sky2: kfree_skb with IRQ with netconsole
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ide-iops.c
blob65580559cee4a00a11074b42d1c0ab749d852424
1 /*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 */
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
34 * Conventional PIO operations for ATA devices
37 static u8 ide_inb (unsigned long port)
39 return (u8) inb(port);
42 static u16 ide_inw (unsigned long port)
44 return (u16) inw(port);
47 static void ide_insw (unsigned long port, void *addr, u32 count)
49 insw(port, addr, count);
52 static u32 ide_inl (unsigned long port)
54 return (u32) inl(port);
57 static void ide_insl (unsigned long port, void *addr, u32 count)
59 insl(port, addr, count);
62 static void ide_outb (u8 val, unsigned long port)
64 outb(val, port);
67 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
69 outb(addr, port);
72 static void ide_outw (u16 val, unsigned long port)
74 outw(val, port);
77 static void ide_outsw (unsigned long port, void *addr, u32 count)
79 outsw(port, addr, count);
82 static void ide_outl (u32 val, unsigned long port)
84 outl(val, port);
87 static void ide_outsl (unsigned long port, void *addr, u32 count)
89 outsl(port, addr, count);
92 void default_hwif_iops (ide_hwif_t *hwif)
94 hwif->OUTB = ide_outb;
95 hwif->OUTBSYNC = ide_outbsync;
96 hwif->OUTW = ide_outw;
97 hwif->OUTL = ide_outl;
98 hwif->OUTSW = ide_outsw;
99 hwif->OUTSL = ide_outsl;
100 hwif->INB = ide_inb;
101 hwif->INW = ide_inw;
102 hwif->INL = ide_inl;
103 hwif->INSW = ide_insw;
104 hwif->INSL = ide_insl;
108 * MMIO operations, typically used for SATA controllers
111 static u8 ide_mm_inb (unsigned long port)
113 return (u8) readb((void __iomem *) port);
116 static u16 ide_mm_inw (unsigned long port)
118 return (u16) readw((void __iomem *) port);
121 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
123 __ide_mm_insw((void __iomem *) port, addr, count);
126 static u32 ide_mm_inl (unsigned long port)
128 return (u32) readl((void __iomem *) port);
131 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
133 __ide_mm_insl((void __iomem *) port, addr, count);
136 static void ide_mm_outb (u8 value, unsigned long port)
138 writeb(value, (void __iomem *) port);
141 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
143 writeb(value, (void __iomem *) port);
146 static void ide_mm_outw (u16 value, unsigned long port)
148 writew(value, (void __iomem *) port);
151 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
153 __ide_mm_outsw((void __iomem *) port, addr, count);
156 static void ide_mm_outl (u32 value, unsigned long port)
158 writel(value, (void __iomem *) port);
161 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
163 __ide_mm_outsl((void __iomem *) port, addr, count);
166 void default_hwif_mmiops (ide_hwif_t *hwif)
168 hwif->OUTB = ide_mm_outb;
169 /* Most systems will need to override OUTBSYNC, alas however
170 this one is controller specific! */
171 hwif->OUTBSYNC = ide_mm_outbsync;
172 hwif->OUTW = ide_mm_outw;
173 hwif->OUTL = ide_mm_outl;
174 hwif->OUTSW = ide_mm_outsw;
175 hwif->OUTSL = ide_mm_outsl;
176 hwif->INB = ide_mm_inb;
177 hwif->INW = ide_mm_inw;
178 hwif->INL = ide_mm_inl;
179 hwif->INSW = ide_mm_insw;
180 hwif->INSL = ide_mm_insl;
183 EXPORT_SYMBOL(default_hwif_mmiops);
185 u32 ide_read_24 (ide_drive_t *drive)
187 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
188 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
189 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
190 return (hcyl<<16)|(lcyl<<8)|sect;
193 void SELECT_DRIVE (ide_drive_t *drive)
195 if (HWIF(drive)->selectproc)
196 HWIF(drive)->selectproc(drive);
197 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
200 EXPORT_SYMBOL(SELECT_DRIVE);
202 void SELECT_INTERRUPT (ide_drive_t *drive)
204 if (HWIF(drive)->intrproc)
205 HWIF(drive)->intrproc(drive);
206 else
207 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
210 void SELECT_MASK (ide_drive_t *drive, int mask)
212 if (HWIF(drive)->maskproc)
213 HWIF(drive)->maskproc(drive, mask);
216 void QUIRK_LIST (ide_drive_t *drive)
218 if (HWIF(drive)->quirkproc)
219 drive->quirk_list = HWIF(drive)->quirkproc(drive);
223 * Some localbus EIDE interfaces require a special access sequence
224 * when using 32-bit I/O instructions to transfer data. We call this
225 * the "vlb_sync" sequence, which consists of three successive reads
226 * of the sector count register location, with interrupts disabled
227 * to ensure that the reads all happen together.
229 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
231 (void) HWIF(drive)->INB(port);
232 (void) HWIF(drive)->INB(port);
233 (void) HWIF(drive)->INB(port);
237 * This is used for most PIO data transfers *from* the IDE interface
239 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
241 ide_hwif_t *hwif = HWIF(drive);
242 u8 io_32bit = drive->io_32bit;
244 if (io_32bit) {
245 if (io_32bit & 2) {
246 unsigned long flags;
247 local_irq_save(flags);
248 ata_vlb_sync(drive, IDE_NSECTOR_REG);
249 hwif->INSL(IDE_DATA_REG, buffer, wcount);
250 local_irq_restore(flags);
251 } else
252 hwif->INSL(IDE_DATA_REG, buffer, wcount);
253 } else {
254 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
259 * This is used for most PIO data transfers *to* the IDE interface
261 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
263 ide_hwif_t *hwif = HWIF(drive);
264 u8 io_32bit = drive->io_32bit;
266 if (io_32bit) {
267 if (io_32bit & 2) {
268 unsigned long flags;
269 local_irq_save(flags);
270 ata_vlb_sync(drive, IDE_NSECTOR_REG);
271 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
272 local_irq_restore(flags);
273 } else
274 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
275 } else {
276 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
281 * The following routines are mainly used by the ATAPI drivers.
283 * These routines will round up any request for an odd number of bytes,
284 * so if an odd bytecount is specified, be sure that there's at least one
285 * extra byte allocated for the buffer.
288 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
290 ide_hwif_t *hwif = HWIF(drive);
292 ++bytecount;
293 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
294 if (MACH_IS_ATARI || MACH_IS_Q40) {
295 /* Atari has a byte-swapped IDE interface */
296 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
297 return;
299 #endif /* CONFIG_ATARI || CONFIG_Q40 */
300 hwif->ata_input_data(drive, buffer, bytecount / 4);
301 if ((bytecount & 0x03) >= 2)
302 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
305 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
307 ide_hwif_t *hwif = HWIF(drive);
309 ++bytecount;
310 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
311 if (MACH_IS_ATARI || MACH_IS_Q40) {
312 /* Atari has a byte-swapped IDE interface */
313 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
314 return;
316 #endif /* CONFIG_ATARI || CONFIG_Q40 */
317 hwif->ata_output_data(drive, buffer, bytecount / 4);
318 if ((bytecount & 0x03) >= 2)
319 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
322 void default_hwif_transport(ide_hwif_t *hwif)
324 hwif->ata_input_data = ata_input_data;
325 hwif->ata_output_data = ata_output_data;
326 hwif->atapi_input_bytes = atapi_input_bytes;
327 hwif->atapi_output_bytes = atapi_output_bytes;
331 * Beginning of Taskfile OPCODE Library and feature sets.
333 void ide_fix_driveid (struct hd_driveid *id)
335 #ifndef __LITTLE_ENDIAN
336 # ifdef __BIG_ENDIAN
337 int i;
338 u16 *stringcast;
340 id->config = __le16_to_cpu(id->config);
341 id->cyls = __le16_to_cpu(id->cyls);
342 id->reserved2 = __le16_to_cpu(id->reserved2);
343 id->heads = __le16_to_cpu(id->heads);
344 id->track_bytes = __le16_to_cpu(id->track_bytes);
345 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
346 id->sectors = __le16_to_cpu(id->sectors);
347 id->vendor0 = __le16_to_cpu(id->vendor0);
348 id->vendor1 = __le16_to_cpu(id->vendor1);
349 id->vendor2 = __le16_to_cpu(id->vendor2);
350 stringcast = (u16 *)&id->serial_no[0];
351 for (i = 0; i < (20/2); i++)
352 stringcast[i] = __le16_to_cpu(stringcast[i]);
353 id->buf_type = __le16_to_cpu(id->buf_type);
354 id->buf_size = __le16_to_cpu(id->buf_size);
355 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
356 stringcast = (u16 *)&id->fw_rev[0];
357 for (i = 0; i < (8/2); i++)
358 stringcast[i] = __le16_to_cpu(stringcast[i]);
359 stringcast = (u16 *)&id->model[0];
360 for (i = 0; i < (40/2); i++)
361 stringcast[i] = __le16_to_cpu(stringcast[i]);
362 id->dword_io = __le16_to_cpu(id->dword_io);
363 id->reserved50 = __le16_to_cpu(id->reserved50);
364 id->field_valid = __le16_to_cpu(id->field_valid);
365 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
366 id->cur_heads = __le16_to_cpu(id->cur_heads);
367 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
368 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
369 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
370 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
371 id->dma_1word = __le16_to_cpu(id->dma_1word);
372 id->dma_mword = __le16_to_cpu(id->dma_mword);
373 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
374 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
375 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
376 id->eide_pio = __le16_to_cpu(id->eide_pio);
377 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
378 for (i = 0; i < 2; ++i)
379 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
380 for (i = 0; i < 4; ++i)
381 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
382 id->queue_depth = __le16_to_cpu(id->queue_depth);
383 for (i = 0; i < 4; ++i)
384 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
385 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
386 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
387 id->command_set_1 = __le16_to_cpu(id->command_set_1);
388 id->command_set_2 = __le16_to_cpu(id->command_set_2);
389 id->cfsse = __le16_to_cpu(id->cfsse);
390 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
391 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
392 id->csf_default = __le16_to_cpu(id->csf_default);
393 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
394 id->trseuc = __le16_to_cpu(id->trseuc);
395 id->trsEuc = __le16_to_cpu(id->trsEuc);
396 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
397 id->mprc = __le16_to_cpu(id->mprc);
398 id->hw_config = __le16_to_cpu(id->hw_config);
399 id->acoustic = __le16_to_cpu(id->acoustic);
400 id->msrqs = __le16_to_cpu(id->msrqs);
401 id->sxfert = __le16_to_cpu(id->sxfert);
402 id->sal = __le16_to_cpu(id->sal);
403 id->spg = __le32_to_cpu(id->spg);
404 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
405 for (i = 0; i < 22; i++)
406 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
407 id->last_lun = __le16_to_cpu(id->last_lun);
408 id->word127 = __le16_to_cpu(id->word127);
409 id->dlf = __le16_to_cpu(id->dlf);
410 id->csfo = __le16_to_cpu(id->csfo);
411 for (i = 0; i < 26; i++)
412 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
413 id->word156 = __le16_to_cpu(id->word156);
414 for (i = 0; i < 3; i++)
415 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
416 id->cfa_power = __le16_to_cpu(id->cfa_power);
417 for (i = 0; i < 14; i++)
418 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
419 for (i = 0; i < 31; i++)
420 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
421 for (i = 0; i < 48; i++)
422 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
423 id->integrity_word = __le16_to_cpu(id->integrity_word);
424 # else
425 # error "Please fix <asm/byteorder.h>"
426 # endif
427 #endif
430 /* FIXME: exported for use by the USB storage (isd200.c) code only */
431 EXPORT_SYMBOL(ide_fix_driveid);
433 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
435 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
437 if (byteswap) {
438 /* convert from big-endian to host byte order */
439 for (p = end ; p != s;) {
440 unsigned short *pp = (unsigned short *) (p -= 2);
441 *pp = ntohs(*pp);
444 /* strip leading blanks */
445 while (s != end && *s == ' ')
446 ++s;
447 /* compress internal blanks and strip trailing blanks */
448 while (s != end && *s) {
449 if (*s++ != ' ' || (s != end && *s && *s != ' '))
450 *p++ = *(s-1);
452 /* wipe out trailing garbage */
453 while (p != end)
454 *p++ = '\0';
457 EXPORT_SYMBOL(ide_fixstring);
460 * Needed for PCI irq sharing
462 int drive_is_ready (ide_drive_t *drive)
464 ide_hwif_t *hwif = HWIF(drive);
465 u8 stat = 0;
467 if (drive->waiting_for_dma)
468 return hwif->ide_dma_test_irq(drive);
470 #if 0
471 /* need to guarantee 400ns since last command was issued */
472 udelay(1);
473 #endif
475 #ifdef CONFIG_IDEPCI_SHARE_IRQ
477 * We do a passive status test under shared PCI interrupts on
478 * cards that truly share the ATA side interrupt, but may also share
479 * an interrupt with another pci card/device. We make no assumptions
480 * about possible isa-pnp and pci-pnp issues yet.
482 if (IDE_CONTROL_REG)
483 stat = hwif->INB(IDE_ALTSTATUS_REG);
484 else
485 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
486 /* Note: this may clear a pending IRQ!! */
487 stat = hwif->INB(IDE_STATUS_REG);
489 if (stat & BUSY_STAT)
490 /* drive busy: definitely not interrupting */
491 return 0;
493 /* drive ready: *might* be interrupting */
494 return 1;
497 EXPORT_SYMBOL(drive_is_ready);
500 * Global for All, and taken from ide-pmac.c. Can be called
501 * with spinlock held & IRQs disabled, so don't schedule !
503 int wait_for_ready (ide_drive_t *drive, int timeout)
505 ide_hwif_t *hwif = HWIF(drive);
506 u8 stat = 0;
508 while(--timeout) {
509 stat = hwif->INB(IDE_STATUS_REG);
510 if (!(stat & BUSY_STAT)) {
511 if (drive->ready_stat == 0)
512 break;
513 else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
514 break;
516 mdelay(1);
518 if ((stat & ERR_STAT) || timeout <= 0) {
519 if (stat & ERR_STAT) {
520 printk(KERN_ERR "%s: wait_for_ready, "
521 "error status: %x\n", drive->name, stat);
523 return 1;
525 return 0;
529 * This routine busy-waits for the drive status to be not "busy".
530 * It then checks the status for all of the "good" bits and none
531 * of the "bad" bits, and if all is okay it returns 0. All other
532 * cases return 1 after invoking ide_error() -- caller should just return.
534 * This routine should get fixed to not hog the cpu during extra long waits..
535 * That could be done by busy-waiting for the first jiffy or two, and then
536 * setting a timer to wake up at half second intervals thereafter,
537 * until timeout is achieved, before timing out.
539 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
541 ide_hwif_t *hwif = HWIF(drive);
542 u8 stat;
543 int i;
544 unsigned long flags;
546 /* bail early if we've exceeded max_failures */
547 if (drive->max_failures && (drive->failures > drive->max_failures)) {
548 *startstop = ide_stopped;
549 return 1;
552 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
553 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
554 local_irq_set(flags);
555 timeout += jiffies;
556 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
557 if (time_after(jiffies, timeout)) {
559 * One last read after the timeout in case
560 * heavy interrupt load made us not make any
561 * progress during the timeout..
563 stat = hwif->INB(IDE_STATUS_REG);
564 if (!(stat & BUSY_STAT))
565 break;
567 local_irq_restore(flags);
568 *startstop = ide_error(drive, "status timeout", stat);
569 return 1;
572 local_irq_restore(flags);
575 * Allow status to settle, then read it again.
576 * A few rare drives vastly violate the 400ns spec here,
577 * so we'll wait up to 10usec for a "good" status
578 * rather than expensively fail things immediately.
579 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
581 for (i = 0; i < 10; i++) {
582 udelay(1);
583 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
584 return 0;
586 *startstop = ide_error(drive, "status error", stat);
587 return 1;
590 EXPORT_SYMBOL(ide_wait_stat);
593 * All hosts that use the 80c ribbon must use!
594 * The name is derived from upper byte of word 93 and the 80c ribbon.
596 u8 eighty_ninty_three (ide_drive_t *drive)
598 if(HWIF(drive)->udma_four == 0)
599 return 0;
601 /* Check for SATA but only if we are ATA5 or higher */
602 if (drive->id->hw_config == 0 && (drive->id->major_rev_num & 0x7FE0))
603 return 1;
604 if (!(drive->id->hw_config & 0x6000))
605 return 0;
606 #ifndef CONFIG_IDEDMA_IVB
607 if(!(drive->id->hw_config & 0x4000))
608 return 0;
609 #endif /* CONFIG_IDEDMA_IVB */
610 if (!(drive->id->hw_config & 0x2000))
611 return 0;
612 return 1;
615 EXPORT_SYMBOL(eighty_ninty_three);
617 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
619 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
620 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
621 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
622 #ifndef CONFIG_IDEDMA_IVB
623 if ((drive->id->hw_config & 0x6000) == 0) {
624 #else /* !CONFIG_IDEDMA_IVB */
625 if (((drive->id->hw_config & 0x2000) == 0) ||
626 ((drive->id->hw_config & 0x4000) == 0)) {
627 #endif /* CONFIG_IDEDMA_IVB */
628 printk("%s: Speed warnings UDMA 3/4/5 is not "
629 "functional.\n", drive->name);
630 return 1;
632 if (!HWIF(drive)->udma_four) {
633 printk("%s: Speed warnings UDMA 3/4/5 is not "
634 "functional.\n",
635 HWIF(drive)->name);
636 return 1;
639 return 0;
643 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
644 * 1 : Safe to update drive->id DMA registers.
645 * 0 : OOPs not allowed.
647 int set_transfer (ide_drive_t *drive, ide_task_t *args)
649 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
650 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
651 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
652 (drive->id->dma_ultra ||
653 drive->id->dma_mword ||
654 drive->id->dma_1word))
655 return 1;
657 return 0;
660 #ifdef CONFIG_BLK_DEV_IDEDMA
661 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
663 if (!drive->crc_count)
664 return drive->current_speed;
665 drive->crc_count = 0;
667 switch(drive->current_speed) {
668 case XFER_UDMA_7: return XFER_UDMA_6;
669 case XFER_UDMA_6: return XFER_UDMA_5;
670 case XFER_UDMA_5: return XFER_UDMA_4;
671 case XFER_UDMA_4: return XFER_UDMA_3;
672 case XFER_UDMA_3: return XFER_UDMA_2;
673 case XFER_UDMA_2: return XFER_UDMA_1;
674 case XFER_UDMA_1: return XFER_UDMA_0;
676 * OOPS we do not goto non Ultra DMA modes
677 * without iCRC's available we force
678 * the system to PIO and make the user
679 * invoke the ATA-1 ATA-2 DMA modes.
681 case XFER_UDMA_0:
682 default: return XFER_PIO_4;
685 #endif /* CONFIG_BLK_DEV_IDEDMA */
688 * Update the
690 int ide_driveid_update (ide_drive_t *drive)
692 ide_hwif_t *hwif = HWIF(drive);
693 struct hd_driveid *id;
694 #if 0
695 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
696 if (!id)
697 return 0;
699 taskfile_lib_get_identify(drive, (char *)&id);
701 ide_fix_driveid(id);
702 if (id) {
703 drive->id->dma_ultra = id->dma_ultra;
704 drive->id->dma_mword = id->dma_mword;
705 drive->id->dma_1word = id->dma_1word;
706 /* anything more ? */
707 kfree(id);
709 return 1;
710 #else
712 * Re-read drive->id for possible DMA mode
713 * change (copied from ide-probe.c)
715 unsigned long timeout, flags;
717 SELECT_MASK(drive, 1);
718 if (IDE_CONTROL_REG)
719 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
720 msleep(50);
721 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
722 timeout = jiffies + WAIT_WORSTCASE;
723 do {
724 if (time_after(jiffies, timeout)) {
725 SELECT_MASK(drive, 0);
726 return 0; /* drive timed-out */
728 msleep(50); /* give drive a breather */
729 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
730 msleep(50); /* wait for IRQ and DRQ_STAT */
731 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
732 SELECT_MASK(drive, 0);
733 printk("%s: CHECK for good STATUS\n", drive->name);
734 return 0;
736 local_irq_save(flags);
737 SELECT_MASK(drive, 0);
738 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
739 if (!id) {
740 local_irq_restore(flags);
741 return 0;
743 ata_input_data(drive, id, SECTOR_WORDS);
744 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
745 local_irq_enable();
746 local_irq_restore(flags);
747 ide_fix_driveid(id);
748 if (id) {
749 drive->id->dma_ultra = id->dma_ultra;
750 drive->id->dma_mword = id->dma_mword;
751 drive->id->dma_1word = id->dma_1word;
752 /* anything more ? */
753 kfree(id);
756 return 1;
757 #endif
761 * Similar to ide_wait_stat(), except it never calls ide_error internally.
762 * This is a kludge to handle the new ide_config_drive_speed() function,
763 * and should not otherwise be used anywhere. Eventually, the tuneproc's
764 * should be updated to return ide_startstop_t, in which case we can get
765 * rid of this abomination again. :) -ml
767 * It is gone..........
769 * const char *msg == consider adding for verbose errors.
771 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
773 ide_hwif_t *hwif = HWIF(drive);
774 int i, error = 1;
775 u8 stat;
777 // while (HWGROUP(drive)->busy)
778 // msleep(50);
780 #ifdef CONFIG_BLK_DEV_IDEDMA
781 if (hwif->ide_dma_check) /* check if host supports DMA */
782 hwif->ide_dma_host_off(drive);
783 #endif
786 * Don't use ide_wait_cmd here - it will
787 * attempt to set_geometry and recalibrate,
788 * but for some reason these don't work at
789 * this point (lost interrupt).
792 * Select the drive, and issue the SETFEATURES command
794 disable_irq_nosync(hwif->irq);
797 * FIXME: we race against the running IRQ here if
798 * this is called from non IRQ context. If we use
799 * disable_irq() we hang on the error path. Work
800 * is needed.
803 udelay(1);
804 SELECT_DRIVE(drive);
805 SELECT_MASK(drive, 0);
806 udelay(1);
807 if (IDE_CONTROL_REG)
808 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
809 hwif->OUTB(speed, IDE_NSECTOR_REG);
810 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
811 hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
812 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
813 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
814 udelay(1);
816 * Wait for drive to become non-BUSY
818 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
819 unsigned long flags, timeout;
820 local_irq_set(flags);
821 timeout = jiffies + WAIT_CMD;
822 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
823 if (time_after(jiffies, timeout))
824 break;
826 local_irq_restore(flags);
830 * Allow status to settle, then read it again.
831 * A few rare drives vastly violate the 400ns spec here,
832 * so we'll wait up to 10usec for a "good" status
833 * rather than expensively fail things immediately.
834 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
836 for (i = 0; i < 10; i++) {
837 udelay(1);
838 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
839 error = 0;
840 break;
844 SELECT_MASK(drive, 0);
846 enable_irq(hwif->irq);
848 if (error) {
849 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
850 return error;
853 drive->id->dma_ultra &= ~0xFF00;
854 drive->id->dma_mword &= ~0x0F00;
855 drive->id->dma_1word &= ~0x0F00;
857 #ifdef CONFIG_BLK_DEV_IDEDMA
858 if (speed >= XFER_SW_DMA_0)
859 hwif->ide_dma_host_on(drive);
860 else if (hwif->ide_dma_check) /* check if host supports DMA */
861 hwif->ide_dma_off_quietly(drive);
862 #endif
864 switch(speed) {
865 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
866 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
867 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
868 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
869 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
870 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
871 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
872 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
873 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
874 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
875 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
876 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
877 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
878 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
879 default: break;
881 if (!drive->init_speed)
882 drive->init_speed = speed;
883 drive->current_speed = speed;
884 return error;
887 EXPORT_SYMBOL(ide_config_drive_speed);
891 * This should get invoked any time we exit the driver to
892 * wait for an interrupt response from a drive. handler() points
893 * at the appropriate code to handle the next interrupt, and a
894 * timer is started to prevent us from waiting forever in case
895 * something goes wrong (see the ide_timer_expiry() handler later on).
897 * See also ide_execute_command
899 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
900 unsigned int timeout, ide_expiry_t *expiry)
902 ide_hwgroup_t *hwgroup = HWGROUP(drive);
904 if (hwgroup->handler != NULL) {
905 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
906 "old=%p, new=%p\n",
907 drive->name, hwgroup->handler, handler);
909 hwgroup->handler = handler;
910 hwgroup->expiry = expiry;
911 hwgroup->timer.expires = jiffies + timeout;
912 add_timer(&hwgroup->timer);
915 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
916 unsigned int timeout, ide_expiry_t *expiry)
918 unsigned long flags;
919 spin_lock_irqsave(&ide_lock, flags);
920 __ide_set_handler(drive, handler, timeout, expiry);
921 spin_unlock_irqrestore(&ide_lock, flags);
924 EXPORT_SYMBOL(ide_set_handler);
927 * ide_execute_command - execute an IDE command
928 * @drive: IDE drive to issue the command against
929 * @command: command byte to write
930 * @handler: handler for next phase
931 * @timeout: timeout for command
932 * @expiry: handler to run on timeout
934 * Helper function to issue an IDE command. This handles the
935 * atomicity requirements, command timing and ensures that the
936 * handler and IRQ setup do not race. All IDE command kick off
937 * should go via this function or do equivalent locking.
940 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
942 unsigned long flags;
943 ide_hwgroup_t *hwgroup = HWGROUP(drive);
944 ide_hwif_t *hwif = HWIF(drive);
946 spin_lock_irqsave(&ide_lock, flags);
948 BUG_ON(hwgroup->handler);
949 hwgroup->handler = handler;
950 hwgroup->expiry = expiry;
951 hwgroup->timer.expires = jiffies + timeout;
952 add_timer(&hwgroup->timer);
953 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
954 /* Drive takes 400nS to respond, we must avoid the IRQ being
955 serviced before that.
957 FIXME: we could skip this delay with care on non shared
958 devices
960 ndelay(400);
961 spin_unlock_irqrestore(&ide_lock, flags);
964 EXPORT_SYMBOL(ide_execute_command);
967 /* needed below */
968 static ide_startstop_t do_reset1 (ide_drive_t *, int);
971 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
972 * during an atapi drive reset operation. If the drive has not yet responded,
973 * and we have not yet hit our maximum waiting time, then the timer is restarted
974 * for another 50ms.
976 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
978 ide_hwgroup_t *hwgroup = HWGROUP(drive);
979 ide_hwif_t *hwif = HWIF(drive);
980 u8 stat;
982 SELECT_DRIVE(drive);
983 udelay (10);
985 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
986 printk("%s: ATAPI reset complete\n", drive->name);
987 } else {
988 if (time_before(jiffies, hwgroup->poll_timeout)) {
989 BUG_ON(HWGROUP(drive)->handler != NULL);
990 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
991 /* continue polling */
992 return ide_started;
994 /* end of polling */
995 hwgroup->polling = 0;
996 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
997 drive->name, stat);
998 /* do it the old fashioned way */
999 return do_reset1(drive, 1);
1001 /* done polling */
1002 hwgroup->polling = 0;
1003 hwgroup->resetting = 0;
1004 return ide_stopped;
1008 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1009 * during an ide reset operation. If the drives have not yet responded,
1010 * and we have not yet hit our maximum waiting time, then the timer is restarted
1011 * for another 50ms.
1013 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1015 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1016 ide_hwif_t *hwif = HWIF(drive);
1017 u8 tmp;
1019 if (hwif->reset_poll != NULL) {
1020 if (hwif->reset_poll(drive)) {
1021 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1022 hwif->name, drive->name);
1023 return ide_stopped;
1027 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1028 if (time_before(jiffies, hwgroup->poll_timeout)) {
1029 BUG_ON(HWGROUP(drive)->handler != NULL);
1030 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1031 /* continue polling */
1032 return ide_started;
1034 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1035 drive->failures++;
1036 } else {
1037 printk("%s: reset: ", hwif->name);
1038 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1039 printk("success\n");
1040 drive->failures = 0;
1041 } else {
1042 drive->failures++;
1043 printk("master: ");
1044 switch (tmp & 0x7f) {
1045 case 1: printk("passed");
1046 break;
1047 case 2: printk("formatter device error");
1048 break;
1049 case 3: printk("sector buffer error");
1050 break;
1051 case 4: printk("ECC circuitry error");
1052 break;
1053 case 5: printk("controlling MPU error");
1054 break;
1055 default:printk("error (0x%02x?)", tmp);
1057 if (tmp & 0x80)
1058 printk("; slave: failed");
1059 printk("\n");
1062 hwgroup->polling = 0; /* done polling */
1063 hwgroup->resetting = 0; /* done reset attempt */
1064 return ide_stopped;
1067 static void check_dma_crc(ide_drive_t *drive)
1069 #ifdef CONFIG_BLK_DEV_IDEDMA
1070 if (drive->crc_count) {
1071 (void) HWIF(drive)->ide_dma_off_quietly(drive);
1072 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1073 if (drive->current_speed >= XFER_SW_DMA_0)
1074 (void) HWIF(drive)->ide_dma_on(drive);
1075 } else
1076 (void)__ide_dma_off(drive);
1077 #endif
1080 static void ide_disk_pre_reset(ide_drive_t *drive)
1082 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1084 drive->special.all = 0;
1085 drive->special.b.set_geometry = legacy;
1086 drive->special.b.recalibrate = legacy;
1087 if (OK_TO_RESET_CONTROLLER)
1088 drive->mult_count = 0;
1089 if (!drive->keep_settings && !drive->using_dma)
1090 drive->mult_req = 0;
1091 if (drive->mult_req != drive->mult_count)
1092 drive->special.b.set_multmode = 1;
1095 static void pre_reset(ide_drive_t *drive)
1097 if (drive->media == ide_disk)
1098 ide_disk_pre_reset(drive);
1099 else
1100 drive->post_reset = 1;
1102 if (!drive->keep_settings) {
1103 if (drive->using_dma) {
1104 check_dma_crc(drive);
1105 } else {
1106 drive->unmask = 0;
1107 drive->io_32bit = 0;
1109 return;
1111 if (drive->using_dma)
1112 check_dma_crc(drive);
1114 if (HWIF(drive)->pre_reset != NULL)
1115 HWIF(drive)->pre_reset(drive);
1120 * do_reset1() attempts to recover a confused drive by resetting it.
1121 * Unfortunately, resetting a disk drive actually resets all devices on
1122 * the same interface, so it can really be thought of as resetting the
1123 * interface rather than resetting the drive.
1125 * ATAPI devices have their own reset mechanism which allows them to be
1126 * individually reset without clobbering other devices on the same interface.
1128 * Unfortunately, the IDE interface does not generate an interrupt to let
1129 * us know when the reset operation has finished, so we must poll for this.
1130 * Equally poor, though, is the fact that this may a very long time to complete,
1131 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1132 * we set a timer to poll at 50ms intervals.
1134 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1136 unsigned int unit;
1137 unsigned long flags;
1138 ide_hwif_t *hwif;
1139 ide_hwgroup_t *hwgroup;
1141 spin_lock_irqsave(&ide_lock, flags);
1142 hwif = HWIF(drive);
1143 hwgroup = HWGROUP(drive);
1145 /* We must not reset with running handlers */
1146 BUG_ON(hwgroup->handler != NULL);
1148 /* For an ATAPI device, first try an ATAPI SRST. */
1149 if (drive->media != ide_disk && !do_not_try_atapi) {
1150 hwgroup->resetting = 1;
1151 pre_reset(drive);
1152 SELECT_DRIVE(drive);
1153 udelay (20);
1154 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1155 ndelay(400);
1156 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1157 hwgroup->polling = 1;
1158 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1159 spin_unlock_irqrestore(&ide_lock, flags);
1160 return ide_started;
1164 * First, reset any device state data we were maintaining
1165 * for any of the drives on this interface.
1167 for (unit = 0; unit < MAX_DRIVES; ++unit)
1168 pre_reset(&hwif->drives[unit]);
1170 #if OK_TO_RESET_CONTROLLER
1171 if (!IDE_CONTROL_REG) {
1172 spin_unlock_irqrestore(&ide_lock, flags);
1173 return ide_stopped;
1176 hwgroup->resetting = 1;
1178 * Note that we also set nIEN while resetting the device,
1179 * to mask unwanted interrupts from the interface during the reset.
1180 * However, due to the design of PC hardware, this will cause an
1181 * immediate interrupt due to the edge transition it produces.
1182 * This single interrupt gives us a "fast poll" for drives that
1183 * recover from reset very quickly, saving us the first 50ms wait time.
1185 /* set SRST and nIEN */
1186 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1187 /* more than enough time */
1188 udelay(10);
1189 if (drive->quirk_list == 2) {
1190 /* clear SRST and nIEN */
1191 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1192 } else {
1193 /* clear SRST, leave nIEN */
1194 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1196 /* more than enough time */
1197 udelay(10);
1198 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1199 hwgroup->polling = 1;
1200 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1203 * Some weird controller like resetting themselves to a strange
1204 * state when the disks are reset this way. At least, the Winbond
1205 * 553 documentation says that
1207 if (hwif->resetproc != NULL) {
1208 hwif->resetproc(drive);
1211 #endif /* OK_TO_RESET_CONTROLLER */
1213 spin_unlock_irqrestore(&ide_lock, flags);
1214 return ide_started;
1218 * ide_do_reset() is the entry point to the drive/interface reset code.
1221 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1223 return do_reset1(drive, 0);
1226 EXPORT_SYMBOL(ide_do_reset);
1229 * ide_wait_not_busy() waits for the currently selected device on the hwif
1230 * to report a non-busy status, see comments in probe_hwif().
1232 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1234 u8 stat = 0;
1236 while(timeout--) {
1238 * Turn this into a schedule() sleep once I'm sure
1239 * about locking issues (2.5 work ?).
1241 mdelay(1);
1242 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1243 if ((stat & BUSY_STAT) == 0)
1244 return 0;
1246 * Assume a value of 0xff means nothing is connected to
1247 * the interface and it doesn't implement the pull-down
1248 * resistor on D7.
1250 if (stat == 0xff)
1251 return -ENODEV;
1252 touch_softlockup_watchdog();
1253 touch_nmi_watchdog();
1255 return -EBUSY;
1258 EXPORT_SYMBOL_GPL(ide_wait_not_busy);