r8169: revert "Handle rxfifo errors on 8168 chips"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blobd72167d500cb34b396f3abf2bb87f17831584db9
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
59 static void exit_mm(struct task_struct * tsk);
61 static void __unhash_process(struct task_struct *p, bool group_dead)
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (group_dead) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
69 list_del_rcu(&p->tasks);
70 list_del_init(&p->sibling);
71 __get_cpu_var(process_counts)--;
73 list_del_rcu(&p->thread_group);
77 * This function expects the tasklist_lock write-locked.
79 static void __exit_signal(struct task_struct *tsk)
81 struct signal_struct *sig = tsk->signal;
82 bool group_dead = thread_group_leader(tsk);
83 struct sighand_struct *sighand;
84 struct tty_struct *uninitialized_var(tty);
86 sighand = rcu_dereference_check(tsk->sighand,
87 rcu_read_lock_held() ||
88 lockdep_tasklist_lock_is_held());
89 spin_lock(&sighand->siglock);
91 posix_cpu_timers_exit(tsk);
92 if (group_dead) {
93 posix_cpu_timers_exit_group(tsk);
94 tty = sig->tty;
95 sig->tty = NULL;
96 } else {
98 * If there is any task waiting for the group exit
99 * then notify it:
101 if (sig->notify_count > 0 && !--sig->notify_count)
102 wake_up_process(sig->group_exit_task);
104 if (tsk == sig->curr_target)
105 sig->curr_target = next_thread(tsk);
107 * Accumulate here the counters for all threads but the
108 * group leader as they die, so they can be added into
109 * the process-wide totals when those are taken.
110 * The group leader stays around as a zombie as long
111 * as there are other threads. When it gets reaped,
112 * the exit.c code will add its counts into these totals.
113 * We won't ever get here for the group leader, since it
114 * will have been the last reference on the signal_struct.
116 sig->utime = cputime_add(sig->utime, tsk->utime);
117 sig->stime = cputime_add(sig->stime, tsk->stime);
118 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
119 sig->min_flt += tsk->min_flt;
120 sig->maj_flt += tsk->maj_flt;
121 sig->nvcsw += tsk->nvcsw;
122 sig->nivcsw += tsk->nivcsw;
123 sig->inblock += task_io_get_inblock(tsk);
124 sig->oublock += task_io_get_oublock(tsk);
125 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
129 sig->nr_threads--;
130 __unhash_process(tsk, group_dead);
133 * Do this under ->siglock, we can race with another thread
134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136 flush_sigqueue(&tsk->pending);
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 if (group_dead) {
143 flush_sigqueue(&sig->shared_pending);
144 tty_kref_put(tty);
148 static void delayed_put_task_struct(struct rcu_head *rhp)
150 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
152 #ifdef CONFIG_PERF_EVENTS
153 WARN_ON_ONCE(tsk->perf_event_ctxp);
154 #endif
155 trace_sched_process_free(tsk);
156 put_task_struct(tsk);
160 void release_task(struct task_struct * p)
162 struct task_struct *leader;
163 int zap_leader;
164 repeat:
165 tracehook_prepare_release_task(p);
166 /* don't need to get the RCU readlock here - the process is dead and
167 * can't be modifying its own credentials. But shut RCU-lockdep up */
168 rcu_read_lock();
169 atomic_dec(&__task_cred(p)->user->processes);
170 rcu_read_unlock();
172 proc_flush_task(p);
174 write_lock_irq(&tasklist_lock);
175 tracehook_finish_release_task(p);
176 __exit_signal(p);
179 * If we are the last non-leader member of the thread
180 * group, and the leader is zombie, then notify the
181 * group leader's parent process. (if it wants notification.)
183 zap_leader = 0;
184 leader = p->group_leader;
185 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
186 BUG_ON(task_detached(leader));
187 do_notify_parent(leader, leader->exit_signal);
189 * If we were the last child thread and the leader has
190 * exited already, and the leader's parent ignores SIGCHLD,
191 * then we are the one who should release the leader.
193 * do_notify_parent() will have marked it self-reaping in
194 * that case.
196 zap_leader = task_detached(leader);
199 * This maintains the invariant that release_task()
200 * only runs on a task in EXIT_DEAD, just for sanity.
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
220 * The caller must hold rcu lock or the tasklist lock.
222 struct pid *session_of_pgrp(struct pid *pgrp)
224 struct task_struct *p;
225 struct pid *sid = NULL;
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
233 return sid;
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
242 * "I ask you, have you ever known what it is to be an orphan?"
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
246 struct task_struct *p;
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 return 1;
262 int is_current_pgrp_orphaned(void)
264 int retval;
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
270 return retval;
273 static int has_stopped_jobs(struct pid *pgrp)
275 int retval = 0;
276 struct task_struct *p;
278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279 if (!task_is_stopped(p))
280 continue;
281 retval = 1;
282 break;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 return retval;
288 * Check to see if any process groups have become orphaned as
289 * a result of our exiting, and if they have any stopped jobs,
290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 static void
293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 struct pid *pgrp = task_pgrp(tsk);
296 struct task_struct *ignored_task = tsk;
298 if (!parent)
299 /* exit: our father is in a different pgrp than
300 * we are and we were the only connection outside.
302 parent = tsk->real_parent;
303 else
304 /* reparent: our child is in a different pgrp than
305 * we are, and it was the only connection outside.
307 ignored_task = NULL;
309 if (task_pgrp(parent) != pgrp &&
310 task_session(parent) == task_session(tsk) &&
311 will_become_orphaned_pgrp(pgrp, ignored_task) &&
312 has_stopped_jobs(pgrp)) {
313 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
314 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
321 * If a kernel thread is launched as a result of a system call, or if
322 * it ever exits, it should generally reparent itself to kthreadd so it
323 * isn't in the way of other processes and is correctly cleaned up on exit.
325 * The various task state such as scheduling policy and priority may have
326 * been inherited from a user process, so we reset them to sane values here.
328 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
330 static void reparent_to_kthreadd(void)
332 write_lock_irq(&tasklist_lock);
334 ptrace_unlink(current);
335 /* Reparent to init */
336 current->real_parent = current->parent = kthreadd_task;
337 list_move_tail(&current->sibling, &current->real_parent->children);
339 /* Set the exit signal to SIGCHLD so we signal init on exit */
340 current->exit_signal = SIGCHLD;
342 if (task_nice(current) < 0)
343 set_user_nice(current, 0);
344 /* cpus_allowed? */
345 /* rt_priority? */
346 /* signals? */
347 memcpy(current->signal->rlim, init_task.signal->rlim,
348 sizeof(current->signal->rlim));
350 atomic_inc(&init_cred.usage);
351 commit_creds(&init_cred);
352 write_unlock_irq(&tasklist_lock);
355 void __set_special_pids(struct pid *pid)
357 struct task_struct *curr = current->group_leader;
359 if (task_session(curr) != pid)
360 change_pid(curr, PIDTYPE_SID, pid);
362 if (task_pgrp(curr) != pid)
363 change_pid(curr, PIDTYPE_PGID, pid);
366 static void set_special_pids(struct pid *pid)
368 write_lock_irq(&tasklist_lock);
369 __set_special_pids(pid);
370 write_unlock_irq(&tasklist_lock);
374 * Let kernel threads use this to say that they allow a certain signal.
375 * Must not be used if kthread was cloned with CLONE_SIGHAND.
377 int allow_signal(int sig)
379 if (!valid_signal(sig) || sig < 1)
380 return -EINVAL;
382 spin_lock_irq(&current->sighand->siglock);
383 /* This is only needed for daemonize()'ed kthreads */
384 sigdelset(&current->blocked, sig);
386 * Kernel threads handle their own signals. Let the signal code
387 * know it'll be handled, so that they don't get converted to
388 * SIGKILL or just silently dropped.
390 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
391 recalc_sigpending();
392 spin_unlock_irq(&current->sighand->siglock);
393 return 0;
396 EXPORT_SYMBOL(allow_signal);
398 int disallow_signal(int sig)
400 if (!valid_signal(sig) || sig < 1)
401 return -EINVAL;
403 spin_lock_irq(&current->sighand->siglock);
404 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
405 recalc_sigpending();
406 spin_unlock_irq(&current->sighand->siglock);
407 return 0;
410 EXPORT_SYMBOL(disallow_signal);
413 * Put all the gunge required to become a kernel thread without
414 * attached user resources in one place where it belongs.
417 void daemonize(const char *name, ...)
419 va_list args;
420 sigset_t blocked;
422 va_start(args, name);
423 vsnprintf(current->comm, sizeof(current->comm), name, args);
424 va_end(args);
427 * If we were started as result of loading a module, close all of the
428 * user space pages. We don't need them, and if we didn't close them
429 * they would be locked into memory.
431 exit_mm(current);
433 * We don't want to have TIF_FREEZE set if the system-wide hibernation
434 * or suspend transition begins right now.
436 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
438 if (current->nsproxy != &init_nsproxy) {
439 get_nsproxy(&init_nsproxy);
440 switch_task_namespaces(current, &init_nsproxy);
442 set_special_pids(&init_struct_pid);
443 proc_clear_tty(current);
445 /* Block and flush all signals */
446 sigfillset(&blocked);
447 sigprocmask(SIG_BLOCK, &blocked, NULL);
448 flush_signals(current);
450 /* Become as one with the init task */
452 daemonize_fs_struct();
453 exit_files(current);
454 current->files = init_task.files;
455 atomic_inc(&current->files->count);
457 reparent_to_kthreadd();
460 EXPORT_SYMBOL(daemonize);
462 static void close_files(struct files_struct * files)
464 int i, j;
465 struct fdtable *fdt;
467 j = 0;
470 * It is safe to dereference the fd table without RCU or
471 * ->file_lock because this is the last reference to the
472 * files structure. But use RCU to shut RCU-lockdep up.
474 rcu_read_lock();
475 fdt = files_fdtable(files);
476 rcu_read_unlock();
477 for (;;) {
478 unsigned long set;
479 i = j * __NFDBITS;
480 if (i >= fdt->max_fds)
481 break;
482 set = fdt->open_fds->fds_bits[j++];
483 while (set) {
484 if (set & 1) {
485 struct file * file = xchg(&fdt->fd[i], NULL);
486 if (file) {
487 filp_close(file, files);
488 cond_resched();
491 i++;
492 set >>= 1;
497 struct files_struct *get_files_struct(struct task_struct *task)
499 struct files_struct *files;
501 task_lock(task);
502 files = task->files;
503 if (files)
504 atomic_inc(&files->count);
505 task_unlock(task);
507 return files;
510 void put_files_struct(struct files_struct *files)
512 struct fdtable *fdt;
514 if (atomic_dec_and_test(&files->count)) {
515 close_files(files);
517 * Free the fd and fdset arrays if we expanded them.
518 * If the fdtable was embedded, pass files for freeing
519 * at the end of the RCU grace period. Otherwise,
520 * you can free files immediately.
522 rcu_read_lock();
523 fdt = files_fdtable(files);
524 if (fdt != &files->fdtab)
525 kmem_cache_free(files_cachep, files);
526 free_fdtable(fdt);
527 rcu_read_unlock();
531 void reset_files_struct(struct files_struct *files)
533 struct task_struct *tsk = current;
534 struct files_struct *old;
536 old = tsk->files;
537 task_lock(tsk);
538 tsk->files = files;
539 task_unlock(tsk);
540 put_files_struct(old);
543 void exit_files(struct task_struct *tsk)
545 struct files_struct * files = tsk->files;
547 if (files) {
548 task_lock(tsk);
549 tsk->files = NULL;
550 task_unlock(tsk);
551 put_files_struct(files);
555 #ifdef CONFIG_MM_OWNER
557 * Task p is exiting and it owned mm, lets find a new owner for it
559 static inline int
560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
563 * If there are other users of the mm and the owner (us) is exiting
564 * we need to find a new owner to take on the responsibility.
566 if (atomic_read(&mm->mm_users) <= 1)
567 return 0;
568 if (mm->owner != p)
569 return 0;
570 return 1;
573 void mm_update_next_owner(struct mm_struct *mm)
575 struct task_struct *c, *g, *p = current;
577 retry:
578 if (!mm_need_new_owner(mm, p))
579 return;
581 read_lock(&tasklist_lock);
583 * Search in the children
585 list_for_each_entry(c, &p->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
591 * Search in the siblings
593 list_for_each_entry(c, &p->real_parent->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
599 * Search through everything else. We should not get
600 * here often
602 do_each_thread(g, c) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 } while_each_thread(g, c);
607 read_unlock(&tasklist_lock);
609 * We found no owner yet mm_users > 1: this implies that we are
610 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
613 mm->owner = NULL;
614 return;
616 assign_new_owner:
617 BUG_ON(c == p);
618 get_task_struct(c);
620 * The task_lock protects c->mm from changing.
621 * We always want mm->owner->mm == mm
623 task_lock(c);
625 * Delay read_unlock() till we have the task_lock()
626 * to ensure that c does not slip away underneath us
628 read_unlock(&tasklist_lock);
629 if (c->mm != mm) {
630 task_unlock(c);
631 put_task_struct(c);
632 goto retry;
634 mm->owner = c;
635 task_unlock(c);
636 put_task_struct(c);
638 #endif /* CONFIG_MM_OWNER */
641 * Turn us into a lazy TLB process if we
642 * aren't already..
644 static void exit_mm(struct task_struct * tsk)
646 struct mm_struct *mm = tsk->mm;
647 struct core_state *core_state;
649 mm_release(tsk, mm);
650 if (!mm)
651 return;
653 * Serialize with any possible pending coredump.
654 * We must hold mmap_sem around checking core_state
655 * and clearing tsk->mm. The core-inducing thread
656 * will increment ->nr_threads for each thread in the
657 * group with ->mm != NULL.
659 down_read(&mm->mmap_sem);
660 core_state = mm->core_state;
661 if (core_state) {
662 struct core_thread self;
663 up_read(&mm->mmap_sem);
665 self.task = tsk;
666 self.next = xchg(&core_state->dumper.next, &self);
668 * Implies mb(), the result of xchg() must be visible
669 * to core_state->dumper.
671 if (atomic_dec_and_test(&core_state->nr_threads))
672 complete(&core_state->startup);
674 for (;;) {
675 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
676 if (!self.task) /* see coredump_finish() */
677 break;
678 schedule();
680 __set_task_state(tsk, TASK_RUNNING);
681 down_read(&mm->mmap_sem);
683 atomic_inc(&mm->mm_count);
684 BUG_ON(mm != tsk->active_mm);
685 /* more a memory barrier than a real lock */
686 task_lock(tsk);
687 tsk->mm = NULL;
688 up_read(&mm->mmap_sem);
689 enter_lazy_tlb(mm, current);
690 /* We don't want this task to be frozen prematurely */
691 clear_freeze_flag(tsk);
692 task_unlock(tsk);
693 mm_update_next_owner(mm);
694 mmput(mm);
698 * When we die, we re-parent all our children.
699 * Try to give them to another thread in our thread
700 * group, and if no such member exists, give it to
701 * the child reaper process (ie "init") in our pid
702 * space.
704 static struct task_struct *find_new_reaper(struct task_struct *father)
706 struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 struct task_struct *thread;
709 thread = father;
710 while_each_thread(father, thread) {
711 if (thread->flags & PF_EXITING)
712 continue;
713 if (unlikely(pid_ns->child_reaper == father))
714 pid_ns->child_reaper = thread;
715 return thread;
718 if (unlikely(pid_ns->child_reaper == father)) {
719 write_unlock_irq(&tasklist_lock);
720 if (unlikely(pid_ns == &init_pid_ns))
721 panic("Attempted to kill init!");
723 zap_pid_ns_processes(pid_ns);
724 write_lock_irq(&tasklist_lock);
726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere.
730 pid_ns->child_reaper = init_pid_ns.child_reaper;
733 return pid_ns->child_reaper;
737 * Any that need to be release_task'd are put on the @dead list.
739 static void reparent_leader(struct task_struct *father, struct task_struct *p,
740 struct list_head *dead)
742 list_move_tail(&p->sibling, &p->real_parent->children);
744 if (task_detached(p))
745 return;
747 * If this is a threaded reparent there is no need to
748 * notify anyone anything has happened.
750 if (same_thread_group(p->real_parent, father))
751 return;
753 /* We don't want people slaying init. */
754 p->exit_signal = SIGCHLD;
756 /* If it has exited notify the new parent about this child's death. */
757 if (!task_ptrace(p) &&
758 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
759 do_notify_parent(p, p->exit_signal);
760 if (task_detached(p)) {
761 p->exit_state = EXIT_DEAD;
762 list_move_tail(&p->sibling, dead);
766 kill_orphaned_pgrp(p, father);
769 static void forget_original_parent(struct task_struct *father)
771 struct task_struct *p, *n, *reaper;
772 LIST_HEAD(dead_children);
774 write_lock_irq(&tasklist_lock);
776 * Note that exit_ptrace() and find_new_reaper() might
777 * drop tasklist_lock and reacquire it.
779 exit_ptrace(father);
780 reaper = find_new_reaper(father);
782 list_for_each_entry_safe(p, n, &father->children, sibling) {
783 struct task_struct *t = p;
784 do {
785 t->real_parent = reaper;
786 if (t->parent == father) {
787 BUG_ON(task_ptrace(t));
788 t->parent = t->real_parent;
790 if (t->pdeath_signal)
791 group_send_sig_info(t->pdeath_signal,
792 SEND_SIG_NOINFO, t);
793 } while_each_thread(p, t);
794 reparent_leader(father, p, &dead_children);
796 write_unlock_irq(&tasklist_lock);
798 BUG_ON(!list_empty(&father->children));
800 list_for_each_entry_safe(p, n, &dead_children, sibling) {
801 list_del_init(&p->sibling);
802 release_task(p);
807 * Send signals to all our closest relatives so that they know
808 * to properly mourn us..
810 static void exit_notify(struct task_struct *tsk, int group_dead)
812 int signal;
813 void *cookie;
816 * This does two things:
818 * A. Make init inherit all the child processes
819 * B. Check to see if any process groups have become orphaned
820 * as a result of our exiting, and if they have any stopped
821 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
823 forget_original_parent(tsk);
824 exit_task_namespaces(tsk);
826 write_lock_irq(&tasklist_lock);
827 if (group_dead)
828 kill_orphaned_pgrp(tsk->group_leader, NULL);
830 /* Let father know we died
832 * Thread signals are configurable, but you aren't going to use
833 * that to send signals to arbitary processes.
834 * That stops right now.
836 * If the parent exec id doesn't match the exec id we saved
837 * when we started then we know the parent has changed security
838 * domain.
840 * If our self_exec id doesn't match our parent_exec_id then
841 * we have changed execution domain as these two values started
842 * the same after a fork.
844 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
845 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
846 tsk->self_exec_id != tsk->parent_exec_id))
847 tsk->exit_signal = SIGCHLD;
849 signal = tracehook_notify_death(tsk, &cookie, group_dead);
850 if (signal >= 0)
851 signal = do_notify_parent(tsk, signal);
853 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
855 /* mt-exec, de_thread() is waiting for group leader */
856 if (unlikely(tsk->signal->notify_count < 0))
857 wake_up_process(tsk->signal->group_exit_task);
858 write_unlock_irq(&tasklist_lock);
860 tracehook_report_death(tsk, signal, cookie, group_dead);
862 /* If the process is dead, release it - nobody will wait for it */
863 if (signal == DEATH_REAP)
864 release_task(tsk);
867 #ifdef CONFIG_DEBUG_STACK_USAGE
868 static void check_stack_usage(void)
870 static DEFINE_SPINLOCK(low_water_lock);
871 static int lowest_to_date = THREAD_SIZE;
872 unsigned long free;
874 free = stack_not_used(current);
876 if (free >= lowest_to_date)
877 return;
879 spin_lock(&low_water_lock);
880 if (free < lowest_to_date) {
881 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
882 "left\n",
883 current->comm, free);
884 lowest_to_date = free;
886 spin_unlock(&low_water_lock);
888 #else
889 static inline void check_stack_usage(void) {}
890 #endif
892 NORET_TYPE void do_exit(long code)
894 struct task_struct *tsk = current;
895 int group_dead;
897 profile_task_exit(tsk);
899 WARN_ON(atomic_read(&tsk->fs_excl));
901 if (unlikely(in_interrupt()))
902 panic("Aiee, killing interrupt handler!");
903 if (unlikely(!tsk->pid))
904 panic("Attempted to kill the idle task!");
907 * If do_exit is called because this processes oopsed, it's possible
908 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
909 * continuing. Amongst other possible reasons, this is to prevent
910 * mm_release()->clear_child_tid() from writing to a user-controlled
911 * kernel address.
913 set_fs(USER_DS);
915 tracehook_report_exit(&code);
917 validate_creds_for_do_exit(tsk);
920 * We're taking recursive faults here in do_exit. Safest is to just
921 * leave this task alone and wait for reboot.
923 if (unlikely(tsk->flags & PF_EXITING)) {
924 printk(KERN_ALERT
925 "Fixing recursive fault but reboot is needed!\n");
927 * We can do this unlocked here. The futex code uses
928 * this flag just to verify whether the pi state
929 * cleanup has been done or not. In the worst case it
930 * loops once more. We pretend that the cleanup was
931 * done as there is no way to return. Either the
932 * OWNER_DIED bit is set by now or we push the blocked
933 * task into the wait for ever nirwana as well.
935 tsk->flags |= PF_EXITPIDONE;
936 set_current_state(TASK_UNINTERRUPTIBLE);
937 schedule();
940 exit_irq_thread();
942 exit_signals(tsk); /* sets PF_EXITING */
944 * tsk->flags are checked in the futex code to protect against
945 * an exiting task cleaning up the robust pi futexes.
947 smp_mb();
948 raw_spin_unlock_wait(&tsk->pi_lock);
950 if (unlikely(in_atomic()))
951 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
952 current->comm, task_pid_nr(current),
953 preempt_count());
955 acct_update_integrals(tsk);
956 /* sync mm's RSS info before statistics gathering */
957 if (tsk->mm)
958 sync_mm_rss(tsk, tsk->mm);
959 group_dead = atomic_dec_and_test(&tsk->signal->live);
960 if (group_dead) {
961 hrtimer_cancel(&tsk->signal->real_timer);
962 exit_itimers(tsk->signal);
963 if (tsk->mm)
964 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
966 acct_collect(code, group_dead);
967 if (group_dead)
968 tty_audit_exit();
969 if (unlikely(tsk->audit_context))
970 audit_free(tsk);
972 tsk->exit_code = code;
973 taskstats_exit(tsk, group_dead);
975 exit_mm(tsk);
977 if (group_dead)
978 acct_process();
979 trace_sched_process_exit(tsk);
981 exit_sem(tsk);
982 exit_files(tsk);
983 exit_fs(tsk);
984 check_stack_usage();
985 exit_thread();
986 cgroup_exit(tsk, 1);
988 if (group_dead)
989 disassociate_ctty(1);
991 module_put(task_thread_info(tsk)->exec_domain->module);
993 proc_exit_connector(tsk);
996 * FIXME: do that only when needed, using sched_exit tracepoint
998 flush_ptrace_hw_breakpoint(tsk);
1000 * Flush inherited counters to the parent - before the parent
1001 * gets woken up by child-exit notifications.
1003 perf_event_exit_task(tsk);
1005 exit_notify(tsk, group_dead);
1006 #ifdef CONFIG_NUMA
1007 task_lock(tsk);
1008 mpol_put(tsk->mempolicy);
1009 tsk->mempolicy = NULL;
1010 task_unlock(tsk);
1011 #endif
1012 #ifdef CONFIG_FUTEX
1013 if (unlikely(current->pi_state_cache))
1014 kfree(current->pi_state_cache);
1015 #endif
1017 * Make sure we are holding no locks:
1019 debug_check_no_locks_held(tsk);
1021 * We can do this unlocked here. The futex code uses this flag
1022 * just to verify whether the pi state cleanup has been done
1023 * or not. In the worst case it loops once more.
1025 tsk->flags |= PF_EXITPIDONE;
1027 if (tsk->io_context)
1028 exit_io_context(tsk);
1030 if (tsk->splice_pipe)
1031 __free_pipe_info(tsk->splice_pipe);
1033 validate_creds_for_do_exit(tsk);
1035 preempt_disable();
1036 exit_rcu();
1037 /* causes final put_task_struct in finish_task_switch(). */
1038 tsk->state = TASK_DEAD;
1039 schedule();
1040 BUG();
1041 /* Avoid "noreturn function does return". */
1042 for (;;)
1043 cpu_relax(); /* For when BUG is null */
1046 EXPORT_SYMBOL_GPL(do_exit);
1048 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1050 if (comp)
1051 complete(comp);
1053 do_exit(code);
1056 EXPORT_SYMBOL(complete_and_exit);
1058 SYSCALL_DEFINE1(exit, int, error_code)
1060 do_exit((error_code&0xff)<<8);
1064 * Take down every thread in the group. This is called by fatal signals
1065 * as well as by sys_exit_group (below).
1067 NORET_TYPE void
1068 do_group_exit(int exit_code)
1070 struct signal_struct *sig = current->signal;
1072 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1074 if (signal_group_exit(sig))
1075 exit_code = sig->group_exit_code;
1076 else if (!thread_group_empty(current)) {
1077 struct sighand_struct *const sighand = current->sighand;
1078 spin_lock_irq(&sighand->siglock);
1079 if (signal_group_exit(sig))
1080 /* Another thread got here before we took the lock. */
1081 exit_code = sig->group_exit_code;
1082 else {
1083 sig->group_exit_code = exit_code;
1084 sig->flags = SIGNAL_GROUP_EXIT;
1085 zap_other_threads(current);
1087 spin_unlock_irq(&sighand->siglock);
1090 do_exit(exit_code);
1091 /* NOTREACHED */
1095 * this kills every thread in the thread group. Note that any externally
1096 * wait4()-ing process will get the correct exit code - even if this
1097 * thread is not the thread group leader.
1099 SYSCALL_DEFINE1(exit_group, int, error_code)
1101 do_group_exit((error_code & 0xff) << 8);
1102 /* NOTREACHED */
1103 return 0;
1106 struct wait_opts {
1107 enum pid_type wo_type;
1108 int wo_flags;
1109 struct pid *wo_pid;
1111 struct siginfo __user *wo_info;
1112 int __user *wo_stat;
1113 struct rusage __user *wo_rusage;
1115 wait_queue_t child_wait;
1116 int notask_error;
1119 static inline
1120 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1122 if (type != PIDTYPE_PID)
1123 task = task->group_leader;
1124 return task->pids[type].pid;
1127 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1129 return wo->wo_type == PIDTYPE_MAX ||
1130 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1133 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1135 if (!eligible_pid(wo, p))
1136 return 0;
1137 /* Wait for all children (clone and not) if __WALL is set;
1138 * otherwise, wait for clone children *only* if __WCLONE is
1139 * set; otherwise, wait for non-clone children *only*. (Note:
1140 * A "clone" child here is one that reports to its parent
1141 * using a signal other than SIGCHLD.) */
1142 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1143 && !(wo->wo_flags & __WALL))
1144 return 0;
1146 return 1;
1149 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1150 pid_t pid, uid_t uid, int why, int status)
1152 struct siginfo __user *infop;
1153 int retval = wo->wo_rusage
1154 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1156 put_task_struct(p);
1157 infop = wo->wo_info;
1158 if (infop) {
1159 if (!retval)
1160 retval = put_user(SIGCHLD, &infop->si_signo);
1161 if (!retval)
1162 retval = put_user(0, &infop->si_errno);
1163 if (!retval)
1164 retval = put_user((short)why, &infop->si_code);
1165 if (!retval)
1166 retval = put_user(pid, &infop->si_pid);
1167 if (!retval)
1168 retval = put_user(uid, &infop->si_uid);
1169 if (!retval)
1170 retval = put_user(status, &infop->si_status);
1172 if (!retval)
1173 retval = pid;
1174 return retval;
1178 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1179 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1180 * the lock and this task is uninteresting. If we return nonzero, we have
1181 * released the lock and the system call should return.
1183 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1185 unsigned long state;
1186 int retval, status, traced;
1187 pid_t pid = task_pid_vnr(p);
1188 uid_t uid = __task_cred(p)->uid;
1189 struct siginfo __user *infop;
1191 if (!likely(wo->wo_flags & WEXITED))
1192 return 0;
1194 if (unlikely(wo->wo_flags & WNOWAIT)) {
1195 int exit_code = p->exit_code;
1196 int why;
1198 get_task_struct(p);
1199 read_unlock(&tasklist_lock);
1200 if ((exit_code & 0x7f) == 0) {
1201 why = CLD_EXITED;
1202 status = exit_code >> 8;
1203 } else {
1204 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1205 status = exit_code & 0x7f;
1207 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1211 * Try to move the task's state to DEAD
1212 * only one thread is allowed to do this:
1214 state = xchg(&p->exit_state, EXIT_DEAD);
1215 if (state != EXIT_ZOMBIE) {
1216 BUG_ON(state != EXIT_DEAD);
1217 return 0;
1220 traced = ptrace_reparented(p);
1222 * It can be ptraced but not reparented, check
1223 * !task_detached() to filter out sub-threads.
1225 if (likely(!traced) && likely(!task_detached(p))) {
1226 struct signal_struct *psig;
1227 struct signal_struct *sig;
1228 unsigned long maxrss;
1229 cputime_t tgutime, tgstime;
1232 * The resource counters for the group leader are in its
1233 * own task_struct. Those for dead threads in the group
1234 * are in its signal_struct, as are those for the child
1235 * processes it has previously reaped. All these
1236 * accumulate in the parent's signal_struct c* fields.
1238 * We don't bother to take a lock here to protect these
1239 * p->signal fields, because they are only touched by
1240 * __exit_signal, which runs with tasklist_lock
1241 * write-locked anyway, and so is excluded here. We do
1242 * need to protect the access to parent->signal fields,
1243 * as other threads in the parent group can be right
1244 * here reaping other children at the same time.
1246 * We use thread_group_times() to get times for the thread
1247 * group, which consolidates times for all threads in the
1248 * group including the group leader.
1250 thread_group_times(p, &tgutime, &tgstime);
1251 spin_lock_irq(&p->real_parent->sighand->siglock);
1252 psig = p->real_parent->signal;
1253 sig = p->signal;
1254 psig->cutime =
1255 cputime_add(psig->cutime,
1256 cputime_add(tgutime,
1257 sig->cutime));
1258 psig->cstime =
1259 cputime_add(psig->cstime,
1260 cputime_add(tgstime,
1261 sig->cstime));
1262 psig->cgtime =
1263 cputime_add(psig->cgtime,
1264 cputime_add(p->gtime,
1265 cputime_add(sig->gtime,
1266 sig->cgtime)));
1267 psig->cmin_flt +=
1268 p->min_flt + sig->min_flt + sig->cmin_flt;
1269 psig->cmaj_flt +=
1270 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1271 psig->cnvcsw +=
1272 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1273 psig->cnivcsw +=
1274 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1275 psig->cinblock +=
1276 task_io_get_inblock(p) +
1277 sig->inblock + sig->cinblock;
1278 psig->coublock +=
1279 task_io_get_oublock(p) +
1280 sig->oublock + sig->coublock;
1281 maxrss = max(sig->maxrss, sig->cmaxrss);
1282 if (psig->cmaxrss < maxrss)
1283 psig->cmaxrss = maxrss;
1284 task_io_accounting_add(&psig->ioac, &p->ioac);
1285 task_io_accounting_add(&psig->ioac, &sig->ioac);
1286 spin_unlock_irq(&p->real_parent->sighand->siglock);
1290 * Now we are sure this task is interesting, and no other
1291 * thread can reap it because we set its state to EXIT_DEAD.
1293 read_unlock(&tasklist_lock);
1295 retval = wo->wo_rusage
1296 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1297 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1298 ? p->signal->group_exit_code : p->exit_code;
1299 if (!retval && wo->wo_stat)
1300 retval = put_user(status, wo->wo_stat);
1302 infop = wo->wo_info;
1303 if (!retval && infop)
1304 retval = put_user(SIGCHLD, &infop->si_signo);
1305 if (!retval && infop)
1306 retval = put_user(0, &infop->si_errno);
1307 if (!retval && infop) {
1308 int why;
1310 if ((status & 0x7f) == 0) {
1311 why = CLD_EXITED;
1312 status >>= 8;
1313 } else {
1314 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1315 status &= 0x7f;
1317 retval = put_user((short)why, &infop->si_code);
1318 if (!retval)
1319 retval = put_user(status, &infop->si_status);
1321 if (!retval && infop)
1322 retval = put_user(pid, &infop->si_pid);
1323 if (!retval && infop)
1324 retval = put_user(uid, &infop->si_uid);
1325 if (!retval)
1326 retval = pid;
1328 if (traced) {
1329 write_lock_irq(&tasklist_lock);
1330 /* We dropped tasklist, ptracer could die and untrace */
1331 ptrace_unlink(p);
1333 * If this is not a detached task, notify the parent.
1334 * If it's still not detached after that, don't release
1335 * it now.
1337 if (!task_detached(p)) {
1338 do_notify_parent(p, p->exit_signal);
1339 if (!task_detached(p)) {
1340 p->exit_state = EXIT_ZOMBIE;
1341 p = NULL;
1344 write_unlock_irq(&tasklist_lock);
1346 if (p != NULL)
1347 release_task(p);
1349 return retval;
1352 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1354 if (ptrace) {
1355 if (task_is_stopped_or_traced(p))
1356 return &p->exit_code;
1357 } else {
1358 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1359 return &p->signal->group_exit_code;
1361 return NULL;
1365 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1366 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1367 * the lock and this task is uninteresting. If we return nonzero, we have
1368 * released the lock and the system call should return.
1370 static int wait_task_stopped(struct wait_opts *wo,
1371 int ptrace, struct task_struct *p)
1373 struct siginfo __user *infop;
1374 int retval, exit_code, *p_code, why;
1375 uid_t uid = 0; /* unneeded, required by compiler */
1376 pid_t pid;
1379 * Traditionally we see ptrace'd stopped tasks regardless of options.
1381 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1382 return 0;
1384 exit_code = 0;
1385 spin_lock_irq(&p->sighand->siglock);
1387 p_code = task_stopped_code(p, ptrace);
1388 if (unlikely(!p_code))
1389 goto unlock_sig;
1391 exit_code = *p_code;
1392 if (!exit_code)
1393 goto unlock_sig;
1395 if (!unlikely(wo->wo_flags & WNOWAIT))
1396 *p_code = 0;
1398 uid = task_uid(p);
1399 unlock_sig:
1400 spin_unlock_irq(&p->sighand->siglock);
1401 if (!exit_code)
1402 return 0;
1405 * Now we are pretty sure this task is interesting.
1406 * Make sure it doesn't get reaped out from under us while we
1407 * give up the lock and then examine it below. We don't want to
1408 * keep holding onto the tasklist_lock while we call getrusage and
1409 * possibly take page faults for user memory.
1411 get_task_struct(p);
1412 pid = task_pid_vnr(p);
1413 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1414 read_unlock(&tasklist_lock);
1416 if (unlikely(wo->wo_flags & WNOWAIT))
1417 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1419 retval = wo->wo_rusage
1420 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1421 if (!retval && wo->wo_stat)
1422 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1424 infop = wo->wo_info;
1425 if (!retval && infop)
1426 retval = put_user(SIGCHLD, &infop->si_signo);
1427 if (!retval && infop)
1428 retval = put_user(0, &infop->si_errno);
1429 if (!retval && infop)
1430 retval = put_user((short)why, &infop->si_code);
1431 if (!retval && infop)
1432 retval = put_user(exit_code, &infop->si_status);
1433 if (!retval && infop)
1434 retval = put_user(pid, &infop->si_pid);
1435 if (!retval && infop)
1436 retval = put_user(uid, &infop->si_uid);
1437 if (!retval)
1438 retval = pid;
1439 put_task_struct(p);
1441 BUG_ON(!retval);
1442 return retval;
1446 * Handle do_wait work for one task in a live, non-stopped state.
1447 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1448 * the lock and this task is uninteresting. If we return nonzero, we have
1449 * released the lock and the system call should return.
1451 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1453 int retval;
1454 pid_t pid;
1455 uid_t uid;
1457 if (!unlikely(wo->wo_flags & WCONTINUED))
1458 return 0;
1460 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1461 return 0;
1463 spin_lock_irq(&p->sighand->siglock);
1464 /* Re-check with the lock held. */
1465 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1466 spin_unlock_irq(&p->sighand->siglock);
1467 return 0;
1469 if (!unlikely(wo->wo_flags & WNOWAIT))
1470 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1471 uid = task_uid(p);
1472 spin_unlock_irq(&p->sighand->siglock);
1474 pid = task_pid_vnr(p);
1475 get_task_struct(p);
1476 read_unlock(&tasklist_lock);
1478 if (!wo->wo_info) {
1479 retval = wo->wo_rusage
1480 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1481 put_task_struct(p);
1482 if (!retval && wo->wo_stat)
1483 retval = put_user(0xffff, wo->wo_stat);
1484 if (!retval)
1485 retval = pid;
1486 } else {
1487 retval = wait_noreap_copyout(wo, p, pid, uid,
1488 CLD_CONTINUED, SIGCONT);
1489 BUG_ON(retval == 0);
1492 return retval;
1496 * Consider @p for a wait by @parent.
1498 * -ECHILD should be in ->notask_error before the first call.
1499 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1500 * Returns zero if the search for a child should continue;
1501 * then ->notask_error is 0 if @p is an eligible child,
1502 * or another error from security_task_wait(), or still -ECHILD.
1504 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1505 struct task_struct *p)
1507 int ret = eligible_child(wo, p);
1508 if (!ret)
1509 return ret;
1511 ret = security_task_wait(p);
1512 if (unlikely(ret < 0)) {
1514 * If we have not yet seen any eligible child,
1515 * then let this error code replace -ECHILD.
1516 * A permission error will give the user a clue
1517 * to look for security policy problems, rather
1518 * than for mysterious wait bugs.
1520 if (wo->notask_error)
1521 wo->notask_error = ret;
1522 return 0;
1525 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1527 * This child is hidden by ptrace.
1528 * We aren't allowed to see it now, but eventually we will.
1530 wo->notask_error = 0;
1531 return 0;
1534 if (p->exit_state == EXIT_DEAD)
1535 return 0;
1538 * We don't reap group leaders with subthreads.
1540 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1541 return wait_task_zombie(wo, p);
1544 * It's stopped or running now, so it might
1545 * later continue, exit, or stop again.
1547 wo->notask_error = 0;
1549 if (task_stopped_code(p, ptrace))
1550 return wait_task_stopped(wo, ptrace, p);
1552 return wait_task_continued(wo, p);
1556 * Do the work of do_wait() for one thread in the group, @tsk.
1558 * -ECHILD should be in ->notask_error before the first call.
1559 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1560 * Returns zero if the search for a child should continue; then
1561 * ->notask_error is 0 if there were any eligible children,
1562 * or another error from security_task_wait(), or still -ECHILD.
1564 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1566 struct task_struct *p;
1568 list_for_each_entry(p, &tsk->children, sibling) {
1569 int ret = wait_consider_task(wo, 0, p);
1570 if (ret)
1571 return ret;
1574 return 0;
1577 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1579 struct task_struct *p;
1581 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1582 int ret = wait_consider_task(wo, 1, p);
1583 if (ret)
1584 return ret;
1587 return 0;
1590 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1591 int sync, void *key)
1593 struct wait_opts *wo = container_of(wait, struct wait_opts,
1594 child_wait);
1595 struct task_struct *p = key;
1597 if (!eligible_pid(wo, p))
1598 return 0;
1600 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1601 return 0;
1603 return default_wake_function(wait, mode, sync, key);
1606 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1608 __wake_up_sync_key(&parent->signal->wait_chldexit,
1609 TASK_INTERRUPTIBLE, 1, p);
1612 static long do_wait(struct wait_opts *wo)
1614 struct task_struct *tsk;
1615 int retval;
1617 trace_sched_process_wait(wo->wo_pid);
1619 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1620 wo->child_wait.private = current;
1621 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1622 repeat:
1624 * If there is nothing that can match our critiera just get out.
1625 * We will clear ->notask_error to zero if we see any child that
1626 * might later match our criteria, even if we are not able to reap
1627 * it yet.
1629 wo->notask_error = -ECHILD;
1630 if ((wo->wo_type < PIDTYPE_MAX) &&
1631 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1632 goto notask;
1634 set_current_state(TASK_INTERRUPTIBLE);
1635 read_lock(&tasklist_lock);
1636 tsk = current;
1637 do {
1638 retval = do_wait_thread(wo, tsk);
1639 if (retval)
1640 goto end;
1642 retval = ptrace_do_wait(wo, tsk);
1643 if (retval)
1644 goto end;
1646 if (wo->wo_flags & __WNOTHREAD)
1647 break;
1648 } while_each_thread(current, tsk);
1649 read_unlock(&tasklist_lock);
1651 notask:
1652 retval = wo->notask_error;
1653 if (!retval && !(wo->wo_flags & WNOHANG)) {
1654 retval = -ERESTARTSYS;
1655 if (!signal_pending(current)) {
1656 schedule();
1657 goto repeat;
1660 end:
1661 __set_current_state(TASK_RUNNING);
1662 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1663 return retval;
1666 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1667 infop, int, options, struct rusage __user *, ru)
1669 struct wait_opts wo;
1670 struct pid *pid = NULL;
1671 enum pid_type type;
1672 long ret;
1674 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1675 return -EINVAL;
1676 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1677 return -EINVAL;
1679 switch (which) {
1680 case P_ALL:
1681 type = PIDTYPE_MAX;
1682 break;
1683 case P_PID:
1684 type = PIDTYPE_PID;
1685 if (upid <= 0)
1686 return -EINVAL;
1687 break;
1688 case P_PGID:
1689 type = PIDTYPE_PGID;
1690 if (upid <= 0)
1691 return -EINVAL;
1692 break;
1693 default:
1694 return -EINVAL;
1697 if (type < PIDTYPE_MAX)
1698 pid = find_get_pid(upid);
1700 wo.wo_type = type;
1701 wo.wo_pid = pid;
1702 wo.wo_flags = options;
1703 wo.wo_info = infop;
1704 wo.wo_stat = NULL;
1705 wo.wo_rusage = ru;
1706 ret = do_wait(&wo);
1708 if (ret > 0) {
1709 ret = 0;
1710 } else if (infop) {
1712 * For a WNOHANG return, clear out all the fields
1713 * we would set so the user can easily tell the
1714 * difference.
1716 if (!ret)
1717 ret = put_user(0, &infop->si_signo);
1718 if (!ret)
1719 ret = put_user(0, &infop->si_errno);
1720 if (!ret)
1721 ret = put_user(0, &infop->si_code);
1722 if (!ret)
1723 ret = put_user(0, &infop->si_pid);
1724 if (!ret)
1725 ret = put_user(0, &infop->si_uid);
1726 if (!ret)
1727 ret = put_user(0, &infop->si_status);
1730 put_pid(pid);
1732 /* avoid REGPARM breakage on x86: */
1733 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1734 return ret;
1737 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1738 int, options, struct rusage __user *, ru)
1740 struct wait_opts wo;
1741 struct pid *pid = NULL;
1742 enum pid_type type;
1743 long ret;
1745 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1746 __WNOTHREAD|__WCLONE|__WALL))
1747 return -EINVAL;
1749 if (upid == -1)
1750 type = PIDTYPE_MAX;
1751 else if (upid < 0) {
1752 type = PIDTYPE_PGID;
1753 pid = find_get_pid(-upid);
1754 } else if (upid == 0) {
1755 type = PIDTYPE_PGID;
1756 pid = get_task_pid(current, PIDTYPE_PGID);
1757 } else /* upid > 0 */ {
1758 type = PIDTYPE_PID;
1759 pid = find_get_pid(upid);
1762 wo.wo_type = type;
1763 wo.wo_pid = pid;
1764 wo.wo_flags = options | WEXITED;
1765 wo.wo_info = NULL;
1766 wo.wo_stat = stat_addr;
1767 wo.wo_rusage = ru;
1768 ret = do_wait(&wo);
1769 put_pid(pid);
1771 /* avoid REGPARM breakage on x86: */
1772 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1773 return ret;
1776 #ifdef __ARCH_WANT_SYS_WAITPID
1779 * sys_waitpid() remains for compatibility. waitpid() should be
1780 * implemented by calling sys_wait4() from libc.a.
1782 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1784 return sys_wait4(pid, stat_addr, options, NULL);
1787 #endif