Merge branch 'for-next/dwc3' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page-writeback.c
blob71252486bc6f1f161b87592ded6e8b7e6c0dc8ee
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Estimate write bandwidth at 200ms intervals.
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
49 #define RATELIMIT_CALC_SHIFT 10
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
55 static long ratelimit_pages = 32;
57 /* The following parameters are exported via /proc/sys/vm */
60 * Start background writeback (via writeback threads) at this percentage
62 int dirty_background_ratio = 10;
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
68 unsigned long dirty_background_bytes;
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 int vm_highmem_is_dirtyable;
77 * The generator of dirty data starts writeback at this percentage
79 int vm_dirty_ratio = 20;
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
85 unsigned long vm_dirty_bytes;
88 * The interval between `kupdate'-style writebacks
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93 * The longest time for which data is allowed to remain dirty
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98 * Flag that makes the machine dump writes/reads and block dirtyings.
100 int block_dump;
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
106 int laptop_mode;
108 EXPORT_SYMBOL(laptop_mode);
110 /* End of sysctl-exported parameters */
112 unsigned long global_dirty_limit;
115 * Scale the writeback cache size proportional to the relative writeout speeds.
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
130 static struct prop_descriptor vm_completions;
133 * couple the period to the dirty_ratio:
135 * period/2 ~ roundup_pow_of_two(dirty limit)
137 static int calc_period_shift(void)
139 unsigned long dirty_total;
141 if (vm_dirty_bytes)
142 dirty_total = vm_dirty_bytes / PAGE_SIZE;
143 else
144 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
145 100;
146 return 2 + ilog2(dirty_total - 1);
150 * update the period when the dirty threshold changes.
152 static void update_completion_period(void)
154 int shift = calc_period_shift();
155 prop_change_shift(&vm_completions, shift);
157 writeback_set_ratelimit();
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161 void __user *buffer, size_t *lenp,
162 loff_t *ppos)
164 int ret;
166 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167 if (ret == 0 && write)
168 dirty_background_bytes = 0;
169 return ret;
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173 void __user *buffer, size_t *lenp,
174 loff_t *ppos)
176 int ret;
178 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179 if (ret == 0 && write)
180 dirty_background_ratio = 0;
181 return ret;
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185 void __user *buffer, size_t *lenp,
186 loff_t *ppos)
188 int old_ratio = vm_dirty_ratio;
189 int ret;
191 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193 update_completion_period();
194 vm_dirty_bytes = 0;
196 return ret;
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201 void __user *buffer, size_t *lenp,
202 loff_t *ppos)
204 unsigned long old_bytes = vm_dirty_bytes;
205 int ret;
207 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209 update_completion_period();
210 vm_dirty_ratio = 0;
212 return ret;
216 * Increment the BDI's writeout completion count and the global writeout
217 * completion count. Called from test_clear_page_writeback().
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 __inc_bdi_stat(bdi, BDI_WRITTEN);
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
228 unsigned long flags;
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
237 * Obtain an accurate fraction of the BDI's portion.
239 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
240 long *numerator, long *denominator)
242 prop_fraction_percpu(&vm_completions, &bdi->completions,
243 numerator, denominator);
247 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
248 * registered backing devices, which, for obvious reasons, can not
249 * exceed 100%.
251 static unsigned int bdi_min_ratio;
253 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
255 int ret = 0;
257 spin_lock_bh(&bdi_lock);
258 if (min_ratio > bdi->max_ratio) {
259 ret = -EINVAL;
260 } else {
261 min_ratio -= bdi->min_ratio;
262 if (bdi_min_ratio + min_ratio < 100) {
263 bdi_min_ratio += min_ratio;
264 bdi->min_ratio += min_ratio;
265 } else {
266 ret = -EINVAL;
269 spin_unlock_bh(&bdi_lock);
271 return ret;
274 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
276 int ret = 0;
278 if (max_ratio > 100)
279 return -EINVAL;
281 spin_lock_bh(&bdi_lock);
282 if (bdi->min_ratio > max_ratio) {
283 ret = -EINVAL;
284 } else {
285 bdi->max_ratio = max_ratio;
286 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
288 spin_unlock_bh(&bdi_lock);
290 return ret;
292 EXPORT_SYMBOL(bdi_set_max_ratio);
295 * Work out the current dirty-memory clamping and background writeout
296 * thresholds.
298 * The main aim here is to lower them aggressively if there is a lot of mapped
299 * memory around. To avoid stressing page reclaim with lots of unreclaimable
300 * pages. It is better to clamp down on writers than to start swapping, and
301 * performing lots of scanning.
303 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
305 * We don't permit the clamping level to fall below 5% - that is getting rather
306 * excessive.
308 * We make sure that the background writeout level is below the adjusted
309 * clamping level.
312 static unsigned long highmem_dirtyable_memory(unsigned long total)
314 #ifdef CONFIG_HIGHMEM
315 int node;
316 unsigned long x = 0;
318 for_each_node_state(node, N_HIGH_MEMORY) {
319 struct zone *z =
320 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
322 x += zone_page_state(z, NR_FREE_PAGES) +
323 zone_reclaimable_pages(z);
326 * Make sure that the number of highmem pages is never larger
327 * than the number of the total dirtyable memory. This can only
328 * occur in very strange VM situations but we want to make sure
329 * that this does not occur.
331 return min(x, total);
332 #else
333 return 0;
334 #endif
338 * determine_dirtyable_memory - amount of memory that may be used
340 * Returns the numebr of pages that can currently be freed and used
341 * by the kernel for direct mappings.
343 unsigned long determine_dirtyable_memory(void)
345 unsigned long x;
347 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
349 if (!vm_highmem_is_dirtyable)
350 x -= highmem_dirtyable_memory(x);
352 return x + 1; /* Ensure that we never return 0 */
355 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
356 unsigned long bg_thresh)
358 return (thresh + bg_thresh) / 2;
361 static unsigned long hard_dirty_limit(unsigned long thresh)
363 return max(thresh, global_dirty_limit);
367 * global_dirty_limits - background-writeback and dirty-throttling thresholds
369 * Calculate the dirty thresholds based on sysctl parameters
370 * - vm.dirty_background_ratio or vm.dirty_background_bytes
371 * - vm.dirty_ratio or vm.dirty_bytes
372 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
373 * real-time tasks.
375 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
377 unsigned long background;
378 unsigned long dirty;
379 unsigned long uninitialized_var(available_memory);
380 struct task_struct *tsk;
382 if (!vm_dirty_bytes || !dirty_background_bytes)
383 available_memory = determine_dirtyable_memory();
385 if (vm_dirty_bytes)
386 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
387 else
388 dirty = (vm_dirty_ratio * available_memory) / 100;
390 if (dirty_background_bytes)
391 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
392 else
393 background = (dirty_background_ratio * available_memory) / 100;
395 if (background >= dirty)
396 background = dirty / 2;
397 tsk = current;
398 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
399 background += background / 4;
400 dirty += dirty / 4;
402 *pbackground = background;
403 *pdirty = dirty;
404 trace_global_dirty_state(background, dirty);
408 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
409 * @bdi: the backing_dev_info to query
410 * @dirty: global dirty limit in pages
412 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
413 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
414 * And the "limit" in the name is not seriously taken as hard limit in
415 * balance_dirty_pages().
417 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
418 * - starving fast devices
419 * - piling up dirty pages (that will take long time to sync) on slow devices
421 * The bdi's share of dirty limit will be adapting to its throughput and
422 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
424 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
426 u64 bdi_dirty;
427 long numerator, denominator;
430 * Calculate this BDI's share of the dirty ratio.
432 bdi_writeout_fraction(bdi, &numerator, &denominator);
434 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
435 bdi_dirty *= numerator;
436 do_div(bdi_dirty, denominator);
438 bdi_dirty += (dirty * bdi->min_ratio) / 100;
439 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
440 bdi_dirty = dirty * bdi->max_ratio / 100;
442 return bdi_dirty;
446 * Dirty position control.
448 * (o) global/bdi setpoints
450 * We want the dirty pages be balanced around the global/bdi setpoints.
451 * When the number of dirty pages is higher/lower than the setpoint, the
452 * dirty position control ratio (and hence task dirty ratelimit) will be
453 * decreased/increased to bring the dirty pages back to the setpoint.
455 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
457 * if (dirty < setpoint) scale up pos_ratio
458 * if (dirty > setpoint) scale down pos_ratio
460 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
461 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
463 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
465 * (o) global control line
467 * ^ pos_ratio
469 * | |<===== global dirty control scope ======>|
470 * 2.0 .............*
471 * | .*
472 * | . *
473 * | . *
474 * | . *
475 * | . *
476 * | . *
477 * 1.0 ................................*
478 * | . . *
479 * | . . *
480 * | . . *
481 * | . . *
482 * | . . *
483 * 0 +------------.------------------.----------------------*------------->
484 * freerun^ setpoint^ limit^ dirty pages
486 * (o) bdi control line
488 * ^ pos_ratio
490 * | *
491 * | *
492 * | *
493 * | *
494 * | * |<=========== span ============>|
495 * 1.0 .......................*
496 * | . *
497 * | . *
498 * | . *
499 * | . *
500 * | . *
501 * | . *
502 * | . *
503 * | . *
504 * | . *
505 * | . *
506 * | . *
507 * 1/4 ...............................................* * * * * * * * * * * *
508 * | . .
509 * | . .
510 * | . .
511 * 0 +----------------------.-------------------------------.------------->
512 * bdi_setpoint^ x_intercept^
514 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
515 * be smoothly throttled down to normal if it starts high in situations like
516 * - start writing to a slow SD card and a fast disk at the same time. The SD
517 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
518 * - the bdi dirty thresh drops quickly due to change of JBOD workload
520 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
521 unsigned long thresh,
522 unsigned long bg_thresh,
523 unsigned long dirty,
524 unsigned long bdi_thresh,
525 unsigned long bdi_dirty)
527 unsigned long write_bw = bdi->avg_write_bandwidth;
528 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
529 unsigned long limit = hard_dirty_limit(thresh);
530 unsigned long x_intercept;
531 unsigned long setpoint; /* dirty pages' target balance point */
532 unsigned long bdi_setpoint;
533 unsigned long span;
534 long long pos_ratio; /* for scaling up/down the rate limit */
535 long x;
537 if (unlikely(dirty >= limit))
538 return 0;
541 * global setpoint
543 * setpoint - dirty 3
544 * f(dirty) := 1.0 + (----------------)
545 * limit - setpoint
547 * it's a 3rd order polynomial that subjects to
549 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
550 * (2) f(setpoint) = 1.0 => the balance point
551 * (3) f(limit) = 0 => the hard limit
552 * (4) df/dx <= 0 => negative feedback control
553 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
554 * => fast response on large errors; small oscillation near setpoint
556 setpoint = (freerun + limit) / 2;
557 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
558 limit - setpoint + 1);
559 pos_ratio = x;
560 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
561 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
562 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
565 * We have computed basic pos_ratio above based on global situation. If
566 * the bdi is over/under its share of dirty pages, we want to scale
567 * pos_ratio further down/up. That is done by the following mechanism.
571 * bdi setpoint
573 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
575 * x_intercept - bdi_dirty
576 * := --------------------------
577 * x_intercept - bdi_setpoint
579 * The main bdi control line is a linear function that subjects to
581 * (1) f(bdi_setpoint) = 1.0
582 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
583 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
585 * For single bdi case, the dirty pages are observed to fluctuate
586 * regularly within range
587 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
588 * for various filesystems, where (2) can yield in a reasonable 12.5%
589 * fluctuation range for pos_ratio.
591 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
592 * own size, so move the slope over accordingly and choose a slope that
593 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
595 if (unlikely(bdi_thresh > thresh))
596 bdi_thresh = thresh;
597 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
599 * scale global setpoint to bdi's:
600 * bdi_setpoint = setpoint * bdi_thresh / thresh
602 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
603 bdi_setpoint = setpoint * (u64)x >> 16;
605 * Use span=(8*write_bw) in single bdi case as indicated by
606 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
608 * bdi_thresh thresh - bdi_thresh
609 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
610 * thresh thresh
612 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
613 x_intercept = bdi_setpoint + span;
615 if (bdi_dirty < x_intercept - span / 4) {
616 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
617 x_intercept - bdi_setpoint + 1);
618 } else
619 pos_ratio /= 4;
622 * bdi reserve area, safeguard against dirty pool underrun and disk idle
623 * It may push the desired control point of global dirty pages higher
624 * than setpoint.
626 x_intercept = bdi_thresh / 2;
627 if (bdi_dirty < x_intercept) {
628 if (bdi_dirty > x_intercept / 8)
629 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
630 else
631 pos_ratio *= 8;
634 return pos_ratio;
637 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
638 unsigned long elapsed,
639 unsigned long written)
641 const unsigned long period = roundup_pow_of_two(3 * HZ);
642 unsigned long avg = bdi->avg_write_bandwidth;
643 unsigned long old = bdi->write_bandwidth;
644 u64 bw;
647 * bw = written * HZ / elapsed
649 * bw * elapsed + write_bandwidth * (period - elapsed)
650 * write_bandwidth = ---------------------------------------------------
651 * period
653 bw = written - bdi->written_stamp;
654 bw *= HZ;
655 if (unlikely(elapsed > period)) {
656 do_div(bw, elapsed);
657 avg = bw;
658 goto out;
660 bw += (u64)bdi->write_bandwidth * (period - elapsed);
661 bw >>= ilog2(period);
664 * one more level of smoothing, for filtering out sudden spikes
666 if (avg > old && old >= (unsigned long)bw)
667 avg -= (avg - old) >> 3;
669 if (avg < old && old <= (unsigned long)bw)
670 avg += (old - avg) >> 3;
672 out:
673 bdi->write_bandwidth = bw;
674 bdi->avg_write_bandwidth = avg;
678 * The global dirtyable memory and dirty threshold could be suddenly knocked
679 * down by a large amount (eg. on the startup of KVM in a swapless system).
680 * This may throw the system into deep dirty exceeded state and throttle
681 * heavy/light dirtiers alike. To retain good responsiveness, maintain
682 * global_dirty_limit for tracking slowly down to the knocked down dirty
683 * threshold.
685 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
687 unsigned long limit = global_dirty_limit;
690 * Follow up in one step.
692 if (limit < thresh) {
693 limit = thresh;
694 goto update;
698 * Follow down slowly. Use the higher one as the target, because thresh
699 * may drop below dirty. This is exactly the reason to introduce
700 * global_dirty_limit which is guaranteed to lie above the dirty pages.
702 thresh = max(thresh, dirty);
703 if (limit > thresh) {
704 limit -= (limit - thresh) >> 5;
705 goto update;
707 return;
708 update:
709 global_dirty_limit = limit;
712 static void global_update_bandwidth(unsigned long thresh,
713 unsigned long dirty,
714 unsigned long now)
716 static DEFINE_SPINLOCK(dirty_lock);
717 static unsigned long update_time;
720 * check locklessly first to optimize away locking for the most time
722 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
723 return;
725 spin_lock(&dirty_lock);
726 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
727 update_dirty_limit(thresh, dirty);
728 update_time = now;
730 spin_unlock(&dirty_lock);
734 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
736 * Normal bdi tasks will be curbed at or below it in long term.
737 * Obviously it should be around (write_bw / N) when there are N dd tasks.
739 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
740 unsigned long thresh,
741 unsigned long bg_thresh,
742 unsigned long dirty,
743 unsigned long bdi_thresh,
744 unsigned long bdi_dirty,
745 unsigned long dirtied,
746 unsigned long elapsed)
748 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
749 unsigned long limit = hard_dirty_limit(thresh);
750 unsigned long setpoint = (freerun + limit) / 2;
751 unsigned long write_bw = bdi->avg_write_bandwidth;
752 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
753 unsigned long dirty_rate;
754 unsigned long task_ratelimit;
755 unsigned long balanced_dirty_ratelimit;
756 unsigned long pos_ratio;
757 unsigned long step;
758 unsigned long x;
761 * The dirty rate will match the writeout rate in long term, except
762 * when dirty pages are truncated by userspace or re-dirtied by FS.
764 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
766 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
767 bdi_thresh, bdi_dirty);
769 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
771 task_ratelimit = (u64)dirty_ratelimit *
772 pos_ratio >> RATELIMIT_CALC_SHIFT;
773 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
776 * A linear estimation of the "balanced" throttle rate. The theory is,
777 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
778 * dirty_rate will be measured to be (N * task_ratelimit). So the below
779 * formula will yield the balanced rate limit (write_bw / N).
781 * Note that the expanded form is not a pure rate feedback:
782 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
783 * but also takes pos_ratio into account:
784 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
786 * (1) is not realistic because pos_ratio also takes part in balancing
787 * the dirty rate. Consider the state
788 * pos_ratio = 0.5 (3)
789 * rate = 2 * (write_bw / N) (4)
790 * If (1) is used, it will stuck in that state! Because each dd will
791 * be throttled at
792 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
793 * yielding
794 * dirty_rate = N * task_ratelimit = write_bw (6)
795 * put (6) into (1) we get
796 * rate_(i+1) = rate_(i) (7)
798 * So we end up using (2) to always keep
799 * rate_(i+1) ~= (write_bw / N) (8)
800 * regardless of the value of pos_ratio. As long as (8) is satisfied,
801 * pos_ratio is able to drive itself to 1.0, which is not only where
802 * the dirty count meet the setpoint, but also where the slope of
803 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
805 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
806 dirty_rate | 1);
809 * We could safely do this and return immediately:
811 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
813 * However to get a more stable dirty_ratelimit, the below elaborated
814 * code makes use of task_ratelimit to filter out sigular points and
815 * limit the step size.
817 * The below code essentially only uses the relative value of
819 * task_ratelimit - dirty_ratelimit
820 * = (pos_ratio - 1) * dirty_ratelimit
822 * which reflects the direction and size of dirty position error.
826 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
827 * task_ratelimit is on the same side of dirty_ratelimit, too.
828 * For example, when
829 * - dirty_ratelimit > balanced_dirty_ratelimit
830 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
831 * lowering dirty_ratelimit will help meet both the position and rate
832 * control targets. Otherwise, don't update dirty_ratelimit if it will
833 * only help meet the rate target. After all, what the users ultimately
834 * feel and care are stable dirty rate and small position error.
836 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
837 * and filter out the sigular points of balanced_dirty_ratelimit. Which
838 * keeps jumping around randomly and can even leap far away at times
839 * due to the small 200ms estimation period of dirty_rate (we want to
840 * keep that period small to reduce time lags).
842 step = 0;
843 if (dirty < setpoint) {
844 x = min(bdi->balanced_dirty_ratelimit,
845 min(balanced_dirty_ratelimit, task_ratelimit));
846 if (dirty_ratelimit < x)
847 step = x - dirty_ratelimit;
848 } else {
849 x = max(bdi->balanced_dirty_ratelimit,
850 max(balanced_dirty_ratelimit, task_ratelimit));
851 if (dirty_ratelimit > x)
852 step = dirty_ratelimit - x;
856 * Don't pursue 100% rate matching. It's impossible since the balanced
857 * rate itself is constantly fluctuating. So decrease the track speed
858 * when it gets close to the target. Helps eliminate pointless tremors.
860 step >>= dirty_ratelimit / (2 * step + 1);
862 * Limit the tracking speed to avoid overshooting.
864 step = (step + 7) / 8;
866 if (dirty_ratelimit < balanced_dirty_ratelimit)
867 dirty_ratelimit += step;
868 else
869 dirty_ratelimit -= step;
871 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
872 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
874 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
877 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
878 unsigned long thresh,
879 unsigned long bg_thresh,
880 unsigned long dirty,
881 unsigned long bdi_thresh,
882 unsigned long bdi_dirty,
883 unsigned long start_time)
885 unsigned long now = jiffies;
886 unsigned long elapsed = now - bdi->bw_time_stamp;
887 unsigned long dirtied;
888 unsigned long written;
891 * rate-limit, only update once every 200ms.
893 if (elapsed < BANDWIDTH_INTERVAL)
894 return;
896 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
897 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
900 * Skip quiet periods when disk bandwidth is under-utilized.
901 * (at least 1s idle time between two flusher runs)
903 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
904 goto snapshot;
906 if (thresh) {
907 global_update_bandwidth(thresh, dirty, now);
908 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
909 bdi_thresh, bdi_dirty,
910 dirtied, elapsed);
912 bdi_update_write_bandwidth(bdi, elapsed, written);
914 snapshot:
915 bdi->dirtied_stamp = dirtied;
916 bdi->written_stamp = written;
917 bdi->bw_time_stamp = now;
920 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
921 unsigned long thresh,
922 unsigned long bg_thresh,
923 unsigned long dirty,
924 unsigned long bdi_thresh,
925 unsigned long bdi_dirty,
926 unsigned long start_time)
928 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
929 return;
930 spin_lock(&bdi->wb.list_lock);
931 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
932 bdi_thresh, bdi_dirty, start_time);
933 spin_unlock(&bdi->wb.list_lock);
937 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
938 * will look to see if it needs to start dirty throttling.
940 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
941 * global_page_state() too often. So scale it near-sqrt to the safety margin
942 * (the number of pages we may dirty without exceeding the dirty limits).
944 static unsigned long dirty_poll_interval(unsigned long dirty,
945 unsigned long thresh)
947 if (thresh > dirty)
948 return 1UL << (ilog2(thresh - dirty) >> 1);
950 return 1;
953 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
954 unsigned long bdi_dirty)
956 unsigned long bw = bdi->avg_write_bandwidth;
957 unsigned long hi = ilog2(bw);
958 unsigned long lo = ilog2(bdi->dirty_ratelimit);
959 unsigned long t;
961 /* target for 20ms max pause on 1-dd case */
962 t = HZ / 50;
965 * Scale up pause time for concurrent dirtiers in order to reduce CPU
966 * overheads.
968 * (N * 20ms) on 2^N concurrent tasks.
970 if (hi > lo)
971 t += (hi - lo) * (20 * HZ) / 1024;
974 * Limit pause time for small memory systems. If sleeping for too long
975 * time, a small pool of dirty/writeback pages may go empty and disk go
976 * idle.
978 * 8 serves as the safety ratio.
980 if (bdi_dirty)
981 t = min(t, bdi_dirty * HZ / (8 * bw + 1));
984 * The pause time will be settled within range (max_pause/4, max_pause).
985 * Apply a minimal value of 4 to get a non-zero max_pause/4.
987 return clamp_val(t, 4, MAX_PAUSE);
991 * balance_dirty_pages() must be called by processes which are generating dirty
992 * data. It looks at the number of dirty pages in the machine and will force
993 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
994 * If we're over `background_thresh' then the writeback threads are woken to
995 * perform some writeout.
997 static void balance_dirty_pages(struct address_space *mapping,
998 unsigned long pages_dirtied)
1000 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1001 unsigned long bdi_reclaimable;
1002 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1003 unsigned long bdi_dirty;
1004 unsigned long freerun;
1005 unsigned long background_thresh;
1006 unsigned long dirty_thresh;
1007 unsigned long bdi_thresh;
1008 long pause = 0;
1009 long uninitialized_var(max_pause);
1010 bool dirty_exceeded = false;
1011 unsigned long task_ratelimit;
1012 unsigned long uninitialized_var(dirty_ratelimit);
1013 unsigned long pos_ratio;
1014 struct backing_dev_info *bdi = mapping->backing_dev_info;
1015 unsigned long start_time = jiffies;
1017 for (;;) {
1019 * Unstable writes are a feature of certain networked
1020 * filesystems (i.e. NFS) in which data may have been
1021 * written to the server's write cache, but has not yet
1022 * been flushed to permanent storage.
1024 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1025 global_page_state(NR_UNSTABLE_NFS);
1026 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1028 global_dirty_limits(&background_thresh, &dirty_thresh);
1031 * Throttle it only when the background writeback cannot
1032 * catch-up. This avoids (excessively) small writeouts
1033 * when the bdi limits are ramping up.
1035 freerun = dirty_freerun_ceiling(dirty_thresh,
1036 background_thresh);
1037 if (nr_dirty <= freerun)
1038 break;
1040 if (unlikely(!writeback_in_progress(bdi)))
1041 bdi_start_background_writeback(bdi);
1044 * bdi_thresh is not treated as some limiting factor as
1045 * dirty_thresh, due to reasons
1046 * - in JBOD setup, bdi_thresh can fluctuate a lot
1047 * - in a system with HDD and USB key, the USB key may somehow
1048 * go into state (bdi_dirty >> bdi_thresh) either because
1049 * bdi_dirty starts high, or because bdi_thresh drops low.
1050 * In this case we don't want to hard throttle the USB key
1051 * dirtiers for 100 seconds until bdi_dirty drops under
1052 * bdi_thresh. Instead the auxiliary bdi control line in
1053 * bdi_position_ratio() will let the dirtier task progress
1054 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1056 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1059 * In order to avoid the stacked BDI deadlock we need
1060 * to ensure we accurately count the 'dirty' pages when
1061 * the threshold is low.
1063 * Otherwise it would be possible to get thresh+n pages
1064 * reported dirty, even though there are thresh-m pages
1065 * actually dirty; with m+n sitting in the percpu
1066 * deltas.
1068 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1069 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1070 bdi_dirty = bdi_reclaimable +
1071 bdi_stat_sum(bdi, BDI_WRITEBACK);
1072 } else {
1073 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1074 bdi_dirty = bdi_reclaimable +
1075 bdi_stat(bdi, BDI_WRITEBACK);
1078 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1079 (nr_dirty > dirty_thresh);
1080 if (dirty_exceeded && !bdi->dirty_exceeded)
1081 bdi->dirty_exceeded = 1;
1083 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1084 nr_dirty, bdi_thresh, bdi_dirty,
1085 start_time);
1087 max_pause = bdi_max_pause(bdi, bdi_dirty);
1089 dirty_ratelimit = bdi->dirty_ratelimit;
1090 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1091 background_thresh, nr_dirty,
1092 bdi_thresh, bdi_dirty);
1093 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1094 RATELIMIT_CALC_SHIFT;
1095 if (unlikely(task_ratelimit == 0)) {
1096 pause = max_pause;
1097 goto pause;
1099 pause = HZ * pages_dirtied / task_ratelimit;
1100 if (unlikely(pause <= 0)) {
1101 trace_balance_dirty_pages(bdi,
1102 dirty_thresh,
1103 background_thresh,
1104 nr_dirty,
1105 bdi_thresh,
1106 bdi_dirty,
1107 dirty_ratelimit,
1108 task_ratelimit,
1109 pages_dirtied,
1110 pause,
1111 start_time);
1112 pause = 1; /* avoid resetting nr_dirtied_pause below */
1113 break;
1115 pause = min(pause, max_pause);
1117 pause:
1118 trace_balance_dirty_pages(bdi,
1119 dirty_thresh,
1120 background_thresh,
1121 nr_dirty,
1122 bdi_thresh,
1123 bdi_dirty,
1124 dirty_ratelimit,
1125 task_ratelimit,
1126 pages_dirtied,
1127 pause,
1128 start_time);
1129 __set_current_state(TASK_KILLABLE);
1130 io_schedule_timeout(pause);
1133 * This is typically equal to (nr_dirty < dirty_thresh) and can
1134 * also keep "1000+ dd on a slow USB stick" under control.
1136 if (task_ratelimit)
1137 break;
1139 if (fatal_signal_pending(current))
1140 break;
1143 if (!dirty_exceeded && bdi->dirty_exceeded)
1144 bdi->dirty_exceeded = 0;
1146 current->nr_dirtied = 0;
1147 if (pause == 0) { /* in freerun area */
1148 current->nr_dirtied_pause =
1149 dirty_poll_interval(nr_dirty, dirty_thresh);
1150 } else if (pause <= max_pause / 4 &&
1151 pages_dirtied >= current->nr_dirtied_pause) {
1152 current->nr_dirtied_pause = clamp_val(
1153 dirty_ratelimit * (max_pause / 2) / HZ,
1154 pages_dirtied + pages_dirtied / 8,
1155 pages_dirtied * 4);
1156 } else if (pause >= max_pause) {
1157 current->nr_dirtied_pause = 1 | clamp_val(
1158 dirty_ratelimit * (max_pause / 2) / HZ,
1159 pages_dirtied / 4,
1160 pages_dirtied - pages_dirtied / 8);
1163 if (writeback_in_progress(bdi))
1164 return;
1167 * In laptop mode, we wait until hitting the higher threshold before
1168 * starting background writeout, and then write out all the way down
1169 * to the lower threshold. So slow writers cause minimal disk activity.
1171 * In normal mode, we start background writeout at the lower
1172 * background_thresh, to keep the amount of dirty memory low.
1174 if (laptop_mode)
1175 return;
1177 if (nr_reclaimable > background_thresh)
1178 bdi_start_background_writeback(bdi);
1181 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1183 if (set_page_dirty(page) || page_mkwrite) {
1184 struct address_space *mapping = page_mapping(page);
1186 if (mapping)
1187 balance_dirty_pages_ratelimited(mapping);
1191 static DEFINE_PER_CPU(int, bdp_ratelimits);
1194 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1195 * @mapping: address_space which was dirtied
1196 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1198 * Processes which are dirtying memory should call in here once for each page
1199 * which was newly dirtied. The function will periodically check the system's
1200 * dirty state and will initiate writeback if needed.
1202 * On really big machines, get_writeback_state is expensive, so try to avoid
1203 * calling it too often (ratelimiting). But once we're over the dirty memory
1204 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1205 * from overshooting the limit by (ratelimit_pages) each.
1207 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1208 unsigned long nr_pages_dirtied)
1210 struct backing_dev_info *bdi = mapping->backing_dev_info;
1211 int ratelimit;
1212 int *p;
1214 if (!bdi_cap_account_dirty(bdi))
1215 return;
1217 ratelimit = current->nr_dirtied_pause;
1218 if (bdi->dirty_exceeded)
1219 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1221 current->nr_dirtied += nr_pages_dirtied;
1223 preempt_disable();
1225 * This prevents one CPU to accumulate too many dirtied pages without
1226 * calling into balance_dirty_pages(), which can happen when there are
1227 * 1000+ tasks, all of them start dirtying pages at exactly the same
1228 * time, hence all honoured too large initial task->nr_dirtied_pause.
1230 p = &__get_cpu_var(bdp_ratelimits);
1231 if (unlikely(current->nr_dirtied >= ratelimit))
1232 *p = 0;
1233 else {
1234 *p += nr_pages_dirtied;
1235 if (unlikely(*p >= ratelimit_pages)) {
1236 *p = 0;
1237 ratelimit = 0;
1240 preempt_enable();
1242 if (unlikely(current->nr_dirtied >= ratelimit))
1243 balance_dirty_pages(mapping, current->nr_dirtied);
1245 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1247 void throttle_vm_writeout(gfp_t gfp_mask)
1249 unsigned long background_thresh;
1250 unsigned long dirty_thresh;
1252 for ( ; ; ) {
1253 global_dirty_limits(&background_thresh, &dirty_thresh);
1256 * Boost the allowable dirty threshold a bit for page
1257 * allocators so they don't get DoS'ed by heavy writers
1259 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1261 if (global_page_state(NR_UNSTABLE_NFS) +
1262 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1263 break;
1264 congestion_wait(BLK_RW_ASYNC, HZ/10);
1267 * The caller might hold locks which can prevent IO completion
1268 * or progress in the filesystem. So we cannot just sit here
1269 * waiting for IO to complete.
1271 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1272 break;
1277 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1279 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1280 void __user *buffer, size_t *length, loff_t *ppos)
1282 proc_dointvec(table, write, buffer, length, ppos);
1283 bdi_arm_supers_timer();
1284 return 0;
1287 #ifdef CONFIG_BLOCK
1288 void laptop_mode_timer_fn(unsigned long data)
1290 struct request_queue *q = (struct request_queue *)data;
1291 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1292 global_page_state(NR_UNSTABLE_NFS);
1295 * We want to write everything out, not just down to the dirty
1296 * threshold
1298 if (bdi_has_dirty_io(&q->backing_dev_info))
1299 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1300 WB_REASON_LAPTOP_TIMER);
1304 * We've spun up the disk and we're in laptop mode: schedule writeback
1305 * of all dirty data a few seconds from now. If the flush is already scheduled
1306 * then push it back - the user is still using the disk.
1308 void laptop_io_completion(struct backing_dev_info *info)
1310 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1314 * We're in laptop mode and we've just synced. The sync's writes will have
1315 * caused another writeback to be scheduled by laptop_io_completion.
1316 * Nothing needs to be written back anymore, so we unschedule the writeback.
1318 void laptop_sync_completion(void)
1320 struct backing_dev_info *bdi;
1322 rcu_read_lock();
1324 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1325 del_timer(&bdi->laptop_mode_wb_timer);
1327 rcu_read_unlock();
1329 #endif
1332 * If ratelimit_pages is too high then we can get into dirty-data overload
1333 * if a large number of processes all perform writes at the same time.
1334 * If it is too low then SMP machines will call the (expensive)
1335 * get_writeback_state too often.
1337 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1338 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1339 * thresholds.
1342 void writeback_set_ratelimit(void)
1344 unsigned long background_thresh;
1345 unsigned long dirty_thresh;
1346 global_dirty_limits(&background_thresh, &dirty_thresh);
1347 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1348 if (ratelimit_pages < 16)
1349 ratelimit_pages = 16;
1352 static int __cpuinit
1353 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1355 writeback_set_ratelimit();
1356 return NOTIFY_DONE;
1359 static struct notifier_block __cpuinitdata ratelimit_nb = {
1360 .notifier_call = ratelimit_handler,
1361 .next = NULL,
1365 * Called early on to tune the page writeback dirty limits.
1367 * We used to scale dirty pages according to how total memory
1368 * related to pages that could be allocated for buffers (by
1369 * comparing nr_free_buffer_pages() to vm_total_pages.
1371 * However, that was when we used "dirty_ratio" to scale with
1372 * all memory, and we don't do that any more. "dirty_ratio"
1373 * is now applied to total non-HIGHPAGE memory (by subtracting
1374 * totalhigh_pages from vm_total_pages), and as such we can't
1375 * get into the old insane situation any more where we had
1376 * large amounts of dirty pages compared to a small amount of
1377 * non-HIGHMEM memory.
1379 * But we might still want to scale the dirty_ratio by how
1380 * much memory the box has..
1382 void __init page_writeback_init(void)
1384 int shift;
1386 writeback_set_ratelimit();
1387 register_cpu_notifier(&ratelimit_nb);
1389 shift = calc_period_shift();
1390 prop_descriptor_init(&vm_completions, shift);
1394 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1395 * @mapping: address space structure to write
1396 * @start: starting page index
1397 * @end: ending page index (inclusive)
1399 * This function scans the page range from @start to @end (inclusive) and tags
1400 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1401 * that write_cache_pages (or whoever calls this function) will then use
1402 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1403 * used to avoid livelocking of writeback by a process steadily creating new
1404 * dirty pages in the file (thus it is important for this function to be quick
1405 * so that it can tag pages faster than a dirtying process can create them).
1408 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1410 void tag_pages_for_writeback(struct address_space *mapping,
1411 pgoff_t start, pgoff_t end)
1413 #define WRITEBACK_TAG_BATCH 4096
1414 unsigned long tagged;
1416 do {
1417 spin_lock_irq(&mapping->tree_lock);
1418 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1419 &start, end, WRITEBACK_TAG_BATCH,
1420 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1421 spin_unlock_irq(&mapping->tree_lock);
1422 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1423 cond_resched();
1424 /* We check 'start' to handle wrapping when end == ~0UL */
1425 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1427 EXPORT_SYMBOL(tag_pages_for_writeback);
1430 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1431 * @mapping: address space structure to write
1432 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1433 * @writepage: function called for each page
1434 * @data: data passed to writepage function
1436 * If a page is already under I/O, write_cache_pages() skips it, even
1437 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1438 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1439 * and msync() need to guarantee that all the data which was dirty at the time
1440 * the call was made get new I/O started against them. If wbc->sync_mode is
1441 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1442 * existing IO to complete.
1444 * To avoid livelocks (when other process dirties new pages), we first tag
1445 * pages which should be written back with TOWRITE tag and only then start
1446 * writing them. For data-integrity sync we have to be careful so that we do
1447 * not miss some pages (e.g., because some other process has cleared TOWRITE
1448 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1449 * by the process clearing the DIRTY tag (and submitting the page for IO).
1451 int write_cache_pages(struct address_space *mapping,
1452 struct writeback_control *wbc, writepage_t writepage,
1453 void *data)
1455 int ret = 0;
1456 int done = 0;
1457 struct pagevec pvec;
1458 int nr_pages;
1459 pgoff_t uninitialized_var(writeback_index);
1460 pgoff_t index;
1461 pgoff_t end; /* Inclusive */
1462 pgoff_t done_index;
1463 int cycled;
1464 int range_whole = 0;
1465 int tag;
1467 pagevec_init(&pvec, 0);
1468 if (wbc->range_cyclic) {
1469 writeback_index = mapping->writeback_index; /* prev offset */
1470 index = writeback_index;
1471 if (index == 0)
1472 cycled = 1;
1473 else
1474 cycled = 0;
1475 end = -1;
1476 } else {
1477 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1478 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1479 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1480 range_whole = 1;
1481 cycled = 1; /* ignore range_cyclic tests */
1483 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1484 tag = PAGECACHE_TAG_TOWRITE;
1485 else
1486 tag = PAGECACHE_TAG_DIRTY;
1487 retry:
1488 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1489 tag_pages_for_writeback(mapping, index, end);
1490 done_index = index;
1491 while (!done && (index <= end)) {
1492 int i;
1494 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1495 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1496 if (nr_pages == 0)
1497 break;
1499 for (i = 0; i < nr_pages; i++) {
1500 struct page *page = pvec.pages[i];
1503 * At this point, the page may be truncated or
1504 * invalidated (changing page->mapping to NULL), or
1505 * even swizzled back from swapper_space to tmpfs file
1506 * mapping. However, page->index will not change
1507 * because we have a reference on the page.
1509 if (page->index > end) {
1511 * can't be range_cyclic (1st pass) because
1512 * end == -1 in that case.
1514 done = 1;
1515 break;
1518 done_index = page->index;
1520 lock_page(page);
1523 * Page truncated or invalidated. We can freely skip it
1524 * then, even for data integrity operations: the page
1525 * has disappeared concurrently, so there could be no
1526 * real expectation of this data interity operation
1527 * even if there is now a new, dirty page at the same
1528 * pagecache address.
1530 if (unlikely(page->mapping != mapping)) {
1531 continue_unlock:
1532 unlock_page(page);
1533 continue;
1536 if (!PageDirty(page)) {
1537 /* someone wrote it for us */
1538 goto continue_unlock;
1541 if (PageWriteback(page)) {
1542 if (wbc->sync_mode != WB_SYNC_NONE)
1543 wait_on_page_writeback(page);
1544 else
1545 goto continue_unlock;
1548 BUG_ON(PageWriteback(page));
1549 if (!clear_page_dirty_for_io(page))
1550 goto continue_unlock;
1552 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1553 ret = (*writepage)(page, wbc, data);
1554 if (unlikely(ret)) {
1555 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1556 unlock_page(page);
1557 ret = 0;
1558 } else {
1560 * done_index is set past this page,
1561 * so media errors will not choke
1562 * background writeout for the entire
1563 * file. This has consequences for
1564 * range_cyclic semantics (ie. it may
1565 * not be suitable for data integrity
1566 * writeout).
1568 done_index = page->index + 1;
1569 done = 1;
1570 break;
1575 * We stop writing back only if we are not doing
1576 * integrity sync. In case of integrity sync we have to
1577 * keep going until we have written all the pages
1578 * we tagged for writeback prior to entering this loop.
1580 if (--wbc->nr_to_write <= 0 &&
1581 wbc->sync_mode == WB_SYNC_NONE) {
1582 done = 1;
1583 break;
1586 pagevec_release(&pvec);
1587 cond_resched();
1589 if (!cycled && !done) {
1591 * range_cyclic:
1592 * We hit the last page and there is more work to be done: wrap
1593 * back to the start of the file
1595 cycled = 1;
1596 index = 0;
1597 end = writeback_index - 1;
1598 goto retry;
1600 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1601 mapping->writeback_index = done_index;
1603 return ret;
1605 EXPORT_SYMBOL(write_cache_pages);
1608 * Function used by generic_writepages to call the real writepage
1609 * function and set the mapping flags on error
1611 static int __writepage(struct page *page, struct writeback_control *wbc,
1612 void *data)
1614 struct address_space *mapping = data;
1615 int ret = mapping->a_ops->writepage(page, wbc);
1616 mapping_set_error(mapping, ret);
1617 return ret;
1621 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1622 * @mapping: address space structure to write
1623 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1625 * This is a library function, which implements the writepages()
1626 * address_space_operation.
1628 int generic_writepages(struct address_space *mapping,
1629 struct writeback_control *wbc)
1631 struct blk_plug plug;
1632 int ret;
1634 /* deal with chardevs and other special file */
1635 if (!mapping->a_ops->writepage)
1636 return 0;
1638 blk_start_plug(&plug);
1639 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1640 blk_finish_plug(&plug);
1641 return ret;
1644 EXPORT_SYMBOL(generic_writepages);
1646 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1648 int ret;
1650 if (wbc->nr_to_write <= 0)
1651 return 0;
1652 if (mapping->a_ops->writepages)
1653 ret = mapping->a_ops->writepages(mapping, wbc);
1654 else
1655 ret = generic_writepages(mapping, wbc);
1656 return ret;
1660 * write_one_page - write out a single page and optionally wait on I/O
1661 * @page: the page to write
1662 * @wait: if true, wait on writeout
1664 * The page must be locked by the caller and will be unlocked upon return.
1666 * write_one_page() returns a negative error code if I/O failed.
1668 int write_one_page(struct page *page, int wait)
1670 struct address_space *mapping = page->mapping;
1671 int ret = 0;
1672 struct writeback_control wbc = {
1673 .sync_mode = WB_SYNC_ALL,
1674 .nr_to_write = 1,
1677 BUG_ON(!PageLocked(page));
1679 if (wait)
1680 wait_on_page_writeback(page);
1682 if (clear_page_dirty_for_io(page)) {
1683 page_cache_get(page);
1684 ret = mapping->a_ops->writepage(page, &wbc);
1685 if (ret == 0 && wait) {
1686 wait_on_page_writeback(page);
1687 if (PageError(page))
1688 ret = -EIO;
1690 page_cache_release(page);
1691 } else {
1692 unlock_page(page);
1694 return ret;
1696 EXPORT_SYMBOL(write_one_page);
1699 * For address_spaces which do not use buffers nor write back.
1701 int __set_page_dirty_no_writeback(struct page *page)
1703 if (!PageDirty(page))
1704 return !TestSetPageDirty(page);
1705 return 0;
1709 * Helper function for set_page_dirty family.
1710 * NOTE: This relies on being atomic wrt interrupts.
1712 void account_page_dirtied(struct page *page, struct address_space *mapping)
1714 if (mapping_cap_account_dirty(mapping)) {
1715 __inc_zone_page_state(page, NR_FILE_DIRTY);
1716 __inc_zone_page_state(page, NR_DIRTIED);
1717 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1718 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1719 task_io_account_write(PAGE_CACHE_SIZE);
1722 EXPORT_SYMBOL(account_page_dirtied);
1725 * Helper function for set_page_writeback family.
1726 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1727 * wrt interrupts.
1729 void account_page_writeback(struct page *page)
1731 inc_zone_page_state(page, NR_WRITEBACK);
1733 EXPORT_SYMBOL(account_page_writeback);
1736 * For address_spaces which do not use buffers. Just tag the page as dirty in
1737 * its radix tree.
1739 * This is also used when a single buffer is being dirtied: we want to set the
1740 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1741 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1743 * Most callers have locked the page, which pins the address_space in memory.
1744 * But zap_pte_range() does not lock the page, however in that case the
1745 * mapping is pinned by the vma's ->vm_file reference.
1747 * We take care to handle the case where the page was truncated from the
1748 * mapping by re-checking page_mapping() inside tree_lock.
1750 int __set_page_dirty_nobuffers(struct page *page)
1752 if (!TestSetPageDirty(page)) {
1753 struct address_space *mapping = page_mapping(page);
1754 struct address_space *mapping2;
1756 if (!mapping)
1757 return 1;
1759 spin_lock_irq(&mapping->tree_lock);
1760 mapping2 = page_mapping(page);
1761 if (mapping2) { /* Race with truncate? */
1762 BUG_ON(mapping2 != mapping);
1763 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1764 account_page_dirtied(page, mapping);
1765 radix_tree_tag_set(&mapping->page_tree,
1766 page_index(page), PAGECACHE_TAG_DIRTY);
1768 spin_unlock_irq(&mapping->tree_lock);
1769 if (mapping->host) {
1770 /* !PageAnon && !swapper_space */
1771 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1773 return 1;
1775 return 0;
1777 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1780 * When a writepage implementation decides that it doesn't want to write this
1781 * page for some reason, it should redirty the locked page via
1782 * redirty_page_for_writepage() and it should then unlock the page and return 0
1784 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1786 wbc->pages_skipped++;
1787 return __set_page_dirty_nobuffers(page);
1789 EXPORT_SYMBOL(redirty_page_for_writepage);
1792 * Dirty a page.
1794 * For pages with a mapping this should be done under the page lock
1795 * for the benefit of asynchronous memory errors who prefer a consistent
1796 * dirty state. This rule can be broken in some special cases,
1797 * but should be better not to.
1799 * If the mapping doesn't provide a set_page_dirty a_op, then
1800 * just fall through and assume that it wants buffer_heads.
1802 int set_page_dirty(struct page *page)
1804 struct address_space *mapping = page_mapping(page);
1806 if (likely(mapping)) {
1807 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1809 * readahead/lru_deactivate_page could remain
1810 * PG_readahead/PG_reclaim due to race with end_page_writeback
1811 * About readahead, if the page is written, the flags would be
1812 * reset. So no problem.
1813 * About lru_deactivate_page, if the page is redirty, the flag
1814 * will be reset. So no problem. but if the page is used by readahead
1815 * it will confuse readahead and make it restart the size rampup
1816 * process. But it's a trivial problem.
1818 ClearPageReclaim(page);
1819 #ifdef CONFIG_BLOCK
1820 if (!spd)
1821 spd = __set_page_dirty_buffers;
1822 #endif
1823 return (*spd)(page);
1825 if (!PageDirty(page)) {
1826 if (!TestSetPageDirty(page))
1827 return 1;
1829 return 0;
1831 EXPORT_SYMBOL(set_page_dirty);
1834 * set_page_dirty() is racy if the caller has no reference against
1835 * page->mapping->host, and if the page is unlocked. This is because another
1836 * CPU could truncate the page off the mapping and then free the mapping.
1838 * Usually, the page _is_ locked, or the caller is a user-space process which
1839 * holds a reference on the inode by having an open file.
1841 * In other cases, the page should be locked before running set_page_dirty().
1843 int set_page_dirty_lock(struct page *page)
1845 int ret;
1847 lock_page(page);
1848 ret = set_page_dirty(page);
1849 unlock_page(page);
1850 return ret;
1852 EXPORT_SYMBOL(set_page_dirty_lock);
1855 * Clear a page's dirty flag, while caring for dirty memory accounting.
1856 * Returns true if the page was previously dirty.
1858 * This is for preparing to put the page under writeout. We leave the page
1859 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1860 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1861 * implementation will run either set_page_writeback() or set_page_dirty(),
1862 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1863 * back into sync.
1865 * This incoherency between the page's dirty flag and radix-tree tag is
1866 * unfortunate, but it only exists while the page is locked.
1868 int clear_page_dirty_for_io(struct page *page)
1870 struct address_space *mapping = page_mapping(page);
1872 BUG_ON(!PageLocked(page));
1874 if (mapping && mapping_cap_account_dirty(mapping)) {
1876 * Yes, Virginia, this is indeed insane.
1878 * We use this sequence to make sure that
1879 * (a) we account for dirty stats properly
1880 * (b) we tell the low-level filesystem to
1881 * mark the whole page dirty if it was
1882 * dirty in a pagetable. Only to then
1883 * (c) clean the page again and return 1 to
1884 * cause the writeback.
1886 * This way we avoid all nasty races with the
1887 * dirty bit in multiple places and clearing
1888 * them concurrently from different threads.
1890 * Note! Normally the "set_page_dirty(page)"
1891 * has no effect on the actual dirty bit - since
1892 * that will already usually be set. But we
1893 * need the side effects, and it can help us
1894 * avoid races.
1896 * We basically use the page "master dirty bit"
1897 * as a serialization point for all the different
1898 * threads doing their things.
1900 if (page_mkclean(page))
1901 set_page_dirty(page);
1903 * We carefully synchronise fault handlers against
1904 * installing a dirty pte and marking the page dirty
1905 * at this point. We do this by having them hold the
1906 * page lock at some point after installing their
1907 * pte, but before marking the page dirty.
1908 * Pages are always locked coming in here, so we get
1909 * the desired exclusion. See mm/memory.c:do_wp_page()
1910 * for more comments.
1912 if (TestClearPageDirty(page)) {
1913 dec_zone_page_state(page, NR_FILE_DIRTY);
1914 dec_bdi_stat(mapping->backing_dev_info,
1915 BDI_RECLAIMABLE);
1916 return 1;
1918 return 0;
1920 return TestClearPageDirty(page);
1922 EXPORT_SYMBOL(clear_page_dirty_for_io);
1924 int test_clear_page_writeback(struct page *page)
1926 struct address_space *mapping = page_mapping(page);
1927 int ret;
1929 if (mapping) {
1930 struct backing_dev_info *bdi = mapping->backing_dev_info;
1931 unsigned long flags;
1933 spin_lock_irqsave(&mapping->tree_lock, flags);
1934 ret = TestClearPageWriteback(page);
1935 if (ret) {
1936 radix_tree_tag_clear(&mapping->page_tree,
1937 page_index(page),
1938 PAGECACHE_TAG_WRITEBACK);
1939 if (bdi_cap_account_writeback(bdi)) {
1940 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1941 __bdi_writeout_inc(bdi);
1944 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1945 } else {
1946 ret = TestClearPageWriteback(page);
1948 if (ret) {
1949 dec_zone_page_state(page, NR_WRITEBACK);
1950 inc_zone_page_state(page, NR_WRITTEN);
1952 return ret;
1955 int test_set_page_writeback(struct page *page)
1957 struct address_space *mapping = page_mapping(page);
1958 int ret;
1960 if (mapping) {
1961 struct backing_dev_info *bdi = mapping->backing_dev_info;
1962 unsigned long flags;
1964 spin_lock_irqsave(&mapping->tree_lock, flags);
1965 ret = TestSetPageWriteback(page);
1966 if (!ret) {
1967 radix_tree_tag_set(&mapping->page_tree,
1968 page_index(page),
1969 PAGECACHE_TAG_WRITEBACK);
1970 if (bdi_cap_account_writeback(bdi))
1971 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1973 if (!PageDirty(page))
1974 radix_tree_tag_clear(&mapping->page_tree,
1975 page_index(page),
1976 PAGECACHE_TAG_DIRTY);
1977 radix_tree_tag_clear(&mapping->page_tree,
1978 page_index(page),
1979 PAGECACHE_TAG_TOWRITE);
1980 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1981 } else {
1982 ret = TestSetPageWriteback(page);
1984 if (!ret)
1985 account_page_writeback(page);
1986 return ret;
1989 EXPORT_SYMBOL(test_set_page_writeback);
1992 * Return true if any of the pages in the mapping are marked with the
1993 * passed tag.
1995 int mapping_tagged(struct address_space *mapping, int tag)
1997 return radix_tree_tagged(&mapping->page_tree, tag);
1999 EXPORT_SYMBOL(mapping_tagged);