ref2 = NULL;
1202 struct extent_buffer *leaf;
1203 u32 num_refs = 0;
1204 int ret = 0;
1206 leaf = path->nodes[0];
1207 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1209 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1210 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1211 struct btrfs_extent_data_ref);
1212 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1213 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1214 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1217 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1218 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1219 struct btrfs_extent_ref_v0 *ref0;
1220 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1221 struct btrfs_extent_ref_v0);
1222 num_refs = btrfs_ref_count_v0(leaf, ref0);
1223 #endif
1224 } else {
1225 BUG();
1228 BUG_ON(num_refs < refs_to_drop);
1229 num_refs -= refs_to_drop;
1231 if (num_refs == 0) {
1232 ret = btrfs_del_item(trans, root, path);
1233 } else {
1234 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1235 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1236 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1237 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1238 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1239 else {
1240 struct btrfs_extent_ref_v0 *ref0;
1241 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_ref_v0);
1243 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1245 #endif
1246 btrfs_mark_buffer_dirty(leaf);
1248 return ret;
1251 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1252 struct btrfs_path *path,
1253 struct btrfs_extent_inline_ref *iref)
1255 struct btrfs_key key;
1256 struct extent_buffer *leaf;
1257 struct btrfs_extent_data_ref *ref1;
1258 struct btrfs_shared_data_ref *ref2;
1259 u32 num_refs = 0;
1261 leaf = path->nodes[0];
1262 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1263 if (iref) {
1264 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1265 BTRFS_EXTENT_DATA_REF_KEY) {
1266 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1267 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1268 } else {
1269 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1270 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1272 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1273 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_extent_data_ref);
1275 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1276 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1277 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_shared_data_ref);
1279 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 num_refs = btrfs_ref_count_v0(leaf, ref0);
1286 #endif
1287 } else {
1288 WARN_ON(1);
1290 return num_refs;
1293 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1294 struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 u64 bytenr, u64 parent,
1297 u64 root_objectid)
1299 struct btrfs_key key;
1300 int ret;
1302 key.objectid = bytenr;
1303 if (parent) {
1304 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1305 key.offset = parent;
1306 } else {
1307 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1308 key.offset = root_objectid;
1311 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1312 if (ret > 0)
1313 ret = -ENOENT;
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 if (ret == -ENOENT && parent) {
1316 btrfs_release_path(path);
1317 key.type = BTRFS_EXTENT_REF_V0_KEY;
1318 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1319 if (ret > 0)
1320 ret = -ENOENT;
1322 #endif
1323 return ret;
1326 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root,
1328 struct btrfs_path *path,
1329 u64 bytenr, u64 parent,
1330 u64 root_objectid)
1332 struct btrfs_key key;
1333 int ret;
1335 key.objectid = bytenr;
1336 if (parent) {
1337 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1338 key.offset = parent;
1339 } else {
1340 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1341 key.offset = root_objectid;
1344 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1345 btrfs_release_path(path);
1346 return ret;
1349 static inline int extent_ref_type(u64 parent, u64 owner)
1351 int type;
1352 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1353 if (parent > 0)
1354 type = BTRFS_SHARED_BLOCK_REF_KEY;
1355 else
1356 type = BTRFS_TREE_BLOCK_REF_KEY;
1357 } else {
1358 if (parent > 0)
1359 type = BTRFS_SHARED_DATA_REF_KEY;
1360 else
1361 type = BTRFS_EXTENT_DATA_REF_KEY;
1363 return type;
1366 static int find_next_key(struct btrfs_path *path, int level,
1367 struct btrfs_key *key)
1370 for (; level < BTRFS_MAX_LEVEL; level++) {
1371 if (!path->nodes[level])
1372 break;
1373 if (path->slots[level] + 1 >=
1374 btrfs_header_nritems(path->nodes[level]))
1375 continue;
1376 if (level == 0)
1377 btrfs_item_key_to_cpu(path->nodes[level], key,
1378 path->slots[level] + 1);
1379 else
1380 btrfs_node_key_to_cpu(path->nodes[level], key,
1381 path->slots[level] + 1);
1382 return 0;
1384 return 1;
1388 * look for inline back ref. if back ref is found, *ref_ret is set
1389 * to the address of inline back ref, and 0 is returned.
1391 * if back ref isn't found, *ref_ret is set to the address where it
1392 * should be inserted, and -ENOENT is returned.
1394 * if insert is true and there are too many inline back refs, the path
1395 * points to the extent item, and -EAGAIN is returned.
1397 * NOTE: inline back refs are ordered in the same way that back ref
1398 * items in the tree are ordered.
1400 static noinline_for_stack
1401 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_path *path,
1404 struct btrfs_extent_inline_ref **ref_ret,
1405 u64 bytenr, u64 num_bytes,
1406 u64 parent, u64 root_objectid,
1407 u64 owner, u64 offset, int insert)
1409 struct btrfs_key key;
1410 struct extent_buffer *leaf;
1411 struct btrfs_extent_item *ei;
1412 struct btrfs_extent_inline_ref *iref;
1413 u64 flags;
1414 u64 item_size;
1415 unsigned long ptr;
1416 unsigned long end;
1417 int extra_size;
1418 int type;
1419 int want;
1420 int ret;
1421 int err = 0;
1423 key.objectid = bytenr;
1424 key.type = BTRFS_EXTENT_ITEM_KEY;
1425 key.offset = num_bytes;
1427 want = extent_ref_type(parent, owner);
1428 if (insert) {
1429 extra_size = btrfs_extent_inline_ref_size(want);
1430 path->keep_locks = 1;
1431 } else
1432 extra_size = -1;
1433 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1434 if (ret < 0) {
1435 err = ret;
1436 goto out;
1438 BUG_ON(ret);
1440 leaf = path->nodes[0];
1441 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1442 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1443 if (item_size < sizeof(*ei)) {
1444 if (!insert) {
1445 err = -ENOENT;
1446 goto out;
1448 ret = convert_extent_item_v0(trans, root, path, owner,
1449 extra_size);
1450 if (ret < 0) {
1451 err = ret;
1452 goto out;
1454 leaf = path->nodes[0];
1455 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1457 #endif
1458 BUG_ON(item_size < sizeof(*ei));
1460 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1461 flags = btrfs_extent_flags(leaf, ei);
1463 ptr = (unsigned long)(ei + 1);
1464 end = (unsigned long)ei + item_size;
1466 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1467 ptr += sizeof(struct btrfs_tree_block_info);
1468 BUG_ON(ptr > end);
1469 } else {
1470 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1473 err = -ENOENT;
1474 while (1) {
1475 if (ptr >= end) {
1476 WARN_ON(ptr > end);
1477 break;
1479 iref = (struct btrfs_extent_inline_ref *)ptr;
1480 type = btrfs_extent_inline_ref_type(leaf, iref);
1481 if (want < type)
1482 break;
1483 if (want > type) {
1484 ptr += btrfs_extent_inline_ref_size(type);
1485 continue;
1488 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1489 struct btrfs_extent_data_ref *dref;
1490 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1491 if (match_extent_data_ref(leaf, dref, root_objectid,
1492 owner, offset)) {
1493 err = 0;
1494 break;
1496 if (hash_extent_data_ref_item(leaf, dref) <
1497 hash_extent_data_ref(root_objectid, owner, offset))
1498 break;
1499 } else {
1500 u64 ref_offset;
1501 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1502 if (parent > 0) {
1503 if (parent == ref_offset) {
1504 err = 0;
1505 break;
1507 if (ref_offset < parent)
1508 break;
1509 } else {
1510 if (root_objectid == ref_offset) {
1511 err = 0;
1512 break;
1514 if (ref_offset < root_objectid)
1515 break;
1518 ptr += btrfs_extent_inline_ref_size(type);
1520 if (err == -ENOENT && insert) {
1521 if (item_size + extra_size >=
1522 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1523 err = -EAGAIN;
1524 goto out;
1527 * To add new inline back ref, we have to make sure
1528 * there is no corresponding back ref item.
1529 * For simplicity, we just do not add new inline back
1530 * ref if there is any kind of item for this block
1532 if (find_next_key(path, 0, &key) == 0 &&
1533 key.objectid == bytenr &&
1534 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1535 err = -EAGAIN;
1536 goto out;
1539 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1540 out:
1541 if (insert) {
1542 path->keep_locks = 0;
1543 btrfs_unlock_up_safe(path, 1);
1545 return err;
1549 * helper to add new inline back ref
1551 static noinline_for_stack
1552 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1553 struct btrfs_root *root,
1554 struct btrfs_path *path,
1555 struct btrfs_extent_inline_ref *iref,
1556 u64 parent, u64 root_objectid,
1557 u64 owner, u64 offset, int refs_to_add,
1558 struct btrfs_delayed_extent_op *extent_op)
1560 struct extent_buffer *leaf;
1561 struct btrfs_extent_item *ei;
1562 unsigned long ptr;
1563 unsigned long end;
1564 unsigned long item_offset;
1565 u64 refs;
1566 int size;
1567 int type;
1568 int ret;
1570 leaf = path->nodes[0];
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 item_offset = (unsigned long)iref - (unsigned long)ei;
1574 type = extent_ref_type(parent, owner);
1575 size = btrfs_extent_inline_ref_size(type);
1577 ret = btrfs_extend_item(trans, root, path, size);
1579 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1580 refs = btrfs_extent_refs(leaf, ei);
1581 refs += refs_to_add;
1582 btrfs_set_extent_refs(leaf, ei, refs);
1583 if (extent_op)
1584 __run_delayed_extent_op(extent_op, leaf, ei);
1586 ptr = (unsigned long)ei + item_offset;
1587 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1588 if (ptr < end - size)
1589 memmove_extent_buffer(leaf, ptr + size, ptr,
1590 end - size - ptr);
1592 iref = (struct btrfs_extent_inline_ref *)ptr;
1593 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1594 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1595 struct btrfs_extent_data_ref *dref;
1596 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1597 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1598 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1599 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1600 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1601 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1602 struct btrfs_shared_data_ref *sref;
1603 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1604 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1605 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1606 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1607 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1608 } else {
1609 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1611 btrfs_mark_buffer_dirty(leaf);
1612 return 0;
1615 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1616 struct btrfs_root *root,
1617 struct btrfs_path *path,
1618 struct btrfs_extent_inline_ref **ref_ret,
1619 u64 bytenr, u64 num_bytes, u64 parent,
1620 u64 root_objectid, u64 owner, u64 offset)
1622 int ret;
1624 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1625 bytenr, num_bytes, parent,
1626 root_objectid, owner, offset, 0);
1627 if (ret != -ENOENT)
1628 return ret;
1630 btrfs_release_path(path);
1631 *ref_ret = NULL;
1633 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1634 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1635 root_objectid);
1636 } else {
1637 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1638 root_objectid, owner, offset);
1640 return ret;
1644 * helper to update/remove inline back ref
1646 static noinline_for_stack
1647 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1648 struct btrfs_root *root,
1649 struct btrfs_path *path,
1650 struct btrfs_extent_inline_ref *iref,
1651 int refs_to_mod,
1652 struct btrfs_delayed_extent_op *extent_op)
1654 struct extent_buffer *leaf;
1655 struct btrfs_extent_item *ei;
1656 struct btrfs_extent_data_ref *dref = NULL;
1657 struct btrfs_shared_data_ref *sref = NULL;
1658 unsigned long ptr;
1659 unsigned long end;
1660 u32 item_size;
1661 int size;
1662 int type;
1663 int ret;
1664 u64 refs;
1666 leaf = path->nodes[0];
1667 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1668 refs = btrfs_extent_refs(leaf, ei);
1669 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1670 refs += refs_to_mod;
1671 btrfs_set_extent_refs(leaf, ei, refs);
1672 if (extent_op)
1673 __run_delayed_extent_op(extent_op, leaf, ei);
1675 type = btrfs_extent_inline_ref_type(leaf, iref);
1677 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 refs = btrfs_extent_data_ref_count(leaf, dref);
1680 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1681 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1682 refs = btrfs_shared_data_ref_count(leaf, sref);
1683 } else {
1684 refs = 1;
1685 BUG_ON(refs_to_mod != -1);
1688 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1689 refs += refs_to_mod;
1691 if (refs > 0) {
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1693 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1694 else
1695 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1696 } else {
1697 size = btrfs_extent_inline_ref_size(type);
1698 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1699 ptr = (unsigned long)iref;
1700 end = (unsigned long)ei + item_size;
1701 if (ptr + size < end)
1702 memmove_extent_buffer(leaf, ptr, ptr + size,
1703 end - ptr - size);
1704 item_size -= size;
1705 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1707 btrfs_mark_buffer_dirty(leaf);
1708 return 0;
1711 static noinline_for_stack
1712 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1713 struct btrfs_root *root,
1714 struct btrfs_path *path,
1715 u64 bytenr, u64 num_bytes, u64 parent,
1716 u64 root_objectid, u64 owner,
1717 u64 offset, int refs_to_add,
1718 struct btrfs_delayed_extent_op *extent_op)
1720 struct btrfs_extent_inline_ref *iref;
1721 int ret;
1723 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1724 bytenr, num_bytes, parent,
1725 root_objectid, owner, offset, 1);
1726 if (ret == 0) {
1727 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1728 ret = update_inline_extent_backref(trans, root, path, iref,
1729 refs_to_add, extent_op);
1730 } else if (ret == -ENOENT) {
1731 ret = setup_inline_extent_backref(trans, root, path, iref,
1732 parent, root_objectid,
1733 owner, offset, refs_to_add,
1734 extent_op);
1736 return ret;
1739 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1740 struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 u64 bytenr, u64 parent, u64 root_objectid,
1743 u64 owner, u64 offset, int refs_to_add)
1745 int ret;
1746 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1747 BUG_ON(refs_to_add != 1);
1748 ret = insert_tree_block_ref(trans, root, path, bytenr,
1749 parent, root_objectid);
1750 } else {
1751 ret = insert_extent_data_ref(trans, root, path, bytenr,
1752 parent, root_objectid,
1753 owner, offset, refs_to_add);
1755 return ret;
1758 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1759 struct btrfs_root *root,
1760 struct btrfs_path *path,
1761 struct btrfs_extent_inline_ref *iref,
1762 int refs_to_drop, int is_data)
1764 int ret;
1766 BUG_ON(!is_data && refs_to_drop != 1);
1767 if (iref) {
1768 ret = update_inline_extent_backref(trans, root, path, iref,
1769 -refs_to_drop, NULL);
1770 } else if (is_data) {
1771 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1772 } else {
1773 ret = btrfs_del_item(trans, root, path);
1775 return ret;
1778 static int btrfs_issue_discard(struct block_device *bdev,
1779 u64 start, u64 len)
1781 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1784 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1785 u64 num_bytes, u64 *actual_bytes)
1787 int ret;
1788 u64 discarded_bytes = 0;
1789 struct btrfs_multi_bio *multi = NULL;
1792 /* Tell the block device(s) that the sectors can be discarded */
1793 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1794 bytenr, &num_bytes, &multi, 0);
1795 if (!ret) {
1796 struct btrfs_bio_stripe *stripe = multi->stripes;
1797 int i;
1800 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1801 if (!stripe->dev->can_discard)
1802 continue;
1804 ret = btrfs_issue_discard(stripe->dev->bdev,
1805 stripe->physical,
1806 stripe->length);
1807 if (!ret)
1808 discarded_bytes += stripe->length;
1809 else if (ret != -EOPNOTSUPP)
1810 break;
1813 * Just in case we get back EOPNOTSUPP for some reason,
1814 * just ignore the return value so we don't screw up
1815 * people calling discard_extent.
1817 ret = 0;
1819 kfree(multi);
1822 if (actual_bytes)
1823 *actual_bytes = discarded_bytes;
1826 return ret;
1829 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 u64 bytenr, u64 num_bytes, u64 parent,
1832 u64 root_objectid, u64 owner, u64 offset)
1834 int ret;
1835 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1836 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1838 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1839 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1840 parent, root_objectid, (int)owner,
1841 BTRFS_ADD_DELAYED_REF, NULL);
1842 } else {
1843 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1844 parent, root_objectid, owner, offset,
1845 BTRFS_ADD_DELAYED_REF, NULL);
1847 return ret;
1850 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1851 struct btrfs_root *root,
1852 u64 bytenr, u64 num_bytes,
1853 u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add,
1855 struct btrfs_delayed_extent_op *extent_op)
1857 struct btrfs_path *path;
1858 struct extent_buffer *leaf;
1859 struct btrfs_extent_item *item;
1860 u64 refs;
1861 int ret;
1862 int err = 0;
1864 path = btrfs_alloc_path();
1865 if (!path)
1866 return -ENOMEM;
1868 path->reada = 1;
1869 path->leave_spinning = 1;
1870 /* this will setup the path even if it fails to insert the back ref */
1871 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1872 path, bytenr, num_bytes, parent,
1873 root_objectid, owner, offset,
1874 refs_to_add, extent_op);
1875 if (ret == 0)
1876 goto out;
1878 if (ret != -EAGAIN) {
1879 err = ret;
1880 goto out;
1883 leaf = path->nodes[0];
1884 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1885 refs = btrfs_extent_refs(leaf, item);
1886 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1887 if (extent_op)
1888 __run_delayed_extent_op(extent_op, leaf, item);
1890 btrfs_mark_buffer_dirty(leaf);
1891 btrfs_release_path(path);
1893 path->reada = 1;
1894 path->leave_spinning = 1;
1896 /* now insert the actual backref */
1897 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1898 path, bytenr, parent, root_objectid,
1899 owner, offset, refs_to_add);
1900 BUG_ON(ret);
1901 out:
1902 btrfs_free_path(path);
1903 return err;
1906 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1907 struct btrfs_root *root,
1908 struct btrfs_delayed_ref_node *node,
1909 struct btrfs_delayed_extent_op *extent_op,
1910 int insert_reserved)
1912 int ret = 0;
1913 struct btrfs_delayed_data_ref *ref;
1914 struct btrfs_key ins;
1915 u64 parent = 0;
1916 u64 ref_root = 0;
1917 u64 flags = 0;
1919 ins.objectid = node->bytenr;
1920 ins.offset = node->num_bytes;
1921 ins.type = BTRFS_EXTENT_ITEM_KEY;
1923 ref = btrfs_delayed_node_to_data_ref(node);
1924 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1925 parent = ref->parent;
1926 else
1927 ref_root = ref->root;
1929 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1930 if (extent_op) {
1931 BUG_ON(extent_op->update_key);
1932 flags |= extent_op->flags_to_set;
1934 ret = alloc_reserved_file_extent(trans, root,
1935 parent, ref_root, flags,
1936 ref->objectid, ref->offset,
1937 &ins, node->ref_mod);
1938 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1939 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1940 node->num_bytes, parent,
1941 ref_root, ref->objectid,
1942 ref->offset, node->ref_mod,
1943 extent_op);
1944 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1945 ret = __btrfs_free_extent(trans, root, node->bytenr,
1946 node->num_bytes, parent,
1947 ref_root, ref->objectid,
1948 ref->offset, node->ref_mod,
1949 extent_op);
1950 } else {
1951 BUG();
1953 return ret;
1956 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1957 struct extent_buffer *leaf,
1958 struct btrfs_extent_item *ei)
1960 u64 flags = btrfs_extent_flags(leaf, ei);
1961 if (extent_op->update_flags) {
1962 flags |= extent_op->flags_to_set;
1963 btrfs_set_extent_flags(leaf, ei, flags);
1966 if (extent_op->update_key) {
1967 struct btrfs_tree_block_info *bi;
1968 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1969 bi = (struct btrfs_tree_block_info *)(ei + 1);
1970 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1974 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1975 struct btrfs_root *root,
1976 struct btrfs_delayed_ref_node *node,
1977 struct btrfs_delayed_extent_op *extent_op)
1979 struct btrfs_key key;
1980 struct btrfs_path *path;
1981 struct btrfs_extent_item *ei;
1982 struct extent_buffer *leaf;
1983 u32 item_size;
1984 int ret;
1985 int err = 0;
1987 path = btrfs_alloc_path();
1988 if (!path)
1989 return -ENOMEM;
1991 key.objectid = node->bytenr;
1992 key.type = BTRFS_EXTENT_ITEM_KEY;
1993 key.offset = node->num_bytes;
1995 path->reada = 1;
1996 path->leave_spinning = 1;
1997 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1998 path, 0, 1);
1999 if (ret < 0) {
2000 err = ret;
2001 goto out;
2003 if (ret > 0) {
2004 err = -EIO;
2005 goto out;
2008 leaf = path->nodes[0];
2009 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2010 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2011 if (item_size < sizeof(*ei)) {
2012 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2013 path, (u64)-1, 0);
2014 if (ret < 0) {
2015 err = ret;
2016 goto out;
2018 leaf = path->nodes[0];
2019 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2021 #endif
2022 BUG_ON(item_size < sizeof(*ei));
2023 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2024 __run_delayed_extent_op(extent_op, leaf, ei);
2026 btrfs_mark_buffer_dirty(leaf);
2027 out:
2028 btrfs_free_path(path);
2029 return err;
2032 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2033 struct btrfs_root *root,
2034 struct btrfs_delayed_ref_node *node,
2035 struct btrfs_delayed_extent_op *extent_op,
2036 int insert_reserved)
2038 int ret = 0;
2039 struct btrfs_delayed_tree_ref *ref;
2040 struct btrfs_key ins;
2041 u64 parent = 0;
2042 u64 ref_root = 0;
2044 ins.objectid = node->bytenr;
2045 ins.offset = node->num_bytes;
2046 ins.type = BTRFS_EXTENT_ITEM_KEY;
2048 ref = btrfs_delayed_node_to_tree_ref(node);
2049 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2050 parent = ref->parent;
2051 else
2052 ref_root = ref->root;
2054 BUG_ON(node->ref_mod != 1);
2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2056 BUG_ON(!extent_op || !extent_op->update_flags ||
2057 !extent_op->update_key);
2058 ret = alloc_reserved_tree_block(trans, root,
2059 parent, ref_root,
2060 extent_op->flags_to_set,
2061 &extent_op->key,
2062 ref->level, &ins);
2063 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2064 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2065 node->num_bytes, parent, ref_root,
2066 ref->level, 0, 1, extent_op);
2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2068 ret = __btrfs_free_extent(trans, root, node->bytenr,
2069 node->num_bytes, parent, ref_root,
2070 ref->level, 0, 1, extent_op);
2071 } else {
2072 BUG();
2074 return ret;
2077 /* helper function to actually process a single delayed ref entry */
2078 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2079 struct btrfs_root *root,
2080 struct btrfs_delayed_ref_node *node,
2081 struct btrfs_delayed_extent_op *extent_op,
2082 int insert_reserved)
2084 int ret;
2085 if (btrfs_delayed_ref_is_head(node)) {
2086 struct btrfs_delayed_ref_head *head;
2088 * we've hit the end of the chain and we were supposed
2089 * to insert this extent into the tree. But, it got
2090 * deleted before we ever needed to insert it, so all
2091 * we have to do is clean up the accounting
2093 BUG_ON(extent_op);
2094 head = btrfs_delayed_node_to_head(node);
2095 if (insert_reserved) {
2096 btrfs_pin_extent(root, node->bytenr,
2097 node->num_bytes, 1);
2098 if (head->is_data) {
2099 ret = btrfs_del_csums(trans, root,
2100 node->bytenr,
2101 node->num_bytes);
2102 BUG_ON(ret);
2105 mutex_unlock(&head->mutex);
2106 return 0;
2109 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2110 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2111 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2112 insert_reserved);
2113 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2114 node->type == BTRFS_SHARED_DATA_REF_KEY)
2115 ret = run_delayed_data_ref(trans, root, node, extent_op,
2116 insert_reserved);
2117 else
2118 BUG();
2119 return ret;
2122 static noinline struct btrfs_delayed_ref_node *
2123 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2125 struct rb_node *node;
2126 struct btrfs_delayed_ref_node *ref;
2127 int action = BTRFS_ADD_DELAYED_REF;
2128 again:
2130 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2131 * this prevents ref count from going down to zero when
2132 * there still are pending delayed ref.
2134 node = rb_prev(&head->node.rb_node);
2135 while (1) {
2136 if (!node)
2137 break;
2138 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2139 rb_node);
2140 if (ref->bytenr != head->node.bytenr)
2141 break;
2142 if (ref->action == action)
2143 return ref;
2144 node = rb_prev(node);
2146 if (action == BTRFS_ADD_DELAYED_REF) {
2147 action = BTRFS_DROP_DELAYED_REF;
2148 goto again;
2150 return NULL;
2153 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2154 struct btrfs_root *root,
2155 struct list_head *cluster)
2157 struct btrfs_delayed_ref_root *delayed_refs;
2158 struct btrfs_delayed_ref_node *ref;
2159 struct btrfs_delayed_ref_head *locked_ref = NULL;
2160 struct btrfs_delayed_extent_op *extent_op;
2161 int ret;
2162 int count = 0;
2163 int must_insert_reserved = 0;
2165 delayed_refs = &trans->transaction->delayed_refs;
2166 while (1) {
2167 if (!locked_ref) {
2168 /* pick a new head ref from the cluster list */
2169 if (list_empty(cluster))
2170 break;
2172 locked_ref = list_entry(cluster->next,
2173 struct btrfs_delayed_ref_head, cluster);
2175 /* grab the lock that says we are going to process
2176 * all the refs for this head */
2177 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2180 * we may have dropped the spin lock to get the head
2181 * mutex lock, and that might have given someone else
2182 * time to free the head. If that's true, it has been
2183 * removed from our list and we can move on.
2185 if (ret == -EAGAIN) {
2186 locked_ref = NULL;
2187 count++;
2188 continue;
2193 * record the must insert reserved flag before we
2194 * drop the spin lock.
2196 must_insert_reserved = locked_ref->must_insert_reserved;
2197 locked_ref->must_insert_reserved = 0;
2199 extent_op = locked_ref->extent_op;
2200 locked_ref->extent_op = NULL;
2203 * locked_ref is the head node, so we have to go one
2204 * node back for any delayed ref updates
2206 ref = select_delayed_ref(locked_ref);
2207 if (!ref) {
2208 /* All delayed refs have been processed, Go ahead
2209 * and send the head node to run_one_delayed_ref,
2210 * so that any accounting fixes can happen
2212 ref = &locked_ref->node;
2214 if (extent_op && must_insert_reserved) {
2215 kfree(extent_op);
2216 extent_op = NULL;
2219 if (extent_op) {
2220 spin_unlock(&delayed_refs->lock);
2222 ret = run_delayed_extent_op(trans, root,
2223 ref, extent_op);
2224 BUG_ON(ret);
2225 kfree(extent_op);
2227 cond_resched();
2228 spin_lock(&delayed_refs->lock);
2229 continue;
2232 list_del_init(&locked_ref->cluster);
2233 locked_ref = NULL;
2236 ref->in_tree = 0;
2237 rb_erase(&ref->rb_node, &delayed_refs->root);
2238 delayed_refs->num_entries--;
2240 spin_unlock(&delayed_refs->lock);
2242 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2243 must_insert_reserved);
2244 BUG_ON(ret);
2246 btrfs_put_delayed_ref(ref);
2247 kfree(extent_op);
2248 count++;
2250 cond_resched();
2251 spin_lock(&delayed_refs->lock);
2253 return count;
2257 * this starts processing the delayed reference count updates and
2258 * extent insertions we have queued up so far. count can be
2259 * 0, which means to process everything in the tree at the start
2260 * of the run (but not newly added entries), or it can be some target
2261 * number you'd like to process.
2263 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2264 struct btrfs_root *root, unsigned long count)
2266 struct rb_node *node;
2267 struct btrfs_delayed_ref_root *delayed_refs;
2268 struct btrfs_delayed_ref_node *ref;
2269 struct list_head cluster;
2270 int ret;
2271 int run_all = count == (unsigned long)-1;
2272 int run_most = 0;
2274 if (root == root->fs_info->extent_root)
2275 root = root->fs_info->tree_root;
2277 delayed_refs = &trans->transaction->delayed_refs;
2278 INIT_LIST_HEAD(&cluster);
2279 again:
2280 spin_lock(&delayed_refs->lock);
2281 if (count == 0) {
2282 count = delayed_refs->num_entries * 2;
2283 run_most = 1;
2285 while (1) {
2286 if (!(run_all || run_most) &&
2287 delayed_refs->num_heads_ready < 64)
2288 break;
2291 * go find something we can process in the rbtree. We start at
2292 * the beginning of the tree, and then build a cluster
2293 * of refs to process starting at the first one we are able to
2294 * lock
2296 ret = btrfs_find_ref_cluster(trans, &cluster,
2297 delayed_refs->run_delayed_start);
2298 if (ret)
2299 break;
2301 ret = run_clustered_refs(trans, root, &cluster);
2302 BUG_ON(ret < 0);
2304 count -= min_t(unsigned long, ret, count);
2306 if (count == 0)
2307 break;
2310 if (run_all) {
2311 node = rb_first(&delayed_refs->root);
2312 if (!node)
2313 goto out;
2314 count = (unsigned long)-1;
2316 while (node) {
2317 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2318 rb_node);
2319 if (btrfs_delayed_ref_is_head(ref)) {
2320 struct btrfs_delayed_ref_head *head;
2322 head = btrfs_delayed_node_to_head(ref);
2323 atomic_inc(&ref->refs);
2325 spin_unlock(&delayed_refs->lock);
2327 * Mutex was contended, block until it's
2328 * released and try again
2330 mutex_lock(&head->mutex);
2331 mutex_unlock(&head->mutex);
2333 btrfs_put_delayed_ref(ref);
2334 cond_resched();
2335 goto again;
2337 node = rb_next(node);
2339 spin_unlock(&delayed_refs->lock);
2340 schedule_timeout(1);
2341 goto again;
2343 out:
2344 spin_unlock(&delayed_refs->lock);
2345 return 0;
2348 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2349 struct btrfs_root *root,
2350 u64 bytenr, u64 num_bytes, u64 flags,
2351 int is_data)
2353 struct btrfs_delayed_extent_op *extent_op;
2354 int ret;
2356 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2357 if (!extent_op)
2358 return -ENOMEM;
2360 extent_op->flags_to_set = flags;
2361 extent_op->update_flags = 1;
2362 extent_op->update_key = 0;
2363 extent_op->is_data = is_data ? 1 : 0;
2365 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2366 if (ret)
2367 kfree(extent_op);
2368 return ret;
2371 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2372 struct btrfs_root *root,
2373 struct btrfs_path *path,
2374 u64 objectid, u64 offset, u64 bytenr)
2376 struct btrfs_delayed_ref_head *head;
2377 struct btrfs_delayed_ref_node *ref;
2378 struct btrfs_delayed_data_ref *data_ref;
2379 struct btrfs_delayed_ref_root *delayed_refs;
2380 struct rb_node *node;
2381 int ret = 0;
2383 ret = -ENOENT;
2384 delayed_refs = &trans->transaction->delayed_refs;
2385 spin_lock(&delayed_refs->lock);
2386 head = btrfs_find_delayed_ref_head(trans, bytenr);
2387 if (!head)
2388 goto out;
2390 if (!mutex_trylock(&head->mutex)) {
2391 atomic_inc(&head->node.refs);
2392 spin_unlock(&delayed_refs->lock);
2394 btrfs_release_path(path);
2397 * Mutex was contended, block until it's released and let
2398 * caller try again
2400 mutex_lock(&head->mutex);
2401 mutex_unlock(&head->mutex);
2402 btrfs_put_delayed_ref(&head->node);
2403 return -EAGAIN;
2406 node = rb_prev(&head->node.rb_node);
2407 if (!node)
2408 goto out_unlock;
2410 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2412 if (ref->bytenr != bytenr)
2413 goto out_unlock;
2415 ret = 1;
2416 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2417 goto out_unlock;
2419 data_ref = btrfs_delayed_node_to_data_ref(ref);
2421 node = rb_prev(node);
2422 if (node) {
2423 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2424 if (ref->bytenr == bytenr)
2425 goto out_unlock;
2428 if (data_ref->root != root->root_key.objectid ||
2429 data_ref->objectid != objectid || data_ref->offset != offset)
2430 goto out_unlock;
2432 ret = 0;
2433 out_unlock:
2434 mutex_unlock(&head->mutex);
2435 out:
2436 spin_unlock(&delayed_refs->lock);
2437 return ret;
2440 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2441 struct btrfs_root *root,
2442 struct btrfs_path *path,
2443 u64 objectid, u64 offset, u64 bytenr)
2445 struct btrfs_root *extent_root = root->fs_info->extent_root;
2446 struct extent_buffer *leaf;
2447 struct btrfs_extent_data_ref *ref;
2448 struct btrfs_extent_inline_ref *iref;
2449 struct btrfs_extent_item *ei;
2450 struct btrfs_key key;
2451 u32 item_size;
2452 int ret;
2454 key.objectid = bytenr;
2455 key.offset = (u64)-1;
2456 key.type = BTRFS_EXTENT_ITEM_KEY;
2458 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2459 if (ret < 0)
2460 goto out;
2461 BUG_ON(ret == 0);
2463 ret = -ENOENT;
2464 if (path->slots[0] == 0)
2465 goto out;
2467 path->slots[0]--;
2468 leaf = path->nodes[0];
2469 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2471 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2472 goto out;
2474 ret = 1;
2475 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2476 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2477 if (item_size < sizeof(*ei)) {
2478 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2479 goto out;
2481 #endif
2482 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2484 if (item_size != sizeof(*ei) +
2485 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2486 goto out;
2488 if (btrfs_extent_generation(leaf, ei) <=
2489 btrfs_root_last_snapshot(&root->root_item))
2490 goto out;
2492 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2493 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2494 BTRFS_EXTENT_DATA_REF_KEY)
2495 goto out;
2497 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2498 if (btrfs_extent_refs(leaf, ei) !=
2499 btrfs_extent_data_ref_count(leaf, ref) ||
2500 btrfs_extent_data_ref_root(leaf, ref) !=
2501 root->root_key.objectid ||
2502 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2503 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2504 goto out;
2506 ret = 0;
2507 out:
2508 return ret;
2511 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2512 struct btrfs_root *root,
2513 u64 objectid, u64 offset, u64 bytenr)
2515 struct btrfs_path *path;
2516 int ret;
2517 int ret2;
2519 path = btrfs_alloc_path();
2520 if (!path)
2521 return -ENOENT;
2523 do {
2524 ret = check_committed_ref(trans, root, path, objectid,
2525 offset, bytenr);
2526 if (ret && ret != -ENOENT)
2527 goto out;
2529 ret2 = check_delayed_ref(trans, root, path, objectid,
2530 offset, bytenr);
2531 } while (ret2 == -EAGAIN);
2533 if (ret2 && ret2 != -ENOENT) {
2534 ret = ret2;
2535 goto out;
2538 if (ret != -ENOENT || ret2 != -ENOENT)
2539 ret = 0;
2540 out:
2541 btrfs_free_path(path);
2542 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2543 WARN_ON(ret > 0);
2544 return ret;
2547 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2548 struct btrfs_root *root,
2549 struct extent_buffer *buf,
2550 int full_backref, int inc)
2552 u64 bytenr;
2553 u64 num_bytes;
2554 u64 parent;
2555 u64 ref_root;
2556 u32 nritems;
2557 struct btrfs_key key;
2558 struct btrfs_file_extent_item *fi;
2559 int i;
2560 int level;
2561 int ret = 0;
2562 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2563 u64, u64, u64, u64, u64, u64);
2565 ref_root = btrfs_header_owner(buf);
2566 nritems = btrfs_header_nritems(buf);
2567 level = btrfs_header_level(buf);
2569 if (!root->ref_cows && level == 0)
2570 return 0;
2572 if (inc)
2573 process_func = btrfs_inc_extent_ref;
2574 else
2575 process_func = btrfs_free_extent;
2577 if (full_backref)
2578 parent = buf->start;
2579 else
2580 parent = 0;
2582 for (i = 0; i < nritems; i++) {
2583 if (level == 0) {
2584 btrfs_item_key_to_cpu(buf, &key, i);
2585 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2586 continue;
2587 fi = btrfs_item_ptr(buf, i,
2588 struct btrfs_file_extent_item);
2589 if (btrfs_file_extent_type(buf, fi) ==
2590 BTRFS_FILE_EXTENT_INLINE)
2591 continue;
2592 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2593 if (bytenr == 0)
2594 continue;
2596 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2597 key.offset -= btrfs_file_extent_offset(buf, fi);
2598 ret = process_func(trans, root, bytenr, num_bytes,
2599 parent, ref_root, key.objectid,
2600 key.offset);
2601 if (ret)
2602 goto fail;
2603 } else {
2604 bytenr = btrfs_node_blockptr(buf, i);
2605 num_bytes = btrfs_level_size(root, level - 1);
2606 ret = process_func(trans, root, bytenr, num_bytes,
2607 parent, ref_root, level - 1, 0);
2608 if (ret)
2609 goto fail;
2612 return 0;
2613 fail:
2614 BUG();
2615 return ret;
2618 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2619 struct extent_buffer *buf, int full_backref)
2621 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2624 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2625 struct extent_buffer *buf, int full_backref)
2627 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2630 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2631 struct btrfs_root *root,
2632 struct btrfs_path *path,
2633 struct btrfs_block_group_cache *cache)
2635 int ret;
2636 struct btrfs_root *extent_root = root->fs_info->extent_root;
2637 unsigned long bi;
2638 struct extent_buffer *leaf;
2640 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2641 if (ret < 0)
2642 goto fail;
2643 BUG_ON(ret);
2645 leaf = path->nodes[0];
2646 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2647 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2648 btrfs_mark_buffer_dirty(leaf);
2649 btrfs_release_path(path);
2650 fail:
2651 if (ret)
2652 return ret;
2653 return 0;
2657 static struct btrfs_block_group_cache *
2658 next_block_group(struct btrfs_root *root,
2659 struct btrfs_block_group_cache *cache)
2661 struct rb_node *node;
2662 spin_lock(&root->fs_info->block_group_cache_lock);
2663 node = rb_next(&cache->cache_node);
2664 btrfs_put_block_group(cache);
2665 if (node) {
2666 cache = rb_entry(node, struct btrfs_block_group_cache,
2667 cache_node);
2668 btrfs_get_block_group(cache);
2669 } else
2670 cache = NULL;
2671 spin_unlock(&root->fs_info->block_group_cache_lock);
2672 return cache;
2675 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2676 struct btrfs_trans_handle *trans,
2677 struct btrfs_path *path)
2679 struct btrfs_root *root = block_group->fs_info->tree_root;
2680 struct inode *inode = NULL;
2681 u64 alloc_hint = 0;
2682 int dcs = BTRFS_DC_ERROR;
2683 int num_pages = 0;
2684 int retries = 0;
2685 int ret = 0;
2688 * If this block group is smaller than 100 megs don't bother caching the
2689 * block group.
2691 if (block_group->key.offset < (100 * 1024 * 1024)) {
2692 spin_lock(&block_group->lock);
2693 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2694 spin_unlock(&block_group->lock);
2695 return 0;
2698 again:
2699 inode = lookup_free_space_inode(root, block_group, path);
2700 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2701 ret = PTR_ERR(inode);
2702 btrfs_release_path(path);
2703 goto out;
2706 if (IS_ERR(inode)) {
2707 BUG_ON(retries);
2708 retries++;
2710 if (block_group->ro)
2711 goto out_free;
2713 ret = create_free_space_inode(root, trans, block_group, path);
2714 if (ret)
2715 goto out_free;
2716 goto again;
2720 * We want to set the generation to 0, that way if anything goes wrong
2721 * from here on out we know not to trust this cache when we load up next
2722 * time.
2724 BTRFS_I(inode)->generation = 0;
2725 ret = btrfs_update_inode(trans, root, inode);
2726 WARN_ON(ret);
2728 if (i_size_read(inode) > 0) {
2729 ret = btrfs_truncate_free_space_cache(root, trans, path,
2730 inode);
2731 if (ret)
2732 goto out_put;
2735 spin_lock(&block_group->lock);
2736 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2737 /* We're not cached, don't bother trying to write stuff out */
2738 dcs = BTRFS_DC_WRITTEN;
2739 spin_unlock(&block_group->lock);
2740 goto out_put;
2742 spin_unlock(&block_group->lock);
2744 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2745 if (!num_pages)
2746 num_pages = 1;
2749 * Just to make absolutely sure we have enough space, we're going to
2750 * preallocate 12 pages worth of space for each block group. In
2751 * practice we ought to use at most 8, but we need extra space so we can
2752 * add our header and have a terminator between the extents and the
2753 * bitmaps.
2755 num_pages *= 16;
2756 num_pages *= PAGE_CACHE_SIZE;
2758 ret = btrfs_delalloc_reserve_space(inode, num_pages);
2759 if (ret)
2760 goto out_put;
2762 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2763 num_pages, num_pages,
2764 &alloc_hint);
2765 if (!ret) {
2766 dcs = BTRFS_DC_SETUP;
2767 btrfs_free_reserved_data_space(inode, num_pages);
2768 } else {
2769 btrfs_delalloc_release_space(inode, num_pages);
2772 out_put:
2773 iput(inode);
2774 out_free:
2775 btrfs_release_path(path);
2776 out:
2777 spin_lock(&block_group->lock);
2778 block_group->disk_cache_state = dcs;
2779 spin_unlock(&block_group->lock);
2781 return ret;
2784 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2785 struct btrfs_root *root)
2787 struct btrfs_block_group_cache *cache;
2788 int err = 0;
2789 struct btrfs_path *path;
2790 u64 last = 0;
2792 path = btrfs_alloc_path();
2793 if (!path)
2794 return -ENOMEM;
2796 again:
2797 while (1) {
2798 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2799 while (cache) {
2800 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2801 break;
2802 cache = next_block_group(root, cache);
2804 if (!cache) {
2805 if (last == 0)
2806 break;
2807 last = 0;
2808 continue;
2810 err = cache_save_setup(cache, trans, path);
2811 last = cache->key.objectid + cache->key.offset;
2812 btrfs_put_block_group(cache);
2815 while (1) {
2816 if (last == 0) {
2817 err = btrfs_run_delayed_refs(trans, root,
2818 (unsigned long)-1);
2819 BUG_ON(err);
2822 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2823 while (cache) {
2824 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2825 btrfs_put_block_group(cache);
2826 goto again;
2829 if (cache->dirty)
2830 break;
2831 cache = next_block_group(root, cache);
2833 if (!cache) {
2834 if (last == 0)
2835 break;
2836 last = 0;
2837 continue;
2840 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2841 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2842 cache->dirty = 0;
2843 last = cache->key.objectid + cache->key.offset;
2845 err = write_one_cache_group(trans, root, path, cache);
2846 BUG_ON(err);
2847 btrfs_put_block_group(cache);
2850 while (1) {
2852 * I don't think this is needed since we're just marking our
2853 * preallocated extent as written, but just in case it can't
2854 * hurt.
2856 if (last == 0) {
2857 err = btrfs_run_delayed_refs(trans, root,
2858 (unsigned long)-1);
2859 BUG_ON(err);
2862 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2863 while (cache) {
2865 * Really this shouldn't happen, but it could if we
2866 * couldn't write the entire preallocated extent and
2867 * splitting the extent resulted in a new block.
2869 if (cache->dirty) {
2870 btrfs_put_block_group(cache);
2871 goto again;
2873 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2874 break;
2875 cache = next_block_group(root, cache);
2877 if (!cache) {
2878 if (last == 0)
2879 break;
2880 last = 0;
2881 continue;
2884 btrfs_write_out_cache(root, trans, cache, path);
2887 * If we didn't have an error then the cache state is still
2888 * NEED_WRITE, so we can set it to WRITTEN.
2890 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2891 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2892 last = cache->key.objectid + cache->key.offset;
2893 btrfs_put_block_group(cache);
2896 btrfs_free_path(path);
2897 return 0;
2900 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2902 struct btrfs_block_group_cache *block_group;
2903 int readonly = 0;
2905 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2906 if (!block_group || block_group->ro)
2907 readonly = 1;
2908 if (block_group)
2909 btrfs_put_block_group(block_group);
2910 return readonly;
2913 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2914 u64 total_bytes, u64 bytes_used,
2915 struct btrfs_space_info **space_info)
2917 struct btrfs_space_info *found;
2918 int i;
2919 int factor;
2921 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2922 BTRFS_BLOCK_GROUP_RAID10))
2923 factor = 2;
2924 else
2925 factor = 1;
2927 found = __find_space_info(info, flags);
2928 if (found) {
2929 spin_lock(&found->lock);
2930 found->total_bytes += total_bytes;
2931 found->disk_total += total_bytes * factor;
2932 found->bytes_used += bytes_used;
2933 found->disk_used += bytes_used * factor;
2934 found->full = 0;
2935 spin_unlock(&found->lock);
2936 *space_info = found;
2937 return 0;
2939 found = kzalloc(sizeof(*found), GFP_NOFS);
2940 if (!found)
2941 return -ENOMEM;
2943 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2944 INIT_LIST_HEAD(&found->block_groups[i]);
2945 init_rwsem(&found->groups_sem);
2946 spin_lock_init(&found->lock);
2947 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2948 BTRFS_BLOCK_GROUP_SYSTEM |
2949 BTRFS_BLOCK_GROUP_METADATA);
2950 found->total_bytes = total_bytes;
2951 found->disk_total = total_bytes * factor;
2952 found->bytes_used = bytes_used;
2953 found->disk_used = bytes_used * factor;
2954 found->bytes_pinned = 0;
2955 found->bytes_reserved = 0;
2956 found->bytes_readonly = 0;
2957 found->bytes_may_use = 0;
2958 found->full = 0;
2959 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2960 found->chunk_alloc = 0;
2961 found->flush = 0;
2962 init_waitqueue_head(&found->wait);
2963 *space_info = found;
2964 list_add_rcu(&found->list, &info->space_info);
2965 return 0;
2968 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2970 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2971 BTRFS_BLOCK_GROUP_RAID1 |
2972 BTRFS_BLOCK_GROUP_RAID10 |
2973 BTRFS_BLOCK_GROUP_DUP);
2974 if (extra_flags) {
2975 if (flags & BTRFS_BLOCK_GROUP_DATA)
2976 fs_info->avail_data_alloc_bits |= extra_flags;
2977 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2978 fs_info->avail_metadata_alloc_bits |= extra_flags;
2979 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2980 fs_info->avail_system_alloc_bits |= extra_flags;
2984 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2987 * we add in the count of missing devices because we want
2988 * to make sure that any RAID levels on a degraded FS
2989 * continue to be honored.
2991 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2992 root->fs_info->fs_devices->missing_devices;
2994 if (num_devices == 1)
2995 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2996 if (num_devices < 4)
2997 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2999 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3000 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3001 BTRFS_BLOCK_GROUP_RAID10))) {
3002 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3005 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3006 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3007 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3010 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3011 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3012 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3013 (flags & BTRFS_BLOCK_GROUP_DUP)))
3014 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3015 return flags;
3018 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3020 if (flags & BTRFS_BLOCK_GROUP_DATA)
3021 flags |= root->fs_info->avail_data_alloc_bits &
3022 root->fs_info->data_alloc_profile;
3023 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3024 flags |= root->fs_info->avail_system_alloc_bits &
3025 root->fs_info->system_alloc_profile;
3026 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3027 flags |= root->fs_info->avail_metadata_alloc_bits &
3028 root->fs_info->metadata_alloc_profile;
3029 return btrfs_reduce_alloc_profile(root, flags);
3032 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3034 u64 flags;
3036 if (data)
3037 flags = BTRFS_BLOCK_GROUP_DATA;
3038 else if (root == root->fs_info->chunk_root)
3039 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3040 else
3041 flags = BTRFS_BLOCK_GROUP_METADATA;
3043 return get_alloc_profile(root, flags);
3046 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3048 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3049 BTRFS_BLOCK_GROUP_DATA);
3053 * This will check the space that the inode allocates from to make sure we have
3054 * enough space for bytes.
3056 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3058 struct btrfs_space_info *data_sinfo;
3059 struct btrfs_root *root = BTRFS_I(inode)->root;
3060 u64 used;
3061 int ret = 0, committed = 0, alloc_chunk = 1;
3063 /* make sure bytes are sectorsize aligned */
3064 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3066 if (root == root->fs_info->tree_root ||
3067 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3068 alloc_chunk = 0;
3069 committed = 1;
3072 data_sinfo = BTRFS_I(inode)->space_info;
3073 if (!data_sinfo)
3074 goto alloc;
3076 again:
3077 /* make sure we have enough space to handle the data first */
3078 spin_lock(&data_sinfo->lock);
3079 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3080 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3081 data_sinfo->bytes_may_use;
3083 if (used + bytes > data_sinfo->total_bytes) {
3084 struct btrfs_trans_handle *trans;
3087 * if we don't have enough free bytes in this space then we need
3088 * to alloc a new chunk.
3090 if (!data_sinfo->full && alloc_chunk) {
3091 u64 alloc_target;
3093 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3094 spin_unlock(&data_sinfo->lock);
3095 alloc:
3096 alloc_target = btrfs_get_alloc_profile(root, 1);
3097 trans = btrfs_join_transaction(root);
3098 if (IS_ERR(trans))
3099 return PTR_ERR(trans);
3101 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3102 bytes + 2 * 1024 * 1024,
3103 alloc_target,
3104 CHUNK_ALLOC_NO_FORCE);
3105 btrfs_end_transaction(trans, root);
3106 if (ret < 0) {
3107 if (ret != -ENOSPC)
3108 return ret;
3109 else
3110 goto commit_trans;
3113 if (!data_sinfo) {
3114 btrfs_set_inode_space_info(root, inode);
3115 data_sinfo = BTRFS_I(inode)->space_info;
3117 goto again;
3121 * If we have less pinned bytes than we want to allocate then
3122 * don't bother committing the transaction, it won't help us.
3124 if (data_sinfo->bytes_pinned < bytes)
3125 committed = 1;
3126 spin_unlock(&data_sinfo->lock);
3128 /* commit the current transaction and try again */
3129 commit_trans:
3130 if (!committed &&
3131 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3132 committed = 1;
3133 trans = btrfs_join_transaction(root);
3134 if (IS_ERR(trans))
3135 return PTR_ERR(trans);
3136 ret = btrfs_commit_transaction(trans, root);
3137 if (ret)
3138 return ret;
3139 goto again;
3142 return -ENOSPC;
3144 data_sinfo->bytes_may_use += bytes;
3145 spin_unlock(&data_sinfo->lock);
3147 return 0;
3151 * Called if we need to clear a data reservation for this inode.
3153 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3155 struct btrfs_root *root = BTRFS_I(inode)->root;
3156 struct btrfs_space_info *data_sinfo;
3158 /* make sure bytes are sectorsize aligned */
3159 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3161 data_sinfo = BTRFS_I(inode)->space_info;
3162 spin_lock(&data_sinfo->lock);
3163 data_sinfo->bytes_may_use -= bytes;
3164 spin_unlock(&data_sinfo->lock);
3167 static void force_metadata_allocation(struct btrfs_fs_info *info)
3169 struct list_head *head = &info->space_info;
3170 struct btrfs_space_info *found;
3172 rcu_read_lock();
3173 list_for_each_entry_rcu(found, head, list) {
3174 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3175 found->force_alloc = CHUNK_ALLOC_FORCE;
3177 rcu_read_unlock();
3180 static int should_alloc_chunk(struct btrfs_root *root,
3181 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3182 int force)
3184 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3185 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3186 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3187 u64 thresh;
3189 if (force == CHUNK_ALLOC_FORCE)
3190 return 1;
3193 * We need to take into account the global rsv because for all intents
3194 * and purposes it's used space. Don't worry about locking the
3195 * global_rsv, it doesn't change except when the transaction commits.
3197 num_allocated += global_rsv->size;
3200 * in limited mode, we want to have some free space up to
3201 * about 1% of the FS size.
3203 if (force == CHUNK_ALLOC_LIMITED) {
3204 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3205 thresh = max_t(u64, 64 * 1024 * 1024,
3206 div_factor_fine(thresh, 1));
3208 if (num_bytes - num_allocated < thresh)
3209 return 1;
3213 * we have two similar checks here, one based on percentage
3214 * and once based on a hard number of 256MB. The idea
3215 * is that if we have a good amount of free
3216 * room, don't allocate a chunk. A good mount is
3217 * less than 80% utilized of the chunks we have allocated,
3218 * or more than 256MB free
3220 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3221 return 0;
3223 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3224 return 0;
3226 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3228 /* 256MB or 5% of the FS */
3229 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3231 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3232 return 0;
3233 return 1;
3236 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3237 struct btrfs_root *extent_root, u64 alloc_bytes,
3238 u64 flags, int force)
3240 struct btrfs_space_info *space_info;
3241 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3242 int wait_for_alloc = 0;
3243 int ret = 0;
3245 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3247 space_info = __find_space_info(extent_root->fs_info, flags);
3248 if (!space_info) {
3249 ret = update_space_info(extent_root->fs_info, flags,
3250 0, 0, &space_info);
3251 BUG_ON(ret);
3253 BUG_ON(!space_info);
3255 again:
3256 spin_lock(&space_info->lock);
3257 if (space_info->force_alloc)
3258 force = space_info->force_alloc;
3259 if (space_info->full) {
3260 spin_unlock(&space_info->lock);
3261 return 0;
3264 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3265 spin_unlock(&space_info->lock);
3266 return 0;
3267 } else if (space_info->chunk_alloc) {
3268 wait_for_alloc = 1;
3269 } else {
3270 space_info->chunk_alloc = 1;
3273 spin_unlock(&space_info->lock);
3275 mutex_lock(&fs_info->chunk_mutex);
3278 * The chunk_mutex is held throughout the entirety of a chunk
3279 * allocation, so once we've acquired the chunk_mutex we know that the
3280 * other guy is done and we need to recheck and see if we should
3281 * allocate.
3283 if (wait_for_alloc) {
3284 mutex_unlock(&fs_info->chunk_mutex);
3285 wait_for_alloc = 0;
3286 goto again;
3290 * If we have mixed data/metadata chunks we want to make sure we keep
3291 * allocating mixed chunks instead of individual chunks.
3293 if (btrfs_mixed_space_info(space_info))
3294 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3297 * if we're doing a data chunk, go ahead and make sure that
3298 * we keep a reasonable number of metadata chunks allocated in the
3299 * FS as well.
3301 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3302 fs_info->data_chunk_allocations++;
3303 if (!(fs_info->data_chunk_allocations %
3304 fs_info->metadata_ratio))
3305 force_metadata_allocation(fs_info);
3308 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3309 if (ret < 0 && ret != -ENOSPC)
3310 goto out;
3312 spin_lock(&space_info->lock);
3313 if (ret)
3314 space_info->full = 1;
3315 else
3316 ret = 1;
3318 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3319 space_info->chunk_alloc = 0;
3320 spin_unlock(&space_info->lock);
3321 out:
3322 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3323 return ret;
3327 * shrink metadata reservation for delalloc
3329 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3330 struct btrfs_root *root, u64 to_reclaim, int sync)
3332 struct btrfs_block_rsv *block_rsv;
3333 struct btrfs_space_info *space_info;
3334 u64 reserved;
3335 u64 max_reclaim;
3336 u64 reclaimed = 0;
3337 long time_left;
3338 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3339 int loops = 0;
3340 unsigned long progress;
3342 block_rsv = &root->fs_info->delalloc_block_rsv;
3343 space_info = block_rsv->space_info;
3345 smp_mb();
3346 reserved = space_info->bytes_may_use;
3347 progress = space_info->reservation_progress;
3349 if (reserved == 0)
3350 return 0;
3352 smp_mb();
3353 if (root->fs_info->delalloc_bytes == 0) {
3354 if (trans)
3355 return 0;
3356 btrfs_wait_ordered_extents(root, 0, 0);
3357 return 0;
3360 max_reclaim = min(reserved, to_reclaim);
3362 while (loops < 1024) {
3363 /* have the flusher threads jump in and do some IO */
3364 smp_mb();
3365 nr_pages = min_t(unsigned long, nr_pages,
3366 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3367 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3369 spin_lock(&space_info->lock);
3370 if (reserved > space_info->bytes_may_use)
3371 reclaimed += reserved - space_info->bytes_may_use;
3372 reserved = space_info->bytes_may_use;
3373 spin_unlock(&space_info->lock);
3375 loops++;
3377 if (reserved == 0 || reclaimed >= max_reclaim)
3378 break;
3380 if (trans && trans->transaction->blocked)
3381 return -EAGAIN;
3383 time_left = schedule_timeout_interruptible(1);
3385 /* We were interrupted, exit */
3386 if (time_left)
3387 break;
3389 /* we've kicked the IO a few times, if anything has been freed,
3390 * exit. There is no sense in looping here for a long time
3391 * when we really need to commit the transaction, or there are
3392 * just too many writers without enough free space
3395 if (loops > 3) {
3396 smp_mb();
3397 if (progress != space_info->reservation_progress)
3398 break;
3402 if (reclaimed >= to_reclaim && !trans)
3403 btrfs_wait_ordered_extents(root, 0, 0);
3404 return reclaimed >= to_reclaim;
3408 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3409 * @root - the root we're allocating for
3410 * @block_rsv - the block_rsv we're allocating for
3411 * @orig_bytes - the number of bytes we want
3412 * @flush - wether or not we can flush to make our reservation
3414 * This will reserve orgi_bytes number of bytes from the space info associated
3415 * with the block_rsv. If there is not enough space it will make an attempt to
3416 * flush out space to make room. It will do this by flushing delalloc if
3417 * possible or committing the transaction. If flush is 0 then no attempts to
3418 * regain reservations will be made and this will fail if there is not enough
3419 * space already.
3421 static int reserve_metadata_bytes(struct btrfs_root *root,
3422 struct btrfs_block_rsv *block_rsv,
3423 u64 orig_bytes, int flush)
3425 struct btrfs_space_info *space_info = block_rsv->space_info;
3426 struct btrfs_trans_handle *trans;
3427 u64 unused;
3428 u64 num_bytes = orig_bytes;
3429 int retries = 0;
3430 int ret = 0;
3431 bool committed = false;
3432 bool flushing = false;
3434 trans = (struct btrfs_trans_handle *)current->journal_info;
3435 again:
3436 ret = 0;
3437 spin_lock(&space_info->lock);
3439 * We only want to wait if somebody other than us is flushing and we are
3440 * actually alloed to flush.
3442 while (flush && !flushing && space_info->flush) {
3443 spin_unlock(&space_info->lock);
3445 * If we have a trans handle we can't wait because the flusher
3446 * may have to commit the transaction, which would mean we would
3447 * deadlock since we are waiting for the flusher to finish, but
3448 * hold the current transaction open.
3450 if (trans)
3451 return -EAGAIN;
3452 ret = wait_event_interruptible(space_info->wait,
3453 !space_info->flush);
3454 /* Must have been interrupted, return */
3455 if (ret)
3456 return -EINTR;
3458 spin_lock(&space_info->lock);
3461 ret = -ENOSPC;
3462 unused = space_info->bytes_used + space_info->bytes_reserved +
3463 space_info->bytes_pinned + space_info->bytes_readonly +
3464 space_info->bytes_may_use;
3467 * The idea here is that we've not already over-reserved the block group
3468 * then we can go ahead and save our reservation first and then start
3469 * flushing if we need to. Otherwise if we've already overcommitted
3470 * lets start flushing stuff first and then come back and try to make
3471 * our reservation.
3473 if (unused <= space_info->total_bytes) {
3474 unused = space_info->total_bytes - unused;
3475 if (unused >= orig_bytes) {
3476 space_info->bytes_may_use += orig_bytes;
3477 ret = 0;
3478 } else {
3480 * Ok set num_bytes to orig_bytes since we aren't
3481 * overocmmitted, this way we only try and reclaim what
3482 * we need.
3484 num_bytes = orig_bytes;
3486 } else {
3488 * Ok we're over committed, set num_bytes to the overcommitted
3489 * amount plus the amount of bytes that we need for this
3490 * reservation.
3492 num_bytes = unused - space_info->total_bytes +
3493 (orig_bytes * (retries + 1));
3497 * Couldn't make our reservation, save our place so while we're trying
3498 * to reclaim space we can actually use it instead of somebody else
3499 * stealing it from us.
3501 if (ret && flush) {
3502 flushing = true;
3503 space_info->flush = 1;
3506 spin_unlock(&space_info->lock);
3508 if (!ret || !flush)
3509 goto out;
3512 * We do synchronous shrinking since we don't actually unreserve
3513 * metadata until after the IO is completed.
3515 ret = shrink_delalloc(trans, root, num_bytes, 1);
3516 if (ret < 0)
3517 goto out;
3519 ret = 0;
3522 * So if we were overcommitted it's possible that somebody else flushed
3523 * out enough space and we simply didn't have enough space to reclaim,
3524 * so go back around and try again.
3526 if (retries < 2) {
3527 retries++;
3528 goto again;
3532 * Not enough space to be reclaimed, don't bother committing the
3533 * transaction.
3535 spin_lock(&space_info->lock);
3536 if (space_info->bytes_pinned < orig_bytes)
3537 ret = -ENOSPC;
3538 spin_unlock(&space_info->lock);
3539 if (ret)
3540 goto out;
3542 ret = -EAGAIN;
3543 if (trans)
3544 goto out;
3546 ret = -ENOSPC;
3547 if (committed)
3548 goto out;
3550 trans = btrfs_join_transaction(root);
3551 if (IS_ERR(trans))
3552 goto out;
3553 ret = btrfs_commit_transaction(trans, root);
3554 if (!ret) {
3555 trans = NULL;
3556 committed = true;
3557 goto again;
3560 out:
3561 if (flushing) {
3562 spin_lock(&space_info->lock);
3563 space_info->flush = 0;
3564 wake_up_all(&space_info->wait);
3565 spin_unlock(&space_info->lock);
3567 return ret;
3570 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3571 struct btrfs_root *root)
3573 struct btrfs_block_rsv *block_rsv = NULL;
3575 if (root->ref_cows || root == root->fs_info->csum_root)
3576 block_rsv = trans->block_rsv;
3578 if (!block_rsv)
3579 block_rsv = root->block_rsv;
3581 if (!block_rsv)
3582 block_rsv = &root->fs_info->empty_block_rsv;
3584 return block_rsv;
3587 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3588 u64 num_bytes)
3590 int ret = -ENOSPC;
3591 spin_lock(&block_rsv->lock);
3592 if (block_rsv->reserved >= num_bytes) {
3593 block_rsv->reserved -= num_bytes;
3594 if (block_rsv->reserved < block_rsv->size)
3595 block_rsv->full = 0;
3596 ret = 0;
3598 spin_unlock(&block_rsv->lock);
3599 return ret;
3602 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3603 u64 num_bytes, int update_size)
3605 spin_lock(&block_rsv->lock);
3606 block_rsv->reserved += num_bytes;
3607 if (update_size)
3608 block_rsv->size += num_bytes;
3609 else if (block_rsv->reserved >= block_rsv->size)
3610 block_rsv->full = 1;
3611 spin_unlock(&block_rsv->lock);
3614 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3615 struct btrfs_block_rsv *dest, u64 num_bytes)
3617 struct btrfs_space_info *space_info = block_rsv->space_info;
3619 spin_lock(&block_rsv->lock);
3620 if (num_bytes == (u64)-1)
3621 num_bytes = block_rsv->size;
3622 block_rsv->size -= num_bytes;
3623 if (block_rsv->reserved >= block_rsv->size) {
3624 num_bytes = block_rsv->reserved - block_rsv->size;
3625 block_rsv->reserved = block_rsv->size;
3626 block_rsv->full = 1;
3627 } else {
3628 num_bytes = 0;
3630 spin_unlock(&block_rsv->lock);
3632 if (num_bytes > 0) {
3633 if (dest) {
3634 spin_lock(&dest->lock);
3635 if (!dest->full) {
3636 u64 bytes_to_add;
3638 bytes_to_add = dest->size - dest->reserved;
3639 bytes_to_add = min(num_bytes, bytes_to_add);
3640 dest->reserved += bytes_to_add;
3641 if (dest->reserved >= dest->size)
3642 dest->full = 1;
3643 num_bytes -= bytes_to_add;
3645 spin_unlock(&dest->lock);
3647 if (num_bytes) {
3648 spin_lock(&space_info->lock);
3649 space_info->bytes_may_use -= num_bytes;
3650 space_info->reservation_progress++;
3651 spin_unlock(&space_info->lock);
3656 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3657 struct btrfs_block_rsv *dst, u64 num_bytes)
3659 int ret;
3661 ret = block_rsv_use_bytes(src, num_bytes);
3662 if (ret)
3663 return ret;
3665 block_rsv_add_bytes(dst, num_bytes, 1);
3666 return 0;
3669 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3671 memset(rsv, 0, sizeof(*rsv));
3672 spin_lock_init(&rsv->lock);
3675 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3677 struct btrfs_block_rsv *block_rsv;
3678 struct btrfs_fs_info *fs_info = root->fs_info;
3680 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3681 if (!block_rsv)
3682 return NULL;
3684 btrfs_init_block_rsv(block_rsv);
3685 block_rsv->space_info = __find_space_info(fs_info,
3686 BTRFS_BLOCK_GROUP_METADATA);
3687 return block_rsv;
3690 void btrfs_free_block_rsv(struct btrfs_root *root,
3691 struct btrfs_block_rsv *rsv)
3693 btrfs_block_rsv_release(root, rsv, (u64)-1);
3694 kfree(rsv);
3697 int btrfs_block_rsv_add(struct btrfs_root *root,
3698 struct btrfs_block_rsv *block_rsv,
3699 u64 num_bytes)
3701 int ret;
3703 if (num_bytes == 0)
3704 return 0;
3706 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, 1);
3707 if (!ret) {
3708 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3709 return 0;
3712 return ret;
3715 int btrfs_block_rsv_check(struct btrfs_root *root,
3716 struct btrfs_block_rsv *block_rsv,
3717 u64 min_reserved, int min_factor, int flush)
3719 u64 num_bytes = 0;
3720 int ret = -ENOSPC;
3722 if (!block_rsv)
3723 return 0;
3725 spin_lock(&block_rsv->lock);
3726 if (min_factor > 0)
3727 num_bytes = div_factor(block_rsv->size, min_factor);
3728 if (min_reserved > num_bytes)
3729 num_bytes = min_reserved;
3731 if (block_rsv->reserved >= num_bytes)
3732 ret = 0;
3733 else
3734 num_bytes -= block_rsv->reserved;
3735 spin_unlock(&block_rsv->lock);
3737 if (!ret)
3738 return 0;
3740 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3741 if (!ret) {
3742 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3743 return 0;
3746 return ret;
3749 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3750 struct btrfs_block_rsv *dst_rsv,
3751 u64 num_bytes)
3753 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3756 void btrfs_block_rsv_release(struct btrfs_root *root,
3757 struct btrfs_block_rsv *block_rsv,
3758 u64 num_bytes)
3760 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3761 if (global_rsv->full || global_rsv == block_rsv ||
3762 block_rsv->space_info != global_rsv->space_info)
3763 global_rsv = NULL;
3764 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3768 * helper to calculate size of global block reservation.
3769 * the desired value is sum of space used by extent tree,
3770 * checksum tree and root tree
3772 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3774 struct btrfs_space_info *sinfo;
3775 u64 num_bytes;
3776 u64 meta_used;
3777 u64 data_used;
3778 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3780 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3781 spin_lock(&sinfo->lock);
3782 data_used = sinfo->bytes_used;
3783 spin_unlock(&sinfo->lock);
3785 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3786 spin_lock(&sinfo->lock);
3787 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3788 data_used = 0;
3789 meta_used = sinfo->bytes_used;
3790 spin_unlock(&sinfo->lock);
3792 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3793 csum_size * 2;
3794 num_bytes += div64_u64(data_used + meta_used, 50);
3796 if (num_bytes * 3 > meta_used)
3797 num_bytes = div64_u64(meta_used, 3);
3799 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3802 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3804 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3805 struct btrfs_space_info *sinfo = block_rsv->space_info;
3806 u64 num_bytes;
3808 num_bytes = calc_global_metadata_size(fs_info);
3810 spin_lock(&block_rsv->lock);
3811 spin_lock(&sinfo->lock);
3813 block_rsv->size = num_bytes;
3815 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3816 sinfo->bytes_reserved + sinfo->bytes_readonly +
3817 sinfo->bytes_may_use;
3819 if (sinfo->total_bytes > num_bytes) {
3820 num_bytes = sinfo->total_bytes - num_bytes;
3821 block_rsv->reserved += num_bytes;
3822 sinfo->bytes_may_use += num_bytes;
3825 if (block_rsv->reserved >= block_rsv->size) {
3826 num_bytes = block_rsv->reserved - block_rsv->size;
3827 sinfo->bytes_may_use -= num_bytes;
3828 sinfo->reservation_progress++;
3829 block_rsv->reserved = block_rsv->size;
3830 block_rsv->full = 1;
3833 spin_unlock(&sinfo->lock);
3834 spin_unlock(&block_rsv->lock);
3837 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3839 struct btrfs_space_info *space_info;
3841 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3842 fs_info->chunk_block_rsv.space_info = space_info;
3844 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3845 fs_info->global_block_rsv.space_info = space_info;
3846 fs_info->delalloc_block_rsv.space_info = space_info;
3847 fs_info->trans_block_rsv.space_info = space_info;
3848 fs_info->empty_block_rsv.space_info = space_info;
3850 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3851 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3852 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3853 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3854 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3856 update_global_block_rsv(fs_info);
3859 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3861 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3862 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3863 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3864 WARN_ON(fs_info->trans_block_rsv.size > 0);
3865 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3866 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3867 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3870 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3871 struct btrfs_root *root)
3873 struct btrfs_block_rsv *block_rsv;
3875 if (!trans->bytes_reserved)
3876 return;
3878 block_rsv = &root->fs_info->trans_block_rsv;
3879 btrfs_block_rsv_release(root, block_rsv, trans->bytes_reserved);
3880 trans->bytes_reserved = 0;
3883 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3884 struct inode *inode)
3886 struct btrfs_root *root = BTRFS_I(inode)->root;
3887 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3888 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3891 * We need to hold space in order to delete our orphan item once we've
3892 * added it, so this takes the reservation so we can release it later
3893 * when we are truly done with the orphan item.
3895 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3896 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3899 void btrfs_orphan_release_metadata(struct inode *inode)
3901 struct btrfs_root *root = BTRFS_I(inode)->root;
3902 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3903 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3906 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3907 struct btrfs_pending_snapshot *pending)
3909 struct btrfs_root *root = pending->root;
3910 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3911 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3913 * two for root back/forward refs, two for directory entries
3914 * and one for root of the snapshot.
3916 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3917 dst_rsv->space_info = src_rsv->space_info;
3918 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3922 * drop_outstanding_extent - drop an outstanding extent
3923 * @inode: the inode we're dropping the extent for
3925 * This is called when we are freeing up an outstanding extent, either called
3926 * after an error or after an extent is written. This will return the number of
3927 * reserved extents that need to be freed. This must be called with
3928 * BTRFS_I(inode)->lock held.
3930 static unsigned drop_outstanding_extent(struct inode *inode)
3932 unsigned dropped_extents = 0;
3934 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
3935 BTRFS_I(inode)->outstanding_extents--;
3938 * If we have more or the same amount of outsanding extents than we have
3939 * reserved then we need to leave the reserved extents count alone.
3941 if (BTRFS_I(inode)->outstanding_extents >=
3942 BTRFS_I(inode)->reserved_extents)
3943 return 0;
3945 dropped_extents = BTRFS_I(inode)->reserved_extents -
3946 BTRFS_I(inode)->outstanding_extents;
3947 BTRFS_I(inode)->reserved_extents -= dropped_extents;
3948 return dropped_extents;
3952 * calc_csum_metadata_size - return the amount of metada space that must be
3953 * reserved/free'd for the given bytes.
3954 * @inode: the inode we're manipulating
3955 * @num_bytes: the number of bytes in question
3956 * @reserve: 1 if we are reserving space, 0 if we are freeing space
3958 * This adjusts the number of csum_bytes in the inode and then returns the
3959 * correct amount of metadata that must either be reserved or freed. We
3960 * calculate how many checksums we can fit into one leaf and then divide the
3961 * number of bytes that will need to be checksumed by this value to figure out
3962 * how many checksums will be required. If we are adding bytes then the number
3963 * may go up and we will return the number of additional bytes that must be
3964 * reserved. If it is going down we will return the number of bytes that must
3965 * be freed.
3967 * This must be called with BTRFS_I(inode)->lock held.
3969 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
3970 int reserve)
3972 struct btrfs_root *root = BTRFS_I(inode)->root;
3973 u64 csum_size;
3974 int num_csums_per_leaf;
3975 int num_csums;
3976 int old_csums;
3978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
3979 BTRFS_I(inode)->csum_bytes == 0)
3980 return 0;
3982 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
3983 if (reserve)
3984 BTRFS_I(inode)->csum_bytes += num_bytes;
3985 else
3986 BTRFS_I(inode)->csum_bytes -= num_bytes;
3987 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
3988 num_csums_per_leaf = (int)div64_u64(csum_size,
3989 sizeof(struct btrfs_csum_item) +
3990 sizeof(struct btrfs_disk_key));
3991 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
3992 num_csums = num_csums + num_csums_per_leaf - 1;
3993 num_csums = num_csums / num_csums_per_leaf;
3995 old_csums = old_csums + num_csums_per_leaf - 1;
3996 old_csums = old_csums / num_csums_per_leaf;
3998 /* No change, no need to reserve more */
3999 if (old_csums == num_csums)
4000 return 0;
4002 if (reserve)
4003 return btrfs_calc_trans_metadata_size(root,
4004 num_csums - old_csums);
4006 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4009 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4011 struct btrfs_root *root = BTRFS_I(inode)->root;
4012 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4013 u64 to_reserve = 0;
4014 unsigned nr_extents = 0;
4015 int flush = 1;
4016 int ret;
4018 if (btrfs_is_free_space_inode(root, inode))
4019 flush = 0;
4021 if (flush && btrfs_transaction_in_commit(root->fs_info))
4022 schedule_timeout(1);
4024 num_bytes = ALIGN(num_bytes, root->sectorsize);
4026 spin_lock(&BTRFS_I(inode)->lock);
4027 BTRFS_I(inode)->outstanding_extents++;
4029 if (BTRFS_I(inode)->outstanding_extents >
4030 BTRFS_I(inode)->reserved_extents) {
4031 nr_extents = BTRFS_I(inode)->outstanding_extents -
4032 BTRFS_I(inode)->reserved_extents;
4033 BTRFS_I(inode)->reserved_extents += nr_extents;
4035 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4037 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4038 spin_unlock(&BTRFS_I(inode)->lock);
4040 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4041 if (ret) {
4042 u64 to_free = 0;
4043 unsigned dropped;
4045 spin_lock(&BTRFS_I(inode)->lock);
4046 dropped = drop_outstanding_extent(inode);
4047 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4048 spin_unlock(&BTRFS_I(inode)->lock);
4049 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4052 * Somebody could have come in and twiddled with the
4053 * reservation, so if we have to free more than we would have
4054 * reserved from this reservation go ahead and release those
4055 * bytes.
4057 to_free -= to_reserve;
4058 if (to_free)
4059 btrfs_block_rsv_release(root, block_rsv, to_free);
4060 return ret;
4063 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4065 return 0;
4069 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4070 * @inode: the inode to release the reservation for
4071 * @num_bytes: the number of bytes we're releasing
4073 * This will release the metadata reservation for an inode. This can be called
4074 * once we complete IO for a given set of bytes to release their metadata
4075 * reservations.
4077 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4079 struct btrfs_root *root = BTRFS_I(inode)->root;
4080 u64 to_free = 0;
4081 unsigned dropped;
4083 num_bytes = ALIGN(num_bytes, root->sectorsize);
4084 spin_lock(&BTRFS_I(inode)->lock);
4085 dropped = drop_outstanding_extent(inode);
4087 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4088 spin_unlock(&BTRFS_I(inode)->lock);
4089 if (dropped > 0)
4090 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4092 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4093 to_free);
4097 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4098 * @inode: inode we're writing to
4099 * @num_bytes: the number of bytes we want to allocate
4101 * This will do the following things
4103 * o reserve space in the data space info for num_bytes
4104 * o reserve space in the metadata space info based on number of outstanding
4105 * extents and how much csums will be needed
4106 * o add to the inodes ->delalloc_bytes
4107 * o add it to the fs_info's delalloc inodes list.
4109 * This will return 0 for success and -ENOSPC if there is no space left.
4111 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4113 int ret;
4115 ret = btrfs_check_data_free_space(inode, num_bytes);
4116 if (ret)
4117 return ret;
4119 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4120 if (ret) {
4121 btrfs_free_reserved_data_space(inode, num_bytes);
4122 return ret;
4125 return 0;
4129 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4130 * @inode: inode we're releasing space for
4131 * @num_bytes: the number of bytes we want to free up
4133 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4134 * called in the case that we don't need the metadata AND data reservations
4135 * anymore. So if there is an error or we insert an inline extent.
4137 * This function will release the metadata space that was not used and will
4138 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4139 * list if there are no delalloc bytes left.
4141 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4143 btrfs_delalloc_release_metadata(inode, num_bytes);
4144 btrfs_free_reserved_data_space(inode, num_bytes);
4147 static int update_block_group(struct btrfs_trans_handle *trans,
4148 struct btrfs_root *root,
4149 u64 bytenr, u64 num_bytes, int alloc)
4151 struct btrfs_block_group_cache *cache = NULL;
4152 struct btrfs_fs_info *info = root->fs_info;
4153 u64 total = num_bytes;
4154 u64 old_val;
4155 u64 byte_in_group;
4156 int factor;
4158 /* block accounting for super block */
4159 spin_lock(&info->delalloc_lock);
4160 old_val = btrfs_super_bytes_used(&info->super_copy);
4161 if (alloc)
4162 old_val += num_bytes;
4163 else
4164 old_val -= num_bytes;
4165 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4166 spin_unlock(&info->delalloc_lock);
4168 while (total) {
4169 cache = btrfs_lookup_block_group(info, bytenr);
4170 if (!cache)
4171 return -1;
4172 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4173 BTRFS_BLOCK_GROUP_RAID1 |
4174 BTRFS_BLOCK_GROUP_RAID10))
4175 factor = 2;
4176 else
4177 factor = 1;
4179 * If this block group has free space cache written out, we
4180 * need to make sure to load it if we are removing space. This
4181 * is because we need the unpinning stage to actually add the
4182 * space back to the block group, otherwise we will leak space.
4184 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4185 cache_block_group(cache, trans, NULL, 1);
4187 byte_in_group = bytenr - cache->key.objectid;
4188 WARN_ON(byte_in_group > cache->key.offset);
4190 spin_lock(&cache->space_info->lock);
4191 spin_lock(&cache->lock);
4193 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4194 cache->disk_cache_state < BTRFS_DC_CLEAR)
4195 cache->disk_cache_state = BTRFS_DC_CLEAR;
4197 cache->dirty = 1;
4198 old_val = btrfs_block_group_used(&cache->item);
4199 num_bytes = min(total, cache->key.offset - byte_in_group);
4200 if (alloc) {
4201 old_val += num_bytes;
4202 btrfs_set_block_group_used(&cache->item, old_val);
4203 cache->reserved -= num_bytes;
4204 cache->space_info->bytes_reserved -= num_bytes;
4205 cache->space_info->bytes_used += num_bytes;
4206 cache->space_info->disk_used += num_bytes * factor;
4207 spin_unlock(&cache->lock);
4208 spin_unlock(&cache->space_info->lock);
4209 } else {
4210 old_val -= num_bytes;
4211 btrfs_set_block_group_used(&cache->item, old_val);
4212 cache->pinned += num_bytes;
4213 cache->space_info->bytes_pinned += num_bytes;
4214 cache->space_info->bytes_used -= num_bytes;
4215 cache->space_info->disk_used -= num_bytes * factor;
4216 spin_unlock(&cache->lock);
4217 spin_unlock(&cache->space_info->lock);
4219 set_extent_dirty(info->pinned_extents,
4220 bytenr, bytenr + num_bytes - 1,
4221 GFP_NOFS | __GFP_NOFAIL);
4223 btrfs_put_block_group(cache);
4224 total -= num_bytes;
4225 bytenr += num_bytes;
4227 return 0;
4230 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4232 struct btrfs_block_group_cache *cache;
4233 u64 bytenr;
4235 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4236 if (!cache)
4237 return 0;
4239 bytenr = cache->key.objectid;
4240 btrfs_put_block_group(cache);
4242 return bytenr;
4245 static int pin_down_extent(struct btrfs_root *root,
4246 struct btrfs_block_group_cache *cache,
4247 u64 bytenr, u64 num_bytes, int reserved)
4249 spin_lock(&cache->space_info->lock);
4250 spin_lock(&cache->lock);
4251 cache->pinned += num_bytes;
4252 cache->space_info->bytes_pinned += num_bytes;
4253 if (reserved) {
4254 cache->reserved -= num_bytes;
4255 cache->space_info->bytes_reserved -= num_bytes;
4257 spin_unlock(&cache->lock);
4258 spin_unlock(&cache->space_info->lock);
4260 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4261 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4262 return 0;
4266 * this function must be called within transaction
4268 int btrfs_pin_extent(struct btrfs_root *root,
4269 u64 bytenr, u64 num_bytes, int reserved)
4271 struct btrfs_block_group_cache *cache;
4273 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4274 BUG_ON(!cache);
4276 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4278 btrfs_put_block_group(cache);
4279 return 0;
4283 * btrfs_update_reserved_bytes - update the block_group and space info counters
4284 * @cache: The cache we are manipulating
4285 * @num_bytes: The number of bytes in question
4286 * @reserve: One of the reservation enums
4288 * This is called by the allocator when it reserves space, or by somebody who is
4289 * freeing space that was never actually used on disk. For example if you
4290 * reserve some space for a new leaf in transaction A and before transaction A
4291 * commits you free that leaf, you call this with reserve set to 0 in order to
4292 * clear the reservation.
4294 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4295 * ENOSPC accounting. For data we handle the reservation through clearing the
4296 * delalloc bits in the io_tree. We have to do this since we could end up
4297 * allocating less disk space for the amount of data we have reserved in the
4298 * case of compression.
4300 * If this is a reservation and the block group has become read only we cannot
4301 * make the reservation and return -EAGAIN, otherwise this function always
4302 * succeeds.
4304 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4305 u64 num_bytes, int reserve)
4307 struct btrfs_space_info *space_info = cache->space_info;
4308 int ret = 0;
4309 spin_lock(&space_info->lock);
4310 spin_lock(&cache->lock);
4311 if (reserve != RESERVE_FREE) {
4312 if (cache->ro) {
4313 ret = -EAGAIN;
4314 } else {
4315 cache->reserved += num_bytes;
4316 space_info->bytes_reserved += num_bytes;
4317 if (reserve == RESERVE_ALLOC) {
4318 BUG_ON(space_info->bytes_may_use < num_bytes);
4319 space_info->bytes_may_use -= num_bytes;
4322 } else {
4323 if (cache->ro)
4324 space_info->bytes_readonly += num_bytes;
4325 cache->reserved -= num_bytes;
4326 space_info->bytes_reserved -= num_bytes;
4327 space_info->reservation_progress++;
4329 spin_unlock(&cache->lock);
4330 spin_unlock(&space_info->lock);
4331 return ret;
4334 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4335 struct btrfs_root *root)
4337 struct btrfs_fs_info *fs_info = root->fs_info;
4338 struct btrfs_caching_control *next;
4339 struct btrfs_caching_control *caching_ctl;
4340 struct btrfs_block_group_cache *cache;
4342 down_write(&fs_info->extent_commit_sem);
4344 list_for_each_entry_safe(caching_ctl, next,
4345 &fs_info->caching_block_groups, list) {
4346 cache = caching_ctl->block_group;
4347 if (block_group_cache_done(cache)) {
4348 cache->last_byte_to_unpin = (u64)-1;
4349 list_del_init(&caching_ctl->list);
4350 put_caching_control(caching_ctl);
4351 } else {
4352 cache->last_byte_to_unpin = caching_ctl->progress;
4356 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4357 fs_info->pinned_extents = &fs_info->freed_extents[1];
4358 else
4359 fs_info->pinned_extents = &fs_info->freed_extents[0];
4361 up_write(&fs_info->extent_commit_sem);
4363 update_global_block_rsv(fs_info);
4364 return 0;
4367 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4369 struct btrfs_fs_info *fs_info = root->fs_info;
4370 struct btrfs_block_group_cache *cache = NULL;
4371 u64 len;
4373 while (start <= end) {
4374 if (!cache ||
4375 start >= cache->key.objectid + cache->key.offset) {
4376 if (cache)
4377 btrfs_put_block_group(cache);
4378 cache = btrfs_lookup_block_group(fs_info, start);
4379 BUG_ON(!cache);
4382 len = cache->key.objectid + cache->key.offset - start;
4383 len = min(len, end + 1 - start);
4385 if (start < cache->last_byte_to_unpin) {
4386 len = min(len, cache->last_byte_to_unpin - start);
4387 btrfs_add_free_space(cache, start, len);
4390 start += len;
4392 spin_lock(&cache->space_info->lock);
4393 spin_lock(&cache->lock);
4394 cache->pinned -= len;
4395 cache->space_info->bytes_pinned -= len;
4396 if (cache->ro)
4397 cache->space_info->bytes_readonly += len;
4398 spin_unlock(&cache->lock);
4399 spin_unlock(&cache->space_info->lock);
4402 if (cache)
4403 btrfs_put_block_group(cache);
4404 return 0;
4407 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4408 struct btrfs_root *root)
4410 struct btrfs_fs_info *fs_info = root->fs_info;
4411 struct extent_io_tree *unpin;
4412 u64 start;
4413 u64 end;
4414 int ret;
4416 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4417 unpin = &fs_info->freed_extents[1];
4418 else
4419 unpin = &fs_info->freed_extents[0];
4421 while (1) {
4422 ret = find_first_extent_bit(unpin, 0, &start, &end,
4423 EXTENT_DIRTY);
4424 if (ret)
4425 break;
4427 if (btrfs_test_opt(root, DISCARD))
4428 ret = btrfs_discard_extent(root, start,
4429 end + 1 - start, NULL);
4431 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4432 unpin_extent_range(root, start, end);
4433 cond_resched();
4436 return 0;
4439 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4440 struct btrfs_root *root,
4441 u64 bytenr, u64 num_bytes, u64 parent,
4442 u64 root_objectid, u64 owner_objectid,
4443 u64 owner_offset, int refs_to_drop,
4444 struct btrfs_delayed_extent_op *extent_op)
4446 struct btrfs_key key;
4447 struct btrfs_path *path;
4448 struct btrfs_fs_info *info = root->fs_info;
4449 struct btrfs_root *extent_root = info->extent_root;
4450 struct extent_buffer *leaf;
4451 struct btrfs_extent_item *ei;
4452 struct btrfs_extent_inline_ref *iref;
4453 int ret;
4454 int is_data;
4455 int extent_slot = 0;
4456 int found_extent = 0;
4457 int num_to_del = 1;
4458 u32 item_size;
4459 u64 refs;
4461 path = btrfs_alloc_path();
4462 if (!path)
4463 return -ENOMEM;
4465 path->reada = 1;
4466 path->leave_spinning = 1;
4468 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4469 BUG_ON(!is_data && refs_to_drop != 1);
4471 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4472 bytenr, num_bytes, parent,
4473 root_objectid, owner_objectid,
4474 owner_offset);
4475 if (ret == 0) {
4476 extent_slot = path->slots[0];
4477 while (extent_slot >= 0) {
4478 btrfs_item_key_to_cpu(path->nodes[0], &key,
4479 extent_slot);
4480 if (key.objectid != bytenr)
4481 break;
4482 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4483 key.offset == num_bytes) {
4484 found_extent = 1;
4485 break;
4487 if (path->slots[0] - extent_slot > 5)
4488 break;
4489 extent_slot--;
4491 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4492 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4493 if (found_extent && item_size < sizeof(*ei))
4494 found_extent = 0;
4495 #endif
4496 if (!found_extent) {
4497 BUG_ON(iref);
4498 ret = remove_extent_backref(trans, extent_root, path,
4499 NULL, refs_to_drop,
4500 is_data);
4501 BUG_ON(ret);
4502 btrfs_release_path(path);
4503 path->leave_spinning = 1;
4505 key.objectid = bytenr;
4506 key.type = BTRFS_EXTENT_ITEM_KEY;
4507 key.offset = num_bytes;
4509 ret = btrfs_search_slot(trans, extent_root,
4510 &key, path, -1, 1);
4511 if (ret) {
4512 printk(KERN_ERR "umm, got %d back from search"
4513 ", was looking for %llu\n", ret,
4514 (unsigned long long)bytenr);
4515 if (ret > 0)
4516 btrfs_print_leaf(extent_root,
4517 path->nodes[0]);
4519 BUG_ON(ret);
4520 extent_slot = path->slots[0];
4522 } else {
4523 btrfs_print_leaf(extent_root, path->nodes[0]);
4524 WARN_ON(1);
4525 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4526 "parent %llu root %llu owner %llu offset %llu\n",
4527 (unsigned long long)bytenr,
4528 (unsigned long long)parent,
4529 (unsigned long long)root_objectid,
4530 (unsigned long long)owner_objectid,
4531 (unsigned long long)owner_offset);
4534 leaf = path->nodes[0];
4535 item_size = btrfs_item_size_nr(leaf, extent_slot);
4536 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4537 if (item_size < sizeof(*ei)) {
4538 BUG_ON(found_extent || extent_slot != path->slots[0]);
4539 ret = convert_extent_item_v0(trans, extent_root, path,
4540 owner_objectid, 0);
4541 BUG_ON(ret < 0);
4543 btrfs_release_path(path);
4544 path->leave_spinning = 1;
4546 key.objectid = bytenr;
4547 key.type = BTRFS_EXTENT_ITEM_KEY;
4548 key.offset = num_bytes;
4550 ret = btrfs_search_slot(trans, extent_root, &key, path,
4551 -1, 1);
4552 if (ret) {
4553 printk(KERN_ERR "umm, got %d back from search"
4554 ", was looking for %llu\n", ret,
4555 (unsigned long long)bytenr);
4556 btrfs_print_leaf(extent_root, path->nodes[0]);
4558 BUG_ON(ret);
4559 extent_slot = path->slots[0];
4560 leaf = path->nodes[0];
4561 item_size = btrfs_item_size_nr(leaf, extent_slot);
4563 #endif
4564 BUG_ON(item_size < sizeof(*ei));
4565 ei = btrfs_item_ptr(leaf, extent_slot,
4566 struct btrfs_extent_item);
4567 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4568 struct btrfs_tree_block_info *bi;
4569 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4570 bi = (struct btrfs_tree_block_info *)(ei + 1);
4571 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4574 refs = btrfs_extent_refs(leaf, ei);
4575 BUG_ON(refs < refs_to_drop);
4576 refs -= refs_to_drop;
4578 if (refs > 0) {
4579 if (extent_op)
4580 __run_delayed_extent_op(extent_op, leaf, ei);
4582 * In the case of inline back ref, reference count will
4583 * be updated by remove_extent_backref
4585 if (iref) {
4586 BUG_ON(!found_extent);
4587 } else {
4588 btrfs_set_extent_refs(leaf, ei, refs);
4589 btrfs_mark_buffer_dirty(leaf);
4591 if (found_extent) {
4592 ret = remove_extent_backref(trans, extent_root, path,
4593 iref, refs_to_drop,
4594 is_data);
4595 BUG_ON(ret);
4597 } else {
4598 if (found_extent) {
4599 BUG_ON(is_data && refs_to_drop !=
4600 extent_data_ref_count(root, path, iref));
4601 if (iref) {
4602 BUG_ON(path->slots[0] != extent_slot);
4603 } else {
4604 BUG_ON(path->slots[0] != extent_slot + 1);
4605 path->slots[0] = extent_slot;
4606 num_to_del = 2;
4610 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4611 num_to_del);
4612 BUG_ON(ret);
4613 btrfs_release_path(path);
4615 if (is_data) {
4616 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4617 BUG_ON(ret);
4618 } else {
4619 invalidate_mapping_pages(info->btree_inode->i_mapping,
4620 bytenr >> PAGE_CACHE_SHIFT,
4621 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4624 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4625 BUG_ON(ret);
4627 btrfs_free_path(path);
4628 return ret;
4632 * when we free an block, it is possible (and likely) that we free the last
4633 * delayed ref for that extent as well. This searches the delayed ref tree for
4634 * a given extent, and if there are no other delayed refs to be processed, it
4635 * removes it from the tree.
4637 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4638 struct btrfs_root *root, u64 bytenr)
4640 struct btrfs_delayed_ref_head *head;
4641 struct btrfs_delayed_ref_root *delayed_refs;
4642 struct btrfs_delayed_ref_node *ref;
4643 struct rb_node *node;
4644 int ret = 0;
4646 delayed_refs = &trans->transaction->delayed_refs;
4647 spin_lock(&delayed_refs->lock);
4648 head = btrfs_find_delayed_ref_head(trans, bytenr);
4649 if (!head)
4650 goto out;
4652 node = rb_prev(&head->node.rb_node);
4653 if (!node)
4654 goto out;
4656 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4658 /* there are still entries for this ref, we can't drop it */
4659 if (ref->bytenr == bytenr)
4660 goto out;
4662 if (head->extent_op) {
4663 if (!head->must_insert_reserved)
4664 goto out;
4665 kfree(head->extent_op);
4666 head->extent_op = NULL;
4670 * waiting for the lock here would deadlock. If someone else has it
4671 * locked they are already in the process of dropping it anyway
4673 if (!mutex_trylock(&head->mutex))
4674 goto out;
4677 * at this point we have a head with no other entries. Go
4678 * ahead and process it.
4680 head->node.in_tree = 0;
4681 rb_erase(&head->node.rb_node, &delayed_refs->root);
4683 delayed_refs->num_entries--;
4686 * we don't take a ref on the node because we're removing it from the
4687 * tree, so we just steal the ref the tree was holding.
4689 delayed_refs->num_heads--;
4690 if (list_empty(&head->cluster))
4691 delayed_refs->num_heads_ready--;
4693 list_del_init(&head->cluster);
4694 spin_unlock(&delayed_refs->lock);
4696 BUG_ON(head->extent_op);
4697 if (head->must_insert_reserved)
4698 ret = 1;
4700 mutex_unlock(&head->mutex);
4701 btrfs_put_delayed_ref(&head->node);
4702 return ret;
4703 out:
4704 spin_unlock(&delayed_refs->lock);
4705 return 0;
4708 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4709 struct btrfs_root *root,
4710 struct extent_buffer *buf,
4711 u64 parent, int last_ref)
4713 struct btrfs_block_group_cache *cache = NULL;
4714 int ret;
4716 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4717 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4718 parent, root->root_key.objectid,
4719 btrfs_header_level(buf),
4720 BTRFS_DROP_DELAYED_REF, NULL);
4721 BUG_ON(ret);
4724 if (!last_ref)
4725 return;
4727 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4729 if (btrfs_header_generation(buf) == trans->transid) {
4730 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4731 ret = check_ref_cleanup(trans, root, buf->start);
4732 if (!ret)
4733 goto out;
4736 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4737 pin_down_extent(root, cache, buf->start, buf->len, 1);
4738 goto out;
4741 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4743 btrfs_add_free_space(cache, buf->start, buf->len);
4744 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4746 out:
4748 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4749 * anymore.
4751 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4752 btrfs_put_block_group(cache);
4755 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4756 struct btrfs_root *root,
4757 u64 bytenr, u64 num_bytes, u64 parent,
4758 u64 root_objectid, u64 owner, u64 offset)
4760 int ret;
4763 * tree log blocks never actually go into the extent allocation
4764 * tree, just update pinning info and exit early.
4766 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4767 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4768 /* unlocks the pinned mutex */
4769 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4770 ret = 0;
4771 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4772 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4773 parent, root_objectid, (int)owner,
4774 BTRFS_DROP_DELAYED_REF, NULL);
4775 BUG_ON(ret);
4776 } else {
4777 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4778 parent, root_objectid, owner,
4779 offset, BTRFS_DROP_DELAYED_REF, NULL);
4780 BUG_ON(ret);
4782 return ret;
4785 static u64 stripe_align(struct btrfs_root *root, u64 val)
4787 u64 mask = ((u64)root->stripesize - 1);
4788 u64 ret = (val + mask) & ~mask;
4789 return ret;
4793 * when we wait for progress in the block group caching, its because
4794 * our allocation attempt failed at least once. So, we must sleep
4795 * and let some progress happen before we try again.
4797 * This function will sleep at least once waiting for new free space to
4798 * show up, and then it will check the block group free space numbers
4799 * for our min num_bytes. Another option is to have it go ahead
4800 * and look in the rbtree for a free extent of a given size, but this
4801 * is a good start.
4803 static noinline int
4804 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4805 u64 num_bytes)
4807 struct btrfs_caching_control *caching_ctl;
4808 DEFINE_WAIT(wait);
4810 caching_ctl = get_caching_control(cache);
4811 if (!caching_ctl)
4812 return 0;
4814 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4815 (cache->free_space_ctl->free_space >= num_bytes));
4817 put_caching_control(caching_ctl);
4818 return 0;
4821 static noinline int
4822 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4824 struct btrfs_caching_control *caching_ctl;
4825 DEFINE_WAIT(wait);
4827 caching_ctl = get_caching_control(cache);
4828 if (!caching_ctl)
4829 return 0;
4831 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4833 put_caching_control(caching_ctl);
4834 return 0;
4837 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4839 int index;
4840 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4841 index = 0;
4842 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4843 index = 1;
4844 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4845 index = 2;
4846 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4847 index = 3;
4848 else
4849 index = 4;
4850 return index;
4853 enum btrfs_loop_type {
4854 LOOP_FIND_IDEAL = 0,
4855 LOOP_CACHING_NOWAIT = 1,
4856 LOOP_CACHING_WAIT = 2,
4857 LOOP_ALLOC_CHUNK = 3,
4858 LOOP_NO_EMPTY_SIZE = 4,
4862 * walks the btree of allocated extents and find a hole of a given size.
4863 * The key ins is changed to record the hole:
4864 * ins->objectid == block start
4865 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4866 * ins->offset == number of blocks
4867 * Any available blocks before search_start are skipped.
4869 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4870 struct btrfs_root *orig_root,
4871 u64 num_bytes, u64 empty_size,
4872 u64 search_start, u64 search_end,
4873 u64 hint_byte, struct btrfs_key *ins,
4874 u64 data)
4876 int ret = 0;
4877 struct btrfs_root *root = orig_root->fs_info->extent_root;
4878 struct btrfs_free_cluster *last_ptr = NULL;
4879 struct btrfs_block_group_cache *block_group = NULL;
4880 int empty_cluster = 2 * 1024 * 1024;
4881 int allowed_chunk_alloc = 0;
4882 int done_chunk_alloc = 0;
4883 struct btrfs_space_info *space_info;
4884 int last_ptr_loop = 0;
4885 int loop = 0;
4886 int index = 0;
4887 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
4888 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
4889 bool found_uncached_bg = false;
4890 bool failed_cluster_refill = false;
4891 bool failed_alloc = false;
4892 bool use_cluster = true;
4893 u64 ideal_cache_percent = 0;
4894 u64 ideal_cache_offset = 0;
4896 WARN_ON(num_bytes < root->sectorsize);
4897 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4898 ins->objectid = 0;
4899 ins->offset = 0;
4901 space_info = __find_space_info(root->fs_info, data);
4902 if (!space_info) {
4903 printk(KERN_ERR "No space info for %llu\n", data);
4904 return -ENOSPC;
4908 * If the space info is for both data and metadata it means we have a
4909 * small filesystem and we can't use the clustering stuff.
4911 if (btrfs_mixed_space_info(space_info))
4912 use_cluster = false;
4914 if (orig_root->ref_cows || empty_size)
4915 allowed_chunk_alloc = 1;
4917 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4918 last_ptr = &root->fs_info->meta_alloc_cluster;
4919 if (!btrfs_test_opt(root, SSD))
4920 empty_cluster = 64 * 1024;
4923 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4924 btrfs_test_opt(root, SSD)) {
4925 last_ptr = &root->fs_info->data_alloc_cluster;
4928 if (last_ptr) {
4929 spin_lock(&last_ptr->lock);
4930 if (last_ptr->block_group)
4931 hint_byte = last_ptr->window_start;
4932 spin_unlock(&last_ptr->lock);
4935 search_start = max(search_start, first_logical_byte(root, 0));
4936 search_start = max(search_start, hint_byte);
4938 if (!last_ptr)
4939 empty_cluster = 0;
4941 if (search_start == hint_byte) {
4942 ideal_cache:
4943 block_group = btrfs_lookup_block_group(root->fs_info,
4944 search_start);
4946 * we don't want to use the block group if it doesn't match our
4947 * allocation bits, or if its not cached.
4949 * However if we are re-searching with an ideal block group
4950 * picked out then we don't care that the block group is cached.
4952 if (block_group && block_group_bits(block_group, data) &&
4953 (block_group->cached != BTRFS_CACHE_NO ||
4954 search_start == ideal_cache_offset)) {
4955 down_read(&space_info->groups_sem);
4956 if (list_empty(&block_group->list) ||
4957 block_group->ro) {
4959 * someone is removing this block group,
4960 * we can't jump into the have_block_group
4961 * target because our list pointers are not
4962 * valid
4964 btrfs_put_block_group(block_group);
4965 up_read(&space_info->groups_sem);
4966 } else {
4967 index = get_block_group_index(block_group);
4968 goto have_block_group;
4970 } else if (block_group) {
4971 btrfs_put_block_group(block_group);
4974 search:
4975 down_read(&space_info->groups_sem);
4976 list_for_each_entry(block_group, &space_info->block_groups[index],
4977 list) {
4978 u64 offset;
4979 int cached;
4981 btrfs_get_block_group(block_group);
4982 search_start = block_group->key.objectid;
4985 * this can happen if we end up cycling through all the
4986 * raid types, but we want to make sure we only allocate
4987 * for the proper type.
4989 if (!block_group_bits(block_group, data)) {
4990 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4991 BTRFS_BLOCK_GROUP_RAID1 |
4992 BTRFS_BLOCK_GROUP_RAID10;
4995 * if they asked for extra copies and this block group
4996 * doesn't provide them, bail. This does allow us to
4997 * fill raid0 from raid1.
4999 if ((data & extra) && !(block_group->flags & extra))
5000 goto loop;
5003 have_block_group:
5004 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5005 u64 free_percent;
5007 ret = cache_block_group(block_group, trans,
5008 orig_root, 1);
5009 if (block_group->cached == BTRFS_CACHE_FINISHED)
5010 goto have_block_group;
5012 free_percent = btrfs_block_group_used(&block_group->item);
5013 free_percent *= 100;
5014 free_percent = div64_u64(free_percent,
5015 block_group->key.offset);
5016 free_percent = 100 - free_percent;
5017 if (free_percent > ideal_cache_percent &&
5018 likely(!block_group->ro)) {
5019 ideal_cache_offset = block_group->key.objectid;
5020 ideal_cache_percent = free_percent;
5024 * The caching workers are limited to 2 threads, so we
5025 * can queue as much work as we care to.
5027 if (loop > LOOP_FIND_IDEAL) {
5028 ret = cache_block_group(block_group, trans,
5029 orig_root, 0);
5030 BUG_ON(ret);
5032 found_uncached_bg = true;
5035 * If loop is set for cached only, try the next block
5036 * group.
5038 if (loop == LOOP_FIND_IDEAL)
5039 goto loop;
5042 cached = block_group_cache_done(block_group);
5043 if (unlikely(!cached))
5044 found_uncached_bg = true;
5046 if (unlikely(block_group->ro))
5047 goto loop;
5049 spin_lock(&block_group->free_space_ctl->tree_lock);
5050 if (cached &&
5051 block_group->free_space_ctl->free_space <
5052 num_bytes + empty_size) {
5053 spin_unlock(&block_group->free_space_ctl->tree_lock);
5054 goto loop;
5056 spin_unlock(&block_group->free_space_ctl->tree_lock);
5059 * Ok we want to try and use the cluster allocator, so lets look
5060 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5061 * have tried the cluster allocator plenty of times at this
5062 * point and not have found anything, so we are likely way too
5063 * fragmented for the clustering stuff to find anything, so lets
5064 * just skip it and let the allocator find whatever block it can
5065 * find
5067 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5069 * the refill lock keeps out other
5070 * people trying to start a new cluster
5072 spin_lock(&last_ptr->refill_lock);
5073 if (last_ptr->block_group &&
5074 (last_ptr->block_group->ro ||
5075 !block_group_bits(last_ptr->block_group, data))) {
5076 offset = 0;
5077 goto refill_cluster;
5080 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5081 num_bytes, search_start);
5082 if (offset) {
5083 /* we have a block, we're done */
5084 spin_unlock(&last_ptr->refill_lock);
5085 goto checks;
5088 spin_lock(&last_ptr->lock);
5090 * whoops, this cluster doesn't actually point to
5091 * this block group. Get a ref on the block
5092 * group is does point to and try again
5094 if (!last_ptr_loop && last_ptr->block_group &&
5095 last_ptr->block_group != block_group &&
5096 index <=
5097 get_block_group_index(last_ptr->block_group)) {
5099 btrfs_put_block_group(block_group);
5100 block_group = last_ptr->block_group;
5101 btrfs_get_block_group(block_group);
5102 spin_unlock(&last_ptr->lock);
5103 spin_unlock(&last_ptr->refill_lock);
5105 last_ptr_loop = 1;
5106 search_start = block_group->key.objectid;
5108 * we know this block group is properly
5109 * in the list because
5110 * btrfs_remove_block_group, drops the
5111 * cluster before it removes the block
5112 * group from the list
5114 goto have_block_group;
5116 spin_unlock(&last_ptr->lock);
5117 refill_cluster:
5119 * this cluster didn't work out, free it and
5120 * start over
5122 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5124 last_ptr_loop = 0;
5126 /* allocate a cluster in this block group */
5127 ret = btrfs_find_space_cluster(trans, root,
5128 block_group, last_ptr,
5129 offset, num_bytes,
5130 empty_cluster + empty_size);
5131 if (ret == 0) {
5133 * now pull our allocation out of this
5134 * cluster
5136 offset = btrfs_alloc_from_cluster(block_group,
5137 last_ptr, num_bytes,
5138 search_start);
5139 if (offset) {
5140 /* we found one, proceed */
5141 spin_unlock(&last_ptr->refill_lock);
5142 goto checks;
5144 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5145 && !failed_cluster_refill) {
5146 spin_unlock(&last_ptr->refill_lock);
5148 failed_cluster_refill = true;
5149 wait_block_group_cache_progress(block_group,
5150 num_bytes + empty_cluster + empty_size);
5151 goto have_block_group;
5155 * at this point we either didn't find a cluster
5156 * or we weren't able to allocate a block from our
5157 * cluster. Free the cluster we've been trying
5158 * to use, and go to the next block group
5160 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5161 spin_unlock(&last_ptr->refill_lock);
5162 goto loop;
5165 offset = btrfs_find_space_for_alloc(block_group, search_start,
5166 num_bytes, empty_size);
5168 * If we didn't find a chunk, and we haven't failed on this
5169 * block group before, and this block group is in the middle of
5170 * caching and we are ok with waiting, then go ahead and wait
5171 * for progress to be made, and set failed_alloc to true.
5173 * If failed_alloc is true then we've already waited on this
5174 * block group once and should move on to the next block group.
5176 if (!offset && !failed_alloc && !cached &&
5177 loop > LOOP_CACHING_NOWAIT) {
5178 wait_block_group_cache_progress(block_group,
5179 num_bytes + empty_size);
5180 failed_alloc = true;
5181 goto have_block_group;
5182 } else if (!offset) {
5183 goto loop;
5185 checks:
5186 search_start = stripe_align(root, offset);
5187 /* move on to the next group */
5188 if (search_start + num_bytes >= search_end) {
5189 btrfs_add_free_space(block_group, offset, num_bytes);
5190 goto loop;
5193 /* move on to the next group */
5194 if (search_start + num_bytes >
5195 block_group->key.objectid + block_group->key.offset) {
5196 btrfs_add_free_space(block_group, offset, num_bytes);
5197 goto loop;
5200 ins->objectid = search_start;
5201 ins->offset = num_bytes;
5203 if (offset < search_start)
5204 btrfs_add_free_space(block_group, offset,
5205 search_start - offset);
5206 BUG_ON(offset > search_start);
5208 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
5209 alloc_type);
5210 if (ret == -EAGAIN) {
5211 btrfs_add_free_space(block_group, offset, num_bytes);
5212 goto loop;
5215 /* we are all good, lets return */
5216 ins->objectid = search_start;
5217 ins->offset = num_bytes;
5219 if (offset < search_start)
5220 btrfs_add_free_space(block_group, offset,
5221 search_start - offset);
5222 BUG_ON(offset > search_start);
5223 btrfs_put_block_group(block_group);
5224 break;
5225 loop:
5226 failed_cluster_refill = false;
5227 failed_alloc = false;
5228 BUG_ON(index != get_block_group_index(block_group));
5229 btrfs_put_block_group(block_group);
5231 up_read(&space_info->groups_sem);
5233 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5234 goto search;
5236 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5237 * for them to make caching progress. Also
5238 * determine the best possible bg to cache
5239 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5240 * caching kthreads as we move along
5241 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5242 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5243 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5244 * again
5246 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5247 index = 0;
5248 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5249 found_uncached_bg = false;
5250 loop++;
5251 if (!ideal_cache_percent)
5252 goto search;
5255 * 1 of the following 2 things have happened so far
5257 * 1) We found an ideal block group for caching that
5258 * is mostly full and will cache quickly, so we might
5259 * as well wait for it.
5261 * 2) We searched for cached only and we didn't find
5262 * anything, and we didn't start any caching kthreads
5263 * either, so chances are we will loop through and
5264 * start a couple caching kthreads, and then come back
5265 * around and just wait for them. This will be slower
5266 * because we will have 2 caching kthreads reading at
5267 * the same time when we could have just started one
5268 * and waited for it to get far enough to give us an
5269 * allocation, so go ahead and go to the wait caching
5270 * loop.
5272 loop = LOOP_CACHING_WAIT;
5273 search_start = ideal_cache_offset;
5274 ideal_cache_percent = 0;
5275 goto ideal_cache;
5276 } else if (loop == LOOP_FIND_IDEAL) {
5278 * Didn't find a uncached bg, wait on anything we find
5279 * next.
5281 loop = LOOP_CACHING_WAIT;
5282 goto search;
5285 loop++;
5287 if (loop == LOOP_ALLOC_CHUNK) {
5288 if (allowed_chunk_alloc) {
5289 ret = do_chunk_alloc(trans, root, num_bytes +
5290 2 * 1024 * 1024, data,
5291 CHUNK_ALLOC_LIMITED);
5292 allowed_chunk_alloc = 0;
5293 if (ret == 1)
5294 done_chunk_alloc = 1;
5295 } else if (!done_chunk_alloc &&
5296 space_info->force_alloc ==
5297 CHUNK_ALLOC_NO_FORCE) {
5298 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5302 * We didn't allocate a chunk, go ahead and drop the
5303 * empty size and loop again.
5305 if (!done_chunk_alloc)
5306 loop = LOOP_NO_EMPTY_SIZE;
5309 if (loop == LOOP_NO_EMPTY_SIZE) {
5310 empty_size = 0;
5311 empty_cluster = 0;
5314 goto search;
5315 } else if (!ins->objectid) {
5316 ret = -ENOSPC;
5317 } else if (ins->objectid) {
5318 ret = 0;
5321 return ret;
5324 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5325 int dump_block_groups)
5327 struct btrfs_block_group_cache *cache;
5328 int index = 0;
5330 spin_lock(&info->lock);
5331 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5332 (unsigned long long)info->flags,
5333 (unsigned long long)(info->total_bytes - info->bytes_used -
5334 info->bytes_pinned - info->bytes_reserved -
5335 info->bytes_readonly),
5336 (info->full) ? "" : "not ");
5337 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5338 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5339 (unsigned long long)info->total_bytes,
5340 (unsigned long long)info->bytes_used,
5341 (unsigned long long)info->bytes_pinned,
5342 (unsigned long long)info->bytes_reserved,
5343 (unsigned long long)info->bytes_may_use,
5344 (unsigned long long)info->bytes_readonly);
5345 spin_unlock(&info->lock);
5347 if (!dump_block_groups)
5348 return;
5350 down_read(&info->groups_sem);
5351 again:
5352 list_for_each_entry(cache, &info->block_groups[index], list) {
5353 spin_lock(&cache->lock);
5354 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5355 "%llu pinned %llu reserved\n",
5356 (unsigned long long)cache->key.objectid,
5357 (unsigned long long)cache->key.offset,
5358 (unsigned long long)btrfs_block_group_used(&cache->item),
5359 (unsigned long long)cache->pinned,
5360 (unsigned long long)cache->reserved);
5361 btrfs_dump_free_space(cache, bytes);
5362 spin_unlock(&cache->lock);
5364 if (++index < BTRFS_NR_RAID_TYPES)
5365 goto again;
5366 up_read(&info->groups_sem);
5369 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5370 struct btrfs_root *root,
5371 u64 num_bytes, u64 min_alloc_size,
5372 u64 empty_size, u64 hint_byte,
5373 u64 search_end, struct btrfs_key *ins,
5374 u64 data)
5376 int ret;
5377 u64 search_start = 0;
5379 data = btrfs_get_alloc_profile(root, data);
5380 again:
5382 * the only place that sets empty_size is btrfs_realloc_node, which
5383 * is not called recursively on allocations
5385 if (empty_size || root->ref_cows)
5386 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5387 num_bytes + 2 * 1024 * 1024, data,
5388 CHUNK_ALLOC_NO_FORCE);
5390 WARN_ON(num_bytes < root->sectorsize);
5391 ret = find_free_extent(trans, root, num_bytes, empty_size,
5392 search_start, search_end, hint_byte,
5393 ins, data);
5395 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5396 num_bytes = num_bytes >> 1;
5397 num_bytes = num_bytes & ~(root->sectorsize - 1);
5398 num_bytes = max(num_bytes, min_alloc_size);
5399 do_chunk_alloc(trans, root->fs_info->extent_root,
5400 num_bytes, data, CHUNK_ALLOC_FORCE);
5401 goto again;
5403 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5404 struct btrfs_space_info *sinfo;
5406 sinfo = __find_space_info(root->fs_info, data);
5407 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5408 "wanted %llu\n", (unsigned long long)data,
5409 (unsigned long long)num_bytes);
5410 dump_space_info(sinfo, num_bytes, 1);
5413 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5415 return ret;
5418 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5420 struct btrfs_block_group_cache *cache;
5421 int ret = 0;
5423 cache = btrfs_lookup_block_group(root->fs_info, start);
5424 if (!cache) {
5425 printk(KERN_ERR "Unable to find block group for %llu\n",
5426 (unsigned long long)start);
5427 return -ENOSPC;
5430 if (btrfs_test_opt(root, DISCARD))
5431 ret = btrfs_discard_extent(root, start, len, NULL);
5433 btrfs_add_free_space(cache, start, len);
5434 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5435 btrfs_put_block_group(cache);
5437 trace_btrfs_reserved_extent_free(root, start, len);
5439 return ret;
5442 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5443 struct btrfs_root *root,
5444 u64 parent, u64 root_objectid,
5445 u64 flags, u64 owner, u64 offset,
5446 struct btrfs_key *ins, int ref_mod)
5448 int ret;
5449 struct btrfs_fs_info *fs_info = root->fs_info;
5450 struct btrfs_extent_item *extent_item;
5451 struct btrfs_extent_inline_ref *iref;
5452 struct btrfs_path *path;
5453 struct extent_buffer *leaf;
5454 int type;
5455 u32 size;
5457 if (parent > 0)
5458 type = BTRFS_SHARED_DATA_REF_KEY;
5459 else
5460 type = BTRFS_EXTENT_DATA_REF_KEY;
5462 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5464 path = btrfs_alloc_path();
5465 if (!path)
5466 return -ENOMEM;
5468 path->leave_spinning = 1;
5469 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5470 ins, size);
5471 BUG_ON(ret);
5473 leaf = path->nodes[0];
5474 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5475 struct btrfs_extent_item);
5476 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5477 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5478 btrfs_set_extent_flags(leaf, extent_item,
5479 flags | BTRFS_EXTENT_FLAG_DATA);
5481 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5482 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5483 if (parent > 0) {
5484 struct btrfs_shared_data_ref *ref;
5485 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5486 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5487 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5488 } else {
5489 struct btrfs_extent_data_ref *ref;
5490 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5491 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5492 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5493 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5494 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5497 btrfs_mark_buffer_dirty(path->nodes[0]);
5498 btrfs_free_path(path);
5500 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5501 if (ret) {
5502 printk(KERN_ERR "btrfs update block group failed for %llu "
5503 "%llu\n", (unsigned long long)ins->objectid,
5504 (unsigned long long)ins->offset);
5505 BUG();
5507 return ret;
5510 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5511 struct btrfs_root *root,
5512 u64 parent, u64 root_objectid,
5513 u64 flags, struct btrfs_disk_key *key,
5514 int level, struct btrfs_key *ins)
5516 int ret;
5517 struct btrfs_fs_info *fs_info = root->fs_info;
5518 struct btrfs_extent_item *extent_item;
5519 struct btrfs_tree_block_info *block_info;
5520 struct btrfs_extent_inline_ref *iref;
5521 struct btrfs_path *path;
5522 struct extent_buffer *leaf;
5523 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5525 path = btrfs_alloc_path();
5526 if (!path)
5527 return -ENOMEM;
5529 path->leave_spinning = 1;
5530 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5531 ins, size);
5532 BUG_ON(ret);
5534 leaf = path->nodes[0];
5535 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5536 struct btrfs_extent_item);
5537 btrfs_set_extent_refs(leaf, extent_item, 1);
5538 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5539 btrfs_set_extent_flags(leaf, extent_item,
5540 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5541 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5543 btrfs_set_tree_block_key(leaf, block_info, key);
5544 btrfs_set_tree_block_level(leaf, block_info, level);
5546 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5547 if (parent > 0) {
5548 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5549 btrfs_set_extent_inline_ref_type(leaf, iref,
5550 BTRFS_SHARED_BLOCK_REF_KEY);
5551 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5552 } else {
5553 btrfs_set_extent_inline_ref_type(leaf, iref,
5554 BTRFS_TREE_BLOCK_REF_KEY);
5555 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5558 btrfs_mark_buffer_dirty(leaf);
5559 btrfs_free_path(path);
5561 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5562 if (ret) {
5563 printk(KERN_ERR "btrfs update block group failed for %llu "
5564 "%llu\n", (unsigned long long)ins->objectid,
5565 (unsigned long long)ins->offset);
5566 BUG();
5568 return ret;
5571 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5572 struct btrfs_root *root,
5573 u64 root_objectid, u64 owner,
5574 u64 offset, struct btrfs_key *ins)
5576 int ret;
5578 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5580 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5581 0, root_objectid, owner, offset,
5582 BTRFS_ADD_DELAYED_EXTENT, NULL);
5583 return ret;
5587 * this is used by the tree logging recovery code. It records that
5588 * an extent has been allocated and makes sure to clear the free
5589 * space cache bits as well
5591 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5592 struct btrfs_root *root,
5593 u64 root_objectid, u64 owner, u64 offset,
5594 struct btrfs_key *ins)
5596 int ret;
5597 struct btrfs_block_group_cache *block_group;
5598 struct btrfs_caching_control *caching_ctl;
5599 u64 start = ins->objectid;
5600 u64 num_bytes = ins->offset;
5602 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5603 cache_block_group(block_group, trans, NULL, 0);
5604 caching_ctl = get_caching_control(block_group);
5606 if (!caching_ctl) {
5607 BUG_ON(!block_group_cache_done(block_group));
5608 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5609 BUG_ON(ret);
5610 } else {
5611 mutex_lock(&caching_ctl->mutex);
5613 if (start >= caching_ctl->progress) {
5614 ret = add_excluded_extent(root, start, num_bytes);
5615 BUG_ON(ret);
5616 } else if (start + num_bytes <= caching_ctl->progress) {
5617 ret = btrfs_remove_free_space(block_group,
5618 start, num_bytes);
5619 BUG_ON(ret);
5620 } else {
5621 num_bytes = caching_ctl->progress - start;
5622 ret = btrfs_remove_free_space(block_group,
5623 start, num_bytes);
5624 BUG_ON(ret);
5626 start = caching_ctl->progress;
5627 num_bytes = ins->objectid + ins->offset -
5628 caching_ctl->progress;
5629 ret = add_excluded_extent(root, start, num_bytes);
5630 BUG_ON(ret);
5633 mutex_unlock(&caching_ctl->mutex);
5634 put_caching_control(caching_ctl);
5637 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5638 RESERVE_ALLOC_NO_ACCOUNT);
5639 BUG_ON(ret);
5640 btrfs_put_block_group(block_group);
5641 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5642 0, owner, offset, ins, 1);
5643 return ret;
5646 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5647 struct btrfs_root *root,
5648 u64 bytenr, u32 blocksize,
5649 int level)
5651 struct extent_buffer *buf;
5653 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5654 if (!buf)
5655 return ERR_PTR(-ENOMEM);
5656 btrfs_set_header_generation(buf, trans->transid);
5657 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5658 btrfs_tree_lock(buf);
5659 clean_tree_block(trans, root, buf);
5661 btrfs_set_lock_blocking(buf);
5662 btrfs_set_buffer_uptodate(buf);
5664 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5666 * we allow two log transactions at a time, use different
5667 * EXENT bit to differentiate dirty pages.
5669 if (root->log_transid % 2 == 0)
5670 set_extent_dirty(&root->dirty_log_pages, buf->start,
5671 buf->start + buf->len - 1, GFP_NOFS);
5672 else
5673 set_extent_new(&root->dirty_log_pages, buf->start,
5674 buf->start + buf->len - 1, GFP_NOFS);
5675 } else {
5676 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5677 buf->start + buf->len - 1, GFP_NOFS);
5679 trans->blocks_used++;
5680 /* this returns a buffer locked for blocking */
5681 return buf;
5684 static struct btrfs_block_rsv *
5685 use_block_rsv(struct btrfs_trans_handle *trans,
5686 struct btrfs_root *root, u32 blocksize)
5688 struct btrfs_block_rsv *block_rsv;
5689 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5690 int ret;
5692 block_rsv = get_block_rsv(trans, root);
5694 if (block_rsv->size == 0) {
5695 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5697 * If we couldn't reserve metadata bytes try and use some from
5698 * the global reserve.
5700 if (ret && block_rsv != global_rsv) {
5701 ret = block_rsv_use_bytes(global_rsv, blocksize);
5702 if (!ret)
5703 return global_rsv;
5704 return ERR_PTR(ret);
5705 } else if (ret) {
5706 return ERR_PTR(ret);
5708 return block_rsv;
5711 ret = block_rsv_use_bytes(block_rsv, blocksize);
5712 if (!ret)
5713 return block_rsv;
5714 if (ret) {
5715 WARN_ON(1);
5716 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5717 if (!ret) {
5718 return block_rsv;
5719 } else if (ret && block_rsv != global_rsv) {
5720 ret = block_rsv_use_bytes(global_rsv, blocksize);
5721 if (!ret)
5722 return global_rsv;
5726 return ERR_PTR(-ENOSPC);
5729 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5731 block_rsv_add_bytes(block_rsv, blocksize, 0);
5732 block_rsv_release_bytes(block_rsv, NULL, 0);
5736 * finds a free extent and does all the dirty work required for allocation
5737 * returns the key for the extent through ins, and a tree buffer for
5738 * the first block of the extent through buf.
5740 * returns the tree buffer or NULL.
5742 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5743 struct btrfs_root *root, u32 blocksize,
5744 u64 parent, u64 root_objectid,
5745 struct btrfs_disk_key *key, int level,
5746 u64 hint, u64 empty_size)
5748 struct btrfs_key ins;
5749 struct btrfs_block_rsv *block_rsv;
5750 struct extent_buffer *buf;
5751 u64 flags = 0;
5752 int ret;
5755 block_rsv = use_block_rsv(trans, root, blocksize);
5756 if (IS_ERR(block_rsv))
5757 return ERR_CAST(block_rsv);
5759 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5760 empty_size, hint, (u64)-1, &ins, 0);
5761 if (ret) {
5762 unuse_block_rsv(block_rsv, blocksize);
5763 return ERR_PTR(ret);
5766 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5767 blocksize, level);
5768 BUG_ON(IS_ERR(buf));
5770 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5771 if (parent == 0)
5772 parent = ins.objectid;
5773 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5774 } else
5775 BUG_ON(parent > 0);
5777 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5778 struct btrfs_delayed_extent_op *extent_op;
5779 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5780 BUG_ON(!extent_op);
5781 if (key)
5782 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5783 else
5784 memset(&extent_op->key, 0, sizeof(extent_op->key));
5785 extent_op->flags_to_set = flags;
5786 extent_op->update_key = 1;
5787 extent_op->update_flags = 1;
5788 extent_op->is_data = 0;
5790 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5791 ins.offset, parent, root_objectid,
5792 level, BTRFS_ADD_DELAYED_EXTENT,
5793 extent_op);
5794 BUG_ON(ret);
5796 return buf;
5799 struct walk_control {
5800 u64 refs[BTRFS_MAX_LEVEL];
5801 u64 flags[BTRFS_MAX_LEVEL];
5802 struct btrfs_key update_progress;
5803 int stage;
5804 int level;
5805 int shared_level;
5806 int update_ref;
5807 int keep_locks;
5808 int reada_slot;
5809 int reada_count;
5812 #define DROP_REFERENCE 1
5813 #define UPDATE_BACKREF 2
5815 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5816 struct btrfs_root *root,
5817 struct walk_control *wc,
5818 struct btrfs_path *path)
5820 u64 bytenr;
5821 u64 generation;
5822 u64 refs;
5823 u64 flags;
5824 u32 nritems;
5825 u32 blocksize;
5826 struct btrfs_key key;
5827 struct extent_buffer *eb;
5828 int ret;
5829 int slot;
5830 int nread = 0;
5832 if (path->slots[wc->level] < wc->reada_slot) {
5833 wc->reada_count = wc->reada_count * 2 / 3;
5834 wc->reada_count = max(wc->reada_count, 2);
5835 } else {
5836 wc->reada_count = wc->reada_count * 3 / 2;
5837 wc->reada_count = min_t(int, wc->reada_count,
5838 BTRFS_NODEPTRS_PER_BLOCK(root));
5841 eb = path->nodes[wc->level];
5842 nritems = btrfs_header_nritems(eb);
5843 blocksize = btrfs_level_size(root, wc->level - 1);
5845 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5846 if (nread >= wc->reada_count)
5847 break;
5849 cond_resched();
5850 bytenr = btrfs_node_blockptr(eb, slot);
5851 generation = btrfs_node_ptr_generation(eb, slot);
5853 if (slot == path->slots[wc->level])
5854 goto reada;
5856 if (wc->stage == UPDATE_BACKREF &&
5857 generation <= root->root_key.offset)
5858 continue;
5860 /* We don't lock the tree block, it's OK to be racy here */
5861 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5862 &refs, &flags);
5863 BUG_ON(ret);
5864 BUG_ON(refs == 0);
5866 if (wc->stage == DROP_REFERENCE) {
5867 if (refs == 1)
5868 goto reada;
5870 if (wc->level == 1 &&
5871 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5872 continue;
5873 if (!wc->update_ref ||
5874 generation <= root->root_key.offset)
5875 continue;
5876 btrfs_node_key_to_cpu(eb, &key, slot);
5877 ret = btrfs_comp_cpu_keys(&key,
5878 &wc->update_progress);
5879 if (ret < 0)
5880 continue;
5881 } else {
5882 if (wc->level == 1 &&
5883 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5884 continue;
5886 reada:
5887 ret = readahead_tree_block(root, bytenr, blocksize,
5888 generation);
5889 if (ret)
5890 break;
5891 nread++;
5893 wc->reada_slot = slot;
5897 * hepler to process tree block while walking down the tree.
5899 * when wc->stage == UPDATE_BACKREF, this function updates
5900 * back refs for pointers in the block.
5902 * NOTE: return value 1 means we should stop walking down.
5904 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5905 struct btrfs_root *root,
5906 struct btrfs_path *path,
5907 struct walk_control *wc, int lookup_info)
5909 int level = wc->level;
5910 struct extent_buffer *eb = path->nodes[level];
5911 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5912 int ret;
5914 if (wc->stage == UPDATE_BACKREF &&
5915 btrfs_header_owner(eb) != root->root_key.objectid)
5916 return 1;
5919 * when reference count of tree block is 1, it won't increase
5920 * again. once full backref flag is set, we never clear it.
5922 if (lookup_info &&
5923 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5924 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5925 BUG_ON(!path->locks[level]);
5926 ret = btrfs_lookup_extent_info(trans, root,
5927 eb->start, eb->len,
5928 &wc->refs[level],
5929 &wc->flags[level]);
5930 BUG_ON(ret);
5931 BUG_ON(wc->refs[level] == 0);
5934 if (wc->stage == DROP_REFERENCE) {
5935 if (wc->refs[level] > 1)
5936 return 1;
5938 if (path->locks[level] && !wc->keep_locks) {
5939 btrfs_tree_unlock_rw(eb, path->locks[level]);
5940 path->locks[level] = 0;
5942 return 0;
5945 /* wc->stage == UPDATE_BACKREF */
5946 if (!(wc->flags[level] & flag)) {
5947 BUG_ON(!path->locks[level]);
5948 ret = btrfs_inc_ref(trans, root, eb, 1);
5949 BUG_ON(ret);
5950 ret = btrfs_dec_ref(trans, root, eb, 0);
5951 BUG_ON(ret);
5952 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5953 eb->len, flag, 0);
5954 BUG_ON(ret);
5955 wc->flags[level] |= flag;
5959 * the block is shared by multiple trees, so it's not good to
5960 * keep the tree lock
5962 if (path->locks[level] && level > 0) {
5963 btrfs_tree_unlock_rw(eb, path->locks[level]);
5964 path->locks[level] = 0;
5966 return 0;
5970 * hepler to process tree block pointer.
5972 * when wc->stage == DROP_REFERENCE, this function checks
5973 * reference count of the block pointed to. if the block
5974 * is shared and we need update back refs for the subtree
5975 * rooted at the block, this function changes wc->stage to
5976 * UPDATE_BACKREF. if the block is shared and there is no
5977 * need to update back, this function drops the reference
5978 * to the block.
5980 * NOTE: return value 1 means we should stop walking down.
5982 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5983 struct btrfs_root *root,
5984 struct btrfs_path *path,
5985 struct walk_control *wc, int *lookup_info)
5987 u64 bytenr;
5988 u64 generation;
5989 u64 parent;
5990 u32 blocksize;
5991 struct btrfs_key key;
5992 struct extent_buffer *next;
5993 int level = wc->level;
5994 int reada = 0;
5995 int ret = 0;
5997 generation = btrfs_node_ptr_generation(path->nodes[level],
5998 path->slots[level]);
6000 * if the lower level block was created before the snapshot
6001 * was created, we know there is no need to update back refs
6002 * for the subtree
6004 if (wc->stage == UPDATE_BACKREF &&
6005 generation <= root->root_key.offset) {
6006 *lookup_info = 1;
6007 return 1;
6010 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6011 blocksize = btrfs_level_size(root, level - 1);
6013 next = btrfs_find_tree_block(root, bytenr, blocksize);
6014 if (!next) {
6015 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6016 if (!next)
6017 return -ENOMEM;
6018 reada = 1;
6020 btrfs_tree_lock(next);
6021 btrfs_set_lock_blocking(next);
6023 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6024 &wc->refs[level - 1],
6025 &wc->flags[level - 1]);
6026 BUG_ON(ret);
6027 BUG_ON(wc->refs[level - 1] == 0);
6028 *lookup_info = 0;
6030 if (wc->stage == DROP_REFERENCE) {
6031 if (wc->refs[level - 1] > 1) {
6032 if (level == 1 &&
6033 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6034 goto skip;
6036 if (!wc->update_ref ||
6037 generation <= root->root_key.offset)
6038 goto skip;
6040 btrfs_node_key_to_cpu(path->nodes[level], &key,
6041 path->slots[level]);
6042 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6043 if (ret < 0)
6044 goto skip;
6046 wc->stage = UPDATE_BACKREF;
6047 wc->shared_level = level - 1;
6049 } else {
6050 if (level == 1 &&
6051 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6052 goto skip;
6055 if (!btrfs_buffer_uptodate(next, generation)) {
6056 btrfs_tree_unlock(next);
6057 free_extent_buffer(next);
6058 next = NULL;
6059 *lookup_info = 1;
6062 if (!next) {
6063 if (reada && level == 1)
6064 reada_walk_down(trans, root, wc, path);
6065 next = read_tree_block(root, bytenr, blocksize, generation);
6066 if (!next)
6067 return -EIO;
6068 btrfs_tree_lock(next);
6069 btrfs_set_lock_blocking(next);
6072 level--;
6073 BUG_ON(level != btrfs_header_level(next));
6074 path->nodes[level] = next;
6075 path->slots[level] = 0;
6076 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6077 wc->level = level;
6078 if (wc->level == 1)
6079 wc->reada_slot = 0;
6080 return 0;
6081 skip:
6082 wc->refs[level - 1] = 0;
6083 wc->flags[level - 1] = 0;
6084 if (wc->stage == DROP_REFERENCE) {
6085 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6086 parent = path->nodes[level]->start;
6087 } else {
6088 BUG_ON(root->root_key.objectid !=
6089 btrfs_header_owner(path->nodes[level]));
6090 parent = 0;
6093 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6094 root->root_key.objectid, level - 1, 0);
6095 BUG_ON(ret);
6097 btrfs_tree_unlock(next);
6098 free_extent_buffer(next);
6099 *lookup_info = 1;
6100 return 1;
6104 * hepler to process tree block while walking up the tree.
6106 * when wc->stage == DROP_REFERENCE, this function drops
6107 * reference count on the block.
6109 * when wc->stage == UPDATE_BACKREF, this function changes
6110 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6111 * to UPDATE_BACKREF previously while processing the block.
6113 * NOTE: return value 1 means we should stop walking up.
6115 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6116 struct btrfs_root *root,
6117 struct btrfs_path *path,
6118 struct walk_control *wc)
6120 int ret;
6121 int level = wc->level;
6122 struct extent_buffer *eb = path->nodes[level];
6123 u64 parent = 0;
6125 if (wc->stage == UPDATE_BACKREF) {
6126 BUG_ON(wc->shared_level < level);
6127 if (level < wc->shared_level)
6128 goto out;
6130 ret = find_next_key(path, level + 1, &wc->update_progress);
6131 if (ret > 0)
6132 wc->update_ref = 0;
6134 wc->stage = DROP_REFERENCE;
6135 wc->shared_level = -1;
6136 path->slots[level] = 0;
6139 * check reference count again if the block isn't locked.
6140 * we should start walking down the tree again if reference
6141 * count is one.
6143 if (!path->locks[level]) {
6144 BUG_ON(level == 0);
6145 btrfs_tree_lock(eb);
6146 btrfs_set_lock_blocking(eb);
6147 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6149 ret = btrfs_lookup_extent_info(trans, root,
6150 eb->start, eb->len,
6151 &wc->refs[level],
6152 &wc->flags[level]);
6153 BUG_ON(ret);
6154 BUG_ON(wc->refs[level] == 0);
6155 if (wc->refs[level] == 1) {
6156 btrfs_tree_unlock_rw(eb, path->locks[level]);
6157 return 1;
6162 /* wc->stage == DROP_REFERENCE */
6163 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6165 if (wc->refs[level] == 1) {
6166 if (level == 0) {
6167 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6168 ret = btrfs_dec_ref(trans, root, eb, 1);
6169 else
6170 ret = btrfs_dec_ref(trans, root, eb, 0);
6171 BUG_ON(ret);
6173 /* make block locked assertion in clean_tree_block happy */
6174 if (!path->locks[level] &&
6175 btrfs_header_generation(eb) == trans->transid) {
6176 btrfs_tree_lock(eb);
6177 btrfs_set_lock_blocking(eb);
6178 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6180 clean_tree_block(trans, root, eb);
6183 if (eb == root->node) {
6184 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6185 parent = eb->start;
6186 else
6187 BUG_ON(root->root_key.objectid !=
6188 btrfs_header_owner(eb));
6189 } else {
6190 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6191 parent = path->nodes[level + 1]->start;
6192 else
6193 BUG_ON(root->root_key.objectid !=
6194 btrfs_header_owner(path->nodes[level + 1]));
6197 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6198 out:
6199 wc->refs[level] = 0;
6200 wc->flags[level] = 0;
6201 return 0;
6204 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6205 struct btrfs_root *root,
6206 struct btrfs_path *path,
6207 struct walk_control *wc)
6209 int level = wc->level;
6210 int lookup_info = 1;
6211 int ret;
6213 while (level >= 0) {
6214 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6215 if (ret > 0)
6216 break;
6218 if (level == 0)
6219 break;
6221 if (path->slots[level] >=
6222 btrfs_header_nritems(path->nodes[level]))
6223 break;
6225 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6226 if (ret > 0) {
6227 path->slots[level]++;
6228 continue;
6229 } else if (ret < 0)
6230 return ret;
6231 level = wc->level;
6233 return 0;
6236 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6237 struct btrfs_root *root,
6238 struct btrfs_path *path,
6239 struct walk_control *wc, int max_level)
6241 int level = wc->level;
6242 int ret;
6244 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6245 while (level < max_level && path->nodes[level]) {
6246 wc->level = level;
6247 if (path->slots[level] + 1 <
6248 btrfs_header_nritems(path->nodes[level])) {
6249 path->slots[level]++;
6250 return 0;
6251 } else {
6252 ret = walk_up_proc(trans, root, path, wc);
6253 if (ret > 0)
6254 return 0;
6256 if (path->locks[level]) {
6257 btrfs_tree_unlock_rw(path->nodes[level],
6258 path->locks[level]);
6259 path->locks[level] = 0;
6261 free_extent_buffer(path->nodes[level]);
6262 path->nodes[level] = NULL;
6263 level++;
6266 return 1;
6270 * drop a subvolume tree.
6272 * this function traverses the tree freeing any blocks that only
6273 * referenced by the tree.
6275 * when a shared tree block is found. this function decreases its
6276 * reference count by one. if update_ref is true, this function
6277 * also make sure backrefs for the shared block and all lower level
6278 * blocks are properly updated.
6280 void btrfs_drop_snapshot(struct btrfs_root *root,
6281 struct btrfs_block_rsv *block_rsv, int update_ref)
6283 struct btrfs_path *path;
6284 struct btrfs_trans_handle *trans;
6285 struct btrfs_root *tree_root = root->fs_info->tree_root;
6286 struct btrfs_root_item *root_item = &root->root_item;
6287 struct walk_control *wc;
6288 struct btrfs_key key;
6289 int err = 0;
6290 int ret;
6291 int level;
6293 path = btrfs_alloc_path();
6294 if (!path) {
6295 err = -ENOMEM;
6296 goto out;
6299 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6300 if (!wc) {
6301 btrfs_free_path(path);
6302 err = -ENOMEM;
6303 goto out;
6306 trans = btrfs_start_transaction(tree_root, 0);
6307 BUG_ON(IS_ERR(trans));
6309 if (block_rsv)
6310 trans->block_rsv = block_rsv;
6312 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6313 level = btrfs_header_level(root->node);
6314 path->nodes[level] = btrfs_lock_root_node(root);
6315 btrfs_set_lock_blocking(path->nodes[level]);
6316 path->slots[level] = 0;
6317 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6318 memset(&wc->update_progress, 0,
6319 sizeof(wc->update_progress));
6320 } else {
6321 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6322 memcpy(&wc->update_progress, &key,
6323 sizeof(wc->update_progress));
6325 level = root_item->drop_level;
6326 BUG_ON(level == 0);
6327 path->lowest_level = level;
6328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6329 path->lowest_level = 0;
6330 if (ret < 0) {
6331 err = ret;
6332 goto out_free;
6334 WARN_ON(ret > 0);
6337 * unlock our path, this is safe because only this
6338 * function is allowed to delete this snapshot
6340 btrfs_unlock_up_safe(path, 0);
6342 level = btrfs_header_level(root->node);
6343 while (1) {
6344 btrfs_tree_lock(path->nodes[level]);
6345 btrfs_set_lock_blocking(path->nodes[level]);
6347 ret = btrfs_lookup_extent_info(trans, root,
6348 path->nodes[level]->start,
6349 path->nodes[level]->len,
6350 &wc->refs[level],
6351 &wc->flags[level]);
6352 BUG_ON(ret);
6353 BUG_ON(wc->refs[level] == 0);
6355 if (level == root_item->drop_level)
6356 break;
6358 btrfs_tree_unlock(path->nodes[level]);
6359 WARN_ON(wc->refs[level] != 1);
6360 level--;
6364 wc->level = level;
6365 wc->shared_level = -1;
6366 wc->stage = DROP_REFERENCE;
6367 wc->update_ref = update_ref;
6368 wc->keep_locks = 0;
6369 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6371 while (1) {
6372 ret = walk_down_tree(trans, root, path, wc);
6373 if (ret < 0) {
6374 err = ret;
6375 break;
6378 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6379 if (ret < 0) {
6380 err = ret;
6381 break;
6384 if (ret > 0) {
6385 BUG_ON(wc->stage != DROP_REFERENCE);
6386 break;
6389 if (wc->stage == DROP_REFERENCE) {
6390 level = wc->level;
6391 btrfs_node_key(path->nodes[level],
6392 &root_item->drop_progress,
6393 path->slots[level]);
6394 root_item->drop_level = level;
6397 BUG_ON(wc->level == 0);
6398 if (btrfs_should_end_transaction(trans, tree_root)) {
6399 ret = btrfs_update_root(trans, tree_root,
6400 &root->root_key,
6401 root_item);
6402 BUG_ON(ret);
6404 btrfs_end_transaction_throttle(trans, tree_root);
6405 trans = btrfs_start_transaction(tree_root, 0);
6406 BUG_ON(IS_ERR(trans));
6407 if (block_rsv)
6408 trans->block_rsv = block_rsv;
6411 btrfs_release_path(path);
6412 BUG_ON(err);
6414 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6415 BUG_ON(ret);
6417 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6418 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6419 NULL, NULL);
6420 BUG_ON(ret < 0);
6421 if (ret > 0) {
6422 /* if we fail to delete the orphan item this time
6423 * around, it'll get picked up the next time.
6425 * The most common failure here is just -ENOENT.
6427 btrfs_del_orphan_item(trans, tree_root,
6428 root->root_key.objectid);
6432 if (root->in_radix) {
6433 btrfs_free_fs_root(tree_root->fs_info, root);
6434 } else {
6435 free_extent_buffer(root->node);
6436 free_extent_buffer(root->commit_root);
6437 kfree(root);
6439 out_free:
6440 btrfs_end_transaction_throttle(trans, tree_root);
6441 kfree(wc);
6442 btrfs_free_path(path);
6443 out:
6444 if (err)
6445 btrfs_std_error(root->fs_info, err);
6446 return;
6450 * drop subtree rooted at tree block 'node'.
6452 * NOTE: this function will unlock and release tree block 'node'
6454 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6455 struct btrfs_root *root,
6456 struct extent_buffer *node,
6457 struct extent_buffer *parent)
6459 struct btrfs_path *path;
6460 struct walk_control *wc;
6461 int level;
6462 int parent_level;
6463 int ret = 0;
6464 int wret;
6466 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6468 path = btrfs_alloc_path();
6469 if (!path)
6470 return -ENOMEM;
6472 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6473 if (!wc) {
6474 btrfs_free_path(path);
6475 return -ENOMEM;
6478 btrfs_assert_tree_locked(parent);
6479 parent_level = btrfs_header_level(parent);
6480 extent_buffer_get(parent);
6481 path->nodes[parent_level] = parent;
6482 path->slots[parent_level] = btrfs_header_nritems(parent);
6484 btrfs_assert_tree_locked(node);
6485 level = btrfs_header_level(node);
6486 path->nodes[level] = node;
6487 path->slots[level] = 0;
6488 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6490 wc->refs[parent_level] = 1;
6491 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6492 wc->level = level;
6493 wc->shared_level = -1;
6494 wc->stage = DROP_REFERENCE;
6495 wc->update_ref = 0;
6496 wc->keep_locks = 1;
6497 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6499 while (1) {
6500 wret = walk_down_tree(trans, root, path, wc);
6501 if (wret < 0) {
6502 ret = wret;
6503 break;
6506 wret = walk_up_tree(trans, root, path, wc, parent_level);
6507 if (wret < 0)
6508 ret = wret;
6509 if (wret != 0)
6510 break;
6513 kfree(wc);
6514 btrfs_free_path(path);
6515 return ret;
6518 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6520 u64 num_devices;
6521 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6522 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6525 * we add in the count of missing devices because we want
6526 * to make sure that any RAID levels on a degraded FS
6527 * continue to be honored.
6529 num_devices = root->fs_info->fs_devices->rw_devices +
6530 root->fs_info->fs_devices->missing_devices;
6532 if (num_devices == 1) {
6533 stripped |= BTRFS_BLOCK_GROUP_DUP;
6534 stripped = flags & ~stripped;
6536 /* turn raid0 into single device chunks */
6537 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6538 return stripped;
6540 /* turn mirroring into duplication */
6541 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6542 BTRFS_BLOCK_GROUP_RAID10))
6543 return stripped | BTRFS_BLOCK_GROUP_DUP;
6544 return flags;
6545 } else {
6546 /* they already had raid on here, just return */
6547 if (flags & stripped)
6548 return flags;
6550 stripped |= BTRFS_BLOCK_GROUP_DUP;
6551 stripped = flags & ~stripped;
6553 /* switch duplicated blocks with raid1 */
6554 if (flags & BTRFS_BLOCK_GROUP_DUP)
6555 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6557 /* turn single device chunks into raid0 */
6558 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6560 return flags;
6563 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6565 struct btrfs_space_info *sinfo = cache->space_info;
6566 u64 num_bytes;
6567 u64 min_allocable_bytes;
6568 int ret = -ENOSPC;
6572 * We need some metadata space and system metadata space for
6573 * allocating chunks in some corner cases until we force to set
6574 * it to be readonly.
6576 if ((sinfo->flags &
6577 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6578 !force)
6579 min_allocable_bytes = 1 * 1024 * 1024;
6580 else
6581 min_allocable_bytes = 0;
6583 spin_lock(&sinfo->lock);
6584 spin_lock(&cache->lock);
6586 if (cache->ro) {
6587 ret = 0;
6588 goto out;
6591 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6592 cache->bytes_super - btrfs_block_group_used(&cache->item);
6594 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6595 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6596 min_allocable_bytes <= sinfo->total_bytes) {
6597 sinfo->bytes_readonly += num_bytes;
6598 cache->ro = 1;
6599 ret = 0;
6601 out:
6602 spin_unlock(&cache->lock);
6603 spin_unlock(&sinfo->lock);
6604 return ret;
6607 int btrfs_set_block_group_ro(struct btrfs_root *root,
6608 struct btrfs_block_group_cache *cache)
6611 struct btrfs_trans_handle *trans;
6612 u64 alloc_flags;
6613 int ret;
6615 BUG_ON(cache->ro);
6617 trans = btrfs_join_transaction(root);
6618 BUG_ON(IS_ERR(trans));
6620 alloc_flags = update_block_group_flags(root, cache->flags);
6621 if (alloc_flags != cache->flags)
6622 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6623 CHUNK_ALLOC_FORCE);
6625 ret = set_block_group_ro(cache, 0);
6626 if (!ret)
6627 goto out;
6628 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6629 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6630 CHUNK_ALLOC_FORCE);
6631 if (ret < 0)
6632 goto out;
6633 ret = set_block_group_ro(cache, 0);
6634 out:
6635 btrfs_end_transaction(trans, root);
6636 return ret;
6639 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6640 struct btrfs_root *root, u64 type)
6642 u64 alloc_flags = get_alloc_profile(root, type);
6643 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6644 CHUNK_ALLOC_FORCE);
6648 * helper to account the unused space of all the readonly block group in the
6649 * list. takes mirrors into account.
6651 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6653 struct btrfs_block_group_cache *block_group;
6654 u64 free_bytes = 0;
6655 int factor;
6657 list_for_each_entry(block_group, groups_list, list) {
6658 spin_lock(&block_group->lock);
6660 if (!block_group->ro) {
6661 spin_unlock(&block_group->lock);
6662 continue;
6665 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6666 BTRFS_BLOCK_GROUP_RAID10 |
6667 BTRFS_BLOCK_GROUP_DUP))
6668 factor = 2;
6669 else
6670 factor = 1;
6672 free_bytes += (block_group->key.offset -
6673 btrfs_block_group_used(&block_group->item)) *
6674 factor;
6676 spin_unlock(&block_group->lock);
6679 return free_bytes;
6683 * helper to account the unused space of all the readonly block group in the
6684 * space_info. takes mirrors into account.
6686 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6688 int i;
6689 u64 free_bytes = 0;
6691 spin_lock(&sinfo->lock);
6693 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6694 if (!list_empty(&sinfo->block_groups[i]))
6695 free_bytes += __btrfs_get_ro_block_group_free_space(
6696 &sinfo->block_groups[i]);
6698 spin_unlock(&sinfo->lock);
6700 return free_bytes;
6703 int btrfs_set_block_group_rw(struct btrfs_root *root,
6704 struct btrfs_block_group_cache *cache)
6706 struct btrfs_space_info *sinfo = cache->space_info;
6707 u64 num_bytes;
6709 BUG_ON(!cache->ro);
6711 spin_lock(&sinfo->lock);
6712 spin_lock(&cache->lock);
6713 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6714 cache->bytes_super - btrfs_block_group_used(&cache->item);
6715 sinfo->bytes_readonly -= num_bytes;
6716 cache->ro = 0;
6717 spin_unlock(&cache->lock);
6718 spin_unlock(&sinfo->lock);
6719 return 0;
6723 * checks to see if its even possible to relocate this block group.
6725 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6726 * ok to go ahead and try.
6728 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6730 struct btrfs_block_group_cache *block_group;
6731 struct btrfs_space_info *space_info;
6732 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6733 struct btrfs_device *device;
6734 u64 min_free;
6735 u64 dev_min = 1;
6736 u64 dev_nr = 0;
6737 int index;
6738 int full = 0;
6739 int ret = 0;
6741 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6743 /* odd, couldn't find the block group, leave it alone */
6744 if (!block_group)
6745 return -1;
6747 min_free = btrfs_block_group_used(&block_group->item);
6749 /* no bytes used, we're good */
6750 if (!min_free)
6751 goto out;
6753 space_info = block_group->space_info;
6754 spin_lock(&space_info->lock);
6756 full = space_info->full;
6759 * if this is the last block group we have in this space, we can't
6760 * relocate it unless we're able to allocate a new chunk below.
6762 * Otherwise, we need to make sure we have room in the space to handle
6763 * all of the extents from this block group. If we can, we're good
6765 if ((space_info->total_bytes != block_group->key.offset) &&
6766 (space_info->bytes_used + space_info->bytes_reserved +
6767 space_info->bytes_pinned + space_info->bytes_readonly +
6768 min_free < space_info->total_bytes)) {
6769 spin_unlock(&space_info->lock);
6770 goto out;
6772 spin_unlock(&space_info->lock);
6775 * ok we don't have enough space, but maybe we have free space on our
6776 * devices to allocate new chunks for relocation, so loop through our
6777 * alloc devices and guess if we have enough space. However, if we
6778 * were marked as full, then we know there aren't enough chunks, and we
6779 * can just return.
6781 ret = -1;
6782 if (full)
6783 goto out;
6786 * index:
6787 * 0: raid10
6788 * 1: raid1
6789 * 2: dup
6790 * 3: raid0
6791 * 4: single
6793 index = get_block_group_index(block_group);
6794 if (index == 0) {
6795 dev_min = 4;
6796 /* Divide by 2 */
6797 min_free >>= 1;
6798 } else if (index == 1) {
6799 dev_min = 2;
6800 } else if (index == 2) {
6801 /* Multiply by 2 */
6802 min_free <<= 1;
6803 } else if (index == 3) {
6804 dev_min = fs_devices->rw_devices;
6805 do_div(min_free, dev_min);
6808 mutex_lock(&root->fs_info->chunk_mutex);
6809 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6810 u64 dev_offset;
6813 * check to make sure we can actually find a chunk with enough
6814 * space to fit our block group in.
6816 if (device->total_bytes > device->bytes_used + min_free) {
6817 ret = find_free_dev_extent(NULL, device, min_free,
6818 &dev_offset, NULL);
6819 if (!ret)
6820 dev_nr++;
6822 if (dev_nr >= dev_min)
6823 break;
6825 ret = -1;
6828 mutex_unlock(&root->fs_info->chunk_mutex);
6829 out:
6830 btrfs_put_block_group(block_group);
6831 return ret;
6834 static int find_first_block_group(struct btrfs_root *root,
6835 struct btrfs_path *path, struct btrfs_key *key)
6837 int ret = 0;
6838 struct btrfs_key found_key;
6839 struct extent_buffer *leaf;
6840 int slot;
6842 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6843 if (ret < 0)
6844 goto out;
6846 while (1) {
6847 slot = path->slots[0];
6848 leaf = path->nodes[0];
6849 if (slot >= btrfs_header_nritems(leaf)) {
6850 ret = btrfs_next_leaf(root, path);
6851 if (ret == 0)
6852 continue;
6853 if (ret < 0)
6854 goto out;
6855 break;
6857 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6859 if (found_key.objectid >= key->objectid &&
6860 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6861 ret = 0;
6862 goto out;
6864 path->slots[0]++;
6866 out:
6867 return ret;
6870 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6872 struct btrfs_block_group_cache *block_group;
6873 u64 last = 0;
6875 while (1) {
6876 struct inode *inode;
6878 block_group = btrfs_lookup_first_block_group(info, last);
6879 while (block_group) {
6880 spin_lock(&block_group->lock);
6881 if (block_group->iref)
6882 break;
6883 spin_unlock(&block_group->lock);
6884 block_group = next_block_group(info->tree_root,
6885 block_group);
6887 if (!block_group) {
6888 if (last == 0)
6889 break;
6890 last = 0;
6891 continue;
6894 inode = block_group->inode;
6895 block_group->iref = 0;
6896 block_group->inode = NULL;
6897 spin_unlock(&block_group->lock);
6898 iput(inode);
6899 last = block_group->key.objectid + block_group->key.offset;
6900 btrfs_put_block_group(block_group);
6904 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6906 struct btrfs_block_group_cache *block_group;
6907 struct btrfs_space_info *space_info;
6908 struct btrfs_caching_control *caching_ctl;
6909 struct rb_node *n;
6911 down_write(&info->extent_commit_sem);
6912 while (!list_empty(&info->caching_block_groups)) {
6913 caching_ctl = list_entry(info->caching_block_groups.next,
6914 struct btrfs_caching_control, list);
6915 list_del(&caching_ctl->list);
6916 put_caching_control(caching_ctl);
6918 up_write(&info->extent_commit_sem);
6920 spin_lock(&info->block_group_cache_lock);
6921 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6922 block_group = rb_entry(n, struct btrfs_block_group_cache,
6923 cache_node);
6924 rb_erase(&block_group->cache_node,
6925 &info->block_group_cache_tree);
6926 spin_unlock(&info->block_group_cache_lock);
6928 down_write(&block_group->space_info->groups_sem);
6929 list_del(&block_group->list);
6930 up_write(&block_group->space_info->groups_sem);
6932 if (block_group->cached == BTRFS_CACHE_STARTED)
6933 wait_block_group_cache_done(block_group);
6936 * We haven't cached this block group, which means we could
6937 * possibly have excluded extents on this block group.
6939 if (block_group->cached == BTRFS_CACHE_NO)
6940 free_excluded_extents(info->extent_root, block_group);
6942 btrfs_remove_free_space_cache(block_group);
6943 btrfs_put_block_group(block_group);
6945 spin_lock(&info->block_group_cache_lock);
6947 spin_unlock(&info->block_group_cache_lock);
6949 /* now that all the block groups are freed, go through and
6950 * free all the space_info structs. This is only called during
6951 * the final stages of unmount, and so we know nobody is
6952 * using them. We call synchronize_rcu() once before we start,
6953 * just to be on the safe side.
6955 synchronize_rcu();
6957 release_global_block_rsv(info);
6959 while(!list_empty(&info->space_info)) {
6960 space_info = list_entry(info->space_info.next,
6961 struct btrfs_space_info,
6962 list);
6963 if (space_info->bytes_pinned > 0 ||
6964 space_info->bytes_reserved > 0 ||
6965 space_info->bytes_may_use > 0) {
6966 WARN_ON(1);
6967 dump_space_info(space_info, 0, 0);
6969 list_del(&space_info->list);
6970 kfree(space_info);
6972 return 0;
6975 static void __link_block_group(struct btrfs_space_info *space_info,
6976 struct btrfs_block_group_cache *cache)
6978 int index = get_block_group_index(cache);
6980 down_write(&space_info->groups_sem);
6981 list_add_tail(&cache->list, &space_info->block_groups[index]);
6982 up_write(&space_info->groups_sem);
6985 int btrfs_read_block_groups(struct btrfs_root *root)
6987 struct btrfs_path *path;
6988 int ret;
6989 struct btrfs_block_group_cache *cache;
6990 struct btrfs_fs_info *info = root->fs_info;
6991 struct btrfs_space_info *space_info;
6992 struct btrfs_key key;
6993 struct btrfs_key found_key;
6994 struct extent_buffer *leaf;
6995 int need_clear = 0;
6996 u64 cache_gen;
6998 root = info->extent_root;
6999 key.objectid = 0;
7000 key.offset = 0;
7001 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7002 path = btrfs_alloc_path();
7003 if (!path)
7004 return -ENOMEM;
7005 path->reada = 1;
7007 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
7008 if (cache_gen != 0 &&
7009 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
7010 need_clear = 1;
7011 if (btrfs_test_opt(root, CLEAR_CACHE))
7012 need_clear = 1;
7013 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
7014 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
7016 while (1) {
7017 ret = find_first_block_group(root, path, &key);
7018 if (ret > 0)
7019 break;
7020 if (ret != 0)
7021 goto error;
7022 leaf = path->nodes[0];
7023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7024 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7025 if (!cache) {
7026 ret = -ENOMEM;
7027 goto error;
7029 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7030 GFP_NOFS);
7031 if (!cache->free_space_ctl) {
7032 kfree(cache);
7033 ret = -ENOMEM;
7034 goto error;
7037 atomic_set(&cache->count, 1);
7038 spin_lock_init(&cache->lock);
7039 cache->fs_info = info;
7040 INIT_LIST_HEAD(&cache->list);
7041 INIT_LIST_HEAD(&cache->cluster_list);
7043 if (need_clear)
7044 cache->disk_cache_state = BTRFS_DC_CLEAR;
7046 read_extent_buffer(leaf, &cache->item,
7047 btrfs_item_ptr_offset(leaf, path->slots[0]),
7048 sizeof(cache->item));
7049 memcpy(&cache->key, &found_key, sizeof(found_key));
7051 key.objectid = found_key.objectid + found_key.offset;
7052 btrfs_release_path(path);
7053 cache->flags = btrfs_block_group_flags(&cache->item);
7054 cache->sectorsize = root->sectorsize;
7056 btrfs_init_free_space_ctl(cache);
7059 * We need to exclude the super stripes now so that the space
7060 * info has super bytes accounted for, otherwise we'll think
7061 * we have more space than we actually do.
7063 exclude_super_stripes(root, cache);
7066 * check for two cases, either we are full, and therefore
7067 * don't need to bother with the caching work since we won't
7068 * find any space, or we are empty, and we can just add all
7069 * the space in and be done with it. This saves us _alot_ of
7070 * time, particularly in the full case.
7072 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7073 cache->last_byte_to_unpin = (u64)-1;
7074 cache->cached = BTRFS_CACHE_FINISHED;
7075 free_excluded_extents(root, cache);
7076 } else if (btrfs_block_group_used(&cache->item) == 0) {
7077 cache->last_byte_to_unpin = (u64)-1;
7078 cache->cached = BTRFS_CACHE_FINISHED;
7079 add_new_free_space(cache, root->fs_info,
7080 found_key.objectid,
7081 found_key.objectid +
7082 found_key.offset);
7083 free_excluded_extents(root, cache);
7086 ret = update_space_info(info, cache->flags, found_key.offset,
7087 btrfs_block_group_used(&cache->item),
7088 &space_info);
7089 BUG_ON(ret);
7090 cache->space_info = space_info;
7091 spin_lock(&cache->space_info->lock);
7092 cache->space_info->bytes_readonly += cache->bytes_super;
7093 spin_unlock(&cache->space_info->lock);
7095 __link_block_group(space_info, cache);
7097 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7098 BUG_ON(ret);
7100 set_avail_alloc_bits(root->fs_info, cache->flags);
7101 if (btrfs_chunk_readonly(root, cache->key.objectid))
7102 set_block_group_ro(cache, 1);
7105 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7106 if (!(get_alloc_profile(root, space_info->flags) &
7107 (BTRFS_BLOCK_GROUP_RAID10 |
7108 BTRFS_BLOCK_GROUP_RAID1 |
7109 BTRFS_BLOCK_GROUP_DUP)))
7110 continue;
7112 * avoid allocating from un-mirrored block group if there are
7113 * mirrored block groups.
7115 list_for_each_entry(cache, &space_info->block_groups[3], list)
7116 set_block_group_ro(cache, 1);
7117 list_for_each_entry(cache, &space_info->block_groups[4], list)
7118 set_block_group_ro(cache, 1);
7121 init_global_block_rsv(info);
7122 ret = 0;
7123 error:
7124 btrfs_free_path(path);
7125 return ret;
7128 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7129 struct btrfs_root *root, u64 bytes_used,
7130 u64 type, u64 chunk_objectid, u64 chunk_offset,
7131 u64 size)
7133 int ret;
7134 struct btrfs_root *extent_root;
7135 struct btrfs_block_group_cache *cache;
7137 extent_root = root->fs_info->extent_root;
7139 root->fs_info->last_trans_log_full_commit = trans->transid;
7141 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7142 if (!cache)
7143 return -ENOMEM;
7144 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7145 GFP_NOFS);
7146 if (!cache->free_space_ctl) {
7147 kfree(cache);
7148 return -ENOMEM;
7151 cache->key.objectid = chunk_offset;
7152 cache->key.offset = size;
7153 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7154 cache->sectorsize = root->sectorsize;
7155 cache->fs_info = root->fs_info;
7157 atomic_set(&cache->count, 1);
7158 spin_lock_init(&cache->lock);
7159 INIT_LIST_HEAD(&cache->list);
7160 INIT_LIST_HEAD(&cache->cluster_list);
7162 btrfs_init_free_space_ctl(cache);
7164 btrfs_set_block_group_used(&cache->item, bytes_used);
7165 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7166 cache->flags = type;
7167 btrfs_set_block_group_flags(&cache->item, type);
7169 cache->last_byte_to_unpin = (u64)-1;
7170 cache->cached = BTRFS_CACHE_FINISHED;
7171 exclude_super_stripes(root, cache);
7173 add_new_free_space(cache, root->fs_info, chunk_offset,
7174 chunk_offset + size);
7176 free_excluded_extents(root, cache);
7178 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7179 &cache->space_info);
7180 BUG_ON(ret);
7182 spin_lock(&cache->space_info->lock);
7183 cache->space_info->bytes_readonly += cache->bytes_super;
7184 spin_unlock(&cache->space_info->lock);
7186 __link_block_group(cache->space_info, cache);
7188 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7189 BUG_ON(ret);
7191 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7192 sizeof(cache->item));
7193 BUG_ON(ret);
7195 set_avail_alloc_bits(extent_root->fs_info, type);
7197 return 0;
7200 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7201 struct btrfs_root *root, u64 group_start)
7203 struct btrfs_path *path;
7204 struct btrfs_block_group_cache *block_group;
7205 struct btrfs_free_cluster *cluster;
7206 struct btrfs_root *tree_root = root->fs_info->tree_root;
7207 struct btrfs_key key;
7208 struct inode *inode;
7209 int ret;
7210 int factor;
7212 root = root->fs_info->extent_root;
7214 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7215 BUG_ON(!block_group);
7216 BUG_ON(!block_group->ro);
7219 * Free the reserved super bytes from this block group before
7220 * remove it.
7222 free_excluded_extents(root, block_group);
7224 memcpy(&key, &block_group->key, sizeof(key));
7225 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7226 BTRFS_BLOCK_GROUP_RAID1 |
7227 BTRFS_BLOCK_GROUP_RAID10))
7228 factor = 2;
7229 else
7230 factor = 1;
7232 /* make sure this block group isn't part of an allocation cluster */
7233 cluster = &root->fs_info->data_alloc_cluster;
7234 spin_lock(&cluster->refill_lock);
7235 btrfs_return_cluster_to_free_space(block_group, cluster);
7236 spin_unlock(&cluster->refill_lock);
7239 * make sure this block group isn't part of a metadata
7240 * allocation cluster
7242 cluster = &root->fs_info->meta_alloc_cluster;
7243 spin_lock(&cluster->refill_lock);
7244 btrfs_return_cluster_to_free_space(block_group, cluster);
7245 spin_unlock(&cluster->refill_lock);
7247 path = btrfs_alloc_path();
7248 if (!path) {
7249 ret = -ENOMEM;
7250 goto out;
7253 inode = lookup_free_space_inode(root, block_group, path);
7254 if (!IS_ERR(inode)) {
7255 ret = btrfs_orphan_add(trans, inode);
7256 BUG_ON(ret);
7257 clear_nlink(inode);
7258 /* One for the block groups ref */
7259 spin_lock(&block_group->lock);
7260 if (block_group->iref) {
7261 block_group->iref = 0;
7262 block_group->inode = NULL;
7263 spin_unlock(&block_group->lock);
7264 iput(inode);
7265 } else {
7266 spin_unlock(&block_group->lock);
7268 /* One for our lookup ref */
7269 btrfs_add_delayed_iput(inode);
7272 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7273 key.offset = block_group->key.objectid;
7274 key.type = 0;
7276 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7277 if (ret < 0)
7278 goto out;
7279 if (ret > 0)
7280 btrfs_release_path(path);
7281 if (ret == 0) {
7282 ret = btrfs_del_item(trans, tree_root, path);
7283 if (ret)
7284 goto out;
7285 btrfs_release_path(path);
7288 spin_lock(&root->fs_info->block_group_cache_lock);
7289 rb_erase(&block_group->cache_node,
7290 &root->fs_info->block_group_cache_tree);
7291 spin_unlock(&root->fs_info->block_group_cache_lock);
7293 down_write(&block_group->space_info->groups_sem);
7295 * we must use list_del_init so people can check to see if they
7296 * are still on the list after taking the semaphore
7298 list_del_init(&block_group->list);
7299 up_write(&block_group->space_info->groups_sem);
7301 if (block_group->cached == BTRFS_CACHE_STARTED)
7302 wait_block_group_cache_done(block_group);
7304 btrfs_remove_free_space_cache(block_group);
7306 spin_lock(&block_group->space_info->lock);
7307 block_group->space_info->total_bytes -= block_group->key.offset;
7308 block_group->space_info->bytes_readonly -= block_group->key.offset;
7309 block_group->space_info->disk_total -= block_group->key.offset * factor;
7310 spin_unlock(&block_group->space_info->lock);
7312 memcpy(&key, &block_group->key, sizeof(key));
7314 btrfs_clear_space_info_full(root->fs_info);
7316 btrfs_put_block_group(block_group);
7317 btrfs_put_block_group(block_group);
7319 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7320 if (ret > 0)
7321 ret = -EIO;
7322 if (ret < 0)
7323 goto out;
7325 ret = btrfs_del_item(trans, root, path);
7326 out:
7327 btrfs_free_path(path);
7328 return ret;
7331 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7333 struct btrfs_space_info *space_info;
7334 struct btrfs_super_block *disk_super;
7335 u64 features;
7336 u64 flags;
7337 int mixed = 0;
7338 int ret;
7340 disk_super = &fs_info->super_copy;
7341 if (!btrfs_super_root(disk_super))
7342 return 1;
7344 features = btrfs_super_incompat_flags(disk_super);
7345 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7346 mixed = 1;
7348 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7349 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7350 if (ret)
7351 goto out;
7353 if (mixed) {
7354 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7355 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7356 } else {
7357 flags = BTRFS_BLOCK_GROUP_METADATA;
7358 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7359 if (ret)
7360 goto out;
7362 flags = BTRFS_BLOCK_GROUP_DATA;
7363 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7365 out:
7366 return ret;
7369 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7371 return unpin_extent_range(root, start, end);
7374 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7375 u64 num_bytes, u64 *actual_bytes)
7377 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7380 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7382 struct btrfs_fs_info *fs_info = root->fs_info;
7383 struct btrfs_block_group_cache *cache = NULL;
7384 u64 group_trimmed;
7385 u64 start;
7386 u64 end;
7387 u64 trimmed = 0;
7388 int ret = 0;
7390 cache = btrfs_lookup_block_group(fs_info, range->start);
7392 while (cache) {
7393 if (cache->key.objectid >= (range->start + range->len)) {
7394 btrfs_put_block_group(cache);
7395 break;
7398 start = max(range->start, cache->key.objectid);
7399 end = min(range->start + range->len,
7400 cache->key.objectid + cache->key.offset);
7402 if (end - start >= range->minlen) {
7403 if (!block_group_cache_done(cache)) {
7404 ret = cache_block_group(cache, NULL, root, 0);
7405 if (!ret)
7406 wait_block_group_cache_done(cache);
7408 ret = btrfs_trim_block_group(cache,
7409 &group_trimmed,
7410 start,
7411 end,
7412 range->minlen);
7414 trimmed += group_trimmed;
7415 if (ret) {
7416 btrfs_put_block_group(cache);
7417 break;
7421 cache = next_block_group(fs_info->tree_root, cache);
7424 range->len = trimmed;
7425 return ret;