[IPV4]: Add 'rtable' field in struct sk_buff to alias 'dst' and avoid casts
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / skbuff.h
blob7beb239d2ee07c653cc6e091699b9e23a6057ee2
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
104 #endif
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
114 #endif
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
121 __u32 qlen;
122 spinlock_t lock;
125 struct sk_buff;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t;
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
184 SKB_GSO_TCPV6 = 1 << 4,
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
259 union {
260 struct dst_entry *dst;
261 struct rtable *rtable;
263 struct sec_path *sp;
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
271 char cb[48];
273 unsigned int len,
274 data_len;
275 __u16 mac_len,
276 hdr_len;
277 union {
278 __wsum csum;
279 struct {
280 __u16 csum_start;
281 __u16 csum_offset;
284 __u32 priority;
285 __u8 local_df:1,
286 cloned:1,
287 ip_summed:2,
288 nohdr:1,
289 nfctinfo:3;
290 __u8 pkt_type:3,
291 fclone:2,
292 ipvs_property:1,
293 peeked:1,
294 nf_trace:1;
295 __be16 protocol;
297 void (*destructor)(struct sk_buff *skb);
298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
299 struct nf_conntrack *nfct;
300 struct sk_buff *nfct_reasm;
301 #endif
302 #ifdef CONFIG_BRIDGE_NETFILTER
303 struct nf_bridge_info *nf_bridge;
304 #endif
306 int iif;
307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
308 __u16 queue_mapping;
309 #endif
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd; /* traffic control verdict */
314 #endif
315 #endif
316 /* 2 byte hole */
318 #ifdef CONFIG_NET_DMA
319 dma_cookie_t dma_cookie;
320 #endif
321 #ifdef CONFIG_NETWORK_SECMARK
322 __u32 secmark;
323 #endif
325 __u32 mark;
327 sk_buff_data_t transport_header;
328 sk_buff_data_t network_header;
329 sk_buff_data_t mac_header;
330 /* These elements must be at the end, see alloc_skb() for details. */
331 sk_buff_data_t tail;
332 sk_buff_data_t end;
333 unsigned char *head,
334 *data;
335 unsigned int truesize;
336 atomic_t users;
339 #ifdef __KERNEL__
341 * Handling routines are only of interest to the kernel
343 #include <linux/slab.h>
345 #include <asm/system.h>
347 extern void kfree_skb(struct sk_buff *skb);
348 extern void __kfree_skb(struct sk_buff *skb);
349 extern struct sk_buff *__alloc_skb(unsigned int size,
350 gfp_t priority, int fclone, int node);
351 static inline struct sk_buff *alloc_skb(unsigned int size,
352 gfp_t priority)
354 return __alloc_skb(size, priority, 0, -1);
357 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
358 gfp_t priority)
360 return __alloc_skb(size, priority, 1, -1);
363 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
364 extern struct sk_buff *skb_clone(struct sk_buff *skb,
365 gfp_t priority);
366 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
367 gfp_t priority);
368 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
369 gfp_t gfp_mask);
370 extern int pskb_expand_head(struct sk_buff *skb,
371 int nhead, int ntail,
372 gfp_t gfp_mask);
373 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
374 unsigned int headroom);
375 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
376 int newheadroom, int newtailroom,
377 gfp_t priority);
378 extern int skb_to_sgvec(struct sk_buff *skb,
379 struct scatterlist *sg, int offset,
380 int len);
381 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
382 struct sk_buff **trailer);
383 extern int skb_pad(struct sk_buff *skb, int pad);
384 #define dev_kfree_skb(a) kfree_skb(a)
385 extern void skb_over_panic(struct sk_buff *skb, int len,
386 void *here);
387 extern void skb_under_panic(struct sk_buff *skb, int len,
388 void *here);
389 extern void skb_truesize_bug(struct sk_buff *skb);
391 static inline void skb_truesize_check(struct sk_buff *skb)
393 int len = sizeof(struct sk_buff) + skb->len;
395 if (unlikely((int)skb->truesize < len))
396 skb_truesize_bug(skb);
399 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
400 int getfrag(void *from, char *to, int offset,
401 int len,int odd, struct sk_buff *skb),
402 void *from, int length);
404 struct skb_seq_state
406 __u32 lower_offset;
407 __u32 upper_offset;
408 __u32 frag_idx;
409 __u32 stepped_offset;
410 struct sk_buff *root_skb;
411 struct sk_buff *cur_skb;
412 __u8 *frag_data;
415 extern void skb_prepare_seq_read(struct sk_buff *skb,
416 unsigned int from, unsigned int to,
417 struct skb_seq_state *st);
418 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
419 struct skb_seq_state *st);
420 extern void skb_abort_seq_read(struct skb_seq_state *st);
422 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
423 unsigned int to, struct ts_config *config,
424 struct ts_state *state);
426 #ifdef NET_SKBUFF_DATA_USES_OFFSET
427 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
429 return skb->head + skb->end;
431 #else
432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
434 return skb->end;
436 #endif
438 /* Internal */
439 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
442 * skb_queue_empty - check if a queue is empty
443 * @list: queue head
445 * Returns true if the queue is empty, false otherwise.
447 static inline int skb_queue_empty(const struct sk_buff_head *list)
449 return list->next == (struct sk_buff *)list;
453 * skb_get - reference buffer
454 * @skb: buffer to reference
456 * Makes another reference to a socket buffer and returns a pointer
457 * to the buffer.
459 static inline struct sk_buff *skb_get(struct sk_buff *skb)
461 atomic_inc(&skb->users);
462 return skb;
466 * If users == 1, we are the only owner and are can avoid redundant
467 * atomic change.
471 * skb_cloned - is the buffer a clone
472 * @skb: buffer to check
474 * Returns true if the buffer was generated with skb_clone() and is
475 * one of multiple shared copies of the buffer. Cloned buffers are
476 * shared data so must not be written to under normal circumstances.
478 static inline int skb_cloned(const struct sk_buff *skb)
480 return skb->cloned &&
481 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
485 * skb_header_cloned - is the header a clone
486 * @skb: buffer to check
488 * Returns true if modifying the header part of the buffer requires
489 * the data to be copied.
491 static inline int skb_header_cloned(const struct sk_buff *skb)
493 int dataref;
495 if (!skb->cloned)
496 return 0;
498 dataref = atomic_read(&skb_shinfo(skb)->dataref);
499 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
500 return dataref != 1;
504 * skb_header_release - release reference to header
505 * @skb: buffer to operate on
507 * Drop a reference to the header part of the buffer. This is done
508 * by acquiring a payload reference. You must not read from the header
509 * part of skb->data after this.
511 static inline void skb_header_release(struct sk_buff *skb)
513 BUG_ON(skb->nohdr);
514 skb->nohdr = 1;
515 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
519 * skb_shared - is the buffer shared
520 * @skb: buffer to check
522 * Returns true if more than one person has a reference to this
523 * buffer.
525 static inline int skb_shared(const struct sk_buff *skb)
527 return atomic_read(&skb->users) != 1;
531 * skb_share_check - check if buffer is shared and if so clone it
532 * @skb: buffer to check
533 * @pri: priority for memory allocation
535 * If the buffer is shared the buffer is cloned and the old copy
536 * drops a reference. A new clone with a single reference is returned.
537 * If the buffer is not shared the original buffer is returned. When
538 * being called from interrupt status or with spinlocks held pri must
539 * be GFP_ATOMIC.
541 * NULL is returned on a memory allocation failure.
543 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
544 gfp_t pri)
546 might_sleep_if(pri & __GFP_WAIT);
547 if (skb_shared(skb)) {
548 struct sk_buff *nskb = skb_clone(skb, pri);
549 kfree_skb(skb);
550 skb = nskb;
552 return skb;
556 * Copy shared buffers into a new sk_buff. We effectively do COW on
557 * packets to handle cases where we have a local reader and forward
558 * and a couple of other messy ones. The normal one is tcpdumping
559 * a packet thats being forwarded.
563 * skb_unshare - make a copy of a shared buffer
564 * @skb: buffer to check
565 * @pri: priority for memory allocation
567 * If the socket buffer is a clone then this function creates a new
568 * copy of the data, drops a reference count on the old copy and returns
569 * the new copy with the reference count at 1. If the buffer is not a clone
570 * the original buffer is returned. When called with a spinlock held or
571 * from interrupt state @pri must be %GFP_ATOMIC
573 * %NULL is returned on a memory allocation failure.
575 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
576 gfp_t pri)
578 might_sleep_if(pri & __GFP_WAIT);
579 if (skb_cloned(skb)) {
580 struct sk_buff *nskb = skb_copy(skb, pri);
581 kfree_skb(skb); /* Free our shared copy */
582 skb = nskb;
584 return skb;
588 * skb_peek
589 * @list_: list to peek at
591 * Peek an &sk_buff. Unlike most other operations you _MUST_
592 * be careful with this one. A peek leaves the buffer on the
593 * list and someone else may run off with it. You must hold
594 * the appropriate locks or have a private queue to do this.
596 * Returns %NULL for an empty list or a pointer to the head element.
597 * The reference count is not incremented and the reference is therefore
598 * volatile. Use with caution.
600 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
602 struct sk_buff *list = ((struct sk_buff *)list_)->next;
603 if (list == (struct sk_buff *)list_)
604 list = NULL;
605 return list;
609 * skb_peek_tail
610 * @list_: list to peek at
612 * Peek an &sk_buff. Unlike most other operations you _MUST_
613 * be careful with this one. A peek leaves the buffer on the
614 * list and someone else may run off with it. You must hold
615 * the appropriate locks or have a private queue to do this.
617 * Returns %NULL for an empty list or a pointer to the tail element.
618 * The reference count is not incremented and the reference is therefore
619 * volatile. Use with caution.
621 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
623 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
624 if (list == (struct sk_buff *)list_)
625 list = NULL;
626 return list;
630 * skb_queue_len - get queue length
631 * @list_: list to measure
633 * Return the length of an &sk_buff queue.
635 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
637 return list_->qlen;
641 * This function creates a split out lock class for each invocation;
642 * this is needed for now since a whole lot of users of the skb-queue
643 * infrastructure in drivers have different locking usage (in hardirq)
644 * than the networking core (in softirq only). In the long run either the
645 * network layer or drivers should need annotation to consolidate the
646 * main types of usage into 3 classes.
648 static inline void skb_queue_head_init(struct sk_buff_head *list)
650 spin_lock_init(&list->lock);
651 list->prev = list->next = (struct sk_buff *)list;
652 list->qlen = 0;
655 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
656 struct lock_class_key *class)
658 skb_queue_head_init(list);
659 lockdep_set_class(&list->lock, class);
663 * Insert an sk_buff at the start of a list.
665 * The "__skb_xxxx()" functions are the non-atomic ones that
666 * can only be called with interrupts disabled.
670 * __skb_queue_after - queue a buffer at the list head
671 * @list: list to use
672 * @prev: place after this buffer
673 * @newsk: buffer to queue
675 * Queue a buffer int the middle of a list. This function takes no locks
676 * and you must therefore hold required locks before calling it.
678 * A buffer cannot be placed on two lists at the same time.
680 static inline void __skb_queue_after(struct sk_buff_head *list,
681 struct sk_buff *prev,
682 struct sk_buff *newsk)
684 struct sk_buff *next;
685 list->qlen++;
687 next = prev->next;
688 newsk->next = next;
689 newsk->prev = prev;
690 next->prev = prev->next = newsk;
694 * __skb_queue_head - queue a buffer at the list head
695 * @list: list to use
696 * @newsk: buffer to queue
698 * Queue a buffer at the start of a list. This function takes no locks
699 * and you must therefore hold required locks before calling it.
701 * A buffer cannot be placed on two lists at the same time.
703 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
704 static inline void __skb_queue_head(struct sk_buff_head *list,
705 struct sk_buff *newsk)
707 __skb_queue_after(list, (struct sk_buff *)list, newsk);
711 * __skb_queue_tail - queue a buffer at the list tail
712 * @list: list to use
713 * @newsk: buffer to queue
715 * Queue a buffer at the end of a list. This function takes no locks
716 * and you must therefore hold required locks before calling it.
718 * A buffer cannot be placed on two lists at the same time.
720 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
721 static inline void __skb_queue_tail(struct sk_buff_head *list,
722 struct sk_buff *newsk)
724 struct sk_buff *prev, *next;
726 list->qlen++;
727 next = (struct sk_buff *)list;
728 prev = next->prev;
729 newsk->next = next;
730 newsk->prev = prev;
731 next->prev = prev->next = newsk;
736 * __skb_dequeue - remove from the head of the queue
737 * @list: list to dequeue from
739 * Remove the head of the list. This function does not take any locks
740 * so must be used with appropriate locks held only. The head item is
741 * returned or %NULL if the list is empty.
743 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
744 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
746 struct sk_buff *next, *prev, *result;
748 prev = (struct sk_buff *) list;
749 next = prev->next;
750 result = NULL;
751 if (next != prev) {
752 result = next;
753 next = next->next;
754 list->qlen--;
755 next->prev = prev;
756 prev->next = next;
757 result->next = result->prev = NULL;
759 return result;
764 * Insert a packet on a list.
766 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
767 static inline void __skb_insert(struct sk_buff *newsk,
768 struct sk_buff *prev, struct sk_buff *next,
769 struct sk_buff_head *list)
771 newsk->next = next;
772 newsk->prev = prev;
773 next->prev = prev->next = newsk;
774 list->qlen++;
778 * Place a packet after a given packet in a list.
780 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
781 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
783 __skb_insert(newsk, old, old->next, list);
787 * remove sk_buff from list. _Must_ be called atomically, and with
788 * the list known..
790 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
791 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
793 struct sk_buff *next, *prev;
795 list->qlen--;
796 next = skb->next;
797 prev = skb->prev;
798 skb->next = skb->prev = NULL;
799 next->prev = prev;
800 prev->next = next;
804 /* XXX: more streamlined implementation */
807 * __skb_dequeue_tail - remove from the tail of the queue
808 * @list: list to dequeue from
810 * Remove the tail of the list. This function does not take any locks
811 * so must be used with appropriate locks held only. The tail item is
812 * returned or %NULL if the list is empty.
814 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
815 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
817 struct sk_buff *skb = skb_peek_tail(list);
818 if (skb)
819 __skb_unlink(skb, list);
820 return skb;
824 static inline int skb_is_nonlinear(const struct sk_buff *skb)
826 return skb->data_len;
829 static inline unsigned int skb_headlen(const struct sk_buff *skb)
831 return skb->len - skb->data_len;
834 static inline int skb_pagelen(const struct sk_buff *skb)
836 int i, len = 0;
838 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
839 len += skb_shinfo(skb)->frags[i].size;
840 return len + skb_headlen(skb);
843 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
844 struct page *page, int off, int size)
846 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
848 frag->page = page;
849 frag->page_offset = off;
850 frag->size = size;
851 skb_shinfo(skb)->nr_frags = i + 1;
854 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
855 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
856 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
858 #ifdef NET_SKBUFF_DATA_USES_OFFSET
859 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
861 return skb->head + skb->tail;
864 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
866 skb->tail = skb->data - skb->head;
869 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
871 skb_reset_tail_pointer(skb);
872 skb->tail += offset;
874 #else /* NET_SKBUFF_DATA_USES_OFFSET */
875 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
877 return skb->tail;
880 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
882 skb->tail = skb->data;
885 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
887 skb->tail = skb->data + offset;
890 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
893 * Add data to an sk_buff
895 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
897 unsigned char *tmp = skb_tail_pointer(skb);
898 SKB_LINEAR_ASSERT(skb);
899 skb->tail += len;
900 skb->len += len;
901 return tmp;
905 * skb_put - add data to a buffer
906 * @skb: buffer to use
907 * @len: amount of data to add
909 * This function extends the used data area of the buffer. If this would
910 * exceed the total buffer size the kernel will panic. A pointer to the
911 * first byte of the extra data is returned.
913 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
915 unsigned char *tmp = skb_tail_pointer(skb);
916 SKB_LINEAR_ASSERT(skb);
917 skb->tail += len;
918 skb->len += len;
919 if (unlikely(skb->tail > skb->end))
920 skb_over_panic(skb, len, current_text_addr());
921 return tmp;
924 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
926 skb->data -= len;
927 skb->len += len;
928 return skb->data;
932 * skb_push - add data to the start of a buffer
933 * @skb: buffer to use
934 * @len: amount of data to add
936 * This function extends the used data area of the buffer at the buffer
937 * start. If this would exceed the total buffer headroom the kernel will
938 * panic. A pointer to the first byte of the extra data is returned.
940 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
942 skb->data -= len;
943 skb->len += len;
944 if (unlikely(skb->data<skb->head))
945 skb_under_panic(skb, len, current_text_addr());
946 return skb->data;
949 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
951 skb->len -= len;
952 BUG_ON(skb->len < skb->data_len);
953 return skb->data += len;
957 * skb_pull - remove data from the start of a buffer
958 * @skb: buffer to use
959 * @len: amount of data to remove
961 * This function removes data from the start of a buffer, returning
962 * the memory to the headroom. A pointer to the next data in the buffer
963 * is returned. Once the data has been pulled future pushes will overwrite
964 * the old data.
966 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
968 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
971 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
973 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
975 if (len > skb_headlen(skb) &&
976 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
977 return NULL;
978 skb->len -= len;
979 return skb->data += len;
982 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
984 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
987 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
989 if (likely(len <= skb_headlen(skb)))
990 return 1;
991 if (unlikely(len > skb->len))
992 return 0;
993 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
997 * skb_headroom - bytes at buffer head
998 * @skb: buffer to check
1000 * Return the number of bytes of free space at the head of an &sk_buff.
1002 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1004 return skb->data - skb->head;
1008 * skb_tailroom - bytes at buffer end
1009 * @skb: buffer to check
1011 * Return the number of bytes of free space at the tail of an sk_buff
1013 static inline int skb_tailroom(const struct sk_buff *skb)
1015 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1019 * skb_reserve - adjust headroom
1020 * @skb: buffer to alter
1021 * @len: bytes to move
1023 * Increase the headroom of an empty &sk_buff by reducing the tail
1024 * room. This is only allowed for an empty buffer.
1026 static inline void skb_reserve(struct sk_buff *skb, int len)
1028 skb->data += len;
1029 skb->tail += len;
1032 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1033 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1035 return skb->head + skb->transport_header;
1038 static inline void skb_reset_transport_header(struct sk_buff *skb)
1040 skb->transport_header = skb->data - skb->head;
1043 static inline void skb_set_transport_header(struct sk_buff *skb,
1044 const int offset)
1046 skb_reset_transport_header(skb);
1047 skb->transport_header += offset;
1050 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1052 return skb->head + skb->network_header;
1055 static inline void skb_reset_network_header(struct sk_buff *skb)
1057 skb->network_header = skb->data - skb->head;
1060 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1062 skb_reset_network_header(skb);
1063 skb->network_header += offset;
1066 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1068 return skb->head + skb->mac_header;
1071 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1073 return skb->mac_header != ~0U;
1076 static inline void skb_reset_mac_header(struct sk_buff *skb)
1078 skb->mac_header = skb->data - skb->head;
1081 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1083 skb_reset_mac_header(skb);
1084 skb->mac_header += offset;
1087 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1089 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1091 return skb->transport_header;
1094 static inline void skb_reset_transport_header(struct sk_buff *skb)
1096 skb->transport_header = skb->data;
1099 static inline void skb_set_transport_header(struct sk_buff *skb,
1100 const int offset)
1102 skb->transport_header = skb->data + offset;
1105 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1107 return skb->network_header;
1110 static inline void skb_reset_network_header(struct sk_buff *skb)
1112 skb->network_header = skb->data;
1115 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1117 skb->network_header = skb->data + offset;
1120 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1122 return skb->mac_header;
1125 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1127 return skb->mac_header != NULL;
1130 static inline void skb_reset_mac_header(struct sk_buff *skb)
1132 skb->mac_header = skb->data;
1135 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1137 skb->mac_header = skb->data + offset;
1139 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1141 static inline int skb_transport_offset(const struct sk_buff *skb)
1143 return skb_transport_header(skb) - skb->data;
1146 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1148 return skb->transport_header - skb->network_header;
1151 static inline int skb_network_offset(const struct sk_buff *skb)
1153 return skb_network_header(skb) - skb->data;
1157 * CPUs often take a performance hit when accessing unaligned memory
1158 * locations. The actual performance hit varies, it can be small if the
1159 * hardware handles it or large if we have to take an exception and fix it
1160 * in software.
1162 * Since an ethernet header is 14 bytes network drivers often end up with
1163 * the IP header at an unaligned offset. The IP header can be aligned by
1164 * shifting the start of the packet by 2 bytes. Drivers should do this
1165 * with:
1167 * skb_reserve(NET_IP_ALIGN);
1169 * The downside to this alignment of the IP header is that the DMA is now
1170 * unaligned. On some architectures the cost of an unaligned DMA is high
1171 * and this cost outweighs the gains made by aligning the IP header.
1173 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1174 * to be overridden.
1176 #ifndef NET_IP_ALIGN
1177 #define NET_IP_ALIGN 2
1178 #endif
1181 * The networking layer reserves some headroom in skb data (via
1182 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1183 * the header has to grow. In the default case, if the header has to grow
1184 * 16 bytes or less we avoid the reallocation.
1186 * Unfortunately this headroom changes the DMA alignment of the resulting
1187 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1188 * on some architectures. An architecture can override this value,
1189 * perhaps setting it to a cacheline in size (since that will maintain
1190 * cacheline alignment of the DMA). It must be a power of 2.
1192 * Various parts of the networking layer expect at least 16 bytes of
1193 * headroom, you should not reduce this.
1195 #ifndef NET_SKB_PAD
1196 #define NET_SKB_PAD 16
1197 #endif
1199 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1201 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1203 if (unlikely(skb->data_len)) {
1204 WARN_ON(1);
1205 return;
1207 skb->len = len;
1208 skb_set_tail_pointer(skb, len);
1212 * skb_trim - remove end from a buffer
1213 * @skb: buffer to alter
1214 * @len: new length
1216 * Cut the length of a buffer down by removing data from the tail. If
1217 * the buffer is already under the length specified it is not modified.
1218 * The skb must be linear.
1220 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1222 if (skb->len > len)
1223 __skb_trim(skb, len);
1227 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1229 if (skb->data_len)
1230 return ___pskb_trim(skb, len);
1231 __skb_trim(skb, len);
1232 return 0;
1235 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1237 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1241 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1242 * @skb: buffer to alter
1243 * @len: new length
1245 * This is identical to pskb_trim except that the caller knows that
1246 * the skb is not cloned so we should never get an error due to out-
1247 * of-memory.
1249 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1251 int err = pskb_trim(skb, len);
1252 BUG_ON(err);
1256 * skb_orphan - orphan a buffer
1257 * @skb: buffer to orphan
1259 * If a buffer currently has an owner then we call the owner's
1260 * destructor function and make the @skb unowned. The buffer continues
1261 * to exist but is no longer charged to its former owner.
1263 static inline void skb_orphan(struct sk_buff *skb)
1265 if (skb->destructor)
1266 skb->destructor(skb);
1267 skb->destructor = NULL;
1268 skb->sk = NULL;
1272 * __skb_queue_purge - empty a list
1273 * @list: list to empty
1275 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1276 * the list and one reference dropped. This function does not take the
1277 * list lock and the caller must hold the relevant locks to use it.
1279 extern void skb_queue_purge(struct sk_buff_head *list);
1280 static inline void __skb_queue_purge(struct sk_buff_head *list)
1282 struct sk_buff *skb;
1283 while ((skb = __skb_dequeue(list)) != NULL)
1284 kfree_skb(skb);
1288 * __dev_alloc_skb - allocate an skbuff for receiving
1289 * @length: length to allocate
1290 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1292 * Allocate a new &sk_buff and assign it a usage count of one. The
1293 * buffer has unspecified headroom built in. Users should allocate
1294 * the headroom they think they need without accounting for the
1295 * built in space. The built in space is used for optimisations.
1297 * %NULL is returned if there is no free memory.
1299 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1300 gfp_t gfp_mask)
1302 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1303 if (likely(skb))
1304 skb_reserve(skb, NET_SKB_PAD);
1305 return skb;
1309 * dev_alloc_skb - allocate an skbuff for receiving
1310 * @length: length to allocate
1312 * Allocate a new &sk_buff and assign it a usage count of one. The
1313 * buffer has unspecified headroom built in. Users should allocate
1314 * the headroom they think they need without accounting for the
1315 * built in space. The built in space is used for optimisations.
1317 * %NULL is returned if there is no free memory. Although this function
1318 * allocates memory it can be called from an interrupt.
1320 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1322 return __dev_alloc_skb(length, GFP_ATOMIC);
1325 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1326 unsigned int length, gfp_t gfp_mask);
1329 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1330 * @dev: network device to receive on
1331 * @length: length to allocate
1333 * Allocate a new &sk_buff and assign it a usage count of one. The
1334 * buffer has unspecified headroom built in. Users should allocate
1335 * the headroom they think they need without accounting for the
1336 * built in space. The built in space is used for optimisations.
1338 * %NULL is returned if there is no free memory. Although this function
1339 * allocates memory it can be called from an interrupt.
1341 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1342 unsigned int length)
1344 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1348 * skb_clone_writable - is the header of a clone writable
1349 * @skb: buffer to check
1350 * @len: length up to which to write
1352 * Returns true if modifying the header part of the cloned buffer
1353 * does not requires the data to be copied.
1355 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1357 return !skb_header_cloned(skb) &&
1358 skb_headroom(skb) + len <= skb->hdr_len;
1361 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1362 int cloned)
1364 int delta = 0;
1366 if (headroom < NET_SKB_PAD)
1367 headroom = NET_SKB_PAD;
1368 if (headroom > skb_headroom(skb))
1369 delta = headroom - skb_headroom(skb);
1371 if (delta || cloned)
1372 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1373 GFP_ATOMIC);
1374 return 0;
1378 * skb_cow - copy header of skb when it is required
1379 * @skb: buffer to cow
1380 * @headroom: needed headroom
1382 * If the skb passed lacks sufficient headroom or its data part
1383 * is shared, data is reallocated. If reallocation fails, an error
1384 * is returned and original skb is not changed.
1386 * The result is skb with writable area skb->head...skb->tail
1387 * and at least @headroom of space at head.
1389 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1391 return __skb_cow(skb, headroom, skb_cloned(skb));
1395 * skb_cow_head - skb_cow but only making the head writable
1396 * @skb: buffer to cow
1397 * @headroom: needed headroom
1399 * This function is identical to skb_cow except that we replace the
1400 * skb_cloned check by skb_header_cloned. It should be used when
1401 * you only need to push on some header and do not need to modify
1402 * the data.
1404 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1406 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1410 * skb_padto - pad an skbuff up to a minimal size
1411 * @skb: buffer to pad
1412 * @len: minimal length
1414 * Pads up a buffer to ensure the trailing bytes exist and are
1415 * blanked. If the buffer already contains sufficient data it
1416 * is untouched. Otherwise it is extended. Returns zero on
1417 * success. The skb is freed on error.
1420 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1422 unsigned int size = skb->len;
1423 if (likely(size >= len))
1424 return 0;
1425 return skb_pad(skb, len-size);
1428 static inline int skb_add_data(struct sk_buff *skb,
1429 char __user *from, int copy)
1431 const int off = skb->len;
1433 if (skb->ip_summed == CHECKSUM_NONE) {
1434 int err = 0;
1435 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1436 copy, 0, &err);
1437 if (!err) {
1438 skb->csum = csum_block_add(skb->csum, csum, off);
1439 return 0;
1441 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1442 return 0;
1444 __skb_trim(skb, off);
1445 return -EFAULT;
1448 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1449 struct page *page, int off)
1451 if (i) {
1452 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1454 return page == frag->page &&
1455 off == frag->page_offset + frag->size;
1457 return 0;
1460 static inline int __skb_linearize(struct sk_buff *skb)
1462 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1466 * skb_linearize - convert paged skb to linear one
1467 * @skb: buffer to linarize
1469 * If there is no free memory -ENOMEM is returned, otherwise zero
1470 * is returned and the old skb data released.
1472 static inline int skb_linearize(struct sk_buff *skb)
1474 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1478 * skb_linearize_cow - make sure skb is linear and writable
1479 * @skb: buffer to process
1481 * If there is no free memory -ENOMEM is returned, otherwise zero
1482 * is returned and the old skb data released.
1484 static inline int skb_linearize_cow(struct sk_buff *skb)
1486 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1487 __skb_linearize(skb) : 0;
1491 * skb_postpull_rcsum - update checksum for received skb after pull
1492 * @skb: buffer to update
1493 * @start: start of data before pull
1494 * @len: length of data pulled
1496 * After doing a pull on a received packet, you need to call this to
1497 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1498 * CHECKSUM_NONE so that it can be recomputed from scratch.
1501 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1502 const void *start, unsigned int len)
1504 if (skb->ip_summed == CHECKSUM_COMPLETE)
1505 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1508 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1511 * pskb_trim_rcsum - trim received skb and update checksum
1512 * @skb: buffer to trim
1513 * @len: new length
1515 * This is exactly the same as pskb_trim except that it ensures the
1516 * checksum of received packets are still valid after the operation.
1519 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1521 if (likely(len >= skb->len))
1522 return 0;
1523 if (skb->ip_summed == CHECKSUM_COMPLETE)
1524 skb->ip_summed = CHECKSUM_NONE;
1525 return __pskb_trim(skb, len);
1528 #define skb_queue_walk(queue, skb) \
1529 for (skb = (queue)->next; \
1530 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1531 skb = skb->next)
1533 #define skb_queue_walk_safe(queue, skb, tmp) \
1534 for (skb = (queue)->next, tmp = skb->next; \
1535 skb != (struct sk_buff *)(queue); \
1536 skb = tmp, tmp = skb->next)
1538 #define skb_queue_reverse_walk(queue, skb) \
1539 for (skb = (queue)->prev; \
1540 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1541 skb = skb->prev)
1544 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1545 int *peeked, int *err);
1546 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1547 int noblock, int *err);
1548 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1549 struct poll_table_struct *wait);
1550 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1551 int offset, struct iovec *to,
1552 int size);
1553 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1554 int hlen,
1555 struct iovec *iov);
1556 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1557 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1558 unsigned int flags);
1559 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1560 int len, __wsum csum);
1561 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1562 void *to, int len);
1563 extern int skb_store_bits(struct sk_buff *skb, int offset,
1564 const void *from, int len);
1565 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1566 int offset, u8 *to, int len,
1567 __wsum csum);
1568 extern int skb_splice_bits(struct sk_buff *skb,
1569 unsigned int offset,
1570 struct pipe_inode_info *pipe,
1571 unsigned int len,
1572 unsigned int flags);
1573 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1574 extern void skb_split(struct sk_buff *skb,
1575 struct sk_buff *skb1, const u32 len);
1577 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1579 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1580 int len, void *buffer)
1582 int hlen = skb_headlen(skb);
1584 if (hlen - offset >= len)
1585 return skb->data + offset;
1587 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1588 return NULL;
1590 return buffer;
1593 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1594 void *to,
1595 const unsigned int len)
1597 memcpy(to, skb->data, len);
1600 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1601 const int offset, void *to,
1602 const unsigned int len)
1604 memcpy(to, skb->data + offset, len);
1607 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1608 const void *from,
1609 const unsigned int len)
1611 memcpy(skb->data, from, len);
1614 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1615 const int offset,
1616 const void *from,
1617 const unsigned int len)
1619 memcpy(skb->data + offset, from, len);
1622 extern void skb_init(void);
1625 * skb_get_timestamp - get timestamp from a skb
1626 * @skb: skb to get stamp from
1627 * @stamp: pointer to struct timeval to store stamp in
1629 * Timestamps are stored in the skb as offsets to a base timestamp.
1630 * This function converts the offset back to a struct timeval and stores
1631 * it in stamp.
1633 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1635 *stamp = ktime_to_timeval(skb->tstamp);
1638 static inline void __net_timestamp(struct sk_buff *skb)
1640 skb->tstamp = ktime_get_real();
1643 static inline ktime_t net_timedelta(ktime_t t)
1645 return ktime_sub(ktime_get_real(), t);
1648 static inline ktime_t net_invalid_timestamp(void)
1650 return ktime_set(0, 0);
1653 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1654 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1656 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1658 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1662 * skb_checksum_complete - Calculate checksum of an entire packet
1663 * @skb: packet to process
1665 * This function calculates the checksum over the entire packet plus
1666 * the value of skb->csum. The latter can be used to supply the
1667 * checksum of a pseudo header as used by TCP/UDP. It returns the
1668 * checksum.
1670 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1671 * this function can be used to verify that checksum on received
1672 * packets. In that case the function should return zero if the
1673 * checksum is correct. In particular, this function will return zero
1674 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1675 * hardware has already verified the correctness of the checksum.
1677 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1679 return skb_csum_unnecessary(skb) ?
1680 0 : __skb_checksum_complete(skb);
1683 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1684 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1685 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1687 if (nfct && atomic_dec_and_test(&nfct->use))
1688 nf_conntrack_destroy(nfct);
1690 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1692 if (nfct)
1693 atomic_inc(&nfct->use);
1695 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1697 if (skb)
1698 atomic_inc(&skb->users);
1700 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1702 if (skb)
1703 kfree_skb(skb);
1705 #endif
1706 #ifdef CONFIG_BRIDGE_NETFILTER
1707 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1709 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1710 kfree(nf_bridge);
1712 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1714 if (nf_bridge)
1715 atomic_inc(&nf_bridge->use);
1717 #endif /* CONFIG_BRIDGE_NETFILTER */
1718 static inline void nf_reset(struct sk_buff *skb)
1720 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1721 nf_conntrack_put(skb->nfct);
1722 skb->nfct = NULL;
1723 nf_conntrack_put_reasm(skb->nfct_reasm);
1724 skb->nfct_reasm = NULL;
1725 #endif
1726 #ifdef CONFIG_BRIDGE_NETFILTER
1727 nf_bridge_put(skb->nf_bridge);
1728 skb->nf_bridge = NULL;
1729 #endif
1732 /* Note: This doesn't put any conntrack and bridge info in dst. */
1733 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1736 dst->nfct = src->nfct;
1737 nf_conntrack_get(src->nfct);
1738 dst->nfctinfo = src->nfctinfo;
1739 dst->nfct_reasm = src->nfct_reasm;
1740 nf_conntrack_get_reasm(src->nfct_reasm);
1741 #endif
1742 #ifdef CONFIG_BRIDGE_NETFILTER
1743 dst->nf_bridge = src->nf_bridge;
1744 nf_bridge_get(src->nf_bridge);
1745 #endif
1748 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1750 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1751 nf_conntrack_put(dst->nfct);
1752 nf_conntrack_put_reasm(dst->nfct_reasm);
1753 #endif
1754 #ifdef CONFIG_BRIDGE_NETFILTER
1755 nf_bridge_put(dst->nf_bridge);
1756 #endif
1757 __nf_copy(dst, src);
1760 #ifdef CONFIG_NETWORK_SECMARK
1761 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1763 to->secmark = from->secmark;
1766 static inline void skb_init_secmark(struct sk_buff *skb)
1768 skb->secmark = 0;
1770 #else
1771 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1774 static inline void skb_init_secmark(struct sk_buff *skb)
1776 #endif
1778 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1780 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1781 skb->queue_mapping = queue_mapping;
1782 #endif
1785 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1787 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1788 return skb->queue_mapping;
1789 #else
1790 return 0;
1791 #endif
1794 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1796 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1797 to->queue_mapping = from->queue_mapping;
1798 #endif
1801 static inline int skb_is_gso(const struct sk_buff *skb)
1803 return skb_shinfo(skb)->gso_size;
1806 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1808 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1811 static inline void skb_forward_csum(struct sk_buff *skb)
1813 /* Unfortunately we don't support this one. Any brave souls? */
1814 if (skb->ip_summed == CHECKSUM_COMPLETE)
1815 skb->ip_summed = CHECKSUM_NONE;
1818 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1819 #endif /* __KERNEL__ */
1820 #endif /* _LINUX_SKBUFF_H */