sky2: kfree_skb with IRQ with netconsole
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blobc1a4bda0779df12b678ac9120c565c0829f07983
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
57 * Stripe cache
60 #define NR_STRIPES 256
61 #define STRIPE_SIZE PAGE_SIZE
62 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
83 #define RAID5_DEBUG 0
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92 #if RAID5_DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
102 static inline int raid6_next_disk(int disk, int raid_disks)
104 disk++;
105 return (disk < raid_disks) ? disk : 0;
107 static void print_raid5_conf (raid5_conf_t *conf);
109 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
111 if (atomic_dec_and_test(&sh->count)) {
112 BUG_ON(!list_empty(&sh->lru));
113 BUG_ON(atomic_read(&conf->active_stripes)==0);
114 if (test_bit(STRIPE_HANDLE, &sh->state)) {
115 if (test_bit(STRIPE_DELAYED, &sh->state)) {
116 list_add_tail(&sh->lru, &conf->delayed_list);
117 blk_plug_device(conf->mddev->queue);
118 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
119 sh->bm_seq - conf->seq_write > 0) {
120 list_add_tail(&sh->lru, &conf->bitmap_list);
121 blk_plug_device(conf->mddev->queue);
122 } else {
123 clear_bit(STRIPE_BIT_DELAY, &sh->state);
124 list_add_tail(&sh->lru, &conf->handle_list);
126 md_wakeup_thread(conf->mddev->thread);
127 } else {
128 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129 atomic_dec(&conf->preread_active_stripes);
130 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131 md_wakeup_thread(conf->mddev->thread);
133 atomic_dec(&conf->active_stripes);
134 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135 list_add_tail(&sh->lru, &conf->inactive_list);
136 wake_up(&conf->wait_for_stripe);
141 static void release_stripe(struct stripe_head *sh)
143 raid5_conf_t *conf = sh->raid_conf;
144 unsigned long flags;
146 spin_lock_irqsave(&conf->device_lock, flags);
147 __release_stripe(conf, sh);
148 spin_unlock_irqrestore(&conf->device_lock, flags);
151 static inline void remove_hash(struct stripe_head *sh)
153 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
155 hlist_del_init(&sh->hash);
158 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
160 struct hlist_head *hp = stripe_hash(conf, sh->sector);
162 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
164 CHECK_DEVLOCK();
165 hlist_add_head(&sh->hash, hp);
169 /* find an idle stripe, make sure it is unhashed, and return it. */
170 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
172 struct stripe_head *sh = NULL;
173 struct list_head *first;
175 CHECK_DEVLOCK();
176 if (list_empty(&conf->inactive_list))
177 goto out;
178 first = conf->inactive_list.next;
179 sh = list_entry(first, struct stripe_head, lru);
180 list_del_init(first);
181 remove_hash(sh);
182 atomic_inc(&conf->active_stripes);
183 out:
184 return sh;
187 static void shrink_buffers(struct stripe_head *sh, int num)
189 struct page *p;
190 int i;
192 for (i=0; i<num ; i++) {
193 p = sh->dev[i].page;
194 if (!p)
195 continue;
196 sh->dev[i].page = NULL;
197 put_page(p);
201 static int grow_buffers(struct stripe_head *sh, int num)
203 int i;
205 for (i=0; i<num; i++) {
206 struct page *page;
208 if (!(page = alloc_page(GFP_KERNEL))) {
209 return 1;
211 sh->dev[i].page = page;
213 return 0;
216 static void raid5_build_block (struct stripe_head *sh, int i);
218 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
220 raid5_conf_t *conf = sh->raid_conf;
221 int i;
223 BUG_ON(atomic_read(&sh->count) != 0);
224 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
226 CHECK_DEVLOCK();
227 PRINTK("init_stripe called, stripe %llu\n",
228 (unsigned long long)sh->sector);
230 remove_hash(sh);
232 sh->sector = sector;
233 sh->pd_idx = pd_idx;
234 sh->state = 0;
236 sh->disks = disks;
238 for (i = sh->disks; i--; ) {
239 struct r5dev *dev = &sh->dev[i];
241 if (dev->toread || dev->towrite || dev->written ||
242 test_bit(R5_LOCKED, &dev->flags)) {
243 printk("sector=%llx i=%d %p %p %p %d\n",
244 (unsigned long long)sh->sector, i, dev->toread,
245 dev->towrite, dev->written,
246 test_bit(R5_LOCKED, &dev->flags));
247 BUG();
249 dev->flags = 0;
250 raid5_build_block(sh, i);
252 insert_hash(conf, sh);
255 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
257 struct stripe_head *sh;
258 struct hlist_node *hn;
260 CHECK_DEVLOCK();
261 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
262 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
263 if (sh->sector == sector && sh->disks == disks)
264 return sh;
265 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
266 return NULL;
269 static void unplug_slaves(mddev_t *mddev);
270 static void raid5_unplug_device(request_queue_t *q);
272 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
273 int pd_idx, int noblock)
275 struct stripe_head *sh;
277 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
279 spin_lock_irq(&conf->device_lock);
281 do {
282 wait_event_lock_irq(conf->wait_for_stripe,
283 conf->quiesce == 0,
284 conf->device_lock, /* nothing */);
285 sh = __find_stripe(conf, sector, disks);
286 if (!sh) {
287 if (!conf->inactive_blocked)
288 sh = get_free_stripe(conf);
289 if (noblock && sh == NULL)
290 break;
291 if (!sh) {
292 conf->inactive_blocked = 1;
293 wait_event_lock_irq(conf->wait_for_stripe,
294 !list_empty(&conf->inactive_list) &&
295 (atomic_read(&conf->active_stripes)
296 < (conf->max_nr_stripes *3/4)
297 || !conf->inactive_blocked),
298 conf->device_lock,
299 raid5_unplug_device(conf->mddev->queue)
301 conf->inactive_blocked = 0;
302 } else
303 init_stripe(sh, sector, pd_idx, disks);
304 } else {
305 if (atomic_read(&sh->count)) {
306 BUG_ON(!list_empty(&sh->lru));
307 } else {
308 if (!test_bit(STRIPE_HANDLE, &sh->state))
309 atomic_inc(&conf->active_stripes);
310 if (list_empty(&sh->lru) &&
311 !test_bit(STRIPE_EXPANDING, &sh->state))
312 BUG();
313 list_del_init(&sh->lru);
316 } while (sh == NULL);
318 if (sh)
319 atomic_inc(&sh->count);
321 spin_unlock_irq(&conf->device_lock);
322 return sh;
325 static int grow_one_stripe(raid5_conf_t *conf)
327 struct stripe_head *sh;
328 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
329 if (!sh)
330 return 0;
331 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
332 sh->raid_conf = conf;
333 spin_lock_init(&sh->lock);
335 if (grow_buffers(sh, conf->raid_disks)) {
336 shrink_buffers(sh, conf->raid_disks);
337 kmem_cache_free(conf->slab_cache, sh);
338 return 0;
340 sh->disks = conf->raid_disks;
341 /* we just created an active stripe so... */
342 atomic_set(&sh->count, 1);
343 atomic_inc(&conf->active_stripes);
344 INIT_LIST_HEAD(&sh->lru);
345 release_stripe(sh);
346 return 1;
349 static int grow_stripes(raid5_conf_t *conf, int num)
351 kmem_cache_t *sc;
352 int devs = conf->raid_disks;
354 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
355 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
356 conf->active_name = 0;
357 sc = kmem_cache_create(conf->cache_name[conf->active_name],
358 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
359 0, 0, NULL, NULL);
360 if (!sc)
361 return 1;
362 conf->slab_cache = sc;
363 conf->pool_size = devs;
364 while (num--)
365 if (!grow_one_stripe(conf))
366 return 1;
367 return 0;
370 #ifdef CONFIG_MD_RAID5_RESHAPE
371 static int resize_stripes(raid5_conf_t *conf, int newsize)
373 /* Make all the stripes able to hold 'newsize' devices.
374 * New slots in each stripe get 'page' set to a new page.
376 * This happens in stages:
377 * 1/ create a new kmem_cache and allocate the required number of
378 * stripe_heads.
379 * 2/ gather all the old stripe_heads and tranfer the pages across
380 * to the new stripe_heads. This will have the side effect of
381 * freezing the array as once all stripe_heads have been collected,
382 * no IO will be possible. Old stripe heads are freed once their
383 * pages have been transferred over, and the old kmem_cache is
384 * freed when all stripes are done.
385 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
386 * we simple return a failre status - no need to clean anything up.
387 * 4/ allocate new pages for the new slots in the new stripe_heads.
388 * If this fails, we don't bother trying the shrink the
389 * stripe_heads down again, we just leave them as they are.
390 * As each stripe_head is processed the new one is released into
391 * active service.
393 * Once step2 is started, we cannot afford to wait for a write,
394 * so we use GFP_NOIO allocations.
396 struct stripe_head *osh, *nsh;
397 LIST_HEAD(newstripes);
398 struct disk_info *ndisks;
399 int err = 0;
400 kmem_cache_t *sc;
401 int i;
403 if (newsize <= conf->pool_size)
404 return 0; /* never bother to shrink */
406 md_allow_write(conf->mddev);
408 /* Step 1 */
409 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
410 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
411 0, 0, NULL, NULL);
412 if (!sc)
413 return -ENOMEM;
415 for (i = conf->max_nr_stripes; i; i--) {
416 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
417 if (!nsh)
418 break;
420 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
422 nsh->raid_conf = conf;
423 spin_lock_init(&nsh->lock);
425 list_add(&nsh->lru, &newstripes);
427 if (i) {
428 /* didn't get enough, give up */
429 while (!list_empty(&newstripes)) {
430 nsh = list_entry(newstripes.next, struct stripe_head, lru);
431 list_del(&nsh->lru);
432 kmem_cache_free(sc, nsh);
434 kmem_cache_destroy(sc);
435 return -ENOMEM;
437 /* Step 2 - Must use GFP_NOIO now.
438 * OK, we have enough stripes, start collecting inactive
439 * stripes and copying them over
441 list_for_each_entry(nsh, &newstripes, lru) {
442 spin_lock_irq(&conf->device_lock);
443 wait_event_lock_irq(conf->wait_for_stripe,
444 !list_empty(&conf->inactive_list),
445 conf->device_lock,
446 unplug_slaves(conf->mddev)
448 osh = get_free_stripe(conf);
449 spin_unlock_irq(&conf->device_lock);
450 atomic_set(&nsh->count, 1);
451 for(i=0; i<conf->pool_size; i++)
452 nsh->dev[i].page = osh->dev[i].page;
453 for( ; i<newsize; i++)
454 nsh->dev[i].page = NULL;
455 kmem_cache_free(conf->slab_cache, osh);
457 kmem_cache_destroy(conf->slab_cache);
459 /* Step 3.
460 * At this point, we are holding all the stripes so the array
461 * is completely stalled, so now is a good time to resize
462 * conf->disks.
464 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
465 if (ndisks) {
466 for (i=0; i<conf->raid_disks; i++)
467 ndisks[i] = conf->disks[i];
468 kfree(conf->disks);
469 conf->disks = ndisks;
470 } else
471 err = -ENOMEM;
473 /* Step 4, return new stripes to service */
474 while(!list_empty(&newstripes)) {
475 nsh = list_entry(newstripes.next, struct stripe_head, lru);
476 list_del_init(&nsh->lru);
477 for (i=conf->raid_disks; i < newsize; i++)
478 if (nsh->dev[i].page == NULL) {
479 struct page *p = alloc_page(GFP_NOIO);
480 nsh->dev[i].page = p;
481 if (!p)
482 err = -ENOMEM;
484 release_stripe(nsh);
486 /* critical section pass, GFP_NOIO no longer needed */
488 conf->slab_cache = sc;
489 conf->active_name = 1-conf->active_name;
490 conf->pool_size = newsize;
491 return err;
493 #endif
495 static int drop_one_stripe(raid5_conf_t *conf)
497 struct stripe_head *sh;
499 spin_lock_irq(&conf->device_lock);
500 sh = get_free_stripe(conf);
501 spin_unlock_irq(&conf->device_lock);
502 if (!sh)
503 return 0;
504 BUG_ON(atomic_read(&sh->count));
505 shrink_buffers(sh, conf->pool_size);
506 kmem_cache_free(conf->slab_cache, sh);
507 atomic_dec(&conf->active_stripes);
508 return 1;
511 static void shrink_stripes(raid5_conf_t *conf)
513 while (drop_one_stripe(conf))
516 if (conf->slab_cache)
517 kmem_cache_destroy(conf->slab_cache);
518 conf->slab_cache = NULL;
521 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
522 int error)
524 struct stripe_head *sh = bi->bi_private;
525 raid5_conf_t *conf = sh->raid_conf;
526 int disks = sh->disks, i;
527 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
528 char b[BDEVNAME_SIZE];
529 mdk_rdev_t *rdev;
531 if (bi->bi_size)
532 return 1;
534 for (i=0 ; i<disks; i++)
535 if (bi == &sh->dev[i].req)
536 break;
538 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
539 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
540 uptodate);
541 if (i == disks) {
542 BUG();
543 return 0;
546 if (uptodate) {
547 #if 0
548 struct bio *bio;
549 unsigned long flags;
550 spin_lock_irqsave(&conf->device_lock, flags);
551 /* we can return a buffer if we bypassed the cache or
552 * if the top buffer is not in highmem. If there are
553 * multiple buffers, leave the extra work to
554 * handle_stripe
556 buffer = sh->bh_read[i];
557 if (buffer &&
558 (!PageHighMem(buffer->b_page)
559 || buffer->b_page == bh->b_page )
561 sh->bh_read[i] = buffer->b_reqnext;
562 buffer->b_reqnext = NULL;
563 } else
564 buffer = NULL;
565 spin_unlock_irqrestore(&conf->device_lock, flags);
566 if (sh->bh_page[i]==bh->b_page)
567 set_buffer_uptodate(bh);
568 if (buffer) {
569 if (buffer->b_page != bh->b_page)
570 memcpy(buffer->b_data, bh->b_data, bh->b_size);
571 buffer->b_end_io(buffer, 1);
573 #else
574 set_bit(R5_UPTODATE, &sh->dev[i].flags);
575 #endif
576 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
577 rdev = conf->disks[i].rdev;
578 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
579 mdname(conf->mddev), STRIPE_SECTORS,
580 (unsigned long long)sh->sector + rdev->data_offset,
581 bdevname(rdev->bdev, b));
582 clear_bit(R5_ReadError, &sh->dev[i].flags);
583 clear_bit(R5_ReWrite, &sh->dev[i].flags);
585 if (atomic_read(&conf->disks[i].rdev->read_errors))
586 atomic_set(&conf->disks[i].rdev->read_errors, 0);
587 } else {
588 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
589 int retry = 0;
590 rdev = conf->disks[i].rdev;
592 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
593 atomic_inc(&rdev->read_errors);
594 if (conf->mddev->degraded)
595 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
596 mdname(conf->mddev),
597 (unsigned long long)sh->sector + rdev->data_offset,
598 bdn);
599 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
600 /* Oh, no!!! */
601 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
602 mdname(conf->mddev),
603 (unsigned long long)sh->sector + rdev->data_offset,
604 bdn);
605 else if (atomic_read(&rdev->read_errors)
606 > conf->max_nr_stripes)
607 printk(KERN_WARNING
608 "raid5:%s: Too many read errors, failing device %s.\n",
609 mdname(conf->mddev), bdn);
610 else
611 retry = 1;
612 if (retry)
613 set_bit(R5_ReadError, &sh->dev[i].flags);
614 else {
615 clear_bit(R5_ReadError, &sh->dev[i].flags);
616 clear_bit(R5_ReWrite, &sh->dev[i].flags);
617 md_error(conf->mddev, rdev);
620 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
621 #if 0
622 /* must restore b_page before unlocking buffer... */
623 if (sh->bh_page[i] != bh->b_page) {
624 bh->b_page = sh->bh_page[i];
625 bh->b_data = page_address(bh->b_page);
626 clear_buffer_uptodate(bh);
628 #endif
629 clear_bit(R5_LOCKED, &sh->dev[i].flags);
630 set_bit(STRIPE_HANDLE, &sh->state);
631 release_stripe(sh);
632 return 0;
635 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
636 int error)
638 struct stripe_head *sh = bi->bi_private;
639 raid5_conf_t *conf = sh->raid_conf;
640 int disks = sh->disks, i;
641 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
643 if (bi->bi_size)
644 return 1;
646 for (i=0 ; i<disks; i++)
647 if (bi == &sh->dev[i].req)
648 break;
650 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
651 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
652 uptodate);
653 if (i == disks) {
654 BUG();
655 return 0;
658 if (!uptodate)
659 md_error(conf->mddev, conf->disks[i].rdev);
661 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
663 clear_bit(R5_LOCKED, &sh->dev[i].flags);
664 set_bit(STRIPE_HANDLE, &sh->state);
665 release_stripe(sh);
666 return 0;
670 static sector_t compute_blocknr(struct stripe_head *sh, int i);
672 static void raid5_build_block (struct stripe_head *sh, int i)
674 struct r5dev *dev = &sh->dev[i];
676 bio_init(&dev->req);
677 dev->req.bi_io_vec = &dev->vec;
678 dev->req.bi_vcnt++;
679 dev->req.bi_max_vecs++;
680 dev->vec.bv_page = dev->page;
681 dev->vec.bv_len = STRIPE_SIZE;
682 dev->vec.bv_offset = 0;
684 dev->req.bi_sector = sh->sector;
685 dev->req.bi_private = sh;
687 dev->flags = 0;
688 dev->sector = compute_blocknr(sh, i);
691 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
693 char b[BDEVNAME_SIZE];
694 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
695 PRINTK("raid5: error called\n");
697 if (!test_bit(Faulty, &rdev->flags)) {
698 set_bit(MD_CHANGE_DEVS, &mddev->flags);
699 if (test_and_clear_bit(In_sync, &rdev->flags)) {
700 unsigned long flags;
701 spin_lock_irqsave(&conf->device_lock, flags);
702 mddev->degraded++;
703 spin_unlock_irqrestore(&conf->device_lock, flags);
705 * if recovery was running, make sure it aborts.
707 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
709 set_bit(Faulty, &rdev->flags);
710 printk (KERN_ALERT
711 "raid5: Disk failure on %s, disabling device."
712 " Operation continuing on %d devices\n",
713 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
718 * Input: a 'big' sector number,
719 * Output: index of the data and parity disk, and the sector # in them.
721 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
722 unsigned int data_disks, unsigned int * dd_idx,
723 unsigned int * pd_idx, raid5_conf_t *conf)
725 long stripe;
726 unsigned long chunk_number;
727 unsigned int chunk_offset;
728 sector_t new_sector;
729 int sectors_per_chunk = conf->chunk_size >> 9;
731 /* First compute the information on this sector */
734 * Compute the chunk number and the sector offset inside the chunk
736 chunk_offset = sector_div(r_sector, sectors_per_chunk);
737 chunk_number = r_sector;
738 BUG_ON(r_sector != chunk_number);
741 * Compute the stripe number
743 stripe = chunk_number / data_disks;
746 * Compute the data disk and parity disk indexes inside the stripe
748 *dd_idx = chunk_number % data_disks;
751 * Select the parity disk based on the user selected algorithm.
753 switch(conf->level) {
754 case 4:
755 *pd_idx = data_disks;
756 break;
757 case 5:
758 switch (conf->algorithm) {
759 case ALGORITHM_LEFT_ASYMMETRIC:
760 *pd_idx = data_disks - stripe % raid_disks;
761 if (*dd_idx >= *pd_idx)
762 (*dd_idx)++;
763 break;
764 case ALGORITHM_RIGHT_ASYMMETRIC:
765 *pd_idx = stripe % raid_disks;
766 if (*dd_idx >= *pd_idx)
767 (*dd_idx)++;
768 break;
769 case ALGORITHM_LEFT_SYMMETRIC:
770 *pd_idx = data_disks - stripe % raid_disks;
771 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
772 break;
773 case ALGORITHM_RIGHT_SYMMETRIC:
774 *pd_idx = stripe % raid_disks;
775 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
776 break;
777 default:
778 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
779 conf->algorithm);
781 break;
782 case 6:
784 /**** FIX THIS ****/
785 switch (conf->algorithm) {
786 case ALGORITHM_LEFT_ASYMMETRIC:
787 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
788 if (*pd_idx == raid_disks-1)
789 (*dd_idx)++; /* Q D D D P */
790 else if (*dd_idx >= *pd_idx)
791 (*dd_idx) += 2; /* D D P Q D */
792 break;
793 case ALGORITHM_RIGHT_ASYMMETRIC:
794 *pd_idx = stripe % raid_disks;
795 if (*pd_idx == raid_disks-1)
796 (*dd_idx)++; /* Q D D D P */
797 else if (*dd_idx >= *pd_idx)
798 (*dd_idx) += 2; /* D D P Q D */
799 break;
800 case ALGORITHM_LEFT_SYMMETRIC:
801 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
802 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
803 break;
804 case ALGORITHM_RIGHT_SYMMETRIC:
805 *pd_idx = stripe % raid_disks;
806 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
807 break;
808 default:
809 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
810 conf->algorithm);
812 break;
816 * Finally, compute the new sector number
818 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
819 return new_sector;
823 static sector_t compute_blocknr(struct stripe_head *sh, int i)
825 raid5_conf_t *conf = sh->raid_conf;
826 int raid_disks = sh->disks, data_disks = raid_disks - 1;
827 sector_t new_sector = sh->sector, check;
828 int sectors_per_chunk = conf->chunk_size >> 9;
829 sector_t stripe;
830 int chunk_offset;
831 int chunk_number, dummy1, dummy2, dd_idx = i;
832 sector_t r_sector;
835 chunk_offset = sector_div(new_sector, sectors_per_chunk);
836 stripe = new_sector;
837 BUG_ON(new_sector != stripe);
839 if (i == sh->pd_idx)
840 return 0;
841 switch(conf->level) {
842 case 4: break;
843 case 5:
844 switch (conf->algorithm) {
845 case ALGORITHM_LEFT_ASYMMETRIC:
846 case ALGORITHM_RIGHT_ASYMMETRIC:
847 if (i > sh->pd_idx)
848 i--;
849 break;
850 case ALGORITHM_LEFT_SYMMETRIC:
851 case ALGORITHM_RIGHT_SYMMETRIC:
852 if (i < sh->pd_idx)
853 i += raid_disks;
854 i -= (sh->pd_idx + 1);
855 break;
856 default:
857 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
858 conf->algorithm);
860 break;
861 case 6:
862 data_disks = raid_disks - 2;
863 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
864 return 0; /* It is the Q disk */
865 switch (conf->algorithm) {
866 case ALGORITHM_LEFT_ASYMMETRIC:
867 case ALGORITHM_RIGHT_ASYMMETRIC:
868 if (sh->pd_idx == raid_disks-1)
869 i--; /* Q D D D P */
870 else if (i > sh->pd_idx)
871 i -= 2; /* D D P Q D */
872 break;
873 case ALGORITHM_LEFT_SYMMETRIC:
874 case ALGORITHM_RIGHT_SYMMETRIC:
875 if (sh->pd_idx == raid_disks-1)
876 i--; /* Q D D D P */
877 else {
878 /* D D P Q D */
879 if (i < sh->pd_idx)
880 i += raid_disks;
881 i -= (sh->pd_idx + 2);
883 break;
884 default:
885 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
886 conf->algorithm);
888 break;
891 chunk_number = stripe * data_disks + i;
892 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
894 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
895 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
896 printk(KERN_ERR "compute_blocknr: map not correct\n");
897 return 0;
899 return r_sector;
905 * Copy data between a page in the stripe cache, and one or more bion
906 * The page could align with the middle of the bio, or there could be
907 * several bion, each with several bio_vecs, which cover part of the page
908 * Multiple bion are linked together on bi_next. There may be extras
909 * at the end of this list. We ignore them.
911 static void copy_data(int frombio, struct bio *bio,
912 struct page *page,
913 sector_t sector)
915 char *pa = page_address(page);
916 struct bio_vec *bvl;
917 int i;
918 int page_offset;
920 if (bio->bi_sector >= sector)
921 page_offset = (signed)(bio->bi_sector - sector) * 512;
922 else
923 page_offset = (signed)(sector - bio->bi_sector) * -512;
924 bio_for_each_segment(bvl, bio, i) {
925 int len = bio_iovec_idx(bio,i)->bv_len;
926 int clen;
927 int b_offset = 0;
929 if (page_offset < 0) {
930 b_offset = -page_offset;
931 page_offset += b_offset;
932 len -= b_offset;
935 if (len > 0 && page_offset + len > STRIPE_SIZE)
936 clen = STRIPE_SIZE - page_offset;
937 else clen = len;
939 if (clen > 0) {
940 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
941 if (frombio)
942 memcpy(pa+page_offset, ba+b_offset, clen);
943 else
944 memcpy(ba+b_offset, pa+page_offset, clen);
945 __bio_kunmap_atomic(ba, KM_USER0);
947 if (clen < len) /* hit end of page */
948 break;
949 page_offset += len;
953 #define check_xor() do { \
954 if (count == MAX_XOR_BLOCKS) { \
955 xor_block(count, STRIPE_SIZE, ptr); \
956 count = 1; \
958 } while(0)
961 static void compute_block(struct stripe_head *sh, int dd_idx)
963 int i, count, disks = sh->disks;
964 void *ptr[MAX_XOR_BLOCKS], *p;
966 PRINTK("compute_block, stripe %llu, idx %d\n",
967 (unsigned long long)sh->sector, dd_idx);
969 ptr[0] = page_address(sh->dev[dd_idx].page);
970 memset(ptr[0], 0, STRIPE_SIZE);
971 count = 1;
972 for (i = disks ; i--; ) {
973 if (i == dd_idx)
974 continue;
975 p = page_address(sh->dev[i].page);
976 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
977 ptr[count++] = p;
978 else
979 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
980 " not present\n", dd_idx,
981 (unsigned long long)sh->sector, i);
983 check_xor();
985 if (count != 1)
986 xor_block(count, STRIPE_SIZE, ptr);
987 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
990 static void compute_parity5(struct stripe_head *sh, int method)
992 raid5_conf_t *conf = sh->raid_conf;
993 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
994 void *ptr[MAX_XOR_BLOCKS];
995 struct bio *chosen;
997 PRINTK("compute_parity5, stripe %llu, method %d\n",
998 (unsigned long long)sh->sector, method);
1000 count = 1;
1001 ptr[0] = page_address(sh->dev[pd_idx].page);
1002 switch(method) {
1003 case READ_MODIFY_WRITE:
1004 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1005 for (i=disks ; i-- ;) {
1006 if (i==pd_idx)
1007 continue;
1008 if (sh->dev[i].towrite &&
1009 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1010 ptr[count++] = page_address(sh->dev[i].page);
1011 chosen = sh->dev[i].towrite;
1012 sh->dev[i].towrite = NULL;
1014 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1015 wake_up(&conf->wait_for_overlap);
1017 BUG_ON(sh->dev[i].written);
1018 sh->dev[i].written = chosen;
1019 check_xor();
1022 break;
1023 case RECONSTRUCT_WRITE:
1024 memset(ptr[0], 0, STRIPE_SIZE);
1025 for (i= disks; i-- ;)
1026 if (i!=pd_idx && sh->dev[i].towrite) {
1027 chosen = sh->dev[i].towrite;
1028 sh->dev[i].towrite = NULL;
1030 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1031 wake_up(&conf->wait_for_overlap);
1033 BUG_ON(sh->dev[i].written);
1034 sh->dev[i].written = chosen;
1036 break;
1037 case CHECK_PARITY:
1038 break;
1040 if (count>1) {
1041 xor_block(count, STRIPE_SIZE, ptr);
1042 count = 1;
1045 for (i = disks; i--;)
1046 if (sh->dev[i].written) {
1047 sector_t sector = sh->dev[i].sector;
1048 struct bio *wbi = sh->dev[i].written;
1049 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1050 copy_data(1, wbi, sh->dev[i].page, sector);
1051 wbi = r5_next_bio(wbi, sector);
1054 set_bit(R5_LOCKED, &sh->dev[i].flags);
1055 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1058 switch(method) {
1059 case RECONSTRUCT_WRITE:
1060 case CHECK_PARITY:
1061 for (i=disks; i--;)
1062 if (i != pd_idx) {
1063 ptr[count++] = page_address(sh->dev[i].page);
1064 check_xor();
1066 break;
1067 case READ_MODIFY_WRITE:
1068 for (i = disks; i--;)
1069 if (sh->dev[i].written) {
1070 ptr[count++] = page_address(sh->dev[i].page);
1071 check_xor();
1074 if (count != 1)
1075 xor_block(count, STRIPE_SIZE, ptr);
1077 if (method != CHECK_PARITY) {
1078 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1079 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1080 } else
1081 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1084 static void compute_parity6(struct stripe_head *sh, int method)
1086 raid6_conf_t *conf = sh->raid_conf;
1087 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1088 struct bio *chosen;
1089 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1090 void *ptrs[disks];
1092 qd_idx = raid6_next_disk(pd_idx, disks);
1093 d0_idx = raid6_next_disk(qd_idx, disks);
1095 PRINTK("compute_parity, stripe %llu, method %d\n",
1096 (unsigned long long)sh->sector, method);
1098 switch(method) {
1099 case READ_MODIFY_WRITE:
1100 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1101 case RECONSTRUCT_WRITE:
1102 for (i= disks; i-- ;)
1103 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1104 chosen = sh->dev[i].towrite;
1105 sh->dev[i].towrite = NULL;
1107 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1108 wake_up(&conf->wait_for_overlap);
1110 BUG_ON(sh->dev[i].written);
1111 sh->dev[i].written = chosen;
1113 break;
1114 case CHECK_PARITY:
1115 BUG(); /* Not implemented yet */
1118 for (i = disks; i--;)
1119 if (sh->dev[i].written) {
1120 sector_t sector = sh->dev[i].sector;
1121 struct bio *wbi = sh->dev[i].written;
1122 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1123 copy_data(1, wbi, sh->dev[i].page, sector);
1124 wbi = r5_next_bio(wbi, sector);
1127 set_bit(R5_LOCKED, &sh->dev[i].flags);
1128 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1131 // switch(method) {
1132 // case RECONSTRUCT_WRITE:
1133 // case CHECK_PARITY:
1134 // case UPDATE_PARITY:
1135 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1136 /* FIX: Is this ordering of drives even remotely optimal? */
1137 count = 0;
1138 i = d0_idx;
1139 do {
1140 ptrs[count++] = page_address(sh->dev[i].page);
1141 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1142 printk("block %d/%d not uptodate on parity calc\n", i,count);
1143 i = raid6_next_disk(i, disks);
1144 } while ( i != d0_idx );
1145 // break;
1146 // }
1148 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1150 switch(method) {
1151 case RECONSTRUCT_WRITE:
1152 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1153 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1154 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1155 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1156 break;
1157 case UPDATE_PARITY:
1158 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1159 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1160 break;
1165 /* Compute one missing block */
1166 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1168 raid6_conf_t *conf = sh->raid_conf;
1169 int i, count, disks = conf->raid_disks;
1170 void *ptr[MAX_XOR_BLOCKS], *p;
1171 int pd_idx = sh->pd_idx;
1172 int qd_idx = raid6_next_disk(pd_idx, disks);
1174 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1175 (unsigned long long)sh->sector, dd_idx);
1177 if ( dd_idx == qd_idx ) {
1178 /* We're actually computing the Q drive */
1179 compute_parity6(sh, UPDATE_PARITY);
1180 } else {
1181 ptr[0] = page_address(sh->dev[dd_idx].page);
1182 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1183 count = 1;
1184 for (i = disks ; i--; ) {
1185 if (i == dd_idx || i == qd_idx)
1186 continue;
1187 p = page_address(sh->dev[i].page);
1188 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1189 ptr[count++] = p;
1190 else
1191 printk("compute_block() %d, stripe %llu, %d"
1192 " not present\n", dd_idx,
1193 (unsigned long long)sh->sector, i);
1195 check_xor();
1197 if (count != 1)
1198 xor_block(count, STRIPE_SIZE, ptr);
1199 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1200 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1204 /* Compute two missing blocks */
1205 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1207 raid6_conf_t *conf = sh->raid_conf;
1208 int i, count, disks = conf->raid_disks;
1209 int pd_idx = sh->pd_idx;
1210 int qd_idx = raid6_next_disk(pd_idx, disks);
1211 int d0_idx = raid6_next_disk(qd_idx, disks);
1212 int faila, failb;
1214 /* faila and failb are disk numbers relative to d0_idx */
1215 /* pd_idx become disks-2 and qd_idx become disks-1 */
1216 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1217 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1219 BUG_ON(faila == failb);
1220 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1222 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1223 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1225 if ( failb == disks-1 ) {
1226 /* Q disk is one of the missing disks */
1227 if ( faila == disks-2 ) {
1228 /* Missing P+Q, just recompute */
1229 compute_parity6(sh, UPDATE_PARITY);
1230 return;
1231 } else {
1232 /* We're missing D+Q; recompute D from P */
1233 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1234 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1235 return;
1239 /* We're missing D+P or D+D; build pointer table */
1241 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1242 void *ptrs[disks];
1244 count = 0;
1245 i = d0_idx;
1246 do {
1247 ptrs[count++] = page_address(sh->dev[i].page);
1248 i = raid6_next_disk(i, disks);
1249 if (i != dd_idx1 && i != dd_idx2 &&
1250 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1251 printk("compute_2 with missing block %d/%d\n", count, i);
1252 } while ( i != d0_idx );
1254 if ( failb == disks-2 ) {
1255 /* We're missing D+P. */
1256 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1257 } else {
1258 /* We're missing D+D. */
1259 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1262 /* Both the above update both missing blocks */
1263 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1264 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1271 * Each stripe/dev can have one or more bion attached.
1272 * toread/towrite point to the first in a chain.
1273 * The bi_next chain must be in order.
1275 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1277 struct bio **bip;
1278 raid5_conf_t *conf = sh->raid_conf;
1279 int firstwrite=0;
1281 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1282 (unsigned long long)bi->bi_sector,
1283 (unsigned long long)sh->sector);
1286 spin_lock(&sh->lock);
1287 spin_lock_irq(&conf->device_lock);
1288 if (forwrite) {
1289 bip = &sh->dev[dd_idx].towrite;
1290 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1291 firstwrite = 1;
1292 } else
1293 bip = &sh->dev[dd_idx].toread;
1294 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1295 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1296 goto overlap;
1297 bip = & (*bip)->bi_next;
1299 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1300 goto overlap;
1302 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1303 if (*bip)
1304 bi->bi_next = *bip;
1305 *bip = bi;
1306 bi->bi_phys_segments ++;
1307 spin_unlock_irq(&conf->device_lock);
1308 spin_unlock(&sh->lock);
1310 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1311 (unsigned long long)bi->bi_sector,
1312 (unsigned long long)sh->sector, dd_idx);
1314 if (conf->mddev->bitmap && firstwrite) {
1315 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1316 STRIPE_SECTORS, 0);
1317 sh->bm_seq = conf->seq_flush+1;
1318 set_bit(STRIPE_BIT_DELAY, &sh->state);
1321 if (forwrite) {
1322 /* check if page is covered */
1323 sector_t sector = sh->dev[dd_idx].sector;
1324 for (bi=sh->dev[dd_idx].towrite;
1325 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1326 bi && bi->bi_sector <= sector;
1327 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1328 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1329 sector = bi->bi_sector + (bi->bi_size>>9);
1331 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1332 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1334 return 1;
1336 overlap:
1337 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1338 spin_unlock_irq(&conf->device_lock);
1339 spin_unlock(&sh->lock);
1340 return 0;
1343 static void end_reshape(raid5_conf_t *conf);
1345 static int page_is_zero(struct page *p)
1347 char *a = page_address(p);
1348 return ((*(u32*)a) == 0 &&
1349 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1352 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1354 int sectors_per_chunk = conf->chunk_size >> 9;
1355 int pd_idx, dd_idx;
1356 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1358 raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1359 + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1360 return pd_idx;
1365 * handle_stripe - do things to a stripe.
1367 * We lock the stripe and then examine the state of various bits
1368 * to see what needs to be done.
1369 * Possible results:
1370 * return some read request which now have data
1371 * return some write requests which are safely on disc
1372 * schedule a read on some buffers
1373 * schedule a write of some buffers
1374 * return confirmation of parity correctness
1376 * Parity calculations are done inside the stripe lock
1377 * buffers are taken off read_list or write_list, and bh_cache buffers
1378 * get BH_Lock set before the stripe lock is released.
1382 static void handle_stripe5(struct stripe_head *sh)
1384 raid5_conf_t *conf = sh->raid_conf;
1385 int disks = sh->disks;
1386 struct bio *return_bi= NULL;
1387 struct bio *bi;
1388 int i;
1389 int syncing, expanding, expanded;
1390 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1391 int non_overwrite = 0;
1392 int failed_num=0;
1393 struct r5dev *dev;
1395 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1396 (unsigned long long)sh->sector, atomic_read(&sh->count),
1397 sh->pd_idx);
1399 spin_lock(&sh->lock);
1400 clear_bit(STRIPE_HANDLE, &sh->state);
1401 clear_bit(STRIPE_DELAYED, &sh->state);
1403 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1404 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1405 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1406 /* Now to look around and see what can be done */
1408 rcu_read_lock();
1409 for (i=disks; i--; ) {
1410 mdk_rdev_t *rdev;
1411 dev = &sh->dev[i];
1412 clear_bit(R5_Insync, &dev->flags);
1414 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1415 i, dev->flags, dev->toread, dev->towrite, dev->written);
1416 /* maybe we can reply to a read */
1417 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1418 struct bio *rbi, *rbi2;
1419 PRINTK("Return read for disc %d\n", i);
1420 spin_lock_irq(&conf->device_lock);
1421 rbi = dev->toread;
1422 dev->toread = NULL;
1423 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1424 wake_up(&conf->wait_for_overlap);
1425 spin_unlock_irq(&conf->device_lock);
1426 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1427 copy_data(0, rbi, dev->page, dev->sector);
1428 rbi2 = r5_next_bio(rbi, dev->sector);
1429 spin_lock_irq(&conf->device_lock);
1430 if (--rbi->bi_phys_segments == 0) {
1431 rbi->bi_next = return_bi;
1432 return_bi = rbi;
1434 spin_unlock_irq(&conf->device_lock);
1435 rbi = rbi2;
1439 /* now count some things */
1440 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1441 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1444 if (dev->toread) to_read++;
1445 if (dev->towrite) {
1446 to_write++;
1447 if (!test_bit(R5_OVERWRITE, &dev->flags))
1448 non_overwrite++;
1450 if (dev->written) written++;
1451 rdev = rcu_dereference(conf->disks[i].rdev);
1452 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1453 /* The ReadError flag will just be confusing now */
1454 clear_bit(R5_ReadError, &dev->flags);
1455 clear_bit(R5_ReWrite, &dev->flags);
1457 if (!rdev || !test_bit(In_sync, &rdev->flags)
1458 || test_bit(R5_ReadError, &dev->flags)) {
1459 failed++;
1460 failed_num = i;
1461 } else
1462 set_bit(R5_Insync, &dev->flags);
1464 rcu_read_unlock();
1465 PRINTK("locked=%d uptodate=%d to_read=%d"
1466 " to_write=%d failed=%d failed_num=%d\n",
1467 locked, uptodate, to_read, to_write, failed, failed_num);
1468 /* check if the array has lost two devices and, if so, some requests might
1469 * need to be failed
1471 if (failed > 1 && to_read+to_write+written) {
1472 for (i=disks; i--; ) {
1473 int bitmap_end = 0;
1475 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1476 mdk_rdev_t *rdev;
1477 rcu_read_lock();
1478 rdev = rcu_dereference(conf->disks[i].rdev);
1479 if (rdev && test_bit(In_sync, &rdev->flags))
1480 /* multiple read failures in one stripe */
1481 md_error(conf->mddev, rdev);
1482 rcu_read_unlock();
1485 spin_lock_irq(&conf->device_lock);
1486 /* fail all writes first */
1487 bi = sh->dev[i].towrite;
1488 sh->dev[i].towrite = NULL;
1489 if (bi) { to_write--; bitmap_end = 1; }
1491 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1492 wake_up(&conf->wait_for_overlap);
1494 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1495 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1496 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1497 if (--bi->bi_phys_segments == 0) {
1498 md_write_end(conf->mddev);
1499 bi->bi_next = return_bi;
1500 return_bi = bi;
1502 bi = nextbi;
1504 /* and fail all 'written' */
1505 bi = sh->dev[i].written;
1506 sh->dev[i].written = NULL;
1507 if (bi) bitmap_end = 1;
1508 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1509 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1510 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1511 if (--bi->bi_phys_segments == 0) {
1512 md_write_end(conf->mddev);
1513 bi->bi_next = return_bi;
1514 return_bi = bi;
1516 bi = bi2;
1519 /* fail any reads if this device is non-operational */
1520 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1521 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1522 bi = sh->dev[i].toread;
1523 sh->dev[i].toread = NULL;
1524 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1525 wake_up(&conf->wait_for_overlap);
1526 if (bi) to_read--;
1527 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1528 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1529 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1530 if (--bi->bi_phys_segments == 0) {
1531 bi->bi_next = return_bi;
1532 return_bi = bi;
1534 bi = nextbi;
1537 spin_unlock_irq(&conf->device_lock);
1538 if (bitmap_end)
1539 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1540 STRIPE_SECTORS, 0, 0);
1543 if (failed > 1 && syncing) {
1544 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1545 clear_bit(STRIPE_SYNCING, &sh->state);
1546 syncing = 0;
1549 /* might be able to return some write requests if the parity block
1550 * is safe, or on a failed drive
1552 dev = &sh->dev[sh->pd_idx];
1553 if ( written &&
1554 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1555 test_bit(R5_UPTODATE, &dev->flags))
1556 || (failed == 1 && failed_num == sh->pd_idx))
1558 /* any written block on an uptodate or failed drive can be returned.
1559 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1560 * never LOCKED, so we don't need to test 'failed' directly.
1562 for (i=disks; i--; )
1563 if (sh->dev[i].written) {
1564 dev = &sh->dev[i];
1565 if (!test_bit(R5_LOCKED, &dev->flags) &&
1566 test_bit(R5_UPTODATE, &dev->flags) ) {
1567 /* We can return any write requests */
1568 struct bio *wbi, *wbi2;
1569 int bitmap_end = 0;
1570 PRINTK("Return write for disc %d\n", i);
1571 spin_lock_irq(&conf->device_lock);
1572 wbi = dev->written;
1573 dev->written = NULL;
1574 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1575 wbi2 = r5_next_bio(wbi, dev->sector);
1576 if (--wbi->bi_phys_segments == 0) {
1577 md_write_end(conf->mddev);
1578 wbi->bi_next = return_bi;
1579 return_bi = wbi;
1581 wbi = wbi2;
1583 if (dev->towrite == NULL)
1584 bitmap_end = 1;
1585 spin_unlock_irq(&conf->device_lock);
1586 if (bitmap_end)
1587 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1588 STRIPE_SECTORS,
1589 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1594 /* Now we might consider reading some blocks, either to check/generate
1595 * parity, or to satisfy requests
1596 * or to load a block that is being partially written.
1598 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1599 for (i=disks; i--;) {
1600 dev = &sh->dev[i];
1601 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1602 (dev->toread ||
1603 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1604 syncing ||
1605 expanding ||
1606 (failed && (sh->dev[failed_num].toread ||
1607 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1610 /* we would like to get this block, possibly
1611 * by computing it, but we might not be able to
1613 if (uptodate == disks-1) {
1614 PRINTK("Computing block %d\n", i);
1615 compute_block(sh, i);
1616 uptodate++;
1617 } else if (test_bit(R5_Insync, &dev->flags)) {
1618 set_bit(R5_LOCKED, &dev->flags);
1619 set_bit(R5_Wantread, &dev->flags);
1620 #if 0
1621 /* if I am just reading this block and we don't have
1622 a failed drive, or any pending writes then sidestep the cache */
1623 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1624 ! syncing && !failed && !to_write) {
1625 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1626 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1628 #endif
1629 locked++;
1630 PRINTK("Reading block %d (sync=%d)\n",
1631 i, syncing);
1635 set_bit(STRIPE_HANDLE, &sh->state);
1638 /* now to consider writing and what else, if anything should be read */
1639 if (to_write) {
1640 int rmw=0, rcw=0;
1641 for (i=disks ; i--;) {
1642 /* would I have to read this buffer for read_modify_write */
1643 dev = &sh->dev[i];
1644 if ((dev->towrite || i == sh->pd_idx) &&
1645 (!test_bit(R5_LOCKED, &dev->flags)
1646 #if 0
1647 || sh->bh_page[i]!=bh->b_page
1648 #endif
1649 ) &&
1650 !test_bit(R5_UPTODATE, &dev->flags)) {
1651 if (test_bit(R5_Insync, &dev->flags)
1652 /* && !(!mddev->insync && i == sh->pd_idx) */
1654 rmw++;
1655 else rmw += 2*disks; /* cannot read it */
1657 /* Would I have to read this buffer for reconstruct_write */
1658 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1659 (!test_bit(R5_LOCKED, &dev->flags)
1660 #if 0
1661 || sh->bh_page[i] != bh->b_page
1662 #endif
1663 ) &&
1664 !test_bit(R5_UPTODATE, &dev->flags)) {
1665 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1666 else rcw += 2*disks;
1669 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1670 (unsigned long long)sh->sector, rmw, rcw);
1671 set_bit(STRIPE_HANDLE, &sh->state);
1672 if (rmw < rcw && rmw > 0)
1673 /* prefer read-modify-write, but need to get some data */
1674 for (i=disks; i--;) {
1675 dev = &sh->dev[i];
1676 if ((dev->towrite || i == sh->pd_idx) &&
1677 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1678 test_bit(R5_Insync, &dev->flags)) {
1679 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1681 PRINTK("Read_old block %d for r-m-w\n", i);
1682 set_bit(R5_LOCKED, &dev->flags);
1683 set_bit(R5_Wantread, &dev->flags);
1684 locked++;
1685 } else {
1686 set_bit(STRIPE_DELAYED, &sh->state);
1687 set_bit(STRIPE_HANDLE, &sh->state);
1691 if (rcw <= rmw && rcw > 0)
1692 /* want reconstruct write, but need to get some data */
1693 for (i=disks; i--;) {
1694 dev = &sh->dev[i];
1695 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1696 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1697 test_bit(R5_Insync, &dev->flags)) {
1698 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1700 PRINTK("Read_old block %d for Reconstruct\n", i);
1701 set_bit(R5_LOCKED, &dev->flags);
1702 set_bit(R5_Wantread, &dev->flags);
1703 locked++;
1704 } else {
1705 set_bit(STRIPE_DELAYED, &sh->state);
1706 set_bit(STRIPE_HANDLE, &sh->state);
1710 /* now if nothing is locked, and if we have enough data, we can start a write request */
1711 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1712 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1713 PRINTK("Computing parity...\n");
1714 compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1715 /* now every locked buffer is ready to be written */
1716 for (i=disks; i--;)
1717 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1718 PRINTK("Writing block %d\n", i);
1719 locked++;
1720 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1721 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1722 || (i==sh->pd_idx && failed == 0))
1723 set_bit(STRIPE_INSYNC, &sh->state);
1725 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1726 atomic_dec(&conf->preread_active_stripes);
1727 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1728 md_wakeup_thread(conf->mddev->thread);
1733 /* maybe we need to check and possibly fix the parity for this stripe
1734 * Any reads will already have been scheduled, so we just see if enough data
1735 * is available
1737 if (syncing && locked == 0 &&
1738 !test_bit(STRIPE_INSYNC, &sh->state)) {
1739 set_bit(STRIPE_HANDLE, &sh->state);
1740 if (failed == 0) {
1741 BUG_ON(uptodate != disks);
1742 compute_parity5(sh, CHECK_PARITY);
1743 uptodate--;
1744 if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1745 /* parity is correct (on disc, not in buffer any more) */
1746 set_bit(STRIPE_INSYNC, &sh->state);
1747 } else {
1748 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1749 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1750 /* don't try to repair!! */
1751 set_bit(STRIPE_INSYNC, &sh->state);
1752 else {
1753 compute_block(sh, sh->pd_idx);
1754 uptodate++;
1758 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1759 /* either failed parity check, or recovery is happening */
1760 if (failed==0)
1761 failed_num = sh->pd_idx;
1762 dev = &sh->dev[failed_num];
1763 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1764 BUG_ON(uptodate != disks);
1766 set_bit(R5_LOCKED, &dev->flags);
1767 set_bit(R5_Wantwrite, &dev->flags);
1768 clear_bit(STRIPE_DEGRADED, &sh->state);
1769 locked++;
1770 set_bit(STRIPE_INSYNC, &sh->state);
1773 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1774 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1775 clear_bit(STRIPE_SYNCING, &sh->state);
1778 /* If the failed drive is just a ReadError, then we might need to progress
1779 * the repair/check process
1781 if (failed == 1 && ! conf->mddev->ro &&
1782 test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1783 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1784 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1786 dev = &sh->dev[failed_num];
1787 if (!test_bit(R5_ReWrite, &dev->flags)) {
1788 set_bit(R5_Wantwrite, &dev->flags);
1789 set_bit(R5_ReWrite, &dev->flags);
1790 set_bit(R5_LOCKED, &dev->flags);
1791 locked++;
1792 } else {
1793 /* let's read it back */
1794 set_bit(R5_Wantread, &dev->flags);
1795 set_bit(R5_LOCKED, &dev->flags);
1796 locked++;
1800 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1801 /* Need to write out all blocks after computing parity */
1802 sh->disks = conf->raid_disks;
1803 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1804 compute_parity5(sh, RECONSTRUCT_WRITE);
1805 for (i= conf->raid_disks; i--;) {
1806 set_bit(R5_LOCKED, &sh->dev[i].flags);
1807 locked++;
1808 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1810 clear_bit(STRIPE_EXPANDING, &sh->state);
1811 } else if (expanded) {
1812 clear_bit(STRIPE_EXPAND_READY, &sh->state);
1813 atomic_dec(&conf->reshape_stripes);
1814 wake_up(&conf->wait_for_overlap);
1815 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1818 if (expanding && locked == 0) {
1819 /* We have read all the blocks in this stripe and now we need to
1820 * copy some of them into a target stripe for expand.
1822 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1823 for (i=0; i< sh->disks; i++)
1824 if (i != sh->pd_idx) {
1825 int dd_idx, pd_idx, j;
1826 struct stripe_head *sh2;
1828 sector_t bn = compute_blocknr(sh, i);
1829 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1830 conf->raid_disks-1,
1831 &dd_idx, &pd_idx, conf);
1832 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1833 if (sh2 == NULL)
1834 /* so far only the early blocks of this stripe
1835 * have been requested. When later blocks
1836 * get requested, we will try again
1838 continue;
1839 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1840 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1841 /* must have already done this block */
1842 release_stripe(sh2);
1843 continue;
1845 memcpy(page_address(sh2->dev[dd_idx].page),
1846 page_address(sh->dev[i].page),
1847 STRIPE_SIZE);
1848 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1849 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1850 for (j=0; j<conf->raid_disks; j++)
1851 if (j != sh2->pd_idx &&
1852 !test_bit(R5_Expanded, &sh2->dev[j].flags))
1853 break;
1854 if (j == conf->raid_disks) {
1855 set_bit(STRIPE_EXPAND_READY, &sh2->state);
1856 set_bit(STRIPE_HANDLE, &sh2->state);
1858 release_stripe(sh2);
1862 spin_unlock(&sh->lock);
1864 while ((bi=return_bi)) {
1865 int bytes = bi->bi_size;
1867 return_bi = bi->bi_next;
1868 bi->bi_next = NULL;
1869 bi->bi_size = 0;
1870 bi->bi_end_io(bi, bytes, 0);
1872 for (i=disks; i-- ;) {
1873 int rw;
1874 struct bio *bi;
1875 mdk_rdev_t *rdev;
1876 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1877 rw = 1;
1878 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1879 rw = 0;
1880 else
1881 continue;
1883 bi = &sh->dev[i].req;
1885 bi->bi_rw = rw;
1886 if (rw)
1887 bi->bi_end_io = raid5_end_write_request;
1888 else
1889 bi->bi_end_io = raid5_end_read_request;
1891 rcu_read_lock();
1892 rdev = rcu_dereference(conf->disks[i].rdev);
1893 if (rdev && test_bit(Faulty, &rdev->flags))
1894 rdev = NULL;
1895 if (rdev)
1896 atomic_inc(&rdev->nr_pending);
1897 rcu_read_unlock();
1899 if (rdev) {
1900 if (syncing || expanding || expanded)
1901 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1903 bi->bi_bdev = rdev->bdev;
1904 PRINTK("for %llu schedule op %ld on disc %d\n",
1905 (unsigned long long)sh->sector, bi->bi_rw, i);
1906 atomic_inc(&sh->count);
1907 bi->bi_sector = sh->sector + rdev->data_offset;
1908 bi->bi_flags = 1 << BIO_UPTODATE;
1909 bi->bi_vcnt = 1;
1910 bi->bi_max_vecs = 1;
1911 bi->bi_idx = 0;
1912 bi->bi_io_vec = &sh->dev[i].vec;
1913 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1914 bi->bi_io_vec[0].bv_offset = 0;
1915 bi->bi_size = STRIPE_SIZE;
1916 bi->bi_next = NULL;
1917 if (rw == WRITE &&
1918 test_bit(R5_ReWrite, &sh->dev[i].flags))
1919 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1920 generic_make_request(bi);
1921 } else {
1922 if (rw == 1)
1923 set_bit(STRIPE_DEGRADED, &sh->state);
1924 PRINTK("skip op %ld on disc %d for sector %llu\n",
1925 bi->bi_rw, i, (unsigned long long)sh->sector);
1926 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1927 set_bit(STRIPE_HANDLE, &sh->state);
1932 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1934 raid6_conf_t *conf = sh->raid_conf;
1935 int disks = conf->raid_disks;
1936 struct bio *return_bi= NULL;
1937 struct bio *bi;
1938 int i;
1939 int syncing;
1940 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1941 int non_overwrite = 0;
1942 int failed_num[2] = {0, 0};
1943 struct r5dev *dev, *pdev, *qdev;
1944 int pd_idx = sh->pd_idx;
1945 int qd_idx = raid6_next_disk(pd_idx, disks);
1946 int p_failed, q_failed;
1948 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1949 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1950 pd_idx, qd_idx);
1952 spin_lock(&sh->lock);
1953 clear_bit(STRIPE_HANDLE, &sh->state);
1954 clear_bit(STRIPE_DELAYED, &sh->state);
1956 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1957 /* Now to look around and see what can be done */
1959 rcu_read_lock();
1960 for (i=disks; i--; ) {
1961 mdk_rdev_t *rdev;
1962 dev = &sh->dev[i];
1963 clear_bit(R5_Insync, &dev->flags);
1965 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1966 i, dev->flags, dev->toread, dev->towrite, dev->written);
1967 /* maybe we can reply to a read */
1968 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1969 struct bio *rbi, *rbi2;
1970 PRINTK("Return read for disc %d\n", i);
1971 spin_lock_irq(&conf->device_lock);
1972 rbi = dev->toread;
1973 dev->toread = NULL;
1974 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1975 wake_up(&conf->wait_for_overlap);
1976 spin_unlock_irq(&conf->device_lock);
1977 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1978 copy_data(0, rbi, dev->page, dev->sector);
1979 rbi2 = r5_next_bio(rbi, dev->sector);
1980 spin_lock_irq(&conf->device_lock);
1981 if (--rbi->bi_phys_segments == 0) {
1982 rbi->bi_next = return_bi;
1983 return_bi = rbi;
1985 spin_unlock_irq(&conf->device_lock);
1986 rbi = rbi2;
1990 /* now count some things */
1991 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1992 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1995 if (dev->toread) to_read++;
1996 if (dev->towrite) {
1997 to_write++;
1998 if (!test_bit(R5_OVERWRITE, &dev->flags))
1999 non_overwrite++;
2001 if (dev->written) written++;
2002 rdev = rcu_dereference(conf->disks[i].rdev);
2003 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2004 /* The ReadError flag will just be confusing now */
2005 clear_bit(R5_ReadError, &dev->flags);
2006 clear_bit(R5_ReWrite, &dev->flags);
2008 if (!rdev || !test_bit(In_sync, &rdev->flags)
2009 || test_bit(R5_ReadError, &dev->flags)) {
2010 if ( failed < 2 )
2011 failed_num[failed] = i;
2012 failed++;
2013 } else
2014 set_bit(R5_Insync, &dev->flags);
2016 rcu_read_unlock();
2017 PRINTK("locked=%d uptodate=%d to_read=%d"
2018 " to_write=%d failed=%d failed_num=%d,%d\n",
2019 locked, uptodate, to_read, to_write, failed,
2020 failed_num[0], failed_num[1]);
2021 /* check if the array has lost >2 devices and, if so, some requests might
2022 * need to be failed
2024 if (failed > 2 && to_read+to_write+written) {
2025 for (i=disks; i--; ) {
2026 int bitmap_end = 0;
2028 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2029 mdk_rdev_t *rdev;
2030 rcu_read_lock();
2031 rdev = rcu_dereference(conf->disks[i].rdev);
2032 if (rdev && test_bit(In_sync, &rdev->flags))
2033 /* multiple read failures in one stripe */
2034 md_error(conf->mddev, rdev);
2035 rcu_read_unlock();
2038 spin_lock_irq(&conf->device_lock);
2039 /* fail all writes first */
2040 bi = sh->dev[i].towrite;
2041 sh->dev[i].towrite = NULL;
2042 if (bi) { to_write--; bitmap_end = 1; }
2044 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2045 wake_up(&conf->wait_for_overlap);
2047 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2048 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2049 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2050 if (--bi->bi_phys_segments == 0) {
2051 md_write_end(conf->mddev);
2052 bi->bi_next = return_bi;
2053 return_bi = bi;
2055 bi = nextbi;
2057 /* and fail all 'written' */
2058 bi = sh->dev[i].written;
2059 sh->dev[i].written = NULL;
2060 if (bi) bitmap_end = 1;
2061 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2062 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2063 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2064 if (--bi->bi_phys_segments == 0) {
2065 md_write_end(conf->mddev);
2066 bi->bi_next = return_bi;
2067 return_bi = bi;
2069 bi = bi2;
2072 /* fail any reads if this device is non-operational */
2073 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2074 test_bit(R5_ReadError, &sh->dev[i].flags)) {
2075 bi = sh->dev[i].toread;
2076 sh->dev[i].toread = NULL;
2077 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2078 wake_up(&conf->wait_for_overlap);
2079 if (bi) to_read--;
2080 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2081 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2082 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2083 if (--bi->bi_phys_segments == 0) {
2084 bi->bi_next = return_bi;
2085 return_bi = bi;
2087 bi = nextbi;
2090 spin_unlock_irq(&conf->device_lock);
2091 if (bitmap_end)
2092 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2093 STRIPE_SECTORS, 0, 0);
2096 if (failed > 2 && syncing) {
2097 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2098 clear_bit(STRIPE_SYNCING, &sh->state);
2099 syncing = 0;
2103 * might be able to return some write requests if the parity blocks
2104 * are safe, or on a failed drive
2106 pdev = &sh->dev[pd_idx];
2107 p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2108 || (failed >= 2 && failed_num[1] == pd_idx);
2109 qdev = &sh->dev[qd_idx];
2110 q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2111 || (failed >= 2 && failed_num[1] == qd_idx);
2113 if ( written &&
2114 ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2115 && !test_bit(R5_LOCKED, &pdev->flags)
2116 && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2117 ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2118 && !test_bit(R5_LOCKED, &qdev->flags)
2119 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2120 /* any written block on an uptodate or failed drive can be
2121 * returned. Note that if we 'wrote' to a failed drive,
2122 * it will be UPTODATE, but never LOCKED, so we don't need
2123 * to test 'failed' directly.
2125 for (i=disks; i--; )
2126 if (sh->dev[i].written) {
2127 dev = &sh->dev[i];
2128 if (!test_bit(R5_LOCKED, &dev->flags) &&
2129 test_bit(R5_UPTODATE, &dev->flags) ) {
2130 /* We can return any write requests */
2131 int bitmap_end = 0;
2132 struct bio *wbi, *wbi2;
2133 PRINTK("Return write for stripe %llu disc %d\n",
2134 (unsigned long long)sh->sector, i);
2135 spin_lock_irq(&conf->device_lock);
2136 wbi = dev->written;
2137 dev->written = NULL;
2138 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2139 wbi2 = r5_next_bio(wbi, dev->sector);
2140 if (--wbi->bi_phys_segments == 0) {
2141 md_write_end(conf->mddev);
2142 wbi->bi_next = return_bi;
2143 return_bi = wbi;
2145 wbi = wbi2;
2147 if (dev->towrite == NULL)
2148 bitmap_end = 1;
2149 spin_unlock_irq(&conf->device_lock);
2150 if (bitmap_end)
2151 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2152 STRIPE_SECTORS,
2153 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
2158 /* Now we might consider reading some blocks, either to check/generate
2159 * parity, or to satisfy requests
2160 * or to load a block that is being partially written.
2162 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2163 for (i=disks; i--;) {
2164 dev = &sh->dev[i];
2165 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2166 (dev->toread ||
2167 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2168 syncing ||
2169 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2170 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2173 /* we would like to get this block, possibly
2174 * by computing it, but we might not be able to
2176 if (uptodate == disks-1) {
2177 PRINTK("Computing stripe %llu block %d\n",
2178 (unsigned long long)sh->sector, i);
2179 compute_block_1(sh, i, 0);
2180 uptodate++;
2181 } else if ( uptodate == disks-2 && failed >= 2 ) {
2182 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2183 int other;
2184 for (other=disks; other--;) {
2185 if ( other == i )
2186 continue;
2187 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2188 break;
2190 BUG_ON(other < 0);
2191 PRINTK("Computing stripe %llu blocks %d,%d\n",
2192 (unsigned long long)sh->sector, i, other);
2193 compute_block_2(sh, i, other);
2194 uptodate += 2;
2195 } else if (test_bit(R5_Insync, &dev->flags)) {
2196 set_bit(R5_LOCKED, &dev->flags);
2197 set_bit(R5_Wantread, &dev->flags);
2198 #if 0
2199 /* if I am just reading this block and we don't have
2200 a failed drive, or any pending writes then sidestep the cache */
2201 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2202 ! syncing && !failed && !to_write) {
2203 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
2204 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
2206 #endif
2207 locked++;
2208 PRINTK("Reading block %d (sync=%d)\n",
2209 i, syncing);
2213 set_bit(STRIPE_HANDLE, &sh->state);
2216 /* now to consider writing and what else, if anything should be read */
2217 if (to_write) {
2218 int rcw=0, must_compute=0;
2219 for (i=disks ; i--;) {
2220 dev = &sh->dev[i];
2221 /* Would I have to read this buffer for reconstruct_write */
2222 if (!test_bit(R5_OVERWRITE, &dev->flags)
2223 && i != pd_idx && i != qd_idx
2224 && (!test_bit(R5_LOCKED, &dev->flags)
2225 #if 0
2226 || sh->bh_page[i] != bh->b_page
2227 #endif
2228 ) &&
2229 !test_bit(R5_UPTODATE, &dev->flags)) {
2230 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2231 else {
2232 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2233 must_compute++;
2237 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2238 (unsigned long long)sh->sector, rcw, must_compute);
2239 set_bit(STRIPE_HANDLE, &sh->state);
2241 if (rcw > 0)
2242 /* want reconstruct write, but need to get some data */
2243 for (i=disks; i--;) {
2244 dev = &sh->dev[i];
2245 if (!test_bit(R5_OVERWRITE, &dev->flags)
2246 && !(failed == 0 && (i == pd_idx || i == qd_idx))
2247 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2248 test_bit(R5_Insync, &dev->flags)) {
2249 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2251 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2252 (unsigned long long)sh->sector, i);
2253 set_bit(R5_LOCKED, &dev->flags);
2254 set_bit(R5_Wantread, &dev->flags);
2255 locked++;
2256 } else {
2257 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2258 (unsigned long long)sh->sector, i);
2259 set_bit(STRIPE_DELAYED, &sh->state);
2260 set_bit(STRIPE_HANDLE, &sh->state);
2264 /* now if nothing is locked, and if we have enough data, we can start a write request */
2265 if (locked == 0 && rcw == 0 &&
2266 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2267 if ( must_compute > 0 ) {
2268 /* We have failed blocks and need to compute them */
2269 switch ( failed ) {
2270 case 0: BUG();
2271 case 1: compute_block_1(sh, failed_num[0], 0); break;
2272 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2273 default: BUG(); /* This request should have been failed? */
2277 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2278 compute_parity6(sh, RECONSTRUCT_WRITE);
2279 /* now every locked buffer is ready to be written */
2280 for (i=disks; i--;)
2281 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2282 PRINTK("Writing stripe %llu block %d\n",
2283 (unsigned long long)sh->sector, i);
2284 locked++;
2285 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2287 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2288 set_bit(STRIPE_INSYNC, &sh->state);
2290 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2291 atomic_dec(&conf->preread_active_stripes);
2292 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2293 md_wakeup_thread(conf->mddev->thread);
2298 /* maybe we need to check and possibly fix the parity for this stripe
2299 * Any reads will already have been scheduled, so we just see if enough data
2300 * is available
2302 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2303 int update_p = 0, update_q = 0;
2304 struct r5dev *dev;
2306 set_bit(STRIPE_HANDLE, &sh->state);
2308 BUG_ON(failed>2);
2309 BUG_ON(uptodate < disks);
2310 /* Want to check and possibly repair P and Q.
2311 * However there could be one 'failed' device, in which
2312 * case we can only check one of them, possibly using the
2313 * other to generate missing data
2316 /* If !tmp_page, we cannot do the calculations,
2317 * but as we have set STRIPE_HANDLE, we will soon be called
2318 * by stripe_handle with a tmp_page - just wait until then.
2320 if (tmp_page) {
2321 if (failed == q_failed) {
2322 /* The only possible failed device holds 'Q', so it makes
2323 * sense to check P (If anything else were failed, we would
2324 * have used P to recreate it).
2326 compute_block_1(sh, pd_idx, 1);
2327 if (!page_is_zero(sh->dev[pd_idx].page)) {
2328 compute_block_1(sh,pd_idx,0);
2329 update_p = 1;
2332 if (!q_failed && failed < 2) {
2333 /* q is not failed, and we didn't use it to generate
2334 * anything, so it makes sense to check it
2336 memcpy(page_address(tmp_page),
2337 page_address(sh->dev[qd_idx].page),
2338 STRIPE_SIZE);
2339 compute_parity6(sh, UPDATE_PARITY);
2340 if (memcmp(page_address(tmp_page),
2341 page_address(sh->dev[qd_idx].page),
2342 STRIPE_SIZE)!= 0) {
2343 clear_bit(STRIPE_INSYNC, &sh->state);
2344 update_q = 1;
2347 if (update_p || update_q) {
2348 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2349 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2350 /* don't try to repair!! */
2351 update_p = update_q = 0;
2354 /* now write out any block on a failed drive,
2355 * or P or Q if they need it
2358 if (failed == 2) {
2359 dev = &sh->dev[failed_num[1]];
2360 locked++;
2361 set_bit(R5_LOCKED, &dev->flags);
2362 set_bit(R5_Wantwrite, &dev->flags);
2364 if (failed >= 1) {
2365 dev = &sh->dev[failed_num[0]];
2366 locked++;
2367 set_bit(R5_LOCKED, &dev->flags);
2368 set_bit(R5_Wantwrite, &dev->flags);
2371 if (update_p) {
2372 dev = &sh->dev[pd_idx];
2373 locked ++;
2374 set_bit(R5_LOCKED, &dev->flags);
2375 set_bit(R5_Wantwrite, &dev->flags);
2377 if (update_q) {
2378 dev = &sh->dev[qd_idx];
2379 locked++;
2380 set_bit(R5_LOCKED, &dev->flags);
2381 set_bit(R5_Wantwrite, &dev->flags);
2383 clear_bit(STRIPE_DEGRADED, &sh->state);
2385 set_bit(STRIPE_INSYNC, &sh->state);
2389 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2390 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2391 clear_bit(STRIPE_SYNCING, &sh->state);
2394 /* If the failed drives are just a ReadError, then we might need
2395 * to progress the repair/check process
2397 if (failed <= 2 && ! conf->mddev->ro)
2398 for (i=0; i<failed;i++) {
2399 dev = &sh->dev[failed_num[i]];
2400 if (test_bit(R5_ReadError, &dev->flags)
2401 && !test_bit(R5_LOCKED, &dev->flags)
2402 && test_bit(R5_UPTODATE, &dev->flags)
2404 if (!test_bit(R5_ReWrite, &dev->flags)) {
2405 set_bit(R5_Wantwrite, &dev->flags);
2406 set_bit(R5_ReWrite, &dev->flags);
2407 set_bit(R5_LOCKED, &dev->flags);
2408 } else {
2409 /* let's read it back */
2410 set_bit(R5_Wantread, &dev->flags);
2411 set_bit(R5_LOCKED, &dev->flags);
2415 spin_unlock(&sh->lock);
2417 while ((bi=return_bi)) {
2418 int bytes = bi->bi_size;
2420 return_bi = bi->bi_next;
2421 bi->bi_next = NULL;
2422 bi->bi_size = 0;
2423 bi->bi_end_io(bi, bytes, 0);
2425 for (i=disks; i-- ;) {
2426 int rw;
2427 struct bio *bi;
2428 mdk_rdev_t *rdev;
2429 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2430 rw = 1;
2431 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2432 rw = 0;
2433 else
2434 continue;
2436 bi = &sh->dev[i].req;
2438 bi->bi_rw = rw;
2439 if (rw)
2440 bi->bi_end_io = raid5_end_write_request;
2441 else
2442 bi->bi_end_io = raid5_end_read_request;
2444 rcu_read_lock();
2445 rdev = rcu_dereference(conf->disks[i].rdev);
2446 if (rdev && test_bit(Faulty, &rdev->flags))
2447 rdev = NULL;
2448 if (rdev)
2449 atomic_inc(&rdev->nr_pending);
2450 rcu_read_unlock();
2452 if (rdev) {
2453 if (syncing)
2454 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2456 bi->bi_bdev = rdev->bdev;
2457 PRINTK("for %llu schedule op %ld on disc %d\n",
2458 (unsigned long long)sh->sector, bi->bi_rw, i);
2459 atomic_inc(&sh->count);
2460 bi->bi_sector = sh->sector + rdev->data_offset;
2461 bi->bi_flags = 1 << BIO_UPTODATE;
2462 bi->bi_vcnt = 1;
2463 bi->bi_max_vecs = 1;
2464 bi->bi_idx = 0;
2465 bi->bi_io_vec = &sh->dev[i].vec;
2466 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2467 bi->bi_io_vec[0].bv_offset = 0;
2468 bi->bi_size = STRIPE_SIZE;
2469 bi->bi_next = NULL;
2470 if (rw == WRITE &&
2471 test_bit(R5_ReWrite, &sh->dev[i].flags))
2472 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2473 generic_make_request(bi);
2474 } else {
2475 if (rw == 1)
2476 set_bit(STRIPE_DEGRADED, &sh->state);
2477 PRINTK("skip op %ld on disc %d for sector %llu\n",
2478 bi->bi_rw, i, (unsigned long long)sh->sector);
2479 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2480 set_bit(STRIPE_HANDLE, &sh->state);
2485 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2487 if (sh->raid_conf->level == 6)
2488 handle_stripe6(sh, tmp_page);
2489 else
2490 handle_stripe5(sh);
2495 static void raid5_activate_delayed(raid5_conf_t *conf)
2497 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2498 while (!list_empty(&conf->delayed_list)) {
2499 struct list_head *l = conf->delayed_list.next;
2500 struct stripe_head *sh;
2501 sh = list_entry(l, struct stripe_head, lru);
2502 list_del_init(l);
2503 clear_bit(STRIPE_DELAYED, &sh->state);
2504 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2505 atomic_inc(&conf->preread_active_stripes);
2506 list_add_tail(&sh->lru, &conf->handle_list);
2511 static void activate_bit_delay(raid5_conf_t *conf)
2513 /* device_lock is held */
2514 struct list_head head;
2515 list_add(&head, &conf->bitmap_list);
2516 list_del_init(&conf->bitmap_list);
2517 while (!list_empty(&head)) {
2518 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2519 list_del_init(&sh->lru);
2520 atomic_inc(&sh->count);
2521 __release_stripe(conf, sh);
2525 static void unplug_slaves(mddev_t *mddev)
2527 raid5_conf_t *conf = mddev_to_conf(mddev);
2528 int i;
2530 rcu_read_lock();
2531 for (i=0; i<mddev->raid_disks; i++) {
2532 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2533 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2534 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2536 atomic_inc(&rdev->nr_pending);
2537 rcu_read_unlock();
2539 if (r_queue->unplug_fn)
2540 r_queue->unplug_fn(r_queue);
2542 rdev_dec_pending(rdev, mddev);
2543 rcu_read_lock();
2546 rcu_read_unlock();
2549 static void raid5_unplug_device(request_queue_t *q)
2551 mddev_t *mddev = q->queuedata;
2552 raid5_conf_t *conf = mddev_to_conf(mddev);
2553 unsigned long flags;
2555 spin_lock_irqsave(&conf->device_lock, flags);
2557 if (blk_remove_plug(q)) {
2558 conf->seq_flush++;
2559 raid5_activate_delayed(conf);
2561 md_wakeup_thread(mddev->thread);
2563 spin_unlock_irqrestore(&conf->device_lock, flags);
2565 unplug_slaves(mddev);
2568 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2569 sector_t *error_sector)
2571 mddev_t *mddev = q->queuedata;
2572 raid5_conf_t *conf = mddev_to_conf(mddev);
2573 int i, ret = 0;
2575 rcu_read_lock();
2576 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2577 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2578 if (rdev && !test_bit(Faulty, &rdev->flags)) {
2579 struct block_device *bdev = rdev->bdev;
2580 request_queue_t *r_queue = bdev_get_queue(bdev);
2582 if (!r_queue->issue_flush_fn)
2583 ret = -EOPNOTSUPP;
2584 else {
2585 atomic_inc(&rdev->nr_pending);
2586 rcu_read_unlock();
2587 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2588 error_sector);
2589 rdev_dec_pending(rdev, mddev);
2590 rcu_read_lock();
2594 rcu_read_unlock();
2595 return ret;
2598 static int raid5_congested(void *data, int bits)
2600 mddev_t *mddev = data;
2601 raid5_conf_t *conf = mddev_to_conf(mddev);
2603 /* No difference between reads and writes. Just check
2604 * how busy the stripe_cache is
2606 if (conf->inactive_blocked)
2607 return 1;
2608 if (conf->quiesce)
2609 return 1;
2610 if (list_empty_careful(&conf->inactive_list))
2611 return 1;
2613 return 0;
2616 static int make_request(request_queue_t *q, struct bio * bi)
2618 mddev_t *mddev = q->queuedata;
2619 raid5_conf_t *conf = mddev_to_conf(mddev);
2620 unsigned int dd_idx, pd_idx;
2621 sector_t new_sector;
2622 sector_t logical_sector, last_sector;
2623 struct stripe_head *sh;
2624 const int rw = bio_data_dir(bi);
2625 int remaining;
2627 if (unlikely(bio_barrier(bi))) {
2628 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2629 return 0;
2632 md_write_start(mddev, bi);
2634 disk_stat_inc(mddev->gendisk, ios[rw]);
2635 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2637 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2638 last_sector = bi->bi_sector + (bi->bi_size>>9);
2639 bi->bi_next = NULL;
2640 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
2642 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2643 DEFINE_WAIT(w);
2644 int disks, data_disks;
2646 retry:
2647 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2648 if (likely(conf->expand_progress == MaxSector))
2649 disks = conf->raid_disks;
2650 else {
2651 /* spinlock is needed as expand_progress may be
2652 * 64bit on a 32bit platform, and so it might be
2653 * possible to see a half-updated value
2654 * Ofcourse expand_progress could change after
2655 * the lock is dropped, so once we get a reference
2656 * to the stripe that we think it is, we will have
2657 * to check again.
2659 spin_lock_irq(&conf->device_lock);
2660 disks = conf->raid_disks;
2661 if (logical_sector >= conf->expand_progress)
2662 disks = conf->previous_raid_disks;
2663 else {
2664 if (logical_sector >= conf->expand_lo) {
2665 spin_unlock_irq(&conf->device_lock);
2666 schedule();
2667 goto retry;
2670 spin_unlock_irq(&conf->device_lock);
2672 data_disks = disks - conf->max_degraded;
2674 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2675 &dd_idx, &pd_idx, conf);
2676 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2677 (unsigned long long)new_sector,
2678 (unsigned long long)logical_sector);
2680 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2681 if (sh) {
2682 if (unlikely(conf->expand_progress != MaxSector)) {
2683 /* expansion might have moved on while waiting for a
2684 * stripe, so we must do the range check again.
2685 * Expansion could still move past after this
2686 * test, but as we are holding a reference to
2687 * 'sh', we know that if that happens,
2688 * STRIPE_EXPANDING will get set and the expansion
2689 * won't proceed until we finish with the stripe.
2691 int must_retry = 0;
2692 spin_lock_irq(&conf->device_lock);
2693 if (logical_sector < conf->expand_progress &&
2694 disks == conf->previous_raid_disks)
2695 /* mismatch, need to try again */
2696 must_retry = 1;
2697 spin_unlock_irq(&conf->device_lock);
2698 if (must_retry) {
2699 release_stripe(sh);
2700 goto retry;
2703 /* FIXME what if we get a false positive because these
2704 * are being updated.
2706 if (logical_sector >= mddev->suspend_lo &&
2707 logical_sector < mddev->suspend_hi) {
2708 release_stripe(sh);
2709 schedule();
2710 goto retry;
2713 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2714 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2715 /* Stripe is busy expanding or
2716 * add failed due to overlap. Flush everything
2717 * and wait a while
2719 raid5_unplug_device(mddev->queue);
2720 release_stripe(sh);
2721 schedule();
2722 goto retry;
2724 finish_wait(&conf->wait_for_overlap, &w);
2725 handle_stripe(sh, NULL);
2726 release_stripe(sh);
2727 } else {
2728 /* cannot get stripe for read-ahead, just give-up */
2729 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2730 finish_wait(&conf->wait_for_overlap, &w);
2731 break;
2735 spin_lock_irq(&conf->device_lock);
2736 remaining = --bi->bi_phys_segments;
2737 spin_unlock_irq(&conf->device_lock);
2738 if (remaining == 0) {
2739 int bytes = bi->bi_size;
2741 if ( rw == WRITE )
2742 md_write_end(mddev);
2743 bi->bi_size = 0;
2744 bi->bi_end_io(bi, bytes, 0);
2746 return 0;
2749 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2751 /* reshaping is quite different to recovery/resync so it is
2752 * handled quite separately ... here.
2754 * On each call to sync_request, we gather one chunk worth of
2755 * destination stripes and flag them as expanding.
2756 * Then we find all the source stripes and request reads.
2757 * As the reads complete, handle_stripe will copy the data
2758 * into the destination stripe and release that stripe.
2760 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2761 struct stripe_head *sh;
2762 int pd_idx;
2763 sector_t first_sector, last_sector;
2764 int raid_disks;
2765 int data_disks;
2766 int i;
2767 int dd_idx;
2768 sector_t writepos, safepos, gap;
2770 if (sector_nr == 0 &&
2771 conf->expand_progress != 0) {
2772 /* restarting in the middle, skip the initial sectors */
2773 sector_nr = conf->expand_progress;
2774 sector_div(sector_nr, conf->raid_disks-1);
2775 *skipped = 1;
2776 return sector_nr;
2779 /* we update the metadata when there is more than 3Meg
2780 * in the block range (that is rather arbitrary, should
2781 * probably be time based) or when the data about to be
2782 * copied would over-write the source of the data at
2783 * the front of the range.
2784 * i.e. one new_stripe forward from expand_progress new_maps
2785 * to after where expand_lo old_maps to
2787 writepos = conf->expand_progress +
2788 conf->chunk_size/512*(conf->raid_disks-1);
2789 sector_div(writepos, conf->raid_disks-1);
2790 safepos = conf->expand_lo;
2791 sector_div(safepos, conf->previous_raid_disks-1);
2792 gap = conf->expand_progress - conf->expand_lo;
2794 if (writepos >= safepos ||
2795 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2796 /* Cannot proceed until we've updated the superblock... */
2797 wait_event(conf->wait_for_overlap,
2798 atomic_read(&conf->reshape_stripes)==0);
2799 mddev->reshape_position = conf->expand_progress;
2800 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2801 md_wakeup_thread(mddev->thread);
2802 wait_event(mddev->sb_wait, mddev->flags == 0 ||
2803 kthread_should_stop());
2804 spin_lock_irq(&conf->device_lock);
2805 conf->expand_lo = mddev->reshape_position;
2806 spin_unlock_irq(&conf->device_lock);
2807 wake_up(&conf->wait_for_overlap);
2810 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2811 int j;
2812 int skipped = 0;
2813 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2814 sh = get_active_stripe(conf, sector_nr+i,
2815 conf->raid_disks, pd_idx, 0);
2816 set_bit(STRIPE_EXPANDING, &sh->state);
2817 atomic_inc(&conf->reshape_stripes);
2818 /* If any of this stripe is beyond the end of the old
2819 * array, then we need to zero those blocks
2821 for (j=sh->disks; j--;) {
2822 sector_t s;
2823 if (j == sh->pd_idx)
2824 continue;
2825 s = compute_blocknr(sh, j);
2826 if (s < (mddev->array_size<<1)) {
2827 skipped = 1;
2828 continue;
2830 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2831 set_bit(R5_Expanded, &sh->dev[j].flags);
2832 set_bit(R5_UPTODATE, &sh->dev[j].flags);
2834 if (!skipped) {
2835 set_bit(STRIPE_EXPAND_READY, &sh->state);
2836 set_bit(STRIPE_HANDLE, &sh->state);
2838 release_stripe(sh);
2840 spin_lock_irq(&conf->device_lock);
2841 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2842 spin_unlock_irq(&conf->device_lock);
2843 /* Ok, those stripe are ready. We can start scheduling
2844 * reads on the source stripes.
2845 * The source stripes are determined by mapping the first and last
2846 * block on the destination stripes.
2848 raid_disks = conf->previous_raid_disks;
2849 data_disks = raid_disks - 1;
2850 first_sector =
2851 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2852 raid_disks, data_disks,
2853 &dd_idx, &pd_idx, conf);
2854 last_sector =
2855 raid5_compute_sector((sector_nr+conf->chunk_size/512)
2856 *(conf->raid_disks-1) -1,
2857 raid_disks, data_disks,
2858 &dd_idx, &pd_idx, conf);
2859 if (last_sector >= (mddev->size<<1))
2860 last_sector = (mddev->size<<1)-1;
2861 while (first_sector <= last_sector) {
2862 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2863 sh = get_active_stripe(conf, first_sector,
2864 conf->previous_raid_disks, pd_idx, 0);
2865 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2866 set_bit(STRIPE_HANDLE, &sh->state);
2867 release_stripe(sh);
2868 first_sector += STRIPE_SECTORS;
2870 return conf->chunk_size>>9;
2873 /* FIXME go_faster isn't used */
2874 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2876 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2877 struct stripe_head *sh;
2878 int pd_idx;
2879 int raid_disks = conf->raid_disks;
2880 sector_t max_sector = mddev->size << 1;
2881 int sync_blocks;
2882 int still_degraded = 0;
2883 int i;
2885 if (sector_nr >= max_sector) {
2886 /* just being told to finish up .. nothing much to do */
2887 unplug_slaves(mddev);
2888 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2889 end_reshape(conf);
2890 return 0;
2893 if (mddev->curr_resync < max_sector) /* aborted */
2894 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2895 &sync_blocks, 1);
2896 else /* completed sync */
2897 conf->fullsync = 0;
2898 bitmap_close_sync(mddev->bitmap);
2900 return 0;
2903 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2904 return reshape_request(mddev, sector_nr, skipped);
2906 /* if there is too many failed drives and we are trying
2907 * to resync, then assert that we are finished, because there is
2908 * nothing we can do.
2910 if (mddev->degraded >= conf->max_degraded &&
2911 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2912 sector_t rv = (mddev->size << 1) - sector_nr;
2913 *skipped = 1;
2914 return rv;
2916 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2917 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2918 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2919 /* we can skip this block, and probably more */
2920 sync_blocks /= STRIPE_SECTORS;
2921 *skipped = 1;
2922 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2925 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2926 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2927 if (sh == NULL) {
2928 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2929 /* make sure we don't swamp the stripe cache if someone else
2930 * is trying to get access
2932 schedule_timeout_uninterruptible(1);
2934 /* Need to check if array will still be degraded after recovery/resync
2935 * We don't need to check the 'failed' flag as when that gets set,
2936 * recovery aborts.
2938 for (i=0; i<mddev->raid_disks; i++)
2939 if (conf->disks[i].rdev == NULL)
2940 still_degraded = 1;
2942 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2944 spin_lock(&sh->lock);
2945 set_bit(STRIPE_SYNCING, &sh->state);
2946 clear_bit(STRIPE_INSYNC, &sh->state);
2947 spin_unlock(&sh->lock);
2949 handle_stripe(sh, NULL);
2950 release_stripe(sh);
2952 return STRIPE_SECTORS;
2956 * This is our raid5 kernel thread.
2958 * We scan the hash table for stripes which can be handled now.
2959 * During the scan, completed stripes are saved for us by the interrupt
2960 * handler, so that they will not have to wait for our next wakeup.
2962 static void raid5d (mddev_t *mddev)
2964 struct stripe_head *sh;
2965 raid5_conf_t *conf = mddev_to_conf(mddev);
2966 int handled;
2968 PRINTK("+++ raid5d active\n");
2970 md_check_recovery(mddev);
2972 handled = 0;
2973 spin_lock_irq(&conf->device_lock);
2974 while (1) {
2975 struct list_head *first;
2977 if (conf->seq_flush != conf->seq_write) {
2978 int seq = conf->seq_flush;
2979 spin_unlock_irq(&conf->device_lock);
2980 bitmap_unplug(mddev->bitmap);
2981 spin_lock_irq(&conf->device_lock);
2982 conf->seq_write = seq;
2983 activate_bit_delay(conf);
2986 if (list_empty(&conf->handle_list) &&
2987 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2988 !blk_queue_plugged(mddev->queue) &&
2989 !list_empty(&conf->delayed_list))
2990 raid5_activate_delayed(conf);
2992 if (list_empty(&conf->handle_list))
2993 break;
2995 first = conf->handle_list.next;
2996 sh = list_entry(first, struct stripe_head, lru);
2998 list_del_init(first);
2999 atomic_inc(&sh->count);
3000 BUG_ON(atomic_read(&sh->count)!= 1);
3001 spin_unlock_irq(&conf->device_lock);
3003 handled++;
3004 handle_stripe(sh, conf->spare_page);
3005 release_stripe(sh);
3007 spin_lock_irq(&conf->device_lock);
3009 PRINTK("%d stripes handled\n", handled);
3011 spin_unlock_irq(&conf->device_lock);
3013 unplug_slaves(mddev);
3015 PRINTK("--- raid5d inactive\n");
3018 static ssize_t
3019 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3021 raid5_conf_t *conf = mddev_to_conf(mddev);
3022 if (conf)
3023 return sprintf(page, "%d\n", conf->max_nr_stripes);
3024 else
3025 return 0;
3028 static ssize_t
3029 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3031 raid5_conf_t *conf = mddev_to_conf(mddev);
3032 char *end;
3033 int new;
3034 if (len >= PAGE_SIZE)
3035 return -EINVAL;
3036 if (!conf)
3037 return -ENODEV;
3039 new = simple_strtoul(page, &end, 10);
3040 if (!*page || (*end && *end != '\n') )
3041 return -EINVAL;
3042 if (new <= 16 || new > 32768)
3043 return -EINVAL;
3044 while (new < conf->max_nr_stripes) {
3045 if (drop_one_stripe(conf))
3046 conf->max_nr_stripes--;
3047 else
3048 break;
3050 md_allow_write(mddev);
3051 while (new > conf->max_nr_stripes) {
3052 if (grow_one_stripe(conf))
3053 conf->max_nr_stripes++;
3054 else break;
3056 return len;
3059 static struct md_sysfs_entry
3060 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3061 raid5_show_stripe_cache_size,
3062 raid5_store_stripe_cache_size);
3064 static ssize_t
3065 stripe_cache_active_show(mddev_t *mddev, char *page)
3067 raid5_conf_t *conf = mddev_to_conf(mddev);
3068 if (conf)
3069 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3070 else
3071 return 0;
3074 static struct md_sysfs_entry
3075 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3077 static struct attribute *raid5_attrs[] = {
3078 &raid5_stripecache_size.attr,
3079 &raid5_stripecache_active.attr,
3080 NULL,
3082 static struct attribute_group raid5_attrs_group = {
3083 .name = NULL,
3084 .attrs = raid5_attrs,
3087 static int run(mddev_t *mddev)
3089 raid5_conf_t *conf;
3090 int raid_disk, memory;
3091 mdk_rdev_t *rdev;
3092 struct disk_info *disk;
3093 struct list_head *tmp;
3094 int working_disks = 0;
3096 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3097 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3098 mdname(mddev), mddev->level);
3099 return -EIO;
3102 if (mddev->reshape_position != MaxSector) {
3103 /* Check that we can continue the reshape.
3104 * Currently only disks can change, it must
3105 * increase, and we must be past the point where
3106 * a stripe over-writes itself
3108 sector_t here_new, here_old;
3109 int old_disks;
3111 if (mddev->new_level != mddev->level ||
3112 mddev->new_layout != mddev->layout ||
3113 mddev->new_chunk != mddev->chunk_size) {
3114 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3115 mdname(mddev));
3116 return -EINVAL;
3118 if (mddev->delta_disks <= 0) {
3119 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3120 mdname(mddev));
3121 return -EINVAL;
3123 old_disks = mddev->raid_disks - mddev->delta_disks;
3124 /* reshape_position must be on a new-stripe boundary, and one
3125 * further up in new geometry must map after here in old geometry.
3127 here_new = mddev->reshape_position;
3128 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3129 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3130 return -EINVAL;
3132 /* here_new is the stripe we will write to */
3133 here_old = mddev->reshape_position;
3134 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3135 /* here_old is the first stripe that we might need to read from */
3136 if (here_new >= here_old) {
3137 /* Reading from the same stripe as writing to - bad */
3138 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3139 return -EINVAL;
3141 printk(KERN_INFO "raid5: reshape will continue\n");
3142 /* OK, we should be able to continue; */
3146 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3147 if ((conf = mddev->private) == NULL)
3148 goto abort;
3149 if (mddev->reshape_position == MaxSector) {
3150 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3151 } else {
3152 conf->raid_disks = mddev->raid_disks;
3153 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3156 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3157 GFP_KERNEL);
3158 if (!conf->disks)
3159 goto abort;
3161 conf->mddev = mddev;
3163 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3164 goto abort;
3166 if (mddev->level == 6) {
3167 conf->spare_page = alloc_page(GFP_KERNEL);
3168 if (!conf->spare_page)
3169 goto abort;
3171 spin_lock_init(&conf->device_lock);
3172 init_waitqueue_head(&conf->wait_for_stripe);
3173 init_waitqueue_head(&conf->wait_for_overlap);
3174 INIT_LIST_HEAD(&conf->handle_list);
3175 INIT_LIST_HEAD(&conf->delayed_list);
3176 INIT_LIST_HEAD(&conf->bitmap_list);
3177 INIT_LIST_HEAD(&conf->inactive_list);
3178 atomic_set(&conf->active_stripes, 0);
3179 atomic_set(&conf->preread_active_stripes, 0);
3181 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3183 ITERATE_RDEV(mddev,rdev,tmp) {
3184 raid_disk = rdev->raid_disk;
3185 if (raid_disk >= conf->raid_disks
3186 || raid_disk < 0)
3187 continue;
3188 disk = conf->disks + raid_disk;
3190 disk->rdev = rdev;
3192 if (test_bit(In_sync, &rdev->flags)) {
3193 char b[BDEVNAME_SIZE];
3194 printk(KERN_INFO "raid5: device %s operational as raid"
3195 " disk %d\n", bdevname(rdev->bdev,b),
3196 raid_disk);
3197 working_disks++;
3202 * 0 for a fully functional array, 1 or 2 for a degraded array.
3204 mddev->degraded = conf->raid_disks - working_disks;
3205 conf->mddev = mddev;
3206 conf->chunk_size = mddev->chunk_size;
3207 conf->level = mddev->level;
3208 if (conf->level == 6)
3209 conf->max_degraded = 2;
3210 else
3211 conf->max_degraded = 1;
3212 conf->algorithm = mddev->layout;
3213 conf->max_nr_stripes = NR_STRIPES;
3214 conf->expand_progress = mddev->reshape_position;
3216 /* device size must be a multiple of chunk size */
3217 mddev->size &= ~(mddev->chunk_size/1024 -1);
3218 mddev->resync_max_sectors = mddev->size << 1;
3220 if (conf->level == 6 && conf->raid_disks < 4) {
3221 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3222 mdname(mddev), conf->raid_disks);
3223 goto abort;
3225 if (!conf->chunk_size || conf->chunk_size % 4) {
3226 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3227 conf->chunk_size, mdname(mddev));
3228 goto abort;
3230 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3231 printk(KERN_ERR
3232 "raid5: unsupported parity algorithm %d for %s\n",
3233 conf->algorithm, mdname(mddev));
3234 goto abort;
3236 if (mddev->degraded > conf->max_degraded) {
3237 printk(KERN_ERR "raid5: not enough operational devices for %s"
3238 " (%d/%d failed)\n",
3239 mdname(mddev), mddev->degraded, conf->raid_disks);
3240 goto abort;
3243 if (mddev->degraded > 0 &&
3244 mddev->recovery_cp != MaxSector) {
3245 if (mddev->ok_start_degraded)
3246 printk(KERN_WARNING
3247 "raid5: starting dirty degraded array: %s"
3248 "- data corruption possible.\n",
3249 mdname(mddev));
3250 else {
3251 printk(KERN_ERR
3252 "raid5: cannot start dirty degraded array for %s\n",
3253 mdname(mddev));
3254 goto abort;
3259 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3260 if (!mddev->thread) {
3261 printk(KERN_ERR
3262 "raid5: couldn't allocate thread for %s\n",
3263 mdname(mddev));
3264 goto abort;
3267 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3268 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3269 if (grow_stripes(conf, conf->max_nr_stripes)) {
3270 printk(KERN_ERR
3271 "raid5: couldn't allocate %dkB for buffers\n", memory);
3272 shrink_stripes(conf);
3273 md_unregister_thread(mddev->thread);
3274 goto abort;
3275 } else
3276 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3277 memory, mdname(mddev));
3279 if (mddev->degraded == 0)
3280 printk("raid5: raid level %d set %s active with %d out of %d"
3281 " devices, algorithm %d\n", conf->level, mdname(mddev),
3282 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3283 conf->algorithm);
3284 else
3285 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3286 " out of %d devices, algorithm %d\n", conf->level,
3287 mdname(mddev), mddev->raid_disks - mddev->degraded,
3288 mddev->raid_disks, conf->algorithm);
3290 print_raid5_conf(conf);
3292 if (conf->expand_progress != MaxSector) {
3293 printk("...ok start reshape thread\n");
3294 conf->expand_lo = conf->expand_progress;
3295 atomic_set(&conf->reshape_stripes, 0);
3296 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3297 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3298 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3299 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3300 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3301 "%s_reshape");
3304 /* read-ahead size must cover two whole stripes, which is
3305 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3308 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3309 int stripe = data_disks *
3310 (mddev->chunk_size / PAGE_SIZE);
3311 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3312 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3315 /* Ok, everything is just fine now */
3316 sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3318 mddev->queue->unplug_fn = raid5_unplug_device;
3319 mddev->queue->issue_flush_fn = raid5_issue_flush;
3320 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
3321 mddev->queue->backing_dev_info.congested_data = mddev;
3323 mddev->array_size = mddev->size * (conf->previous_raid_disks -
3324 conf->max_degraded);
3326 return 0;
3327 abort:
3328 if (conf) {
3329 print_raid5_conf(conf);
3330 safe_put_page(conf->spare_page);
3331 kfree(conf->disks);
3332 kfree(conf->stripe_hashtbl);
3333 kfree(conf);
3335 mddev->private = NULL;
3336 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3337 return -EIO;
3342 static int stop(mddev_t *mddev)
3344 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3346 md_unregister_thread(mddev->thread);
3347 mddev->thread = NULL;
3348 shrink_stripes(conf);
3349 kfree(conf->stripe_hashtbl);
3350 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3351 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3352 kfree(conf->disks);
3353 kfree(conf);
3354 mddev->private = NULL;
3355 return 0;
3358 #if RAID5_DEBUG
3359 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3361 int i;
3363 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3364 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3365 seq_printf(seq, "sh %llu, count %d.\n",
3366 (unsigned long long)sh->sector, atomic_read(&sh->count));
3367 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3368 for (i = 0; i < sh->disks; i++) {
3369 seq_printf(seq, "(cache%d: %p %ld) ",
3370 i, sh->dev[i].page, sh->dev[i].flags);
3372 seq_printf(seq, "\n");
3375 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3377 struct stripe_head *sh;
3378 struct hlist_node *hn;
3379 int i;
3381 spin_lock_irq(&conf->device_lock);
3382 for (i = 0; i < NR_HASH; i++) {
3383 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3384 if (sh->raid_conf != conf)
3385 continue;
3386 print_sh(seq, sh);
3389 spin_unlock_irq(&conf->device_lock);
3391 #endif
3393 static void status (struct seq_file *seq, mddev_t *mddev)
3395 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3396 int i;
3398 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3399 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
3400 for (i = 0; i < conf->raid_disks; i++)
3401 seq_printf (seq, "%s",
3402 conf->disks[i].rdev &&
3403 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3404 seq_printf (seq, "]");
3405 #if RAID5_DEBUG
3406 seq_printf (seq, "\n");
3407 printall(seq, conf);
3408 #endif
3411 static void print_raid5_conf (raid5_conf_t *conf)
3413 int i;
3414 struct disk_info *tmp;
3416 printk("RAID5 conf printout:\n");
3417 if (!conf) {
3418 printk("(conf==NULL)\n");
3419 return;
3421 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3422 conf->raid_disks - conf->mddev->degraded);
3424 for (i = 0; i < conf->raid_disks; i++) {
3425 char b[BDEVNAME_SIZE];
3426 tmp = conf->disks + i;
3427 if (tmp->rdev)
3428 printk(" disk %d, o:%d, dev:%s\n",
3429 i, !test_bit(Faulty, &tmp->rdev->flags),
3430 bdevname(tmp->rdev->bdev,b));
3434 static int raid5_spare_active(mddev_t *mddev)
3436 int i;
3437 raid5_conf_t *conf = mddev->private;
3438 struct disk_info *tmp;
3440 for (i = 0; i < conf->raid_disks; i++) {
3441 tmp = conf->disks + i;
3442 if (tmp->rdev
3443 && !test_bit(Faulty, &tmp->rdev->flags)
3444 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
3445 unsigned long flags;
3446 spin_lock_irqsave(&conf->device_lock, flags);
3447 mddev->degraded--;
3448 spin_unlock_irqrestore(&conf->device_lock, flags);
3451 print_raid5_conf(conf);
3452 return 0;
3455 static int raid5_remove_disk(mddev_t *mddev, int number)
3457 raid5_conf_t *conf = mddev->private;
3458 int err = 0;
3459 mdk_rdev_t *rdev;
3460 struct disk_info *p = conf->disks + number;
3462 print_raid5_conf(conf);
3463 rdev = p->rdev;
3464 if (rdev) {
3465 if (test_bit(In_sync, &rdev->flags) ||
3466 atomic_read(&rdev->nr_pending)) {
3467 err = -EBUSY;
3468 goto abort;
3470 p->rdev = NULL;
3471 synchronize_rcu();
3472 if (atomic_read(&rdev->nr_pending)) {
3473 /* lost the race, try later */
3474 err = -EBUSY;
3475 p->rdev = rdev;
3478 abort:
3480 print_raid5_conf(conf);
3481 return err;
3484 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3486 raid5_conf_t *conf = mddev->private;
3487 int found = 0;
3488 int disk;
3489 struct disk_info *p;
3491 if (mddev->degraded > conf->max_degraded)
3492 /* no point adding a device */
3493 return 0;
3496 * find the disk ... but prefer rdev->saved_raid_disk
3497 * if possible.
3499 if (rdev->saved_raid_disk >= 0 &&
3500 conf->disks[rdev->saved_raid_disk].rdev == NULL)
3501 disk = rdev->saved_raid_disk;
3502 else
3503 disk = 0;
3504 for ( ; disk < conf->raid_disks; disk++)
3505 if ((p=conf->disks + disk)->rdev == NULL) {
3506 clear_bit(In_sync, &rdev->flags);
3507 rdev->raid_disk = disk;
3508 found = 1;
3509 if (rdev->saved_raid_disk != disk)
3510 conf->fullsync = 1;
3511 rcu_assign_pointer(p->rdev, rdev);
3512 break;
3514 print_raid5_conf(conf);
3515 return found;
3518 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3520 /* no resync is happening, and there is enough space
3521 * on all devices, so we can resize.
3522 * We need to make sure resync covers any new space.
3523 * If the array is shrinking we should possibly wait until
3524 * any io in the removed space completes, but it hardly seems
3525 * worth it.
3527 raid5_conf_t *conf = mddev_to_conf(mddev);
3529 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3530 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3531 set_capacity(mddev->gendisk, mddev->array_size << 1);
3532 mddev->changed = 1;
3533 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
3534 mddev->recovery_cp = mddev->size << 1;
3535 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3537 mddev->size = sectors /2;
3538 mddev->resync_max_sectors = sectors;
3539 return 0;
3542 #ifdef CONFIG_MD_RAID5_RESHAPE
3543 static int raid5_check_reshape(mddev_t *mddev)
3545 raid5_conf_t *conf = mddev_to_conf(mddev);
3546 int err;
3548 if (mddev->delta_disks < 0 ||
3549 mddev->new_level != mddev->level)
3550 return -EINVAL; /* Cannot shrink array or change level yet */
3551 if (mddev->delta_disks == 0)
3552 return 0; /* nothing to do */
3554 /* Can only proceed if there are plenty of stripe_heads.
3555 * We need a minimum of one full stripe,, and for sensible progress
3556 * it is best to have about 4 times that.
3557 * If we require 4 times, then the default 256 4K stripe_heads will
3558 * allow for chunk sizes up to 256K, which is probably OK.
3559 * If the chunk size is greater, user-space should request more
3560 * stripe_heads first.
3562 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3563 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3564 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
3565 (mddev->chunk_size / STRIPE_SIZE)*4);
3566 return -ENOSPC;
3569 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3570 if (err)
3571 return err;
3573 /* looks like we might be able to manage this */
3574 return 0;
3577 static int raid5_start_reshape(mddev_t *mddev)
3579 raid5_conf_t *conf = mddev_to_conf(mddev);
3580 mdk_rdev_t *rdev;
3581 struct list_head *rtmp;
3582 int spares = 0;
3583 int added_devices = 0;
3584 unsigned long flags;
3586 if (mddev->degraded ||
3587 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3588 return -EBUSY;
3590 ITERATE_RDEV(mddev, rdev, rtmp)
3591 if (rdev->raid_disk < 0 &&
3592 !test_bit(Faulty, &rdev->flags))
3593 spares++;
3595 if (spares < mddev->delta_disks-1)
3596 /* Not enough devices even to make a degraded array
3597 * of that size
3599 return -EINVAL;
3601 atomic_set(&conf->reshape_stripes, 0);
3602 spin_lock_irq(&conf->device_lock);
3603 conf->previous_raid_disks = conf->raid_disks;
3604 conf->raid_disks += mddev->delta_disks;
3605 conf->expand_progress = 0;
3606 conf->expand_lo = 0;
3607 spin_unlock_irq(&conf->device_lock);
3609 /* Add some new drives, as many as will fit.
3610 * We know there are enough to make the newly sized array work.
3612 ITERATE_RDEV(mddev, rdev, rtmp)
3613 if (rdev->raid_disk < 0 &&
3614 !test_bit(Faulty, &rdev->flags)) {
3615 if (raid5_add_disk(mddev, rdev)) {
3616 char nm[20];
3617 set_bit(In_sync, &rdev->flags);
3618 added_devices++;
3619 rdev->recovery_offset = 0;
3620 sprintf(nm, "rd%d", rdev->raid_disk);
3621 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3622 } else
3623 break;
3626 spin_lock_irqsave(&conf->device_lock, flags);
3627 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3628 spin_unlock_irqrestore(&conf->device_lock, flags);
3629 mddev->raid_disks = conf->raid_disks;
3630 mddev->reshape_position = 0;
3631 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3633 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3634 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3635 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3636 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3637 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3638 "%s_reshape");
3639 if (!mddev->sync_thread) {
3640 mddev->recovery = 0;
3641 spin_lock_irq(&conf->device_lock);
3642 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3643 conf->expand_progress = MaxSector;
3644 spin_unlock_irq(&conf->device_lock);
3645 return -EAGAIN;
3647 md_wakeup_thread(mddev->sync_thread);
3648 md_new_event(mddev);
3649 return 0;
3651 #endif
3653 static void end_reshape(raid5_conf_t *conf)
3655 struct block_device *bdev;
3657 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3658 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3659 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3660 conf->mddev->changed = 1;
3662 bdev = bdget_disk(conf->mddev->gendisk, 0);
3663 if (bdev) {
3664 mutex_lock(&bdev->bd_inode->i_mutex);
3665 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
3666 mutex_unlock(&bdev->bd_inode->i_mutex);
3667 bdput(bdev);
3669 spin_lock_irq(&conf->device_lock);
3670 conf->expand_progress = MaxSector;
3671 spin_unlock_irq(&conf->device_lock);
3672 conf->mddev->reshape_position = MaxSector;
3674 /* read-ahead size must cover two whole stripes, which is
3675 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3678 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3679 int stripe = data_disks *
3680 (conf->mddev->chunk_size / PAGE_SIZE);
3681 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3682 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3687 static void raid5_quiesce(mddev_t *mddev, int state)
3689 raid5_conf_t *conf = mddev_to_conf(mddev);
3691 switch(state) {
3692 case 2: /* resume for a suspend */
3693 wake_up(&conf->wait_for_overlap);
3694 break;
3696 case 1: /* stop all writes */
3697 spin_lock_irq(&conf->device_lock);
3698 conf->quiesce = 1;
3699 wait_event_lock_irq(conf->wait_for_stripe,
3700 atomic_read(&conf->active_stripes) == 0,
3701 conf->device_lock, /* nothing */);
3702 spin_unlock_irq(&conf->device_lock);
3703 break;
3705 case 0: /* re-enable writes */
3706 spin_lock_irq(&conf->device_lock);
3707 conf->quiesce = 0;
3708 wake_up(&conf->wait_for_stripe);
3709 wake_up(&conf->wait_for_overlap);
3710 spin_unlock_irq(&conf->device_lock);
3711 break;
3715 static struct mdk_personality raid6_personality =
3717 .name = "raid6",
3718 .level = 6,
3719 .owner = THIS_MODULE,
3720 .make_request = make_request,
3721 .run = run,
3722 .stop = stop,
3723 .status = status,
3724 .error_handler = error,
3725 .hot_add_disk = raid5_add_disk,
3726 .hot_remove_disk= raid5_remove_disk,
3727 .spare_active = raid5_spare_active,
3728 .sync_request = sync_request,
3729 .resize = raid5_resize,
3730 .quiesce = raid5_quiesce,
3732 static struct mdk_personality raid5_personality =
3734 .name = "raid5",
3735 .level = 5,
3736 .owner = THIS_MODULE,
3737 .make_request = make_request,
3738 .run = run,
3739 .stop = stop,
3740 .status = status,
3741 .error_handler = error,
3742 .hot_add_disk = raid5_add_disk,
3743 .hot_remove_disk= raid5_remove_disk,
3744 .spare_active = raid5_spare_active,
3745 .sync_request = sync_request,
3746 .resize = raid5_resize,
3747 #ifdef CONFIG_MD_RAID5_RESHAPE
3748 .check_reshape = raid5_check_reshape,
3749 .start_reshape = raid5_start_reshape,
3750 #endif
3751 .quiesce = raid5_quiesce,
3754 static struct mdk_personality raid4_personality =
3756 .name = "raid4",
3757 .level = 4,
3758 .owner = THIS_MODULE,
3759 .make_request = make_request,
3760 .run = run,
3761 .stop = stop,
3762 .status = status,
3763 .error_handler = error,
3764 .hot_add_disk = raid5_add_disk,
3765 .hot_remove_disk= raid5_remove_disk,
3766 .spare_active = raid5_spare_active,
3767 .sync_request = sync_request,
3768 .resize = raid5_resize,
3769 .quiesce = raid5_quiesce,
3772 static int __init raid5_init(void)
3774 int e;
3776 e = raid6_select_algo();
3777 if ( e )
3778 return e;
3779 register_md_personality(&raid6_personality);
3780 register_md_personality(&raid5_personality);
3781 register_md_personality(&raid4_personality);
3782 return 0;
3785 static void raid5_exit(void)
3787 unregister_md_personality(&raid6_personality);
3788 unregister_md_personality(&raid5_personality);
3789 unregister_md_personality(&raid4_personality);
3792 module_init(raid5_init);
3793 module_exit(raid5_exit);
3794 MODULE_LICENSE("GPL");
3795 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3796 MODULE_ALIAS("md-raid5");
3797 MODULE_ALIAS("md-raid4");
3798 MODULE_ALIAS("md-level-5");
3799 MODULE_ALIAS("md-level-4");
3800 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3801 MODULE_ALIAS("md-raid6");
3802 MODULE_ALIAS("md-level-6");
3804 /* This used to be two separate modules, they were: */
3805 MODULE_ALIAS("raid5");
3806 MODULE_ALIAS("raid6");