2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
96 #include <net/net_namespace.h>
97 #include <net/protocol.h>
99 #include <net/route.h>
100 #include <net/inetpeer.h>
101 #include <net/sock.h>
102 #include <net/ip_fib.h>
105 #include <net/icmp.h>
106 #include <net/xfrm.h>
107 #include <net/netevent.h>
108 #include <net/rtnetlink.h>
110 #include <linux/sysctl.h>
113 #define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
116 #define IP_MAX_MTU 0xFFF0
118 #define RT_GC_TIMEOUT (300*HZ)
120 static int ip_rt_max_size
;
121 static int ip_rt_gc_timeout
= RT_GC_TIMEOUT
;
122 static int ip_rt_gc_interval
= 60 * HZ
;
123 static int ip_rt_gc_min_interval
= HZ
/ 2;
124 static int ip_rt_redirect_number
= 9;
125 static int ip_rt_redirect_load
= HZ
/ 50;
126 static int ip_rt_redirect_silence
= ((HZ
/ 50) << (9 + 1));
127 static int ip_rt_error_cost
= HZ
;
128 static int ip_rt_error_burst
= 5 * HZ
;
129 static int ip_rt_gc_elasticity
= 8;
130 static int ip_rt_mtu_expires
= 10 * 60 * HZ
;
131 static int ip_rt_min_pmtu
= 512 + 20 + 20;
132 static int ip_rt_min_advmss
= 256;
133 static int ip_rt_secret_interval
= 10 * 60 * HZ
;
135 #define RTprint(a...) printk(KERN_DEBUG a)
137 static void rt_worker_func(struct work_struct
*work
);
138 static DECLARE_DELAYED_WORK(expires_work
, rt_worker_func
);
139 static struct timer_list rt_secret_timer
;
142 * Interface to generic destination cache.
145 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
146 static void ipv4_dst_destroy(struct dst_entry
*dst
);
147 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
148 struct net_device
*dev
, int how
);
149 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
150 static void ipv4_link_failure(struct sk_buff
*skb
);
151 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
152 static int rt_garbage_collect(struct dst_ops
*ops
);
155 static struct dst_ops ipv4_dst_ops
= {
157 .protocol
= __constant_htons(ETH_P_IP
),
158 .gc
= rt_garbage_collect
,
159 .check
= ipv4_dst_check
,
160 .destroy
= ipv4_dst_destroy
,
161 .ifdown
= ipv4_dst_ifdown
,
162 .negative_advice
= ipv4_negative_advice
,
163 .link_failure
= ipv4_link_failure
,
164 .update_pmtu
= ip_rt_update_pmtu
,
165 .local_out
= ip_local_out
,
166 .entry_size
= sizeof(struct rtable
),
167 .entries
= ATOMIC_INIT(0),
170 #define ECN_OR_COST(class) TC_PRIO_##class
172 const __u8 ip_tos2prio
[16] = {
176 ECN_OR_COST(BESTEFFORT
),
182 ECN_OR_COST(INTERACTIVE
),
184 ECN_OR_COST(INTERACTIVE
),
185 TC_PRIO_INTERACTIVE_BULK
,
186 ECN_OR_COST(INTERACTIVE_BULK
),
187 TC_PRIO_INTERACTIVE_BULK
,
188 ECN_OR_COST(INTERACTIVE_BULK
)
196 /* The locking scheme is rather straight forward:
198 * 1) Read-Copy Update protects the buckets of the central route hash.
199 * 2) Only writers remove entries, and they hold the lock
200 * as they look at rtable reference counts.
201 * 3) Only readers acquire references to rtable entries,
202 * they do so with atomic increments and with the
206 struct rt_hash_bucket
{
207 struct rtable
*chain
;
209 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
210 defined(CONFIG_PROVE_LOCKING)
212 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
213 * The size of this table is a power of two and depends on the number of CPUS.
214 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
216 #ifdef CONFIG_LOCKDEP
217 # define RT_HASH_LOCK_SZ 256
220 # define RT_HASH_LOCK_SZ 4096
222 # define RT_HASH_LOCK_SZ 2048
224 # define RT_HASH_LOCK_SZ 1024
226 # define RT_HASH_LOCK_SZ 512
228 # define RT_HASH_LOCK_SZ 256
232 static spinlock_t
*rt_hash_locks
;
233 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
235 static __init
void rt_hash_lock_init(void)
239 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
242 panic("IP: failed to allocate rt_hash_locks\n");
244 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
245 spin_lock_init(&rt_hash_locks
[i
]);
248 # define rt_hash_lock_addr(slot) NULL
250 static inline void rt_hash_lock_init(void)
255 static struct rt_hash_bucket
*rt_hash_table
;
256 static unsigned rt_hash_mask
;
257 static unsigned int rt_hash_log
;
258 static atomic_t rt_genid
;
260 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
261 #define RT_CACHE_STAT_INC(field) \
262 (__raw_get_cpu_var(rt_cache_stat).field++)
264 static unsigned int rt_hash_code(u32 daddr
, u32 saddr
)
266 return jhash_2words(daddr
, saddr
, atomic_read(&rt_genid
))
270 #define rt_hash(daddr, saddr, idx) \
271 rt_hash_code((__force u32)(__be32)(daddr),\
272 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state
{
276 struct seq_net_private p
;
281 static struct rtable
*rt_cache_get_first(struct rt_cache_iter_state
*st
)
283 struct rtable
*r
= NULL
;
285 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
287 r
= rcu_dereference(rt_hash_table
[st
->bucket
].chain
);
289 if (r
->u
.dst
.dev
->nd_net
== st
->p
.net
&&
290 r
->rt_genid
== st
->genid
)
292 r
= rcu_dereference(r
->u
.dst
.rt_next
);
294 rcu_read_unlock_bh();
299 static struct rtable
*__rt_cache_get_next(struct rt_cache_iter_state
*st
,
302 r
= r
->u
.dst
.rt_next
;
304 rcu_read_unlock_bh();
305 if (--st
->bucket
< 0)
308 r
= rt_hash_table
[st
->bucket
].chain
;
310 return rcu_dereference(r
);
313 static struct rtable
*rt_cache_get_next(struct rt_cache_iter_state
*st
,
316 while ((r
= __rt_cache_get_next(st
, r
)) != NULL
) {
317 if (r
->u
.dst
.dev
->nd_net
!= st
->p
.net
)
319 if (r
->rt_genid
== st
->genid
)
325 static struct rtable
*rt_cache_get_idx(struct rt_cache_iter_state
*st
, loff_t pos
)
327 struct rtable
*r
= rt_cache_get_first(st
);
330 while (pos
&& (r
= rt_cache_get_next(st
, r
)))
332 return pos
? NULL
: r
;
335 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
337 struct rt_cache_iter_state
*st
= seq
->private;
340 return rt_cache_get_idx(st
, *pos
- 1);
341 st
->genid
= atomic_read(&rt_genid
);
342 return SEQ_START_TOKEN
;
345 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
348 struct rt_cache_iter_state
*st
= seq
->private;
350 if (v
== SEQ_START_TOKEN
)
351 r
= rt_cache_get_first(st
);
353 r
= rt_cache_get_next(st
, v
);
358 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
360 if (v
&& v
!= SEQ_START_TOKEN
)
361 rcu_read_unlock_bh();
364 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
366 if (v
== SEQ_START_TOKEN
)
367 seq_printf(seq
, "%-127s\n",
368 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
369 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
372 struct rtable
*r
= v
;
375 sprintf(temp
, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
376 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
377 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
378 (unsigned long)r
->rt_dst
, (unsigned long)r
->rt_gateway
,
379 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
380 r
->u
.dst
.__use
, 0, (unsigned long)r
->rt_src
,
381 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
382 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
383 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
384 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
385 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
387 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
388 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
391 seq_printf(seq
, "%-127s\n", temp
);
396 static const struct seq_operations rt_cache_seq_ops
= {
397 .start
= rt_cache_seq_start
,
398 .next
= rt_cache_seq_next
,
399 .stop
= rt_cache_seq_stop
,
400 .show
= rt_cache_seq_show
,
403 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
405 return seq_open_net(inode
, file
, &rt_cache_seq_ops
,
406 sizeof(struct rt_cache_iter_state
));
409 static const struct file_operations rt_cache_seq_fops
= {
410 .owner
= THIS_MODULE
,
411 .open
= rt_cache_seq_open
,
414 .release
= seq_release_net
,
418 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
423 return SEQ_START_TOKEN
;
425 for (cpu
= *pos
-1; cpu
< NR_CPUS
; ++cpu
) {
426 if (!cpu_possible(cpu
))
429 return &per_cpu(rt_cache_stat
, cpu
);
434 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
438 for (cpu
= *pos
; cpu
< NR_CPUS
; ++cpu
) {
439 if (!cpu_possible(cpu
))
442 return &per_cpu(rt_cache_stat
, cpu
);
448 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
453 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
455 struct rt_cache_stat
*st
= v
;
457 if (v
== SEQ_START_TOKEN
) {
458 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
462 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
463 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
464 atomic_read(&ipv4_dst_ops
.entries
),
487 static const struct seq_operations rt_cpu_seq_ops
= {
488 .start
= rt_cpu_seq_start
,
489 .next
= rt_cpu_seq_next
,
490 .stop
= rt_cpu_seq_stop
,
491 .show
= rt_cpu_seq_show
,
495 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
497 return seq_open(file
, &rt_cpu_seq_ops
);
500 static const struct file_operations rt_cpu_seq_fops
= {
501 .owner
= THIS_MODULE
,
502 .open
= rt_cpu_seq_open
,
505 .release
= seq_release
,
508 #ifdef CONFIG_NET_CLS_ROUTE
509 static int ip_rt_acct_read(char *buffer
, char **start
, off_t offset
,
510 int length
, int *eof
, void *data
)
514 if ((offset
& 3) || (length
& 3))
517 if (offset
>= sizeof(struct ip_rt_acct
) * 256) {
522 if (offset
+ length
>= sizeof(struct ip_rt_acct
) * 256) {
523 length
= sizeof(struct ip_rt_acct
) * 256 - offset
;
527 offset
/= sizeof(u32
);
530 u32
*dst
= (u32
*) buffer
;
533 memset(dst
, 0, length
);
535 for_each_possible_cpu(i
) {
539 src
= ((u32
*) per_cpu_ptr(ip_rt_acct
, i
)) + offset
;
540 for (j
= 0; j
< length
/4; j
++)
548 static int __net_init
ip_rt_do_proc_init(struct net
*net
)
550 struct proc_dir_entry
*pde
;
552 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
557 pde
= proc_create("rt_cache", S_IRUGO
,
558 net
->proc_net_stat
, &rt_cpu_seq_fops
);
562 #ifdef CONFIG_NET_CLS_ROUTE
563 pde
= create_proc_read_entry("rt_acct", 0, net
->proc_net
,
564 ip_rt_acct_read
, NULL
);
570 #ifdef CONFIG_NET_CLS_ROUTE
572 remove_proc_entry("rt_cache", net
->proc_net_stat
);
575 remove_proc_entry("rt_cache", net
->proc_net
);
580 static void __net_exit
ip_rt_do_proc_exit(struct net
*net
)
582 remove_proc_entry("rt_cache", net
->proc_net_stat
);
583 remove_proc_entry("rt_cache", net
->proc_net
);
584 remove_proc_entry("rt_acct", net
->proc_net
);
587 static struct pernet_operations ip_rt_proc_ops __net_initdata
= {
588 .init
= ip_rt_do_proc_init
,
589 .exit
= ip_rt_do_proc_exit
,
592 static int __init
ip_rt_proc_init(void)
594 return register_pernet_subsys(&ip_rt_proc_ops
);
598 static inline int ip_rt_proc_init(void)
602 #endif /* CONFIG_PROC_FS */
604 static __inline__
void rt_free(struct rtable
*rt
)
606 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
609 static __inline__
void rt_drop(struct rtable
*rt
)
612 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
615 static __inline__
int rt_fast_clean(struct rtable
*rth
)
617 /* Kill broadcast/multicast entries very aggresively, if they
618 collide in hash table with more useful entries */
619 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
620 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
623 static __inline__
int rt_valuable(struct rtable
*rth
)
625 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
629 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
634 if (atomic_read(&rth
->u
.dst
.__refcnt
))
638 if (rth
->u
.dst
.expires
&&
639 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
642 age
= jiffies
- rth
->u
.dst
.lastuse
;
644 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
645 (age
<= tmo2
&& rt_valuable(rth
)))
651 /* Bits of score are:
653 * 30: not quite useless
654 * 29..0: usage counter
656 static inline u32
rt_score(struct rtable
*rt
)
658 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
660 score
= ~score
& ~(3<<30);
666 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
672 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
674 return ((__force u32
)((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
675 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
)) |
676 (fl1
->mark
^ fl2
->mark
) |
677 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^
678 *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
679 (fl1
->oif
^ fl2
->oif
) |
680 (fl1
->iif
^ fl2
->iif
)) == 0;
683 static inline int compare_netns(struct rtable
*rt1
, struct rtable
*rt2
)
685 return rt1
->u
.dst
.dev
->nd_net
== rt2
->u
.dst
.dev
->nd_net
;
689 * Perform a full scan of hash table and free all entries.
690 * Can be called by a softirq or a process.
691 * In the later case, we want to be reschedule if necessary
693 static void rt_do_flush(int process_context
)
696 struct rtable
*rth
, *next
;
698 for (i
= 0; i
<= rt_hash_mask
; i
++) {
699 if (process_context
&& need_resched())
701 rth
= rt_hash_table
[i
].chain
;
705 spin_lock_bh(rt_hash_lock_addr(i
));
706 rth
= rt_hash_table
[i
].chain
;
707 rt_hash_table
[i
].chain
= NULL
;
708 spin_unlock_bh(rt_hash_lock_addr(i
));
710 for (; rth
; rth
= next
) {
711 next
= rth
->u
.dst
.rt_next
;
717 static void rt_check_expire(void)
719 static unsigned int rover
;
720 unsigned int i
= rover
, goal
;
721 struct rtable
*rth
, **rthp
;
724 mult
= ((u64
)ip_rt_gc_interval
) << rt_hash_log
;
725 if (ip_rt_gc_timeout
> 1)
726 do_div(mult
, ip_rt_gc_timeout
);
727 goal
= (unsigned int)mult
;
728 if (goal
> rt_hash_mask
)
729 goal
= rt_hash_mask
+ 1;
730 for (; goal
> 0; goal
--) {
731 unsigned long tmo
= ip_rt_gc_timeout
;
733 i
= (i
+ 1) & rt_hash_mask
;
734 rthp
= &rt_hash_table
[i
].chain
;
741 spin_lock_bh(rt_hash_lock_addr(i
));
742 while ((rth
= *rthp
) != NULL
) {
743 if (rth
->rt_genid
!= atomic_read(&rt_genid
)) {
744 *rthp
= rth
->u
.dst
.rt_next
;
748 if (rth
->u
.dst
.expires
) {
749 /* Entry is expired even if it is in use */
750 if (time_before_eq(jiffies
, rth
->u
.dst
.expires
)) {
752 rthp
= &rth
->u
.dst
.rt_next
;
755 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
)) {
757 rthp
= &rth
->u
.dst
.rt_next
;
761 /* Cleanup aged off entries. */
762 *rthp
= rth
->u
.dst
.rt_next
;
765 spin_unlock_bh(rt_hash_lock_addr(i
));
771 * rt_worker_func() is run in process context.
772 * we call rt_check_expire() to scan part of the hash table
774 static void rt_worker_func(struct work_struct
*work
)
777 schedule_delayed_work(&expires_work
, ip_rt_gc_interval
);
781 * Pertubation of rt_genid by a small quantity [1..256]
782 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
783 * many times (2^24) without giving recent rt_genid.
784 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
786 static void rt_cache_invalidate(void)
788 unsigned char shuffle
;
790 get_random_bytes(&shuffle
, sizeof(shuffle
));
791 atomic_add(shuffle
+ 1U, &rt_genid
);
795 * delay < 0 : invalidate cache (fast : entries will be deleted later)
796 * delay >= 0 : invalidate & flush cache (can be long)
798 void rt_cache_flush(int delay
)
800 rt_cache_invalidate();
802 rt_do_flush(!in_softirq());
806 * We change rt_genid and let gc do the cleanup
808 static void rt_secret_rebuild(unsigned long dummy
)
810 rt_cache_invalidate();
811 mod_timer(&rt_secret_timer
, jiffies
+ ip_rt_secret_interval
);
815 Short description of GC goals.
817 We want to build algorithm, which will keep routing cache
818 at some equilibrium point, when number of aged off entries
819 is kept approximately equal to newly generated ones.
821 Current expiration strength is variable "expire".
822 We try to adjust it dynamically, so that if networking
823 is idle expires is large enough to keep enough of warm entries,
824 and when load increases it reduces to limit cache size.
827 static int rt_garbage_collect(struct dst_ops
*ops
)
829 static unsigned long expire
= RT_GC_TIMEOUT
;
830 static unsigned long last_gc
;
832 static int equilibrium
;
833 struct rtable
*rth
, **rthp
;
834 unsigned long now
= jiffies
;
838 * Garbage collection is pretty expensive,
839 * do not make it too frequently.
842 RT_CACHE_STAT_INC(gc_total
);
844 if (now
- last_gc
< ip_rt_gc_min_interval
&&
845 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
846 RT_CACHE_STAT_INC(gc_ignored
);
850 /* Calculate number of entries, which we want to expire now. */
851 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
852 (ip_rt_gc_elasticity
<< rt_hash_log
);
854 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
855 equilibrium
= ipv4_dst_ops
.gc_thresh
;
856 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
858 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
859 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
862 /* We are in dangerous area. Try to reduce cache really
865 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
866 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
869 if (now
- last_gc
>= ip_rt_gc_min_interval
)
880 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
881 unsigned long tmo
= expire
;
883 k
= (k
+ 1) & rt_hash_mask
;
884 rthp
= &rt_hash_table
[k
].chain
;
885 spin_lock_bh(rt_hash_lock_addr(k
));
886 while ((rth
= *rthp
) != NULL
) {
887 if (rth
->rt_genid
== atomic_read(&rt_genid
) &&
888 !rt_may_expire(rth
, tmo
, expire
)) {
890 rthp
= &rth
->u
.dst
.rt_next
;
893 *rthp
= rth
->u
.dst
.rt_next
;
897 spin_unlock_bh(rt_hash_lock_addr(k
));
906 /* Goal is not achieved. We stop process if:
908 - if expire reduced to zero. Otherwise, expire is halfed.
909 - if table is not full.
910 - if we are called from interrupt.
911 - jiffies check is just fallback/debug loop breaker.
912 We will not spin here for long time in any case.
915 RT_CACHE_STAT_INC(gc_goal_miss
);
921 #if RT_CACHE_DEBUG >= 2
922 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
923 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
926 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
928 } while (!in_softirq() && time_before_eq(jiffies
, now
));
930 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
933 printk(KERN_WARNING
"dst cache overflow\n");
934 RT_CACHE_STAT_INC(gc_dst_overflow
);
938 expire
+= ip_rt_gc_min_interval
;
939 if (expire
> ip_rt_gc_timeout
||
940 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
941 expire
= ip_rt_gc_timeout
;
942 #if RT_CACHE_DEBUG >= 2
943 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
944 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
949 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
, struct rtable
**rp
)
951 struct rtable
*rth
, **rthp
;
953 struct rtable
*cand
, **candp
;
956 int attempts
= !in_softirq();
965 rthp
= &rt_hash_table
[hash
].chain
;
967 spin_lock_bh(rt_hash_lock_addr(hash
));
968 while ((rth
= *rthp
) != NULL
) {
969 if (rth
->rt_genid
!= atomic_read(&rt_genid
)) {
970 *rthp
= rth
->u
.dst
.rt_next
;
974 if (compare_keys(&rth
->fl
, &rt
->fl
) && compare_netns(rth
, rt
)) {
976 *rthp
= rth
->u
.dst
.rt_next
;
978 * Since lookup is lockfree, the deletion
979 * must be visible to another weakly ordered CPU before
980 * the insertion at the start of the hash chain.
982 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
983 rt_hash_table
[hash
].chain
);
985 * Since lookup is lockfree, the update writes
986 * must be ordered for consistency on SMP.
988 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
990 dst_use(&rth
->u
.dst
, now
);
991 spin_unlock_bh(rt_hash_lock_addr(hash
));
998 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
999 u32 score
= rt_score(rth
);
1001 if (score
<= min_score
) {
1010 rthp
= &rth
->u
.dst
.rt_next
;
1014 /* ip_rt_gc_elasticity used to be average length of chain
1015 * length, when exceeded gc becomes really aggressive.
1017 * The second limit is less certain. At the moment it allows
1018 * only 2 entries per bucket. We will see.
1020 if (chain_length
> ip_rt_gc_elasticity
) {
1021 *candp
= cand
->u
.dst
.rt_next
;
1026 /* Try to bind route to arp only if it is output
1027 route or unicast forwarding path.
1029 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1030 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1032 spin_unlock_bh(rt_hash_lock_addr(hash
));
1034 if (err
!= -ENOBUFS
) {
1039 /* Neighbour tables are full and nothing
1040 can be released. Try to shrink route cache,
1041 it is most likely it holds some neighbour records.
1043 if (attempts
-- > 0) {
1044 int saved_elasticity
= ip_rt_gc_elasticity
;
1045 int saved_int
= ip_rt_gc_min_interval
;
1046 ip_rt_gc_elasticity
= 1;
1047 ip_rt_gc_min_interval
= 0;
1048 rt_garbage_collect(&ipv4_dst_ops
);
1049 ip_rt_gc_min_interval
= saved_int
;
1050 ip_rt_gc_elasticity
= saved_elasticity
;
1054 if (net_ratelimit())
1055 printk(KERN_WARNING
"Neighbour table overflow.\n");
1061 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
1062 #if RT_CACHE_DEBUG >= 2
1063 if (rt
->u
.dst
.rt_next
) {
1065 printk(KERN_DEBUG
"rt_cache @%02x: %u.%u.%u.%u", hash
,
1066 NIPQUAD(rt
->rt_dst
));
1067 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
1068 printk(" . %u.%u.%u.%u", NIPQUAD(trt
->rt_dst
));
1072 rt_hash_table
[hash
].chain
= rt
;
1073 spin_unlock_bh(rt_hash_lock_addr(hash
));
1078 void rt_bind_peer(struct rtable
*rt
, int create
)
1080 static DEFINE_SPINLOCK(rt_peer_lock
);
1081 struct inet_peer
*peer
;
1083 peer
= inet_getpeer(rt
->rt_dst
, create
);
1085 spin_lock_bh(&rt_peer_lock
);
1086 if (rt
->peer
== NULL
) {
1090 spin_unlock_bh(&rt_peer_lock
);
1096 * Peer allocation may fail only in serious out-of-memory conditions. However
1097 * we still can generate some output.
1098 * Random ID selection looks a bit dangerous because we have no chances to
1099 * select ID being unique in a reasonable period of time.
1100 * But broken packet identifier may be better than no packet at all.
1102 static void ip_select_fb_ident(struct iphdr
*iph
)
1104 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1105 static u32 ip_fallback_id
;
1108 spin_lock_bh(&ip_fb_id_lock
);
1109 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1110 iph
->id
= htons(salt
& 0xFFFF);
1111 ip_fallback_id
= salt
;
1112 spin_unlock_bh(&ip_fb_id_lock
);
1115 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1117 struct rtable
*rt
= (struct rtable
*) dst
;
1120 if (rt
->peer
== NULL
)
1121 rt_bind_peer(rt
, 1);
1123 /* If peer is attached to destination, it is never detached,
1124 so that we need not to grab a lock to dereference it.
1127 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1131 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1132 __builtin_return_address(0));
1134 ip_select_fb_ident(iph
);
1137 static void rt_del(unsigned hash
, struct rtable
*rt
)
1139 struct rtable
**rthp
, *aux
;
1141 rthp
= &rt_hash_table
[hash
].chain
;
1142 spin_lock_bh(rt_hash_lock_addr(hash
));
1144 while ((aux
= *rthp
) != NULL
) {
1145 if (aux
== rt
|| (aux
->rt_genid
!= atomic_read(&rt_genid
))) {
1146 *rthp
= aux
->u
.dst
.rt_next
;
1150 rthp
= &aux
->u
.dst
.rt_next
;
1152 spin_unlock_bh(rt_hash_lock_addr(hash
));
1155 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1156 __be32 saddr
, struct net_device
*dev
)
1159 struct in_device
*in_dev
= in_dev_get(dev
);
1160 struct rtable
*rth
, **rthp
;
1161 __be32 skeys
[2] = { saddr
, 0 };
1162 int ikeys
[2] = { dev
->ifindex
, 0 };
1163 struct netevent_redirect netevent
;
1170 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
)
1171 || ipv4_is_multicast(new_gw
) || ipv4_is_lbcast(new_gw
)
1172 || ipv4_is_zeronet(new_gw
))
1173 goto reject_redirect
;
1175 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1176 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1177 goto reject_redirect
;
1178 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1179 goto reject_redirect
;
1181 if (inet_addr_type(net
, new_gw
) != RTN_UNICAST
)
1182 goto reject_redirect
;
1185 for (i
= 0; i
< 2; i
++) {
1186 for (k
= 0; k
< 2; k
++) {
1187 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
]);
1189 rthp
=&rt_hash_table
[hash
].chain
;
1192 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1195 if (rth
->fl
.fl4_dst
!= daddr
||
1196 rth
->fl
.fl4_src
!= skeys
[i
] ||
1197 rth
->fl
.oif
!= ikeys
[k
] ||
1199 rth
->rt_genid
!= atomic_read(&rt_genid
) ||
1200 rth
->u
.dst
.dev
->nd_net
!= net
) {
1201 rthp
= &rth
->u
.dst
.rt_next
;
1205 if (rth
->rt_dst
!= daddr
||
1206 rth
->rt_src
!= saddr
||
1208 rth
->rt_gateway
!= old_gw
||
1209 rth
->u
.dst
.dev
!= dev
)
1212 dst_hold(&rth
->u
.dst
);
1215 rt
= dst_alloc(&ipv4_dst_ops
);
1222 /* Copy all the information. */
1224 INIT_RCU_HEAD(&rt
->u
.dst
.rcu_head
);
1225 rt
->u
.dst
.__use
= 1;
1226 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1227 rt
->u
.dst
.child
= NULL
;
1229 dev_hold(rt
->u
.dst
.dev
);
1231 in_dev_hold(rt
->idev
);
1232 rt
->u
.dst
.obsolete
= 0;
1233 rt
->u
.dst
.lastuse
= jiffies
;
1234 rt
->u
.dst
.path
= &rt
->u
.dst
;
1235 rt
->u
.dst
.neighbour
= NULL
;
1236 rt
->u
.dst
.hh
= NULL
;
1237 rt
->u
.dst
.xfrm
= NULL
;
1238 rt
->rt_genid
= atomic_read(&rt_genid
);
1239 rt
->rt_flags
|= RTCF_REDIRECTED
;
1241 /* Gateway is different ... */
1242 rt
->rt_gateway
= new_gw
;
1244 /* Redirect received -> path was valid */
1245 dst_confirm(&rth
->u
.dst
);
1248 atomic_inc(&rt
->peer
->refcnt
);
1250 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1251 !(rt
->u
.dst
.neighbour
->nud_state
&
1253 if (rt
->u
.dst
.neighbour
)
1254 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1260 netevent
.old
= &rth
->u
.dst
;
1261 netevent
.new = &rt
->u
.dst
;
1262 call_netevent_notifiers(NETEVENT_REDIRECT
,
1266 if (!rt_intern_hash(hash
, rt
, &rt
))
1279 #ifdef CONFIG_IP_ROUTE_VERBOSE
1280 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1281 printk(KERN_INFO
"Redirect from %u.%u.%u.%u on %s about "
1282 "%u.%u.%u.%u ignored.\n"
1283 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1284 NIPQUAD(old_gw
), dev
->name
, NIPQUAD(new_gw
),
1285 NIPQUAD(saddr
), NIPQUAD(daddr
));
1290 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1292 struct rtable
*rt
= (struct rtable
*)dst
;
1293 struct dst_entry
*ret
= dst
;
1296 if (dst
->obsolete
) {
1299 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1300 rt
->u
.dst
.expires
) {
1301 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1303 #if RT_CACHE_DEBUG >= 1
1304 printk(KERN_DEBUG
"ipv4_negative_advice: redirect to "
1305 "%u.%u.%u.%u/%02x dropped\n",
1306 NIPQUAD(rt
->rt_dst
), rt
->fl
.fl4_tos
);
1317 * 1. The first ip_rt_redirect_number redirects are sent
1318 * with exponential backoff, then we stop sending them at all,
1319 * assuming that the host ignores our redirects.
1320 * 2. If we did not see packets requiring redirects
1321 * during ip_rt_redirect_silence, we assume that the host
1322 * forgot redirected route and start to send redirects again.
1324 * This algorithm is much cheaper and more intelligent than dumb load limiting
1327 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1328 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1331 void ip_rt_send_redirect(struct sk_buff
*skb
)
1333 struct rtable
*rt
= skb
->rtable
;
1334 struct in_device
*in_dev
= in_dev_get(rt
->u
.dst
.dev
);
1339 if (!IN_DEV_TX_REDIRECTS(in_dev
))
1342 /* No redirected packets during ip_rt_redirect_silence;
1343 * reset the algorithm.
1345 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1346 rt
->u
.dst
.rate_tokens
= 0;
1348 /* Too many ignored redirects; do not send anything
1349 * set u.dst.rate_last to the last seen redirected packet.
1351 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1352 rt
->u
.dst
.rate_last
= jiffies
;
1356 /* Check for load limit; set rate_last to the latest sent
1359 if (rt
->u
.dst
.rate_tokens
== 0 ||
1361 (rt
->u
.dst
.rate_last
+
1362 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1363 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1364 rt
->u
.dst
.rate_last
= jiffies
;
1365 ++rt
->u
.dst
.rate_tokens
;
1366 #ifdef CONFIG_IP_ROUTE_VERBOSE
1367 if (IN_DEV_LOG_MARTIANS(in_dev
) &&
1368 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1370 printk(KERN_WARNING
"host %u.%u.%u.%u/if%d ignores "
1371 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1372 NIPQUAD(rt
->rt_src
), rt
->rt_iif
,
1373 NIPQUAD(rt
->rt_dst
), NIPQUAD(rt
->rt_gateway
));
1380 static int ip_error(struct sk_buff
*skb
)
1382 struct rtable
*rt
= skb
->rtable
;
1386 switch (rt
->u
.dst
.error
) {
1391 code
= ICMP_HOST_UNREACH
;
1394 code
= ICMP_NET_UNREACH
;
1395 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES
);
1398 code
= ICMP_PKT_FILTERED
;
1403 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1404 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1405 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1406 rt
->u
.dst
.rate_last
= now
;
1407 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1408 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1409 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1412 out
: kfree_skb(skb
);
1417 * The last two values are not from the RFC but
1418 * are needed for AMPRnet AX.25 paths.
1421 static const unsigned short mtu_plateau
[] =
1422 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1424 static __inline__
unsigned short guess_mtu(unsigned short old_mtu
)
1428 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1429 if (old_mtu
> mtu_plateau
[i
])
1430 return mtu_plateau
[i
];
1434 unsigned short ip_rt_frag_needed(struct net
*net
, struct iphdr
*iph
,
1435 unsigned short new_mtu
)
1438 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1440 __be32 skeys
[2] = { iph
->saddr
, 0, };
1441 __be32 daddr
= iph
->daddr
;
1442 unsigned short est_mtu
= 0;
1444 if (ipv4_config
.no_pmtu_disc
)
1447 for (i
= 0; i
< 2; i
++) {
1448 unsigned hash
= rt_hash(daddr
, skeys
[i
], 0);
1451 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1452 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1453 if (rth
->fl
.fl4_dst
== daddr
&&
1454 rth
->fl
.fl4_src
== skeys
[i
] &&
1455 rth
->rt_dst
== daddr
&&
1456 rth
->rt_src
== iph
->saddr
&&
1458 !(dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
)) &&
1459 rth
->u
.dst
.dev
->nd_net
== net
&&
1460 rth
->rt_genid
== atomic_read(&rt_genid
)) {
1461 unsigned short mtu
= new_mtu
;
1463 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1465 /* BSD 4.2 compatibility hack :-( */
1467 old_mtu
>= rth
->u
.dst
.metrics
[RTAX_MTU
-1] &&
1468 old_mtu
>= 68 + (iph
->ihl
<< 2))
1469 old_mtu
-= iph
->ihl
<< 2;
1471 mtu
= guess_mtu(old_mtu
);
1473 if (mtu
<= rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1474 if (mtu
< rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1475 dst_confirm(&rth
->u
.dst
);
1476 if (mtu
< ip_rt_min_pmtu
) {
1477 mtu
= ip_rt_min_pmtu
;
1478 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1481 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1482 dst_set_expires(&rth
->u
.dst
,
1491 return est_mtu
? : new_mtu
;
1494 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1496 if (dst
->metrics
[RTAX_MTU
-1] > mtu
&& mtu
>= 68 &&
1497 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1498 if (mtu
< ip_rt_min_pmtu
) {
1499 mtu
= ip_rt_min_pmtu
;
1500 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1502 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1503 dst_set_expires(dst
, ip_rt_mtu_expires
);
1504 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1508 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1513 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1515 struct rtable
*rt
= (struct rtable
*) dst
;
1516 struct inet_peer
*peer
= rt
->peer
;
1517 struct in_device
*idev
= rt
->idev
;
1530 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1533 struct rtable
*rt
= (struct rtable
*) dst
;
1534 struct in_device
*idev
= rt
->idev
;
1535 if (dev
!= dev
->nd_net
->loopback_dev
&& idev
&& idev
->dev
== dev
) {
1536 struct in_device
*loopback_idev
=
1537 in_dev_get(dev
->nd_net
->loopback_dev
);
1538 if (loopback_idev
) {
1539 rt
->idev
= loopback_idev
;
1545 static void ipv4_link_failure(struct sk_buff
*skb
)
1549 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1553 dst_set_expires(&rt
->u
.dst
, 0);
1556 static int ip_rt_bug(struct sk_buff
*skb
)
1558 printk(KERN_DEBUG
"ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1559 NIPQUAD(ip_hdr(skb
)->saddr
), NIPQUAD(ip_hdr(skb
)->daddr
),
1560 skb
->dev
? skb
->dev
->name
: "?");
1566 We do not cache source address of outgoing interface,
1567 because it is used only by IP RR, TS and SRR options,
1568 so that it out of fast path.
1570 BTW remember: "addr" is allowed to be not aligned
1574 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1577 struct fib_result res
;
1579 if (rt
->fl
.iif
== 0)
1581 else if (fib_lookup(rt
->u
.dst
.dev
->nd_net
, &rt
->fl
, &res
) == 0) {
1582 src
= FIB_RES_PREFSRC(res
);
1585 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1587 memcpy(addr
, &src
, 4);
1590 #ifdef CONFIG_NET_CLS_ROUTE
1591 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1593 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1594 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1595 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1596 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1600 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1602 struct fib_info
*fi
= res
->fi
;
1605 if (FIB_RES_GW(*res
) &&
1606 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1607 rt
->rt_gateway
= FIB_RES_GW(*res
);
1608 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1609 sizeof(rt
->u
.dst
.metrics
));
1610 if (fi
->fib_mtu
== 0) {
1611 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1612 if (rt
->u
.dst
.metrics
[RTAX_LOCK
-1] & (1 << RTAX_MTU
) &&
1613 rt
->rt_gateway
!= rt
->rt_dst
&&
1614 rt
->u
.dst
.dev
->mtu
> 576)
1615 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1617 #ifdef CONFIG_NET_CLS_ROUTE
1618 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1621 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1623 if (rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] == 0)
1624 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1625 if (rt
->u
.dst
.metrics
[RTAX_MTU
-1] > IP_MAX_MTU
)
1626 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1627 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] == 0)
1628 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1630 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] > 65535 - 40)
1631 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1633 #ifdef CONFIG_NET_CLS_ROUTE
1634 #ifdef CONFIG_IP_MULTIPLE_TABLES
1635 set_class_tag(rt
, fib_rules_tclass(res
));
1637 set_class_tag(rt
, itag
);
1639 rt
->rt_type
= res
->type
;
1642 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1643 u8 tos
, struct net_device
*dev
, int our
)
1648 struct in_device
*in_dev
= in_dev_get(dev
);
1651 /* Primary sanity checks. */
1656 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1657 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1660 if (ipv4_is_zeronet(saddr
)) {
1661 if (!ipv4_is_local_multicast(daddr
))
1663 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1664 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1665 dev
, &spec_dst
, &itag
) < 0)
1668 rth
= dst_alloc(&ipv4_dst_ops
);
1672 rth
->u
.dst
.output
= ip_rt_bug
;
1674 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1675 rth
->u
.dst
.flags
= DST_HOST
;
1676 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1677 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1678 rth
->fl
.fl4_dst
= daddr
;
1679 rth
->rt_dst
= daddr
;
1680 rth
->fl
.fl4_tos
= tos
;
1681 rth
->fl
.mark
= skb
->mark
;
1682 rth
->fl
.fl4_src
= saddr
;
1683 rth
->rt_src
= saddr
;
1684 #ifdef CONFIG_NET_CLS_ROUTE
1685 rth
->u
.dst
.tclassid
= itag
;
1688 rth
->fl
.iif
= dev
->ifindex
;
1689 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1690 dev_hold(rth
->u
.dst
.dev
);
1691 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1693 rth
->rt_gateway
= daddr
;
1694 rth
->rt_spec_dst
= spec_dst
;
1695 rth
->rt_genid
= atomic_read(&rt_genid
);
1696 rth
->rt_flags
= RTCF_MULTICAST
;
1697 rth
->rt_type
= RTN_MULTICAST
;
1699 rth
->u
.dst
.input
= ip_local_deliver
;
1700 rth
->rt_flags
|= RTCF_LOCAL
;
1703 #ifdef CONFIG_IP_MROUTE
1704 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1705 rth
->u
.dst
.input
= ip_mr_input
;
1707 RT_CACHE_STAT_INC(in_slow_mc
);
1710 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
);
1711 return rt_intern_hash(hash
, rth
, &skb
->rtable
);
1723 static void ip_handle_martian_source(struct net_device
*dev
,
1724 struct in_device
*in_dev
,
1725 struct sk_buff
*skb
,
1729 RT_CACHE_STAT_INC(in_martian_src
);
1730 #ifdef CONFIG_IP_ROUTE_VERBOSE
1731 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1733 * RFC1812 recommendation, if source is martian,
1734 * the only hint is MAC header.
1736 printk(KERN_WARNING
"martian source %u.%u.%u.%u from "
1737 "%u.%u.%u.%u, on dev %s\n",
1738 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
1739 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1741 const unsigned char *p
= skb_mac_header(skb
);
1742 printk(KERN_WARNING
"ll header: ");
1743 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1745 if (i
< (dev
->hard_header_len
- 1))
1754 static inline int __mkroute_input(struct sk_buff
*skb
,
1755 struct fib_result
* res
,
1756 struct in_device
*in_dev
,
1757 __be32 daddr
, __be32 saddr
, u32 tos
,
1758 struct rtable
**result
)
1763 struct in_device
*out_dev
;
1768 /* get a working reference to the output device */
1769 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1770 if (out_dev
== NULL
) {
1771 if (net_ratelimit())
1772 printk(KERN_CRIT
"Bug in ip_route_input" \
1773 "_slow(). Please, report\n");
1778 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1779 in_dev
->dev
, &spec_dst
, &itag
);
1781 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1789 flags
|= RTCF_DIRECTSRC
;
1791 if (out_dev
== in_dev
&& err
&& !(flags
& RTCF_MASQ
) &&
1792 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1793 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1794 flags
|= RTCF_DOREDIRECT
;
1796 if (skb
->protocol
!= htons(ETH_P_IP
)) {
1797 /* Not IP (i.e. ARP). Do not create route, if it is
1798 * invalid for proxy arp. DNAT routes are always valid.
1800 if (out_dev
== in_dev
) {
1807 rth
= dst_alloc(&ipv4_dst_ops
);
1813 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1814 rth
->u
.dst
.flags
= DST_HOST
;
1815 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1816 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1817 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
1818 rth
->u
.dst
.flags
|= DST_NOXFRM
;
1819 rth
->fl
.fl4_dst
= daddr
;
1820 rth
->rt_dst
= daddr
;
1821 rth
->fl
.fl4_tos
= tos
;
1822 rth
->fl
.mark
= skb
->mark
;
1823 rth
->fl
.fl4_src
= saddr
;
1824 rth
->rt_src
= saddr
;
1825 rth
->rt_gateway
= daddr
;
1827 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
1828 rth
->u
.dst
.dev
= (out_dev
)->dev
;
1829 dev_hold(rth
->u
.dst
.dev
);
1830 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1832 rth
->rt_spec_dst
= spec_dst
;
1834 rth
->u
.dst
.input
= ip_forward
;
1835 rth
->u
.dst
.output
= ip_output
;
1836 rth
->rt_genid
= atomic_read(&rt_genid
);
1838 rt_set_nexthop(rth
, res
, itag
);
1840 rth
->rt_flags
= flags
;
1845 /* release the working reference to the output device */
1846 in_dev_put(out_dev
);
1850 static inline int ip_mkroute_input(struct sk_buff
*skb
,
1851 struct fib_result
* res
,
1852 const struct flowi
*fl
,
1853 struct in_device
*in_dev
,
1854 __be32 daddr
, __be32 saddr
, u32 tos
)
1856 struct rtable
* rth
= NULL
;
1860 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1861 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
1862 fib_select_multipath(fl
, res
);
1865 /* create a routing cache entry */
1866 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
1870 /* put it into the cache */
1871 hash
= rt_hash(daddr
, saddr
, fl
->iif
);
1872 return rt_intern_hash(hash
, rth
, &skb
->rtable
);
1876 * NOTE. We drop all the packets that has local source
1877 * addresses, because every properly looped back packet
1878 * must have correct destination already attached by output routine.
1880 * Such approach solves two big problems:
1881 * 1. Not simplex devices are handled properly.
1882 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1885 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1886 u8 tos
, struct net_device
*dev
)
1888 struct fib_result res
;
1889 struct in_device
*in_dev
= in_dev_get(dev
);
1890 struct flowi fl
= { .nl_u
= { .ip4_u
=
1894 .scope
= RT_SCOPE_UNIVERSE
,
1897 .iif
= dev
->ifindex
};
1900 struct rtable
* rth
;
1905 struct net
* net
= dev
->nd_net
;
1907 /* IP on this device is disabled. */
1912 /* Check for the most weird martians, which can be not detected
1916 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1917 ipv4_is_loopback(saddr
))
1918 goto martian_source
;
1920 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
1923 /* Accept zero addresses only to limited broadcast;
1924 * I even do not know to fix it or not. Waiting for complains :-)
1926 if (ipv4_is_zeronet(saddr
))
1927 goto martian_source
;
1929 if (ipv4_is_lbcast(daddr
) || ipv4_is_zeronet(daddr
) ||
1930 ipv4_is_loopback(daddr
))
1931 goto martian_destination
;
1934 * Now we are ready to route packet.
1936 if ((err
= fib_lookup(net
, &fl
, &res
)) != 0) {
1937 if (!IN_DEV_FORWARD(in_dev
))
1943 RT_CACHE_STAT_INC(in_slow_tot
);
1945 if (res
.type
== RTN_BROADCAST
)
1948 if (res
.type
== RTN_LOCAL
) {
1950 result
= fib_validate_source(saddr
, daddr
, tos
,
1951 net
->loopback_dev
->ifindex
,
1952 dev
, &spec_dst
, &itag
);
1954 goto martian_source
;
1956 flags
|= RTCF_DIRECTSRC
;
1961 if (!IN_DEV_FORWARD(in_dev
))
1963 if (res
.type
!= RTN_UNICAST
)
1964 goto martian_destination
;
1966 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
1974 if (skb
->protocol
!= htons(ETH_P_IP
))
1977 if (ipv4_is_zeronet(saddr
))
1978 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1980 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
1983 goto martian_source
;
1985 flags
|= RTCF_DIRECTSRC
;
1987 flags
|= RTCF_BROADCAST
;
1988 res
.type
= RTN_BROADCAST
;
1989 RT_CACHE_STAT_INC(in_brd
);
1992 rth
= dst_alloc(&ipv4_dst_ops
);
1996 rth
->u
.dst
.output
= ip_rt_bug
;
1997 rth
->rt_genid
= atomic_read(&rt_genid
);
1999 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2000 rth
->u
.dst
.flags
= DST_HOST
;
2001 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2002 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2003 rth
->fl
.fl4_dst
= daddr
;
2004 rth
->rt_dst
= daddr
;
2005 rth
->fl
.fl4_tos
= tos
;
2006 rth
->fl
.mark
= skb
->mark
;
2007 rth
->fl
.fl4_src
= saddr
;
2008 rth
->rt_src
= saddr
;
2009 #ifdef CONFIG_NET_CLS_ROUTE
2010 rth
->u
.dst
.tclassid
= itag
;
2013 rth
->fl
.iif
= dev
->ifindex
;
2014 rth
->u
.dst
.dev
= net
->loopback_dev
;
2015 dev_hold(rth
->u
.dst
.dev
);
2016 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2017 rth
->rt_gateway
= daddr
;
2018 rth
->rt_spec_dst
= spec_dst
;
2019 rth
->u
.dst
.input
= ip_local_deliver
;
2020 rth
->rt_flags
= flags
|RTCF_LOCAL
;
2021 if (res
.type
== RTN_UNREACHABLE
) {
2022 rth
->u
.dst
.input
= ip_error
;
2023 rth
->u
.dst
.error
= -err
;
2024 rth
->rt_flags
&= ~RTCF_LOCAL
;
2026 rth
->rt_type
= res
.type
;
2027 hash
= rt_hash(daddr
, saddr
, fl
.iif
);
2028 err
= rt_intern_hash(hash
, rth
, &skb
->rtable
);
2032 RT_CACHE_STAT_INC(in_no_route
);
2033 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2034 res
.type
= RTN_UNREACHABLE
;
2040 * Do not cache martian addresses: they should be logged (RFC1812)
2042 martian_destination
:
2043 RT_CACHE_STAT_INC(in_martian_dst
);
2044 #ifdef CONFIG_IP_ROUTE_VERBOSE
2045 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2046 printk(KERN_WARNING
"martian destination %u.%u.%u.%u from "
2047 "%u.%u.%u.%u, dev %s\n",
2048 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
2052 err
= -EHOSTUNREACH
;
2064 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2068 int ip_route_input(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2069 u8 tos
, struct net_device
*dev
)
2071 struct rtable
* rth
;
2073 int iif
= dev
->ifindex
;
2077 tos
&= IPTOS_RT_MASK
;
2078 hash
= rt_hash(daddr
, saddr
, iif
);
2081 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2082 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2083 if (rth
->fl
.fl4_dst
== daddr
&&
2084 rth
->fl
.fl4_src
== saddr
&&
2085 rth
->fl
.iif
== iif
&&
2087 rth
->fl
.mark
== skb
->mark
&&
2088 rth
->fl
.fl4_tos
== tos
&&
2089 rth
->u
.dst
.dev
->nd_net
== net
&&
2090 rth
->rt_genid
== atomic_read(&rt_genid
)) {
2091 dst_use(&rth
->u
.dst
, jiffies
);
2092 RT_CACHE_STAT_INC(in_hit
);
2097 RT_CACHE_STAT_INC(in_hlist_search
);
2101 /* Multicast recognition logic is moved from route cache to here.
2102 The problem was that too many Ethernet cards have broken/missing
2103 hardware multicast filters :-( As result the host on multicasting
2104 network acquires a lot of useless route cache entries, sort of
2105 SDR messages from all the world. Now we try to get rid of them.
2106 Really, provided software IP multicast filter is organized
2107 reasonably (at least, hashed), it does not result in a slowdown
2108 comparing with route cache reject entries.
2109 Note, that multicast routers are not affected, because
2110 route cache entry is created eventually.
2112 if (ipv4_is_multicast(daddr
)) {
2113 struct in_device
*in_dev
;
2116 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
2117 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
2118 ip_hdr(skb
)->protocol
);
2120 #ifdef CONFIG_IP_MROUTE
2121 || (!ipv4_is_local_multicast(daddr
) &&
2122 IN_DEV_MFORWARD(in_dev
))
2126 return ip_route_input_mc(skb
, daddr
, saddr
,
2133 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2136 static inline int __mkroute_output(struct rtable
**result
,
2137 struct fib_result
* res
,
2138 const struct flowi
*fl
,
2139 const struct flowi
*oldflp
,
2140 struct net_device
*dev_out
,
2144 struct in_device
*in_dev
;
2145 u32 tos
= RT_FL_TOS(oldflp
);
2148 if (ipv4_is_loopback(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2151 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2152 res
->type
= RTN_BROADCAST
;
2153 else if (ipv4_is_multicast(fl
->fl4_dst
))
2154 res
->type
= RTN_MULTICAST
;
2155 else if (ipv4_is_lbcast(fl
->fl4_dst
) || ipv4_is_zeronet(fl
->fl4_dst
))
2158 if (dev_out
->flags
& IFF_LOOPBACK
)
2159 flags
|= RTCF_LOCAL
;
2161 /* get work reference to inet device */
2162 in_dev
= in_dev_get(dev_out
);
2166 if (res
->type
== RTN_BROADCAST
) {
2167 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2169 fib_info_put(res
->fi
);
2172 } else if (res
->type
== RTN_MULTICAST
) {
2173 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2174 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2176 flags
&= ~RTCF_LOCAL
;
2177 /* If multicast route do not exist use
2178 default one, but do not gateway in this case.
2181 if (res
->fi
&& res
->prefixlen
< 4) {
2182 fib_info_put(res
->fi
);
2188 rth
= dst_alloc(&ipv4_dst_ops
);
2194 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2195 rth
->u
.dst
.flags
= DST_HOST
;
2196 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2197 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2198 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2199 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2201 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2202 rth
->fl
.fl4_tos
= tos
;
2203 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2204 rth
->fl
.oif
= oldflp
->oif
;
2205 rth
->fl
.mark
= oldflp
->mark
;
2206 rth
->rt_dst
= fl
->fl4_dst
;
2207 rth
->rt_src
= fl
->fl4_src
;
2208 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2209 /* get references to the devices that are to be hold by the routing
2211 rth
->u
.dst
.dev
= dev_out
;
2213 rth
->idev
= in_dev_get(dev_out
);
2214 rth
->rt_gateway
= fl
->fl4_dst
;
2215 rth
->rt_spec_dst
= fl
->fl4_src
;
2217 rth
->u
.dst
.output
=ip_output
;
2218 rth
->rt_genid
= atomic_read(&rt_genid
);
2220 RT_CACHE_STAT_INC(out_slow_tot
);
2222 if (flags
& RTCF_LOCAL
) {
2223 rth
->u
.dst
.input
= ip_local_deliver
;
2224 rth
->rt_spec_dst
= fl
->fl4_dst
;
2226 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2227 rth
->rt_spec_dst
= fl
->fl4_src
;
2228 if (flags
& RTCF_LOCAL
&&
2229 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2230 rth
->u
.dst
.output
= ip_mc_output
;
2231 RT_CACHE_STAT_INC(out_slow_mc
);
2233 #ifdef CONFIG_IP_MROUTE
2234 if (res
->type
== RTN_MULTICAST
) {
2235 if (IN_DEV_MFORWARD(in_dev
) &&
2236 !ipv4_is_local_multicast(oldflp
->fl4_dst
)) {
2237 rth
->u
.dst
.input
= ip_mr_input
;
2238 rth
->u
.dst
.output
= ip_mc_output
;
2244 rt_set_nexthop(rth
, res
, 0);
2246 rth
->rt_flags
= flags
;
2250 /* release work reference to inet device */
2256 static inline int ip_mkroute_output(struct rtable
**rp
,
2257 struct fib_result
* res
,
2258 const struct flowi
*fl
,
2259 const struct flowi
*oldflp
,
2260 struct net_device
*dev_out
,
2263 struct rtable
*rth
= NULL
;
2264 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2267 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
);
2268 err
= rt_intern_hash(hash
, rth
, rp
);
2275 * Major route resolver routine.
2278 static int ip_route_output_slow(struct net
*net
, struct rtable
**rp
,
2279 const struct flowi
*oldflp
)
2281 u32 tos
= RT_FL_TOS(oldflp
);
2282 struct flowi fl
= { .nl_u
= { .ip4_u
=
2283 { .daddr
= oldflp
->fl4_dst
,
2284 .saddr
= oldflp
->fl4_src
,
2285 .tos
= tos
& IPTOS_RT_MASK
,
2286 .scope
= ((tos
& RTO_ONLINK
) ?
2290 .mark
= oldflp
->mark
,
2291 .iif
= net
->loopback_dev
->ifindex
,
2292 .oif
= oldflp
->oif
};
2293 struct fib_result res
;
2295 struct net_device
*dev_out
= NULL
;
2301 #ifdef CONFIG_IP_MULTIPLE_TABLES
2305 if (oldflp
->fl4_src
) {
2307 if (ipv4_is_multicast(oldflp
->fl4_src
) ||
2308 ipv4_is_lbcast(oldflp
->fl4_src
) ||
2309 ipv4_is_zeronet(oldflp
->fl4_src
))
2312 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2313 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2314 if (dev_out
== NULL
)
2317 /* I removed check for oif == dev_out->oif here.
2318 It was wrong for two reasons:
2319 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2320 is assigned to multiple interfaces.
2321 2. Moreover, we are allowed to send packets with saddr
2322 of another iface. --ANK
2325 if (oldflp
->oif
== 0
2326 && (ipv4_is_multicast(oldflp
->fl4_dst
) ||
2327 oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2328 /* Special hack: user can direct multicasts
2329 and limited broadcast via necessary interface
2330 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2331 This hack is not just for fun, it allows
2332 vic,vat and friends to work.
2333 They bind socket to loopback, set ttl to zero
2334 and expect that it will work.
2335 From the viewpoint of routing cache they are broken,
2336 because we are not allowed to build multicast path
2337 with loopback source addr (look, routing cache
2338 cannot know, that ttl is zero, so that packet
2339 will not leave this host and route is valid).
2340 Luckily, this hack is good workaround.
2343 fl
.oif
= dev_out
->ifindex
;
2353 dev_out
= dev_get_by_index(net
, oldflp
->oif
);
2355 if (dev_out
== NULL
)
2358 /* RACE: Check return value of inet_select_addr instead. */
2359 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2361 goto out
; /* Wrong error code */
2364 if (ipv4_is_local_multicast(oldflp
->fl4_dst
) ||
2365 oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2367 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2372 if (ipv4_is_multicast(oldflp
->fl4_dst
))
2373 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2375 else if (!oldflp
->fl4_dst
)
2376 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2382 fl
.fl4_dst
= fl
.fl4_src
;
2384 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2387 dev_out
= net
->loopback_dev
;
2389 fl
.oif
= net
->loopback_dev
->ifindex
;
2390 res
.type
= RTN_LOCAL
;
2391 flags
|= RTCF_LOCAL
;
2395 if (fib_lookup(net
, &fl
, &res
)) {
2398 /* Apparently, routing tables are wrong. Assume,
2399 that the destination is on link.
2402 Because we are allowed to send to iface
2403 even if it has NO routes and NO assigned
2404 addresses. When oif is specified, routing
2405 tables are looked up with only one purpose:
2406 to catch if destination is gatewayed, rather than
2407 direct. Moreover, if MSG_DONTROUTE is set,
2408 we send packet, ignoring both routing tables
2409 and ifaddr state. --ANK
2412 We could make it even if oif is unknown,
2413 likely IPv6, but we do not.
2416 if (fl
.fl4_src
== 0)
2417 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2419 res
.type
= RTN_UNICAST
;
2429 if (res
.type
== RTN_LOCAL
) {
2431 fl
.fl4_src
= fl
.fl4_dst
;
2434 dev_out
= net
->loopback_dev
;
2436 fl
.oif
= dev_out
->ifindex
;
2438 fib_info_put(res
.fi
);
2440 flags
|= RTCF_LOCAL
;
2444 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2445 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2446 fib_select_multipath(&fl
, &res
);
2449 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2450 fib_select_default(net
, &fl
, &res
);
2453 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2457 dev_out
= FIB_RES_DEV(res
);
2459 fl
.oif
= dev_out
->ifindex
;
2463 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2473 int __ip_route_output_key(struct net
*net
, struct rtable
**rp
,
2474 const struct flowi
*flp
)
2479 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
);
2482 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2483 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2484 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2485 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2487 rth
->fl
.oif
== flp
->oif
&&
2488 rth
->fl
.mark
== flp
->mark
&&
2489 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2490 (IPTOS_RT_MASK
| RTO_ONLINK
)) &&
2491 rth
->u
.dst
.dev
->nd_net
== net
&&
2492 rth
->rt_genid
== atomic_read(&rt_genid
)) {
2493 dst_use(&rth
->u
.dst
, jiffies
);
2494 RT_CACHE_STAT_INC(out_hit
);
2495 rcu_read_unlock_bh();
2499 RT_CACHE_STAT_INC(out_hlist_search
);
2501 rcu_read_unlock_bh();
2503 return ip_route_output_slow(net
, rp
, flp
);
2506 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2508 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2512 static struct dst_ops ipv4_dst_blackhole_ops
= {
2514 .protocol
= __constant_htons(ETH_P_IP
),
2515 .destroy
= ipv4_dst_destroy
,
2516 .check
= ipv4_dst_check
,
2517 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2518 .entry_size
= sizeof(struct rtable
),
2519 .entries
= ATOMIC_INIT(0),
2523 static int ipv4_dst_blackhole(struct rtable
**rp
, struct flowi
*flp
, struct sock
*sk
)
2525 struct rtable
*ort
= *rp
;
2526 struct rtable
*rt
= (struct rtable
*)
2527 dst_alloc(&ipv4_dst_blackhole_ops
);
2530 struct dst_entry
*new = &rt
->u
.dst
;
2532 atomic_set(&new->__refcnt
, 1);
2534 new->input
= dst_discard
;
2535 new->output
= dst_discard
;
2536 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2538 new->dev
= ort
->u
.dst
.dev
;
2544 rt
->idev
= ort
->idev
;
2546 in_dev_hold(rt
->idev
);
2547 rt
->rt_genid
= atomic_read(&rt_genid
);
2548 rt
->rt_flags
= ort
->rt_flags
;
2549 rt
->rt_type
= ort
->rt_type
;
2550 rt
->rt_dst
= ort
->rt_dst
;
2551 rt
->rt_src
= ort
->rt_src
;
2552 rt
->rt_iif
= ort
->rt_iif
;
2553 rt
->rt_gateway
= ort
->rt_gateway
;
2554 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2555 rt
->peer
= ort
->peer
;
2557 atomic_inc(&rt
->peer
->refcnt
);
2562 dst_release(&(*rp
)->u
.dst
);
2564 return (rt
? 0 : -ENOMEM
);
2567 int ip_route_output_flow(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
,
2568 struct sock
*sk
, int flags
)
2572 if ((err
= __ip_route_output_key(net
, rp
, flp
)) != 0)
2577 flp
->fl4_src
= (*rp
)->rt_src
;
2579 flp
->fl4_dst
= (*rp
)->rt_dst
;
2580 err
= __xfrm_lookup((struct dst_entry
**)rp
, flp
, sk
,
2581 flags
? XFRM_LOOKUP_WAIT
: 0);
2582 if (err
== -EREMOTE
)
2583 err
= ipv4_dst_blackhole(rp
, flp
, sk
);
2591 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2593 int ip_route_output_key(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2595 return ip_route_output_flow(net
, rp
, flp
, NULL
, 0);
2598 static int rt_fill_info(struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2599 int nowait
, unsigned int flags
)
2601 struct rtable
*rt
= skb
->rtable
;
2603 struct nlmsghdr
*nlh
;
2605 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2607 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2611 r
= nlmsg_data(nlh
);
2612 r
->rtm_family
= AF_INET
;
2613 r
->rtm_dst_len
= 32;
2615 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2616 r
->rtm_table
= RT_TABLE_MAIN
;
2617 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2618 r
->rtm_type
= rt
->rt_type
;
2619 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2620 r
->rtm_protocol
= RTPROT_UNSPEC
;
2621 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2622 if (rt
->rt_flags
& RTCF_NOTIFY
)
2623 r
->rtm_flags
|= RTM_F_NOTIFY
;
2625 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2627 if (rt
->fl
.fl4_src
) {
2628 r
->rtm_src_len
= 32;
2629 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2632 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2633 #ifdef CONFIG_NET_CLS_ROUTE
2634 if (rt
->u
.dst
.tclassid
)
2635 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2638 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2639 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2640 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2642 if (rt
->rt_dst
!= rt
->rt_gateway
)
2643 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2645 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2646 goto nla_put_failure
;
2648 error
= rt
->u
.dst
.error
;
2649 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2651 id
= rt
->peer
->ip_id_count
;
2652 if (rt
->peer
->tcp_ts_stamp
) {
2653 ts
= rt
->peer
->tcp_ts
;
2654 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2659 #ifdef CONFIG_IP_MROUTE
2660 __be32 dst
= rt
->rt_dst
;
2662 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2663 IPV4_DEVCONF_ALL(&init_net
, MC_FORWARDING
)) {
2664 int err
= ipmr_get_route(skb
, r
, nowait
);
2669 goto nla_put_failure
;
2671 if (err
== -EMSGSIZE
)
2672 goto nla_put_failure
;
2678 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2681 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2682 expires
, error
) < 0)
2683 goto nla_put_failure
;
2685 return nlmsg_end(skb
, nlh
);
2688 nlmsg_cancel(skb
, nlh
);
2692 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2694 struct net
*net
= in_skb
->sk
->sk_net
;
2696 struct nlattr
*tb
[RTA_MAX
+1];
2697 struct rtable
*rt
= NULL
;
2702 struct sk_buff
*skb
;
2704 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2708 rtm
= nlmsg_data(nlh
);
2710 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2716 /* Reserve room for dummy headers, this skb can pass
2717 through good chunk of routing engine.
2719 skb_reset_mac_header(skb
);
2720 skb_reset_network_header(skb
);
2722 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2723 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2724 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2726 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2727 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2728 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2731 struct net_device
*dev
;
2733 dev
= __dev_get_by_index(net
, iif
);
2739 skb
->protocol
= htons(ETH_P_IP
);
2742 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2746 if (err
== 0 && rt
->u
.dst
.error
)
2747 err
= -rt
->u
.dst
.error
;
2754 .tos
= rtm
->rtm_tos
,
2757 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2759 err
= ip_route_output_key(net
, &rt
, &fl
);
2766 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2767 rt
->rt_flags
|= RTCF_NOTIFY
;
2769 err
= rt_fill_info(skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
2770 RTM_NEWROUTE
, 0, 0);
2774 err
= rtnl_unicast(skb
, net
, NETLINK_CB(in_skb
).pid
);
2783 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2790 net
= skb
->sk
->sk_net
;
2795 s_idx
= idx
= cb
->args
[1];
2796 for (h
= s_h
; h
<= rt_hash_mask
; h
++) {
2798 for (rt
= rcu_dereference(rt_hash_table
[h
].chain
), idx
= 0; rt
;
2799 rt
= rcu_dereference(rt
->u
.dst
.rt_next
), idx
++) {
2800 if (rt
->u
.dst
.dev
->nd_net
!= net
|| idx
< s_idx
)
2802 if (rt
->rt_genid
!= atomic_read(&rt_genid
))
2804 skb
->dst
= dst_clone(&rt
->u
.dst
);
2805 if (rt_fill_info(skb
, NETLINK_CB(cb
->skb
).pid
,
2806 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2807 1, NLM_F_MULTI
) <= 0) {
2808 dst_release(xchg(&skb
->dst
, NULL
));
2809 rcu_read_unlock_bh();
2812 dst_release(xchg(&skb
->dst
, NULL
));
2814 rcu_read_unlock_bh();
2824 void ip_rt_multicast_event(struct in_device
*in_dev
)
2829 #ifdef CONFIG_SYSCTL
2830 static int flush_delay
;
2832 static int ipv4_sysctl_rtcache_flush(ctl_table
*ctl
, int write
,
2833 struct file
*filp
, void __user
*buffer
,
2834 size_t *lenp
, loff_t
*ppos
)
2837 proc_dointvec(ctl
, write
, filp
, buffer
, lenp
, ppos
);
2838 rt_cache_flush(flush_delay
);
2845 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table
*table
,
2848 void __user
*oldval
,
2849 size_t __user
*oldlenp
,
2850 void __user
*newval
,
2854 if (newlen
!= sizeof(int))
2856 if (get_user(delay
, (int __user
*)newval
))
2858 rt_cache_flush(delay
);
2862 ctl_table ipv4_route_table
[] = {
2864 .ctl_name
= NET_IPV4_ROUTE_FLUSH
,
2865 .procname
= "flush",
2866 .data
= &flush_delay
,
2867 .maxlen
= sizeof(int),
2869 .proc_handler
= &ipv4_sysctl_rtcache_flush
,
2870 .strategy
= &ipv4_sysctl_rtcache_flush_strategy
,
2873 .ctl_name
= NET_IPV4_ROUTE_GC_THRESH
,
2874 .procname
= "gc_thresh",
2875 .data
= &ipv4_dst_ops
.gc_thresh
,
2876 .maxlen
= sizeof(int),
2878 .proc_handler
= &proc_dointvec
,
2881 .ctl_name
= NET_IPV4_ROUTE_MAX_SIZE
,
2882 .procname
= "max_size",
2883 .data
= &ip_rt_max_size
,
2884 .maxlen
= sizeof(int),
2886 .proc_handler
= &proc_dointvec
,
2889 /* Deprecated. Use gc_min_interval_ms */
2891 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL
,
2892 .procname
= "gc_min_interval",
2893 .data
= &ip_rt_gc_min_interval
,
2894 .maxlen
= sizeof(int),
2896 .proc_handler
= &proc_dointvec_jiffies
,
2897 .strategy
= &sysctl_jiffies
,
2900 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS
,
2901 .procname
= "gc_min_interval_ms",
2902 .data
= &ip_rt_gc_min_interval
,
2903 .maxlen
= sizeof(int),
2905 .proc_handler
= &proc_dointvec_ms_jiffies
,
2906 .strategy
= &sysctl_ms_jiffies
,
2909 .ctl_name
= NET_IPV4_ROUTE_GC_TIMEOUT
,
2910 .procname
= "gc_timeout",
2911 .data
= &ip_rt_gc_timeout
,
2912 .maxlen
= sizeof(int),
2914 .proc_handler
= &proc_dointvec_jiffies
,
2915 .strategy
= &sysctl_jiffies
,
2918 .ctl_name
= NET_IPV4_ROUTE_GC_INTERVAL
,
2919 .procname
= "gc_interval",
2920 .data
= &ip_rt_gc_interval
,
2921 .maxlen
= sizeof(int),
2923 .proc_handler
= &proc_dointvec_jiffies
,
2924 .strategy
= &sysctl_jiffies
,
2927 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_LOAD
,
2928 .procname
= "redirect_load",
2929 .data
= &ip_rt_redirect_load
,
2930 .maxlen
= sizeof(int),
2932 .proc_handler
= &proc_dointvec
,
2935 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_NUMBER
,
2936 .procname
= "redirect_number",
2937 .data
= &ip_rt_redirect_number
,
2938 .maxlen
= sizeof(int),
2940 .proc_handler
= &proc_dointvec
,
2943 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_SILENCE
,
2944 .procname
= "redirect_silence",
2945 .data
= &ip_rt_redirect_silence
,
2946 .maxlen
= sizeof(int),
2948 .proc_handler
= &proc_dointvec
,
2951 .ctl_name
= NET_IPV4_ROUTE_ERROR_COST
,
2952 .procname
= "error_cost",
2953 .data
= &ip_rt_error_cost
,
2954 .maxlen
= sizeof(int),
2956 .proc_handler
= &proc_dointvec
,
2959 .ctl_name
= NET_IPV4_ROUTE_ERROR_BURST
,
2960 .procname
= "error_burst",
2961 .data
= &ip_rt_error_burst
,
2962 .maxlen
= sizeof(int),
2964 .proc_handler
= &proc_dointvec
,
2967 .ctl_name
= NET_IPV4_ROUTE_GC_ELASTICITY
,
2968 .procname
= "gc_elasticity",
2969 .data
= &ip_rt_gc_elasticity
,
2970 .maxlen
= sizeof(int),
2972 .proc_handler
= &proc_dointvec
,
2975 .ctl_name
= NET_IPV4_ROUTE_MTU_EXPIRES
,
2976 .procname
= "mtu_expires",
2977 .data
= &ip_rt_mtu_expires
,
2978 .maxlen
= sizeof(int),
2980 .proc_handler
= &proc_dointvec_jiffies
,
2981 .strategy
= &sysctl_jiffies
,
2984 .ctl_name
= NET_IPV4_ROUTE_MIN_PMTU
,
2985 .procname
= "min_pmtu",
2986 .data
= &ip_rt_min_pmtu
,
2987 .maxlen
= sizeof(int),
2989 .proc_handler
= &proc_dointvec
,
2992 .ctl_name
= NET_IPV4_ROUTE_MIN_ADVMSS
,
2993 .procname
= "min_adv_mss",
2994 .data
= &ip_rt_min_advmss
,
2995 .maxlen
= sizeof(int),
2997 .proc_handler
= &proc_dointvec
,
3000 .ctl_name
= NET_IPV4_ROUTE_SECRET_INTERVAL
,
3001 .procname
= "secret_interval",
3002 .data
= &ip_rt_secret_interval
,
3003 .maxlen
= sizeof(int),
3005 .proc_handler
= &proc_dointvec_jiffies
,
3006 .strategy
= &sysctl_jiffies
,
3012 #ifdef CONFIG_NET_CLS_ROUTE
3013 struct ip_rt_acct
*ip_rt_acct __read_mostly
;
3014 #endif /* CONFIG_NET_CLS_ROUTE */
3016 static __initdata
unsigned long rhash_entries
;
3017 static int __init
set_rhash_entries(char *str
)
3021 rhash_entries
= simple_strtoul(str
, &str
, 0);
3024 __setup("rhash_entries=", set_rhash_entries
);
3026 int __init
ip_rt_init(void)
3030 atomic_set(&rt_genid
, (int) ((num_physpages
^ (num_physpages
>>8)) ^
3031 (jiffies
^ (jiffies
>> 7))));
3033 #ifdef CONFIG_NET_CLS_ROUTE
3034 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
));
3036 panic("IP: failed to allocate ip_rt_acct\n");
3039 ipv4_dst_ops
.kmem_cachep
=
3040 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3041 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3043 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3045 rt_hash_table
= (struct rt_hash_bucket
*)
3046 alloc_large_system_hash("IP route cache",
3047 sizeof(struct rt_hash_bucket
),
3049 (num_physpages
>= 128 * 1024) ?
3055 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3056 rt_hash_lock_init();
3058 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3059 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3064 setup_timer(&rt_secret_timer
, rt_secret_rebuild
, 0);
3066 /* All the timers, started at system startup tend
3067 to synchronize. Perturb it a bit.
3069 schedule_delayed_work(&expires_work
,
3070 net_random() % ip_rt_gc_interval
+ ip_rt_gc_interval
);
3072 rt_secret_timer
.expires
= jiffies
+ net_random() % ip_rt_secret_interval
+
3073 ip_rt_secret_interval
;
3074 add_timer(&rt_secret_timer
);
3076 if (ip_rt_proc_init())
3077 printk(KERN_ERR
"Unable to create route proc files\n");
3082 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3087 EXPORT_SYMBOL(__ip_select_ident
);
3088 EXPORT_SYMBOL(ip_route_input
);
3089 EXPORT_SYMBOL(ip_route_output_key
);