r8169: revert "Handle rxfifo errors on 8168 chips"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched_fair.c
blobdb3f674ca49dbe93a611716b650bb8c715464da3
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
157 return 0;
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
162 return se->parent;
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
168 int depth = 0;
170 for_each_sched_entity(se)
171 depth++;
173 return depth;
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
179 int se_depth, pse_depth;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct *task_of(struct sched_entity *se)
212 return container_of(se, struct task_struct, se);
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
217 return container_of(cfs_rq, struct rq, cfs);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
227 return &task_rq(p)->cfs;
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
235 return &rq->cfs;
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
241 return NULL;
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
246 return &cpu_rq(this_cpu)->cfs;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
255 return 1;
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
260 return NULL;
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
281 return min_vruntime;
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
290 return min_vruntime;
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
296 return (s64)(a->vruntime - b->vruntime) < 0;
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
301 return se->vruntime - cfs_rq->min_vruntime;
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
306 u64 vruntime = cfs_rq->min_vruntime;
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
337 * Find the right place in the rbtree:
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
379 struct rb_node *left = cfs_rq->rb_leftmost;
381 if (!left)
382 return NULL;
384 return rb_entry(left, struct sched_entity, run_node);
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
391 if (!last)
392 return NULL;
394 return rb_entry(last, struct sched_entity, run_node);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
409 if (ret || !write)
410 return ret;
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
423 return 0;
425 #endif
428 * delta /= w
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
436 return delta;
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64 __sched_period(unsigned long nr_running)
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
457 return period;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
464 * s = p*P[w/rw]
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
483 slice = calc_delta_mine(slice, se->load.weight, load);
485 return slice;
489 * We calculate the vruntime slice of a to be inserted task
491 * vs = s/w
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
506 unsigned long delta_exec_weighted;
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
511 curr->sum_exec_runtime += delta_exec;
512 schedstat_add(cfs_rq, exec_clock, delta_exec);
513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
515 curr->vruntime += delta_exec_weighted;
516 update_min_vruntime(cfs_rq);
519 static void update_curr(struct cfs_rq *cfs_rq)
521 struct sched_entity *curr = cfs_rq->curr;
522 u64 now = rq_of(cfs_rq)->clock;
523 unsigned long delta_exec;
525 if (unlikely(!curr))
526 return;
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
533 delta_exec = (unsigned long)(now - curr->exec_start);
534 if (!delta_exec)
535 return;
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544 cpuacct_charge(curtask, delta_exec);
545 account_group_exec_runtime(curtask, delta_exec);
549 static inline void
550 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
556 * Task is being enqueued - update stats:
558 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
564 if (se != cfs_rq->curr)
565 update_stats_wait_start(cfs_rq, se);
568 static void
569 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
581 #endif
582 schedstat_set(se->statistics.wait_start, 0);
585 static inline void
586 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
592 if (se != cfs_rq->curr)
593 update_stats_wait_end(cfs_rq, se);
597 * We are picking a new current task - update its stats:
599 static inline void
600 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
603 * We are starting a new run period:
605 se->exec_start = rq_of(cfs_rq)->clock;
608 /**************************************************
609 * Scheduling class queueing methods:
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 static void
614 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
616 cfs_rq->task_weight += weight;
618 #else
619 static inline void
620 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
623 #endif
625 static void
626 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 update_load_add(&cfs_rq->load, se->load.weight);
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631 if (entity_is_task(se)) {
632 add_cfs_task_weight(cfs_rq, se->load.weight);
633 list_add(&se->group_node, &cfs_rq->tasks);
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
639 static void
640 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
642 update_load_sub(&cfs_rq->load, se->load.weight);
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645 if (entity_is_task(se)) {
646 add_cfs_task_weight(cfs_rq, -se->load.weight);
647 list_del_init(&se->group_node);
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
653 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct *tsk = NULL;
658 if (entity_is_task(se))
659 tsk = task_of(se);
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
664 if ((s64)delta < 0)
665 delta = 0;
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
673 if (tsk) {
674 account_scheduler_latency(tsk, delta >> 10, 1);
675 trace_sched_stat_sleep(tsk, delta);
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
681 if ((s64)delta < 0)
682 delta = 0;
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
690 if (tsk) {
691 if (tsk->in_iowait) {
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
694 trace_sched_stat_iowait(tsk, delta);
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
707 account_scheduler_latency(tsk, delta >> 10, 0);
710 #endif
713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
718 if (d < 0)
719 d = -d;
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723 #endif
726 static void
727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
729 u64 vruntime = cfs_rq->min_vruntime;
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
737 if (initial && sched_feat(START_DEBIT))
738 vruntime += sched_vslice(cfs_rq, se);
740 /* sleeps up to a single latency don't count. */
741 if (!initial) {
742 unsigned long thresh = sysctl_sched_latency;
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
751 vruntime -= thresh;
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
757 se->vruntime = vruntime;
760 static void
761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768 se->vruntime += cfs_rq->min_vruntime;
771 * Update run-time statistics of the 'current'.
773 update_curr(cfs_rq);
774 account_entity_enqueue(cfs_rq, se);
776 if (flags & ENQUEUE_WAKEUP) {
777 place_entity(cfs_rq, se, 0);
778 enqueue_sleeper(cfs_rq, se);
781 update_stats_enqueue(cfs_rq, se);
782 check_spread(cfs_rq, se);
783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
787 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
789 if (!se || cfs_rq->last == se)
790 cfs_rq->last = NULL;
792 if (!se || cfs_rq->next == se)
793 cfs_rq->next = NULL;
796 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
802 static void
803 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
806 * Update run-time statistics of the 'current'.
808 update_curr(cfs_rq);
810 update_stats_dequeue(cfs_rq, se);
811 if (flags & DEQUEUE_SLEEP) {
812 #ifdef CONFIG_SCHEDSTATS
813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
816 if (tsk->state & TASK_INTERRUPTIBLE)
817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818 if (tsk->state & TASK_UNINTERRUPTIBLE)
819 se->statistics.block_start = rq_of(cfs_rq)->clock;
821 #endif
824 clear_buddies(cfs_rq, se);
826 if (se != cfs_rq->curr)
827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
829 update_min_vruntime(cfs_rq);
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
836 if (!(flags & DEQUEUE_SLEEP))
837 se->vruntime -= cfs_rq->min_vruntime;
841 * Preempt the current task with a newly woken task if needed:
843 static void
844 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
846 unsigned long ideal_runtime, delta_exec;
848 ideal_runtime = sched_slice(cfs_rq, curr);
849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850 if (delta_exec > ideal_runtime) {
851 resched_task(rq_of(cfs_rq)->curr);
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
856 clear_buddies(cfs_rq, curr);
857 return;
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
880 static void
881 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
894 update_stats_curr_start(cfs_rq, se);
895 cfs_rq->curr = se;
896 #ifdef CONFIG_SCHEDSTATS
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903 se->statistics.slice_max = max(se->statistics.slice_max,
904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
906 #endif
907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
910 static int
911 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
913 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
915 struct sched_entity *se = __pick_next_entity(cfs_rq);
916 struct sched_entity *left = se;
918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
922 * Prefer last buddy, try to return the CPU to a preempted task.
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
927 clear_buddies(cfs_rq, se);
929 return se;
932 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
938 if (prev->on_rq)
939 update_curr(cfs_rq);
941 check_spread(cfs_rq, prev);
942 if (prev->on_rq) {
943 update_stats_wait_start(cfs_rq, prev);
944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
947 cfs_rq->curr = NULL;
950 static void
951 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
954 * Update run-time statistics of the 'current'.
956 update_curr(cfs_rq);
958 #ifdef CONFIG_SCHED_HRTICK
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
968 * don't let the period tick interfere with the hrtick preemption
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973 #endif
975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
976 check_preempt_tick(cfs_rq, curr);
979 /**************************************************
980 * CFS operations on tasks:
983 #ifdef CONFIG_SCHED_HRTICK
984 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
989 WARN_ON(task_rq(p) != rq);
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1006 if (rq->curr != p)
1007 delta = max_t(s64, 10000LL, delta);
1009 hrtick_start(rq, delta);
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1018 static void hrtick_update(struct rq *rq)
1020 struct task_struct *curr = rq->curr;
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1028 #else /* !CONFIG_SCHED_HRTICK */
1029 static inline void
1030 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1034 static inline void hrtick_update(struct rq *rq)
1037 #endif
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1044 static void
1045 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1047 struct cfs_rq *cfs_rq;
1048 struct sched_entity *se = &p->se;
1050 for_each_sched_entity(se) {
1051 if (se->on_rq)
1052 break;
1053 cfs_rq = cfs_rq_of(se);
1054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
1058 hrtick_update(rq);
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1066 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1068 struct cfs_rq *cfs_rq;
1069 struct sched_entity *se = &p->se;
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
1073 dequeue_entity(cfs_rq, se, flags);
1074 /* Don't dequeue parent if it has other entities besides us */
1075 if (cfs_rq->load.weight)
1076 break;
1077 flags |= DEQUEUE_SLEEP;
1080 hrtick_update(rq);
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1088 static void yield_task_fair(struct rq *rq)
1090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
1095 * Are we the only task in the tree?
1097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1100 clear_buddies(cfs_rq, se);
1102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103 update_rq_clock(rq);
1105 * Update run-time statistics of the 'current'.
1107 update_curr(cfs_rq);
1109 return;
1112 * Find the rightmost entry in the rbtree:
1114 rightmost = __pick_last_entity(cfs_rq);
1116 * Already in the rightmost position?
1118 if (unlikely(!rightmost || entity_before(rightmost, se)))
1119 return;
1122 * Minimally necessary key value to be last in the tree:
1123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
1126 se->vruntime = rightmost->vruntime + 1;
1129 #ifdef CONFIG_SMP
1131 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1136 se->vruntime -= cfs_rq->min_vruntime;
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1141 * effective_load() calculates the load change as seen from the root_task_group
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1161 static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
1164 struct sched_entity *se = tg->se[cpu];
1166 if (!tg->parent)
1167 return wl;
1170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1176 for_each_sched_entity(se) {
1177 long S, rw, s, a, b;
1178 long more_w;
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
1188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
1190 rw = se->my_q->rq_weight;
1192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
1195 wl = s*(a-b);
1197 if (likely(b))
1198 wl /= b;
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1207 wg = 0;
1210 return wl;
1213 #else
1215 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
1218 return wl;
1221 #endif
1223 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
1227 unsigned long tl_per_task;
1228 struct task_group *tg;
1229 unsigned long weight;
1230 int balanced;
1232 idx = sd->wake_idx;
1233 this_cpu = smp_processor_id();
1234 prev_cpu = task_cpu(p);
1235 load = source_load(prev_cpu, idx);
1236 this_load = target_load(this_cpu, idx);
1239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1243 rcu_read_lock();
1244 if (sync) {
1245 tg = task_group(current);
1246 weight = current->se.load.weight;
1248 this_load += effective_load(tg, this_cpu, -weight, -weight);
1249 load += effective_load(tg, prev_cpu, 0, -weight);
1252 tg = task_group(p);
1253 weight = p->se.load.weight;
1256 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1257 * due to the sync cause above having dropped this_load to 0, we'll
1258 * always have an imbalance, but there's really nothing you can do
1259 * about that, so that's good too.
1261 * Otherwise check if either cpus are near enough in load to allow this
1262 * task to be woken on this_cpu.
1264 if (this_load) {
1265 unsigned long this_eff_load, prev_eff_load;
1267 this_eff_load = 100;
1268 this_eff_load *= power_of(prev_cpu);
1269 this_eff_load *= this_load +
1270 effective_load(tg, this_cpu, weight, weight);
1272 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1273 prev_eff_load *= power_of(this_cpu);
1274 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1276 balanced = this_eff_load <= prev_eff_load;
1277 } else
1278 balanced = true;
1279 rcu_read_unlock();
1282 * If the currently running task will sleep within
1283 * a reasonable amount of time then attract this newly
1284 * woken task:
1286 if (sync && balanced)
1287 return 1;
1289 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1290 tl_per_task = cpu_avg_load_per_task(this_cpu);
1292 if (balanced ||
1293 (this_load <= load &&
1294 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1296 * This domain has SD_WAKE_AFFINE and
1297 * p is cache cold in this domain, and
1298 * there is no bad imbalance.
1300 schedstat_inc(sd, ttwu_move_affine);
1301 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1303 return 1;
1305 return 0;
1309 * find_idlest_group finds and returns the least busy CPU group within the
1310 * domain.
1312 static struct sched_group *
1313 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1314 int this_cpu, int load_idx)
1316 struct sched_group *idlest = NULL, *group = sd->groups;
1317 unsigned long min_load = ULONG_MAX, this_load = 0;
1318 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1320 do {
1321 unsigned long load, avg_load;
1322 int local_group;
1323 int i;
1325 /* Skip over this group if it has no CPUs allowed */
1326 if (!cpumask_intersects(sched_group_cpus(group),
1327 &p->cpus_allowed))
1328 continue;
1330 local_group = cpumask_test_cpu(this_cpu,
1331 sched_group_cpus(group));
1333 /* Tally up the load of all CPUs in the group */
1334 avg_load = 0;
1336 for_each_cpu(i, sched_group_cpus(group)) {
1337 /* Bias balancing toward cpus of our domain */
1338 if (local_group)
1339 load = source_load(i, load_idx);
1340 else
1341 load = target_load(i, load_idx);
1343 avg_load += load;
1346 /* Adjust by relative CPU power of the group */
1347 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1349 if (local_group) {
1350 this_load = avg_load;
1351 } else if (avg_load < min_load) {
1352 min_load = avg_load;
1353 idlest = group;
1355 } while (group = group->next, group != sd->groups);
1357 if (!idlest || 100*this_load < imbalance*min_load)
1358 return NULL;
1359 return idlest;
1363 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1365 static int
1366 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1368 unsigned long load, min_load = ULONG_MAX;
1369 int idlest = -1;
1370 int i;
1372 /* Traverse only the allowed CPUs */
1373 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1374 load = weighted_cpuload(i);
1376 if (load < min_load || (load == min_load && i == this_cpu)) {
1377 min_load = load;
1378 idlest = i;
1382 return idlest;
1386 * Try and locate an idle CPU in the sched_domain.
1388 static int select_idle_sibling(struct task_struct *p, int target)
1390 int cpu = smp_processor_id();
1391 int prev_cpu = task_cpu(p);
1392 struct sched_domain *sd;
1393 int i;
1396 * If the task is going to be woken-up on this cpu and if it is
1397 * already idle, then it is the right target.
1399 if (target == cpu && idle_cpu(cpu))
1400 return cpu;
1403 * If the task is going to be woken-up on the cpu where it previously
1404 * ran and if it is currently idle, then it the right target.
1406 if (target == prev_cpu && idle_cpu(prev_cpu))
1407 return prev_cpu;
1410 * Otherwise, iterate the domains and find an elegible idle cpu.
1412 for_each_domain(target, sd) {
1413 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1414 break;
1416 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1417 if (idle_cpu(i)) {
1418 target = i;
1419 break;
1424 * Lets stop looking for an idle sibling when we reached
1425 * the domain that spans the current cpu and prev_cpu.
1427 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1428 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1429 break;
1432 return target;
1436 * sched_balance_self: balance the current task (running on cpu) in domains
1437 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1438 * SD_BALANCE_EXEC.
1440 * Balance, ie. select the least loaded group.
1442 * Returns the target CPU number, or the same CPU if no balancing is needed.
1444 * preempt must be disabled.
1446 static int
1447 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
1454 int want_sd = 1;
1455 int sync = wake_flags & WF_SYNC;
1457 if (sd_flag & SD_BALANCE_WAKE) {
1458 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1459 want_affine = 1;
1460 new_cpu = prev_cpu;
1463 for_each_domain(cpu, tmp) {
1464 if (!(tmp->flags & SD_LOAD_BALANCE))
1465 continue;
1468 * If power savings logic is enabled for a domain, see if we
1469 * are not overloaded, if so, don't balance wider.
1471 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1472 unsigned long power = 0;
1473 unsigned long nr_running = 0;
1474 unsigned long capacity;
1475 int i;
1477 for_each_cpu(i, sched_domain_span(tmp)) {
1478 power += power_of(i);
1479 nr_running += cpu_rq(i)->cfs.nr_running;
1482 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1484 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1485 nr_running /= 2;
1487 if (nr_running < capacity)
1488 want_sd = 0;
1492 * If both cpu and prev_cpu are part of this domain,
1493 * cpu is a valid SD_WAKE_AFFINE target.
1495 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1496 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1497 affine_sd = tmp;
1498 want_affine = 0;
1501 if (!want_sd && !want_affine)
1502 break;
1504 if (!(tmp->flags & sd_flag))
1505 continue;
1507 if (want_sd)
1508 sd = tmp;
1511 #ifdef CONFIG_FAIR_GROUP_SCHED
1512 if (sched_feat(LB_SHARES_UPDATE)) {
1514 * Pick the largest domain to update shares over
1516 tmp = sd;
1517 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1518 tmp = affine_sd;
1520 if (tmp) {
1521 raw_spin_unlock(&rq->lock);
1522 update_shares(tmp);
1523 raw_spin_lock(&rq->lock);
1526 #endif
1528 if (affine_sd) {
1529 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1530 return select_idle_sibling(p, cpu);
1531 else
1532 return select_idle_sibling(p, prev_cpu);
1535 while (sd) {
1536 int load_idx = sd->forkexec_idx;
1537 struct sched_group *group;
1538 int weight;
1540 if (!(sd->flags & sd_flag)) {
1541 sd = sd->child;
1542 continue;
1545 if (sd_flag & SD_BALANCE_WAKE)
1546 load_idx = sd->wake_idx;
1548 group = find_idlest_group(sd, p, cpu, load_idx);
1549 if (!group) {
1550 sd = sd->child;
1551 continue;
1554 new_cpu = find_idlest_cpu(group, p, cpu);
1555 if (new_cpu == -1 || new_cpu == cpu) {
1556 /* Now try balancing at a lower domain level of cpu */
1557 sd = sd->child;
1558 continue;
1561 /* Now try balancing at a lower domain level of new_cpu */
1562 cpu = new_cpu;
1563 weight = sd->span_weight;
1564 sd = NULL;
1565 for_each_domain(cpu, tmp) {
1566 if (weight <= tmp->span_weight)
1567 break;
1568 if (tmp->flags & sd_flag)
1569 sd = tmp;
1571 /* while loop will break here if sd == NULL */
1574 return new_cpu;
1576 #endif /* CONFIG_SMP */
1578 static unsigned long
1579 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1581 unsigned long gran = sysctl_sched_wakeup_granularity;
1584 * Since its curr running now, convert the gran from real-time
1585 * to virtual-time in his units.
1587 * By using 'se' instead of 'curr' we penalize light tasks, so
1588 * they get preempted easier. That is, if 'se' < 'curr' then
1589 * the resulting gran will be larger, therefore penalizing the
1590 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1591 * be smaller, again penalizing the lighter task.
1593 * This is especially important for buddies when the leftmost
1594 * task is higher priority than the buddy.
1596 if (unlikely(se->load.weight != NICE_0_LOAD))
1597 gran = calc_delta_fair(gran, se);
1599 return gran;
1603 * Should 'se' preempt 'curr'.
1605 * |s1
1606 * |s2
1607 * |s3
1609 * |<--->|c
1611 * w(c, s1) = -1
1612 * w(c, s2) = 0
1613 * w(c, s3) = 1
1616 static int
1617 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1619 s64 gran, vdiff = curr->vruntime - se->vruntime;
1621 if (vdiff <= 0)
1622 return -1;
1624 gran = wakeup_gran(curr, se);
1625 if (vdiff > gran)
1626 return 1;
1628 return 0;
1631 static void set_last_buddy(struct sched_entity *se)
1633 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1634 for_each_sched_entity(se)
1635 cfs_rq_of(se)->last = se;
1639 static void set_next_buddy(struct sched_entity *se)
1641 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1642 for_each_sched_entity(se)
1643 cfs_rq_of(se)->next = se;
1648 * Preempt the current task with a newly woken task if needed:
1650 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1652 struct task_struct *curr = rq->curr;
1653 struct sched_entity *se = &curr->se, *pse = &p->se;
1654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1655 int scale = cfs_rq->nr_running >= sched_nr_latency;
1657 if (unlikely(rt_prio(p->prio)))
1658 goto preempt;
1660 if (unlikely(p->sched_class != &fair_sched_class))
1661 return;
1663 if (unlikely(se == pse))
1664 return;
1666 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1667 set_next_buddy(pse);
1670 * We can come here with TIF_NEED_RESCHED already set from new task
1671 * wake up path.
1673 if (test_tsk_need_resched(curr))
1674 return;
1677 * Batch and idle tasks do not preempt (their preemption is driven by
1678 * the tick):
1680 if (unlikely(p->policy != SCHED_NORMAL))
1681 return;
1683 /* Idle tasks are by definition preempted by everybody. */
1684 if (unlikely(curr->policy == SCHED_IDLE))
1685 goto preempt;
1687 if (!sched_feat(WAKEUP_PREEMPT))
1688 return;
1690 update_curr(cfs_rq);
1691 find_matching_se(&se, &pse);
1692 BUG_ON(!pse);
1693 if (wakeup_preempt_entity(se, pse) == 1)
1694 goto preempt;
1696 return;
1698 preempt:
1699 resched_task(curr);
1701 * Only set the backward buddy when the current task is still
1702 * on the rq. This can happen when a wakeup gets interleaved
1703 * with schedule on the ->pre_schedule() or idle_balance()
1704 * point, either of which can * drop the rq lock.
1706 * Also, during early boot the idle thread is in the fair class,
1707 * for obvious reasons its a bad idea to schedule back to it.
1709 if (unlikely(!se->on_rq || curr == rq->idle))
1710 return;
1712 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1713 set_last_buddy(se);
1716 static struct task_struct *pick_next_task_fair(struct rq *rq)
1718 struct task_struct *p;
1719 struct cfs_rq *cfs_rq = &rq->cfs;
1720 struct sched_entity *se;
1722 if (!cfs_rq->nr_running)
1723 return NULL;
1725 do {
1726 se = pick_next_entity(cfs_rq);
1727 set_next_entity(cfs_rq, se);
1728 cfs_rq = group_cfs_rq(se);
1729 } while (cfs_rq);
1731 p = task_of(se);
1732 hrtick_start_fair(rq, p);
1734 return p;
1738 * Account for a descheduled task:
1740 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1742 struct sched_entity *se = &prev->se;
1743 struct cfs_rq *cfs_rq;
1745 for_each_sched_entity(se) {
1746 cfs_rq = cfs_rq_of(se);
1747 put_prev_entity(cfs_rq, se);
1751 #ifdef CONFIG_SMP
1752 /**************************************************
1753 * Fair scheduling class load-balancing methods:
1757 * pull_task - move a task from a remote runqueue to the local runqueue.
1758 * Both runqueues must be locked.
1760 static void pull_task(struct rq *src_rq, struct task_struct *p,
1761 struct rq *this_rq, int this_cpu)
1763 deactivate_task(src_rq, p, 0);
1764 set_task_cpu(p, this_cpu);
1765 activate_task(this_rq, p, 0);
1766 check_preempt_curr(this_rq, p, 0);
1770 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1772 static
1773 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1774 struct sched_domain *sd, enum cpu_idle_type idle,
1775 int *all_pinned)
1777 int tsk_cache_hot = 0;
1779 * We do not migrate tasks that are:
1780 * 1) running (obviously), or
1781 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1782 * 3) are cache-hot on their current CPU.
1784 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1785 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1786 return 0;
1788 *all_pinned = 0;
1790 if (task_running(rq, p)) {
1791 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1792 return 0;
1796 * Aggressive migration if:
1797 * 1) task is cache cold, or
1798 * 2) too many balance attempts have failed.
1801 tsk_cache_hot = task_hot(p, rq->clock, sd);
1802 if (!tsk_cache_hot ||
1803 sd->nr_balance_failed > sd->cache_nice_tries) {
1804 #ifdef CONFIG_SCHEDSTATS
1805 if (tsk_cache_hot) {
1806 schedstat_inc(sd, lb_hot_gained[idle]);
1807 schedstat_inc(p, se.statistics.nr_forced_migrations);
1809 #endif
1810 return 1;
1813 if (tsk_cache_hot) {
1814 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1815 return 0;
1817 return 1;
1821 * move_one_task tries to move exactly one task from busiest to this_rq, as
1822 * part of active balancing operations within "domain".
1823 * Returns 1 if successful and 0 otherwise.
1825 * Called with both runqueues locked.
1827 static int
1828 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1829 struct sched_domain *sd, enum cpu_idle_type idle)
1831 struct task_struct *p, *n;
1832 struct cfs_rq *cfs_rq;
1833 int pinned = 0;
1835 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1836 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1838 if (!can_migrate_task(p, busiest, this_cpu,
1839 sd, idle, &pinned))
1840 continue;
1842 pull_task(busiest, p, this_rq, this_cpu);
1844 * Right now, this is only the second place pull_task()
1845 * is called, so we can safely collect pull_task()
1846 * stats here rather than inside pull_task().
1848 schedstat_inc(sd, lb_gained[idle]);
1849 return 1;
1853 return 0;
1856 static unsigned long
1857 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1858 unsigned long max_load_move, struct sched_domain *sd,
1859 enum cpu_idle_type idle, int *all_pinned,
1860 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1862 int loops = 0, pulled = 0, pinned = 0;
1863 long rem_load_move = max_load_move;
1864 struct task_struct *p, *n;
1866 if (max_load_move == 0)
1867 goto out;
1869 pinned = 1;
1871 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1872 if (loops++ > sysctl_sched_nr_migrate)
1873 break;
1875 if ((p->se.load.weight >> 1) > rem_load_move ||
1876 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1877 continue;
1879 pull_task(busiest, p, this_rq, this_cpu);
1880 pulled++;
1881 rem_load_move -= p->se.load.weight;
1883 #ifdef CONFIG_PREEMPT
1885 * NEWIDLE balancing is a source of latency, so preemptible
1886 * kernels will stop after the first task is pulled to minimize
1887 * the critical section.
1889 if (idle == CPU_NEWLY_IDLE)
1890 break;
1891 #endif
1894 * We only want to steal up to the prescribed amount of
1895 * weighted load.
1897 if (rem_load_move <= 0)
1898 break;
1900 if (p->prio < *this_best_prio)
1901 *this_best_prio = p->prio;
1903 out:
1905 * Right now, this is one of only two places pull_task() is called,
1906 * so we can safely collect pull_task() stats here rather than
1907 * inside pull_task().
1909 schedstat_add(sd, lb_gained[idle], pulled);
1911 if (all_pinned)
1912 *all_pinned = pinned;
1914 return max_load_move - rem_load_move;
1917 #ifdef CONFIG_FAIR_GROUP_SCHED
1918 static unsigned long
1919 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1920 unsigned long max_load_move,
1921 struct sched_domain *sd, enum cpu_idle_type idle,
1922 int *all_pinned, int *this_best_prio)
1924 long rem_load_move = max_load_move;
1925 int busiest_cpu = cpu_of(busiest);
1926 struct task_group *tg;
1928 rcu_read_lock();
1929 update_h_load(busiest_cpu);
1931 list_for_each_entry_rcu(tg, &task_groups, list) {
1932 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1933 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1934 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1935 u64 rem_load, moved_load;
1938 * empty group
1940 if (!busiest_cfs_rq->task_weight)
1941 continue;
1943 rem_load = (u64)rem_load_move * busiest_weight;
1944 rem_load = div_u64(rem_load, busiest_h_load + 1);
1946 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1947 rem_load, sd, idle, all_pinned, this_best_prio,
1948 busiest_cfs_rq);
1950 if (!moved_load)
1951 continue;
1953 moved_load *= busiest_h_load;
1954 moved_load = div_u64(moved_load, busiest_weight + 1);
1956 rem_load_move -= moved_load;
1957 if (rem_load_move < 0)
1958 break;
1960 rcu_read_unlock();
1962 return max_load_move - rem_load_move;
1964 #else
1965 static unsigned long
1966 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1967 unsigned long max_load_move,
1968 struct sched_domain *sd, enum cpu_idle_type idle,
1969 int *all_pinned, int *this_best_prio)
1971 return balance_tasks(this_rq, this_cpu, busiest,
1972 max_load_move, sd, idle, all_pinned,
1973 this_best_prio, &busiest->cfs);
1975 #endif
1978 * move_tasks tries to move up to max_load_move weighted load from busiest to
1979 * this_rq, as part of a balancing operation within domain "sd".
1980 * Returns 1 if successful and 0 otherwise.
1982 * Called with both runqueues locked.
1984 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1985 unsigned long max_load_move,
1986 struct sched_domain *sd, enum cpu_idle_type idle,
1987 int *all_pinned)
1989 unsigned long total_load_moved = 0, load_moved;
1990 int this_best_prio = this_rq->curr->prio;
1992 do {
1993 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1994 max_load_move - total_load_moved,
1995 sd, idle, all_pinned, &this_best_prio);
1997 total_load_moved += load_moved;
1999 #ifdef CONFIG_PREEMPT
2001 * NEWIDLE balancing is a source of latency, so preemptible
2002 * kernels will stop after the first task is pulled to minimize
2003 * the critical section.
2005 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2006 break;
2008 if (raw_spin_is_contended(&this_rq->lock) ||
2009 raw_spin_is_contended(&busiest->lock))
2010 break;
2011 #endif
2012 } while (load_moved && max_load_move > total_load_moved);
2014 return total_load_moved > 0;
2017 /********** Helpers for find_busiest_group ************************/
2019 * sd_lb_stats - Structure to store the statistics of a sched_domain
2020 * during load balancing.
2022 struct sd_lb_stats {
2023 struct sched_group *busiest; /* Busiest group in this sd */
2024 struct sched_group *this; /* Local group in this sd */
2025 unsigned long total_load; /* Total load of all groups in sd */
2026 unsigned long total_pwr; /* Total power of all groups in sd */
2027 unsigned long avg_load; /* Average load across all groups in sd */
2029 /** Statistics of this group */
2030 unsigned long this_load;
2031 unsigned long this_load_per_task;
2032 unsigned long this_nr_running;
2034 /* Statistics of the busiest group */
2035 unsigned long max_load;
2036 unsigned long busiest_load_per_task;
2037 unsigned long busiest_nr_running;
2038 unsigned long busiest_group_capacity;
2040 int group_imb; /* Is there imbalance in this sd */
2041 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2042 int power_savings_balance; /* Is powersave balance needed for this sd */
2043 struct sched_group *group_min; /* Least loaded group in sd */
2044 struct sched_group *group_leader; /* Group which relieves group_min */
2045 unsigned long min_load_per_task; /* load_per_task in group_min */
2046 unsigned long leader_nr_running; /* Nr running of group_leader */
2047 unsigned long min_nr_running; /* Nr running of group_min */
2048 #endif
2052 * sg_lb_stats - stats of a sched_group required for load_balancing
2054 struct sg_lb_stats {
2055 unsigned long avg_load; /*Avg load across the CPUs of the group */
2056 unsigned long group_load; /* Total load over the CPUs of the group */
2057 unsigned long sum_nr_running; /* Nr tasks running in the group */
2058 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2059 unsigned long group_capacity;
2060 int group_imb; /* Is there an imbalance in the group ? */
2064 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2065 * @group: The group whose first cpu is to be returned.
2067 static inline unsigned int group_first_cpu(struct sched_group *group)
2069 return cpumask_first(sched_group_cpus(group));
2073 * get_sd_load_idx - Obtain the load index for a given sched domain.
2074 * @sd: The sched_domain whose load_idx is to be obtained.
2075 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2077 static inline int get_sd_load_idx(struct sched_domain *sd,
2078 enum cpu_idle_type idle)
2080 int load_idx;
2082 switch (idle) {
2083 case CPU_NOT_IDLE:
2084 load_idx = sd->busy_idx;
2085 break;
2087 case CPU_NEWLY_IDLE:
2088 load_idx = sd->newidle_idx;
2089 break;
2090 default:
2091 load_idx = sd->idle_idx;
2092 break;
2095 return load_idx;
2099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2101 * init_sd_power_savings_stats - Initialize power savings statistics for
2102 * the given sched_domain, during load balancing.
2104 * @sd: Sched domain whose power-savings statistics are to be initialized.
2105 * @sds: Variable containing the statistics for sd.
2106 * @idle: Idle status of the CPU at which we're performing load-balancing.
2108 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2109 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2112 * Busy processors will not participate in power savings
2113 * balance.
2115 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2116 sds->power_savings_balance = 0;
2117 else {
2118 sds->power_savings_balance = 1;
2119 sds->min_nr_running = ULONG_MAX;
2120 sds->leader_nr_running = 0;
2125 * update_sd_power_savings_stats - Update the power saving stats for a
2126 * sched_domain while performing load balancing.
2128 * @group: sched_group belonging to the sched_domain under consideration.
2129 * @sds: Variable containing the statistics of the sched_domain
2130 * @local_group: Does group contain the CPU for which we're performing
2131 * load balancing ?
2132 * @sgs: Variable containing the statistics of the group.
2134 static inline void update_sd_power_savings_stats(struct sched_group *group,
2135 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2138 if (!sds->power_savings_balance)
2139 return;
2142 * If the local group is idle or completely loaded
2143 * no need to do power savings balance at this domain
2145 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2146 !sds->this_nr_running))
2147 sds->power_savings_balance = 0;
2150 * If a group is already running at full capacity or idle,
2151 * don't include that group in power savings calculations
2153 if (!sds->power_savings_balance ||
2154 sgs->sum_nr_running >= sgs->group_capacity ||
2155 !sgs->sum_nr_running)
2156 return;
2159 * Calculate the group which has the least non-idle load.
2160 * This is the group from where we need to pick up the load
2161 * for saving power
2163 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2164 (sgs->sum_nr_running == sds->min_nr_running &&
2165 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2166 sds->group_min = group;
2167 sds->min_nr_running = sgs->sum_nr_running;
2168 sds->min_load_per_task = sgs->sum_weighted_load /
2169 sgs->sum_nr_running;
2173 * Calculate the group which is almost near its
2174 * capacity but still has some space to pick up some load
2175 * from other group and save more power
2177 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2178 return;
2180 if (sgs->sum_nr_running > sds->leader_nr_running ||
2181 (sgs->sum_nr_running == sds->leader_nr_running &&
2182 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2183 sds->group_leader = group;
2184 sds->leader_nr_running = sgs->sum_nr_running;
2189 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2190 * @sds: Variable containing the statistics of the sched_domain
2191 * under consideration.
2192 * @this_cpu: Cpu at which we're currently performing load-balancing.
2193 * @imbalance: Variable to store the imbalance.
2195 * Description:
2196 * Check if we have potential to perform some power-savings balance.
2197 * If yes, set the busiest group to be the least loaded group in the
2198 * sched_domain, so that it's CPUs can be put to idle.
2200 * Returns 1 if there is potential to perform power-savings balance.
2201 * Else returns 0.
2203 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2204 int this_cpu, unsigned long *imbalance)
2206 if (!sds->power_savings_balance)
2207 return 0;
2209 if (sds->this != sds->group_leader ||
2210 sds->group_leader == sds->group_min)
2211 return 0;
2213 *imbalance = sds->min_load_per_task;
2214 sds->busiest = sds->group_min;
2216 return 1;
2219 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2220 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2221 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2223 return;
2226 static inline void update_sd_power_savings_stats(struct sched_group *group,
2227 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2229 return;
2232 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2233 int this_cpu, unsigned long *imbalance)
2235 return 0;
2237 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2240 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2242 return SCHED_LOAD_SCALE;
2245 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2247 return default_scale_freq_power(sd, cpu);
2250 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2252 unsigned long weight = sd->span_weight;
2253 unsigned long smt_gain = sd->smt_gain;
2255 smt_gain /= weight;
2257 return smt_gain;
2260 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2262 return default_scale_smt_power(sd, cpu);
2265 unsigned long scale_rt_power(int cpu)
2267 struct rq *rq = cpu_rq(cpu);
2268 u64 total, available;
2270 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2271 available = total - rq->rt_avg;
2273 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2274 total = SCHED_LOAD_SCALE;
2276 total >>= SCHED_LOAD_SHIFT;
2278 return div_u64(available, total);
2281 static void update_cpu_power(struct sched_domain *sd, int cpu)
2283 unsigned long weight = sd->span_weight;
2284 unsigned long power = SCHED_LOAD_SCALE;
2285 struct sched_group *sdg = sd->groups;
2287 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2288 if (sched_feat(ARCH_POWER))
2289 power *= arch_scale_smt_power(sd, cpu);
2290 else
2291 power *= default_scale_smt_power(sd, cpu);
2293 power >>= SCHED_LOAD_SHIFT;
2296 sdg->cpu_power_orig = power;
2298 if (sched_feat(ARCH_POWER))
2299 power *= arch_scale_freq_power(sd, cpu);
2300 else
2301 power *= default_scale_freq_power(sd, cpu);
2303 power >>= SCHED_LOAD_SHIFT;
2305 power *= scale_rt_power(cpu);
2306 power >>= SCHED_LOAD_SHIFT;
2308 if (!power)
2309 power = 1;
2311 cpu_rq(cpu)->cpu_power = power;
2312 sdg->cpu_power = power;
2315 static void update_group_power(struct sched_domain *sd, int cpu)
2317 struct sched_domain *child = sd->child;
2318 struct sched_group *group, *sdg = sd->groups;
2319 unsigned long power;
2321 if (!child) {
2322 update_cpu_power(sd, cpu);
2323 return;
2326 power = 0;
2328 group = child->groups;
2329 do {
2330 power += group->cpu_power;
2331 group = group->next;
2332 } while (group != child->groups);
2334 sdg->cpu_power = power;
2338 * Try and fix up capacity for tiny siblings, this is needed when
2339 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2340 * which on its own isn't powerful enough.
2342 * See update_sd_pick_busiest() and check_asym_packing().
2344 static inline int
2345 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2348 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2350 if (sd->level != SD_LV_SIBLING)
2351 return 0;
2354 * If ~90% of the cpu_power is still there, we're good.
2356 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2357 return 1;
2359 return 0;
2363 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2364 * @sd: The sched_domain whose statistics are to be updated.
2365 * @group: sched_group whose statistics are to be updated.
2366 * @this_cpu: Cpu for which load balance is currently performed.
2367 * @idle: Idle status of this_cpu
2368 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2369 * @sd_idle: Idle status of the sched_domain containing group.
2370 * @local_group: Does group contain this_cpu.
2371 * @cpus: Set of cpus considered for load balancing.
2372 * @balance: Should we balance.
2373 * @sgs: variable to hold the statistics for this group.
2375 static inline void update_sg_lb_stats(struct sched_domain *sd,
2376 struct sched_group *group, int this_cpu,
2377 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2378 int local_group, const struct cpumask *cpus,
2379 int *balance, struct sg_lb_stats *sgs)
2381 unsigned long load, max_cpu_load, min_cpu_load;
2382 int i;
2383 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2384 unsigned long avg_load_per_task = 0;
2386 if (local_group)
2387 balance_cpu = group_first_cpu(group);
2389 /* Tally up the load of all CPUs in the group */
2390 max_cpu_load = 0;
2391 min_cpu_load = ~0UL;
2393 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2394 struct rq *rq = cpu_rq(i);
2396 if (*sd_idle && rq->nr_running)
2397 *sd_idle = 0;
2399 /* Bias balancing toward cpus of our domain */
2400 if (local_group) {
2401 if (idle_cpu(i) && !first_idle_cpu) {
2402 first_idle_cpu = 1;
2403 balance_cpu = i;
2406 load = target_load(i, load_idx);
2407 } else {
2408 load = source_load(i, load_idx);
2409 if (load > max_cpu_load)
2410 max_cpu_load = load;
2411 if (min_cpu_load > load)
2412 min_cpu_load = load;
2415 sgs->group_load += load;
2416 sgs->sum_nr_running += rq->nr_running;
2417 sgs->sum_weighted_load += weighted_cpuload(i);
2422 * First idle cpu or the first cpu(busiest) in this sched group
2423 * is eligible for doing load balancing at this and above
2424 * domains. In the newly idle case, we will allow all the cpu's
2425 * to do the newly idle load balance.
2427 if (idle != CPU_NEWLY_IDLE && local_group) {
2428 if (balance_cpu != this_cpu) {
2429 *balance = 0;
2430 return;
2432 update_group_power(sd, this_cpu);
2435 /* Adjust by relative CPU power of the group */
2436 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2439 * Consider the group unbalanced when the imbalance is larger
2440 * than the average weight of two tasks.
2442 * APZ: with cgroup the avg task weight can vary wildly and
2443 * might not be a suitable number - should we keep a
2444 * normalized nr_running number somewhere that negates
2445 * the hierarchy?
2447 if (sgs->sum_nr_running)
2448 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2450 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2451 sgs->group_imb = 1;
2453 sgs->group_capacity =
2454 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2455 if (!sgs->group_capacity)
2456 sgs->group_capacity = fix_small_capacity(sd, group);
2460 * update_sd_pick_busiest - return 1 on busiest group
2461 * @sd: sched_domain whose statistics are to be checked
2462 * @sds: sched_domain statistics
2463 * @sg: sched_group candidate to be checked for being the busiest
2464 * @sgs: sched_group statistics
2465 * @this_cpu: the current cpu
2467 * Determine if @sg is a busier group than the previously selected
2468 * busiest group.
2470 static bool update_sd_pick_busiest(struct sched_domain *sd,
2471 struct sd_lb_stats *sds,
2472 struct sched_group *sg,
2473 struct sg_lb_stats *sgs,
2474 int this_cpu)
2476 if (sgs->avg_load <= sds->max_load)
2477 return false;
2479 if (sgs->sum_nr_running > sgs->group_capacity)
2480 return true;
2482 if (sgs->group_imb)
2483 return true;
2486 * ASYM_PACKING needs to move all the work to the lowest
2487 * numbered CPUs in the group, therefore mark all groups
2488 * higher than ourself as busy.
2490 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2491 this_cpu < group_first_cpu(sg)) {
2492 if (!sds->busiest)
2493 return true;
2495 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2496 return true;
2499 return false;
2503 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2504 * @sd: sched_domain whose statistics are to be updated.
2505 * @this_cpu: Cpu for which load balance is currently performed.
2506 * @idle: Idle status of this_cpu
2507 * @sd_idle: Idle status of the sched_domain containing sg.
2508 * @cpus: Set of cpus considered for load balancing.
2509 * @balance: Should we balance.
2510 * @sds: variable to hold the statistics for this sched_domain.
2512 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2513 enum cpu_idle_type idle, int *sd_idle,
2514 const struct cpumask *cpus, int *balance,
2515 struct sd_lb_stats *sds)
2517 struct sched_domain *child = sd->child;
2518 struct sched_group *sg = sd->groups;
2519 struct sg_lb_stats sgs;
2520 int load_idx, prefer_sibling = 0;
2522 if (child && child->flags & SD_PREFER_SIBLING)
2523 prefer_sibling = 1;
2525 init_sd_power_savings_stats(sd, sds, idle);
2526 load_idx = get_sd_load_idx(sd, idle);
2528 do {
2529 int local_group;
2531 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2532 memset(&sgs, 0, sizeof(sgs));
2533 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2534 local_group, cpus, balance, &sgs);
2536 if (local_group && !(*balance))
2537 return;
2539 sds->total_load += sgs.group_load;
2540 sds->total_pwr += sg->cpu_power;
2543 * In case the child domain prefers tasks go to siblings
2544 * first, lower the sg capacity to one so that we'll try
2545 * and move all the excess tasks away.
2547 if (prefer_sibling)
2548 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2550 if (local_group) {
2551 sds->this_load = sgs.avg_load;
2552 sds->this = sg;
2553 sds->this_nr_running = sgs.sum_nr_running;
2554 sds->this_load_per_task = sgs.sum_weighted_load;
2555 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2556 sds->max_load = sgs.avg_load;
2557 sds->busiest = sg;
2558 sds->busiest_nr_running = sgs.sum_nr_running;
2559 sds->busiest_group_capacity = sgs.group_capacity;
2560 sds->busiest_load_per_task = sgs.sum_weighted_load;
2561 sds->group_imb = sgs.group_imb;
2564 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2565 sg = sg->next;
2566 } while (sg != sd->groups);
2569 int __weak arch_sd_sibling_asym_packing(void)
2571 return 0*SD_ASYM_PACKING;
2575 * check_asym_packing - Check to see if the group is packed into the
2576 * sched doman.
2578 * This is primarily intended to used at the sibling level. Some
2579 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2580 * case of POWER7, it can move to lower SMT modes only when higher
2581 * threads are idle. When in lower SMT modes, the threads will
2582 * perform better since they share less core resources. Hence when we
2583 * have idle threads, we want them to be the higher ones.
2585 * This packing function is run on idle threads. It checks to see if
2586 * the busiest CPU in this domain (core in the P7 case) has a higher
2587 * CPU number than the packing function is being run on. Here we are
2588 * assuming lower CPU number will be equivalent to lower a SMT thread
2589 * number.
2591 * Returns 1 when packing is required and a task should be moved to
2592 * this CPU. The amount of the imbalance is returned in *imbalance.
2594 * @sd: The sched_domain whose packing is to be checked.
2595 * @sds: Statistics of the sched_domain which is to be packed
2596 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2597 * @imbalance: returns amount of imbalanced due to packing.
2599 static int check_asym_packing(struct sched_domain *sd,
2600 struct sd_lb_stats *sds,
2601 int this_cpu, unsigned long *imbalance)
2603 int busiest_cpu;
2605 if (!(sd->flags & SD_ASYM_PACKING))
2606 return 0;
2608 if (!sds->busiest)
2609 return 0;
2611 busiest_cpu = group_first_cpu(sds->busiest);
2612 if (this_cpu > busiest_cpu)
2613 return 0;
2615 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2616 SCHED_LOAD_SCALE);
2617 return 1;
2621 * fix_small_imbalance - Calculate the minor imbalance that exists
2622 * amongst the groups of a sched_domain, during
2623 * load balancing.
2624 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2625 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2626 * @imbalance: Variable to store the imbalance.
2628 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2629 int this_cpu, unsigned long *imbalance)
2631 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2632 unsigned int imbn = 2;
2633 unsigned long scaled_busy_load_per_task;
2635 if (sds->this_nr_running) {
2636 sds->this_load_per_task /= sds->this_nr_running;
2637 if (sds->busiest_load_per_task >
2638 sds->this_load_per_task)
2639 imbn = 1;
2640 } else
2641 sds->this_load_per_task =
2642 cpu_avg_load_per_task(this_cpu);
2644 scaled_busy_load_per_task = sds->busiest_load_per_task
2645 * SCHED_LOAD_SCALE;
2646 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2648 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2649 (scaled_busy_load_per_task * imbn)) {
2650 *imbalance = sds->busiest_load_per_task;
2651 return;
2655 * OK, we don't have enough imbalance to justify moving tasks,
2656 * however we may be able to increase total CPU power used by
2657 * moving them.
2660 pwr_now += sds->busiest->cpu_power *
2661 min(sds->busiest_load_per_task, sds->max_load);
2662 pwr_now += sds->this->cpu_power *
2663 min(sds->this_load_per_task, sds->this_load);
2664 pwr_now /= SCHED_LOAD_SCALE;
2666 /* Amount of load we'd subtract */
2667 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2668 sds->busiest->cpu_power;
2669 if (sds->max_load > tmp)
2670 pwr_move += sds->busiest->cpu_power *
2671 min(sds->busiest_load_per_task, sds->max_load - tmp);
2673 /* Amount of load we'd add */
2674 if (sds->max_load * sds->busiest->cpu_power <
2675 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2676 tmp = (sds->max_load * sds->busiest->cpu_power) /
2677 sds->this->cpu_power;
2678 else
2679 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2680 sds->this->cpu_power;
2681 pwr_move += sds->this->cpu_power *
2682 min(sds->this_load_per_task, sds->this_load + tmp);
2683 pwr_move /= SCHED_LOAD_SCALE;
2685 /* Move if we gain throughput */
2686 if (pwr_move > pwr_now)
2687 *imbalance = sds->busiest_load_per_task;
2691 * calculate_imbalance - Calculate the amount of imbalance present within the
2692 * groups of a given sched_domain during load balance.
2693 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2694 * @this_cpu: Cpu for which currently load balance is being performed.
2695 * @imbalance: The variable to store the imbalance.
2697 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2698 unsigned long *imbalance)
2700 unsigned long max_pull, load_above_capacity = ~0UL;
2702 sds->busiest_load_per_task /= sds->busiest_nr_running;
2703 if (sds->group_imb) {
2704 sds->busiest_load_per_task =
2705 min(sds->busiest_load_per_task, sds->avg_load);
2709 * In the presence of smp nice balancing, certain scenarios can have
2710 * max load less than avg load(as we skip the groups at or below
2711 * its cpu_power, while calculating max_load..)
2713 if (sds->max_load < sds->avg_load) {
2714 *imbalance = 0;
2715 return fix_small_imbalance(sds, this_cpu, imbalance);
2718 if (!sds->group_imb) {
2720 * Don't want to pull so many tasks that a group would go idle.
2722 load_above_capacity = (sds->busiest_nr_running -
2723 sds->busiest_group_capacity);
2725 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2727 load_above_capacity /= sds->busiest->cpu_power;
2731 * We're trying to get all the cpus to the average_load, so we don't
2732 * want to push ourselves above the average load, nor do we wish to
2733 * reduce the max loaded cpu below the average load. At the same time,
2734 * we also don't want to reduce the group load below the group capacity
2735 * (so that we can implement power-savings policies etc). Thus we look
2736 * for the minimum possible imbalance.
2737 * Be careful of negative numbers as they'll appear as very large values
2738 * with unsigned longs.
2740 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2742 /* How much load to actually move to equalise the imbalance */
2743 *imbalance = min(max_pull * sds->busiest->cpu_power,
2744 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2745 / SCHED_LOAD_SCALE;
2748 * if *imbalance is less than the average load per runnable task
2749 * there is no gaurantee that any tasks will be moved so we'll have
2750 * a think about bumping its value to force at least one task to be
2751 * moved
2753 if (*imbalance < sds->busiest_load_per_task)
2754 return fix_small_imbalance(sds, this_cpu, imbalance);
2757 /******* find_busiest_group() helpers end here *********************/
2760 * find_busiest_group - Returns the busiest group within the sched_domain
2761 * if there is an imbalance. If there isn't an imbalance, and
2762 * the user has opted for power-savings, it returns a group whose
2763 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2764 * such a group exists.
2766 * Also calculates the amount of weighted load which should be moved
2767 * to restore balance.
2769 * @sd: The sched_domain whose busiest group is to be returned.
2770 * @this_cpu: The cpu for which load balancing is currently being performed.
2771 * @imbalance: Variable which stores amount of weighted load which should
2772 * be moved to restore balance/put a group to idle.
2773 * @idle: The idle status of this_cpu.
2774 * @sd_idle: The idleness of sd
2775 * @cpus: The set of CPUs under consideration for load-balancing.
2776 * @balance: Pointer to a variable indicating if this_cpu
2777 * is the appropriate cpu to perform load balancing at this_level.
2779 * Returns: - the busiest group if imbalance exists.
2780 * - If no imbalance and user has opted for power-savings balance,
2781 * return the least loaded group whose CPUs can be
2782 * put to idle by rebalancing its tasks onto our group.
2784 static struct sched_group *
2785 find_busiest_group(struct sched_domain *sd, int this_cpu,
2786 unsigned long *imbalance, enum cpu_idle_type idle,
2787 int *sd_idle, const struct cpumask *cpus, int *balance)
2789 struct sd_lb_stats sds;
2791 memset(&sds, 0, sizeof(sds));
2794 * Compute the various statistics relavent for load balancing at
2795 * this level.
2797 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2798 balance, &sds);
2800 /* Cases where imbalance does not exist from POV of this_cpu */
2801 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2802 * at this level.
2803 * 2) There is no busy sibling group to pull from.
2804 * 3) This group is the busiest group.
2805 * 4) This group is more busy than the avg busieness at this
2806 * sched_domain.
2807 * 5) The imbalance is within the specified limit.
2809 if (!(*balance))
2810 goto ret;
2812 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
2813 check_asym_packing(sd, &sds, this_cpu, imbalance))
2814 return sds.busiest;
2816 if (!sds.busiest || sds.busiest_nr_running == 0)
2817 goto out_balanced;
2819 if (sds.this_load >= sds.max_load)
2820 goto out_balanced;
2822 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2824 if (sds.this_load >= sds.avg_load)
2825 goto out_balanced;
2827 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2828 goto out_balanced;
2830 /* Looks like there is an imbalance. Compute it */
2831 calculate_imbalance(&sds, this_cpu, imbalance);
2832 return sds.busiest;
2834 out_balanced:
2836 * There is no obvious imbalance. But check if we can do some balancing
2837 * to save power.
2839 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2840 return sds.busiest;
2841 ret:
2842 *imbalance = 0;
2843 return NULL;
2847 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2849 static struct rq *
2850 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
2851 enum cpu_idle_type idle, unsigned long imbalance,
2852 const struct cpumask *cpus)
2854 struct rq *busiest = NULL, *rq;
2855 unsigned long max_load = 0;
2856 int i;
2858 for_each_cpu(i, sched_group_cpus(group)) {
2859 unsigned long power = power_of(i);
2860 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2861 unsigned long wl;
2863 if (!capacity)
2864 capacity = fix_small_capacity(sd, group);
2866 if (!cpumask_test_cpu(i, cpus))
2867 continue;
2869 rq = cpu_rq(i);
2870 wl = weighted_cpuload(i);
2873 * When comparing with imbalance, use weighted_cpuload()
2874 * which is not scaled with the cpu power.
2876 if (capacity && rq->nr_running == 1 && wl > imbalance)
2877 continue;
2880 * For the load comparisons with the other cpu's, consider
2881 * the weighted_cpuload() scaled with the cpu power, so that
2882 * the load can be moved away from the cpu that is potentially
2883 * running at a lower capacity.
2885 wl = (wl * SCHED_LOAD_SCALE) / power;
2887 if (wl > max_load) {
2888 max_load = wl;
2889 busiest = rq;
2893 return busiest;
2897 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2898 * so long as it is large enough.
2900 #define MAX_PINNED_INTERVAL 512
2902 /* Working cpumask for load_balance and load_balance_newidle. */
2903 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2905 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
2906 int busiest_cpu, int this_cpu)
2908 if (idle == CPU_NEWLY_IDLE) {
2911 * ASYM_PACKING needs to force migrate tasks from busy but
2912 * higher numbered CPUs in order to pack all tasks in the
2913 * lowest numbered CPUs.
2915 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
2916 return 1;
2919 * The only task running in a non-idle cpu can be moved to this
2920 * cpu in an attempt to completely freeup the other CPU
2921 * package.
2923 * The package power saving logic comes from
2924 * find_busiest_group(). If there are no imbalance, then
2925 * f_b_g() will return NULL. However when sched_mc={1,2} then
2926 * f_b_g() will select a group from which a running task may be
2927 * pulled to this cpu in order to make the other package idle.
2928 * If there is no opportunity to make a package idle and if
2929 * there are no imbalance, then f_b_g() will return NULL and no
2930 * action will be taken in load_balance_newidle().
2932 * Under normal task pull operation due to imbalance, there
2933 * will be more than one task in the source run queue and
2934 * move_tasks() will succeed. ld_moved will be true and this
2935 * active balance code will not be triggered.
2937 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2938 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2939 return 0;
2941 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2942 return 0;
2945 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2948 static int active_load_balance_cpu_stop(void *data);
2951 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2952 * tasks if there is an imbalance.
2954 static int load_balance(int this_cpu, struct rq *this_rq,
2955 struct sched_domain *sd, enum cpu_idle_type idle,
2956 int *balance)
2958 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2959 struct sched_group *group;
2960 unsigned long imbalance;
2961 struct rq *busiest;
2962 unsigned long flags;
2963 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2965 cpumask_copy(cpus, cpu_active_mask);
2968 * When power savings policy is enabled for the parent domain, idle
2969 * sibling can pick up load irrespective of busy siblings. In this case,
2970 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2971 * portraying it as CPU_NOT_IDLE.
2973 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2974 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2975 sd_idle = 1;
2977 schedstat_inc(sd, lb_count[idle]);
2979 redo:
2980 update_shares(sd);
2981 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2982 cpus, balance);
2984 if (*balance == 0)
2985 goto out_balanced;
2987 if (!group) {
2988 schedstat_inc(sd, lb_nobusyg[idle]);
2989 goto out_balanced;
2992 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
2993 if (!busiest) {
2994 schedstat_inc(sd, lb_nobusyq[idle]);
2995 goto out_balanced;
2998 BUG_ON(busiest == this_rq);
3000 schedstat_add(sd, lb_imbalance[idle], imbalance);
3002 ld_moved = 0;
3003 if (busiest->nr_running > 1) {
3005 * Attempt to move tasks. If find_busiest_group has found
3006 * an imbalance but busiest->nr_running <= 1, the group is
3007 * still unbalanced. ld_moved simply stays zero, so it is
3008 * correctly treated as an imbalance.
3010 local_irq_save(flags);
3011 double_rq_lock(this_rq, busiest);
3012 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3013 imbalance, sd, idle, &all_pinned);
3014 double_rq_unlock(this_rq, busiest);
3015 local_irq_restore(flags);
3018 * some other cpu did the load balance for us.
3020 if (ld_moved && this_cpu != smp_processor_id())
3021 resched_cpu(this_cpu);
3023 /* All tasks on this runqueue were pinned by CPU affinity */
3024 if (unlikely(all_pinned)) {
3025 cpumask_clear_cpu(cpu_of(busiest), cpus);
3026 if (!cpumask_empty(cpus))
3027 goto redo;
3028 goto out_balanced;
3032 if (!ld_moved) {
3033 schedstat_inc(sd, lb_failed[idle]);
3034 sd->nr_balance_failed++;
3036 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3037 this_cpu)) {
3038 raw_spin_lock_irqsave(&busiest->lock, flags);
3040 /* don't kick the active_load_balance_cpu_stop,
3041 * if the curr task on busiest cpu can't be
3042 * moved to this_cpu
3044 if (!cpumask_test_cpu(this_cpu,
3045 &busiest->curr->cpus_allowed)) {
3046 raw_spin_unlock_irqrestore(&busiest->lock,
3047 flags);
3048 all_pinned = 1;
3049 goto out_one_pinned;
3053 * ->active_balance synchronizes accesses to
3054 * ->active_balance_work. Once set, it's cleared
3055 * only after active load balance is finished.
3057 if (!busiest->active_balance) {
3058 busiest->active_balance = 1;
3059 busiest->push_cpu = this_cpu;
3060 active_balance = 1;
3062 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3064 if (active_balance)
3065 stop_one_cpu_nowait(cpu_of(busiest),
3066 active_load_balance_cpu_stop, busiest,
3067 &busiest->active_balance_work);
3070 * We've kicked active balancing, reset the failure
3071 * counter.
3073 sd->nr_balance_failed = sd->cache_nice_tries+1;
3075 } else
3076 sd->nr_balance_failed = 0;
3078 if (likely(!active_balance)) {
3079 /* We were unbalanced, so reset the balancing interval */
3080 sd->balance_interval = sd->min_interval;
3081 } else {
3083 * If we've begun active balancing, start to back off. This
3084 * case may not be covered by the all_pinned logic if there
3085 * is only 1 task on the busy runqueue (because we don't call
3086 * move_tasks).
3088 if (sd->balance_interval < sd->max_interval)
3089 sd->balance_interval *= 2;
3092 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3093 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3094 ld_moved = -1;
3096 goto out;
3098 out_balanced:
3099 schedstat_inc(sd, lb_balanced[idle]);
3101 sd->nr_balance_failed = 0;
3103 out_one_pinned:
3104 /* tune up the balancing interval */
3105 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3106 (sd->balance_interval < sd->max_interval))
3107 sd->balance_interval *= 2;
3109 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3110 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3111 ld_moved = -1;
3112 else
3113 ld_moved = 0;
3114 out:
3115 if (ld_moved)
3116 update_shares(sd);
3117 return ld_moved;
3121 * idle_balance is called by schedule() if this_cpu is about to become
3122 * idle. Attempts to pull tasks from other CPUs.
3124 static void idle_balance(int this_cpu, struct rq *this_rq)
3126 struct sched_domain *sd;
3127 int pulled_task = 0;
3128 unsigned long next_balance = jiffies + HZ;
3130 this_rq->idle_stamp = this_rq->clock;
3132 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3133 return;
3136 * Drop the rq->lock, but keep IRQ/preempt disabled.
3138 raw_spin_unlock(&this_rq->lock);
3140 for_each_domain(this_cpu, sd) {
3141 unsigned long interval;
3142 int balance = 1;
3144 if (!(sd->flags & SD_LOAD_BALANCE))
3145 continue;
3147 if (sd->flags & SD_BALANCE_NEWIDLE) {
3148 /* If we've pulled tasks over stop searching: */
3149 pulled_task = load_balance(this_cpu, this_rq,
3150 sd, CPU_NEWLY_IDLE, &balance);
3153 interval = msecs_to_jiffies(sd->balance_interval);
3154 if (time_after(next_balance, sd->last_balance + interval))
3155 next_balance = sd->last_balance + interval;
3156 if (pulled_task) {
3157 this_rq->idle_stamp = 0;
3158 break;
3162 raw_spin_lock(&this_rq->lock);
3164 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3166 * We are going idle. next_balance may be set based on
3167 * a busy processor. So reset next_balance.
3169 this_rq->next_balance = next_balance;
3174 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3175 * running tasks off the busiest CPU onto idle CPUs. It requires at
3176 * least 1 task to be running on each physical CPU where possible, and
3177 * avoids physical / logical imbalances.
3179 static int active_load_balance_cpu_stop(void *data)
3181 struct rq *busiest_rq = data;
3182 int busiest_cpu = cpu_of(busiest_rq);
3183 int target_cpu = busiest_rq->push_cpu;
3184 struct rq *target_rq = cpu_rq(target_cpu);
3185 struct sched_domain *sd;
3187 raw_spin_lock_irq(&busiest_rq->lock);
3189 /* make sure the requested cpu hasn't gone down in the meantime */
3190 if (unlikely(busiest_cpu != smp_processor_id() ||
3191 !busiest_rq->active_balance))
3192 goto out_unlock;
3194 /* Is there any task to move? */
3195 if (busiest_rq->nr_running <= 1)
3196 goto out_unlock;
3199 * This condition is "impossible", if it occurs
3200 * we need to fix it. Originally reported by
3201 * Bjorn Helgaas on a 128-cpu setup.
3203 BUG_ON(busiest_rq == target_rq);
3205 /* move a task from busiest_rq to target_rq */
3206 double_lock_balance(busiest_rq, target_rq);
3208 /* Search for an sd spanning us and the target CPU. */
3209 for_each_domain(target_cpu, sd) {
3210 if ((sd->flags & SD_LOAD_BALANCE) &&
3211 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3212 break;
3215 if (likely(sd)) {
3216 schedstat_inc(sd, alb_count);
3218 if (move_one_task(target_rq, target_cpu, busiest_rq,
3219 sd, CPU_IDLE))
3220 schedstat_inc(sd, alb_pushed);
3221 else
3222 schedstat_inc(sd, alb_failed);
3224 double_unlock_balance(busiest_rq, target_rq);
3225 out_unlock:
3226 busiest_rq->active_balance = 0;
3227 raw_spin_unlock_irq(&busiest_rq->lock);
3228 return 0;
3231 #ifdef CONFIG_NO_HZ
3233 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3235 static void trigger_sched_softirq(void *data)
3237 raise_softirq_irqoff(SCHED_SOFTIRQ);
3240 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3242 csd->func = trigger_sched_softirq;
3243 csd->info = NULL;
3244 csd->flags = 0;
3245 csd->priv = 0;
3249 * idle load balancing details
3250 * - One of the idle CPUs nominates itself as idle load_balancer, while
3251 * entering idle.
3252 * - This idle load balancer CPU will also go into tickless mode when
3253 * it is idle, just like all other idle CPUs
3254 * - When one of the busy CPUs notice that there may be an idle rebalancing
3255 * needed, they will kick the idle load balancer, which then does idle
3256 * load balancing for all the idle CPUs.
3258 static struct {
3259 atomic_t load_balancer;
3260 atomic_t first_pick_cpu;
3261 atomic_t second_pick_cpu;
3262 cpumask_var_t idle_cpus_mask;
3263 cpumask_var_t grp_idle_mask;
3264 unsigned long next_balance; /* in jiffy units */
3265 } nohz ____cacheline_aligned;
3267 int get_nohz_load_balancer(void)
3269 return atomic_read(&nohz.load_balancer);
3272 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3274 * lowest_flag_domain - Return lowest sched_domain containing flag.
3275 * @cpu: The cpu whose lowest level of sched domain is to
3276 * be returned.
3277 * @flag: The flag to check for the lowest sched_domain
3278 * for the given cpu.
3280 * Returns the lowest sched_domain of a cpu which contains the given flag.
3282 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3284 struct sched_domain *sd;
3286 for_each_domain(cpu, sd)
3287 if (sd && (sd->flags & flag))
3288 break;
3290 return sd;
3294 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3295 * @cpu: The cpu whose domains we're iterating over.
3296 * @sd: variable holding the value of the power_savings_sd
3297 * for cpu.
3298 * @flag: The flag to filter the sched_domains to be iterated.
3300 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3301 * set, starting from the lowest sched_domain to the highest.
3303 #define for_each_flag_domain(cpu, sd, flag) \
3304 for (sd = lowest_flag_domain(cpu, flag); \
3305 (sd && (sd->flags & flag)); sd = sd->parent)
3308 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3309 * @ilb_group: group to be checked for semi-idleness
3311 * Returns: 1 if the group is semi-idle. 0 otherwise.
3313 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3314 * and atleast one non-idle CPU. This helper function checks if the given
3315 * sched_group is semi-idle or not.
3317 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3319 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3320 sched_group_cpus(ilb_group));
3323 * A sched_group is semi-idle when it has atleast one busy cpu
3324 * and atleast one idle cpu.
3326 if (cpumask_empty(nohz.grp_idle_mask))
3327 return 0;
3329 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3330 return 0;
3332 return 1;
3335 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3336 * @cpu: The cpu which is nominating a new idle_load_balancer.
3338 * Returns: Returns the id of the idle load balancer if it exists,
3339 * Else, returns >= nr_cpu_ids.
3341 * This algorithm picks the idle load balancer such that it belongs to a
3342 * semi-idle powersavings sched_domain. The idea is to try and avoid
3343 * completely idle packages/cores just for the purpose of idle load balancing
3344 * when there are other idle cpu's which are better suited for that job.
3346 static int find_new_ilb(int cpu)
3348 struct sched_domain *sd;
3349 struct sched_group *ilb_group;
3352 * Have idle load balancer selection from semi-idle packages only
3353 * when power-aware load balancing is enabled
3355 if (!(sched_smt_power_savings || sched_mc_power_savings))
3356 goto out_done;
3359 * Optimize for the case when we have no idle CPUs or only one
3360 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3362 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3363 goto out_done;
3365 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3366 ilb_group = sd->groups;
3368 do {
3369 if (is_semi_idle_group(ilb_group))
3370 return cpumask_first(nohz.grp_idle_mask);
3372 ilb_group = ilb_group->next;
3374 } while (ilb_group != sd->groups);
3377 out_done:
3378 return nr_cpu_ids;
3380 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3381 static inline int find_new_ilb(int call_cpu)
3383 return nr_cpu_ids;
3385 #endif
3388 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3389 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3390 * CPU (if there is one).
3392 static void nohz_balancer_kick(int cpu)
3394 int ilb_cpu;
3396 nohz.next_balance++;
3398 ilb_cpu = get_nohz_load_balancer();
3400 if (ilb_cpu >= nr_cpu_ids) {
3401 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3402 if (ilb_cpu >= nr_cpu_ids)
3403 return;
3406 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3407 struct call_single_data *cp;
3409 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3410 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3411 __smp_call_function_single(ilb_cpu, cp, 0);
3413 return;
3417 * This routine will try to nominate the ilb (idle load balancing)
3418 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3419 * load balancing on behalf of all those cpus.
3421 * When the ilb owner becomes busy, we will not have new ilb owner until some
3422 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3423 * idle load balancing by kicking one of the idle CPUs.
3425 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3426 * ilb owner CPU in future (when there is a need for idle load balancing on
3427 * behalf of all idle CPUs).
3429 void select_nohz_load_balancer(int stop_tick)
3431 int cpu = smp_processor_id();
3433 if (stop_tick) {
3434 if (!cpu_active(cpu)) {
3435 if (atomic_read(&nohz.load_balancer) != cpu)
3436 return;
3439 * If we are going offline and still the leader,
3440 * give up!
3442 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3443 nr_cpu_ids) != cpu)
3444 BUG();
3446 return;
3449 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3451 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3452 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3453 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3454 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3456 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3457 int new_ilb;
3459 /* make me the ilb owner */
3460 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3461 cpu) != nr_cpu_ids)
3462 return;
3465 * Check to see if there is a more power-efficient
3466 * ilb.
3468 new_ilb = find_new_ilb(cpu);
3469 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3470 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3471 resched_cpu(new_ilb);
3472 return;
3474 return;
3476 } else {
3477 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3478 return;
3480 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3482 if (atomic_read(&nohz.load_balancer) == cpu)
3483 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3484 nr_cpu_ids) != cpu)
3485 BUG();
3487 return;
3489 #endif
3491 static DEFINE_SPINLOCK(balancing);
3494 * It checks each scheduling domain to see if it is due to be balanced,
3495 * and initiates a balancing operation if so.
3497 * Balancing parameters are set up in arch_init_sched_domains.
3499 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3501 int balance = 1;
3502 struct rq *rq = cpu_rq(cpu);
3503 unsigned long interval;
3504 struct sched_domain *sd;
3505 /* Earliest time when we have to do rebalance again */
3506 unsigned long next_balance = jiffies + 60*HZ;
3507 int update_next_balance = 0;
3508 int need_serialize;
3510 for_each_domain(cpu, sd) {
3511 if (!(sd->flags & SD_LOAD_BALANCE))
3512 continue;
3514 interval = sd->balance_interval;
3515 if (idle != CPU_IDLE)
3516 interval *= sd->busy_factor;
3518 /* scale ms to jiffies */
3519 interval = msecs_to_jiffies(interval);
3520 if (unlikely(!interval))
3521 interval = 1;
3522 if (interval > HZ*NR_CPUS/10)
3523 interval = HZ*NR_CPUS/10;
3525 need_serialize = sd->flags & SD_SERIALIZE;
3527 if (need_serialize) {
3528 if (!spin_trylock(&balancing))
3529 goto out;
3532 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3533 if (load_balance(cpu, rq, sd, idle, &balance)) {
3535 * We've pulled tasks over so either we're no
3536 * longer idle, or one of our SMT siblings is
3537 * not idle.
3539 idle = CPU_NOT_IDLE;
3541 sd->last_balance = jiffies;
3543 if (need_serialize)
3544 spin_unlock(&balancing);
3545 out:
3546 if (time_after(next_balance, sd->last_balance + interval)) {
3547 next_balance = sd->last_balance + interval;
3548 update_next_balance = 1;
3552 * Stop the load balance at this level. There is another
3553 * CPU in our sched group which is doing load balancing more
3554 * actively.
3556 if (!balance)
3557 break;
3561 * next_balance will be updated only when there is a need.
3562 * When the cpu is attached to null domain for ex, it will not be
3563 * updated.
3565 if (likely(update_next_balance))
3566 rq->next_balance = next_balance;
3569 #ifdef CONFIG_NO_HZ
3571 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3572 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3574 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3576 struct rq *this_rq = cpu_rq(this_cpu);
3577 struct rq *rq;
3578 int balance_cpu;
3580 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3581 return;
3583 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3584 if (balance_cpu == this_cpu)
3585 continue;
3588 * If this cpu gets work to do, stop the load balancing
3589 * work being done for other cpus. Next load
3590 * balancing owner will pick it up.
3592 if (need_resched()) {
3593 this_rq->nohz_balance_kick = 0;
3594 break;
3597 raw_spin_lock_irq(&this_rq->lock);
3598 update_rq_clock(this_rq);
3599 update_cpu_load(this_rq);
3600 raw_spin_unlock_irq(&this_rq->lock);
3602 rebalance_domains(balance_cpu, CPU_IDLE);
3604 rq = cpu_rq(balance_cpu);
3605 if (time_after(this_rq->next_balance, rq->next_balance))
3606 this_rq->next_balance = rq->next_balance;
3608 nohz.next_balance = this_rq->next_balance;
3609 this_rq->nohz_balance_kick = 0;
3613 * Current heuristic for kicking the idle load balancer
3614 * - first_pick_cpu is the one of the busy CPUs. It will kick
3615 * idle load balancer when it has more than one process active. This
3616 * eliminates the need for idle load balancing altogether when we have
3617 * only one running process in the system (common case).
3618 * - If there are more than one busy CPU, idle load balancer may have
3619 * to run for active_load_balance to happen (i.e., two busy CPUs are
3620 * SMT or core siblings and can run better if they move to different
3621 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3622 * which will kick idle load balancer as soon as it has any load.
3624 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3626 unsigned long now = jiffies;
3627 int ret;
3628 int first_pick_cpu, second_pick_cpu;
3630 if (time_before(now, nohz.next_balance))
3631 return 0;
3633 if (rq->idle_at_tick)
3634 return 0;
3636 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3637 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3639 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3640 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3641 return 0;
3643 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3644 if (ret == nr_cpu_ids || ret == cpu) {
3645 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3646 if (rq->nr_running > 1)
3647 return 1;
3648 } else {
3649 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3650 if (ret == nr_cpu_ids || ret == cpu) {
3651 if (rq->nr_running)
3652 return 1;
3655 return 0;
3657 #else
3658 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3659 #endif
3662 * run_rebalance_domains is triggered when needed from the scheduler tick.
3663 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3665 static void run_rebalance_domains(struct softirq_action *h)
3667 int this_cpu = smp_processor_id();
3668 struct rq *this_rq = cpu_rq(this_cpu);
3669 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3670 CPU_IDLE : CPU_NOT_IDLE;
3672 rebalance_domains(this_cpu, idle);
3675 * If this cpu has a pending nohz_balance_kick, then do the
3676 * balancing on behalf of the other idle cpus whose ticks are
3677 * stopped.
3679 nohz_idle_balance(this_cpu, idle);
3682 static inline int on_null_domain(int cpu)
3684 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3688 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3690 static inline void trigger_load_balance(struct rq *rq, int cpu)
3692 /* Don't need to rebalance while attached to NULL domain */
3693 if (time_after_eq(jiffies, rq->next_balance) &&
3694 likely(!on_null_domain(cpu)))
3695 raise_softirq(SCHED_SOFTIRQ);
3696 #ifdef CONFIG_NO_HZ
3697 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3698 nohz_balancer_kick(cpu);
3699 #endif
3702 static void rq_online_fair(struct rq *rq)
3704 update_sysctl();
3707 static void rq_offline_fair(struct rq *rq)
3709 update_sysctl();
3712 #else /* CONFIG_SMP */
3715 * on UP we do not need to balance between CPUs:
3717 static inline void idle_balance(int cpu, struct rq *rq)
3721 #endif /* CONFIG_SMP */
3724 * scheduler tick hitting a task of our scheduling class:
3726 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3728 struct cfs_rq *cfs_rq;
3729 struct sched_entity *se = &curr->se;
3731 for_each_sched_entity(se) {
3732 cfs_rq = cfs_rq_of(se);
3733 entity_tick(cfs_rq, se, queued);
3738 * called on fork with the child task as argument from the parent's context
3739 * - child not yet on the tasklist
3740 * - preemption disabled
3742 static void task_fork_fair(struct task_struct *p)
3744 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3745 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3746 int this_cpu = smp_processor_id();
3747 struct rq *rq = this_rq();
3748 unsigned long flags;
3750 raw_spin_lock_irqsave(&rq->lock, flags);
3752 update_rq_clock(rq);
3754 if (unlikely(task_cpu(p) != this_cpu))
3755 __set_task_cpu(p, this_cpu);
3757 update_curr(cfs_rq);
3759 if (curr)
3760 se->vruntime = curr->vruntime;
3761 place_entity(cfs_rq, se, 1);
3763 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3765 * Upon rescheduling, sched_class::put_prev_task() will place
3766 * 'current' within the tree based on its new key value.
3768 swap(curr->vruntime, se->vruntime);
3769 resched_task(rq->curr);
3772 se->vruntime -= cfs_rq->min_vruntime;
3774 raw_spin_unlock_irqrestore(&rq->lock, flags);
3778 * Priority of the task has changed. Check to see if we preempt
3779 * the current task.
3781 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3782 int oldprio, int running)
3785 * Reschedule if we are currently running on this runqueue and
3786 * our priority decreased, or if we are not currently running on
3787 * this runqueue and our priority is higher than the current's
3789 if (running) {
3790 if (p->prio > oldprio)
3791 resched_task(rq->curr);
3792 } else
3793 check_preempt_curr(rq, p, 0);
3797 * We switched to the sched_fair class.
3799 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3800 int running)
3803 * We were most likely switched from sched_rt, so
3804 * kick off the schedule if running, otherwise just see
3805 * if we can still preempt the current task.
3807 if (running)
3808 resched_task(rq->curr);
3809 else
3810 check_preempt_curr(rq, p, 0);
3813 /* Account for a task changing its policy or group.
3815 * This routine is mostly called to set cfs_rq->curr field when a task
3816 * migrates between groups/classes.
3818 static void set_curr_task_fair(struct rq *rq)
3820 struct sched_entity *se = &rq->curr->se;
3822 for_each_sched_entity(se)
3823 set_next_entity(cfs_rq_of(se), se);
3826 #ifdef CONFIG_FAIR_GROUP_SCHED
3827 static void moved_group_fair(struct task_struct *p, int on_rq)
3829 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3831 update_curr(cfs_rq);
3832 if (!on_rq)
3833 place_entity(cfs_rq, &p->se, 1);
3835 #endif
3837 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3839 struct sched_entity *se = &task->se;
3840 unsigned int rr_interval = 0;
3843 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3844 * idle runqueue:
3846 if (rq->cfs.load.weight)
3847 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3849 return rr_interval;
3853 * All the scheduling class methods:
3855 static const struct sched_class fair_sched_class = {
3856 .next = &idle_sched_class,
3857 .enqueue_task = enqueue_task_fair,
3858 .dequeue_task = dequeue_task_fair,
3859 .yield_task = yield_task_fair,
3861 .check_preempt_curr = check_preempt_wakeup,
3863 .pick_next_task = pick_next_task_fair,
3864 .put_prev_task = put_prev_task_fair,
3866 #ifdef CONFIG_SMP
3867 .select_task_rq = select_task_rq_fair,
3869 .rq_online = rq_online_fair,
3870 .rq_offline = rq_offline_fair,
3872 .task_waking = task_waking_fair,
3873 #endif
3875 .set_curr_task = set_curr_task_fair,
3876 .task_tick = task_tick_fair,
3877 .task_fork = task_fork_fair,
3879 .prio_changed = prio_changed_fair,
3880 .switched_to = switched_to_fair,
3882 .get_rr_interval = get_rr_interval_fair,
3884 #ifdef CONFIG_FAIR_GROUP_SCHED
3885 .moved_group = moved_group_fair,
3886 #endif
3889 #ifdef CONFIG_SCHED_DEBUG
3890 static void print_cfs_stats(struct seq_file *m, int cpu)
3892 struct cfs_rq *cfs_rq;
3894 rcu_read_lock();
3895 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3896 print_cfs_rq(m, cpu, cfs_rq);
3897 rcu_read_unlock();
3899 #endif