2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
98 struct pipe_inode_info
;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack
{
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info
{
109 struct net_device
*physindev
;
110 struct net_device
*physoutdev
;
112 unsigned long data
[32 / sizeof(unsigned long)];
116 struct sk_buff_head
{
117 /* These two members must be first. */
118 struct sk_buff
*next
;
119 struct sk_buff
*prev
;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t
;
132 struct skb_frag_struct
{
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info
{
143 unsigned short nr_frags
;
144 unsigned short gso_size
;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs
;
147 unsigned short gso_type
;
149 struct sk_buff
*frag_list
;
150 skb_frag_t frags
[MAX_SKB_FRAGS
];
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169 SKB_FCLONE_UNAVAILABLE
,
175 SKB_GSO_TCPV4
= 1 << 0,
176 SKB_GSO_UDP
= 1 << 1,
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY
= 1 << 2,
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN
= 1 << 3,
184 SKB_GSO_TCPV6
= 1 << 4,
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t
;
194 typedef unsigned char *sk_buff_data_t
;
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
251 /* These two members must be first. */
252 struct sk_buff
*next
;
253 struct sk_buff
*prev
;
257 struct net_device
*dev
;
260 struct dst_entry
*dst
;
261 struct rtable
*rtable
;
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
297 void (*destructor
)(struct sk_buff
*skb
);
298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
299 struct nf_conntrack
*nfct
;
300 struct sk_buff
*nfct_reasm
;
302 #ifdef CONFIG_BRIDGE_NETFILTER
303 struct nf_bridge_info
*nf_bridge
;
307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index
; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd
; /* traffic control verdict */
318 #ifdef CONFIG_NET_DMA
319 dma_cookie_t dma_cookie
;
321 #ifdef CONFIG_NETWORK_SECMARK
327 sk_buff_data_t transport_header
;
328 sk_buff_data_t network_header
;
329 sk_buff_data_t mac_header
;
330 /* These elements must be at the end, see alloc_skb() for details. */
335 unsigned int truesize
;
341 * Handling routines are only of interest to the kernel
343 #include <linux/slab.h>
345 #include <asm/system.h>
347 extern void kfree_skb(struct sk_buff
*skb
);
348 extern void __kfree_skb(struct sk_buff
*skb
);
349 extern struct sk_buff
*__alloc_skb(unsigned int size
,
350 gfp_t priority
, int fclone
, int node
);
351 static inline struct sk_buff
*alloc_skb(unsigned int size
,
354 return __alloc_skb(size
, priority
, 0, -1);
357 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
360 return __alloc_skb(size
, priority
, 1, -1);
363 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
364 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
366 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
368 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
370 extern int pskb_expand_head(struct sk_buff
*skb
,
371 int nhead
, int ntail
,
373 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
374 unsigned int headroom
);
375 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
376 int newheadroom
, int newtailroom
,
378 extern int skb_to_sgvec(struct sk_buff
*skb
,
379 struct scatterlist
*sg
, int offset
,
381 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
382 struct sk_buff
**trailer
);
383 extern int skb_pad(struct sk_buff
*skb
, int pad
);
384 #define dev_kfree_skb(a) kfree_skb(a)
385 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
387 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
389 extern void skb_truesize_bug(struct sk_buff
*skb
);
391 static inline void skb_truesize_check(struct sk_buff
*skb
)
393 int len
= sizeof(struct sk_buff
) + skb
->len
;
395 if (unlikely((int)skb
->truesize
< len
))
396 skb_truesize_bug(skb
);
399 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
400 int getfrag(void *from
, char *to
, int offset
,
401 int len
,int odd
, struct sk_buff
*skb
),
402 void *from
, int length
);
409 __u32 stepped_offset
;
410 struct sk_buff
*root_skb
;
411 struct sk_buff
*cur_skb
;
415 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
416 unsigned int from
, unsigned int to
,
417 struct skb_seq_state
*st
);
418 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
419 struct skb_seq_state
*st
);
420 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
422 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
423 unsigned int to
, struct ts_config
*config
,
424 struct ts_state
*state
);
426 #ifdef NET_SKBUFF_DATA_USES_OFFSET
427 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
429 return skb
->head
+ skb
->end
;
432 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
439 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
442 * skb_queue_empty - check if a queue is empty
445 * Returns true if the queue is empty, false otherwise.
447 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
449 return list
->next
== (struct sk_buff
*)list
;
453 * skb_get - reference buffer
454 * @skb: buffer to reference
456 * Makes another reference to a socket buffer and returns a pointer
459 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
461 atomic_inc(&skb
->users
);
466 * If users == 1, we are the only owner and are can avoid redundant
471 * skb_cloned - is the buffer a clone
472 * @skb: buffer to check
474 * Returns true if the buffer was generated with skb_clone() and is
475 * one of multiple shared copies of the buffer. Cloned buffers are
476 * shared data so must not be written to under normal circumstances.
478 static inline int skb_cloned(const struct sk_buff
*skb
)
480 return skb
->cloned
&&
481 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
485 * skb_header_cloned - is the header a clone
486 * @skb: buffer to check
488 * Returns true if modifying the header part of the buffer requires
489 * the data to be copied.
491 static inline int skb_header_cloned(const struct sk_buff
*skb
)
498 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
499 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
504 * skb_header_release - release reference to header
505 * @skb: buffer to operate on
507 * Drop a reference to the header part of the buffer. This is done
508 * by acquiring a payload reference. You must not read from the header
509 * part of skb->data after this.
511 static inline void skb_header_release(struct sk_buff
*skb
)
515 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
519 * skb_shared - is the buffer shared
520 * @skb: buffer to check
522 * Returns true if more than one person has a reference to this
525 static inline int skb_shared(const struct sk_buff
*skb
)
527 return atomic_read(&skb
->users
) != 1;
531 * skb_share_check - check if buffer is shared and if so clone it
532 * @skb: buffer to check
533 * @pri: priority for memory allocation
535 * If the buffer is shared the buffer is cloned and the old copy
536 * drops a reference. A new clone with a single reference is returned.
537 * If the buffer is not shared the original buffer is returned. When
538 * being called from interrupt status or with spinlocks held pri must
541 * NULL is returned on a memory allocation failure.
543 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
546 might_sleep_if(pri
& __GFP_WAIT
);
547 if (skb_shared(skb
)) {
548 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
556 * Copy shared buffers into a new sk_buff. We effectively do COW on
557 * packets to handle cases where we have a local reader and forward
558 * and a couple of other messy ones. The normal one is tcpdumping
559 * a packet thats being forwarded.
563 * skb_unshare - make a copy of a shared buffer
564 * @skb: buffer to check
565 * @pri: priority for memory allocation
567 * If the socket buffer is a clone then this function creates a new
568 * copy of the data, drops a reference count on the old copy and returns
569 * the new copy with the reference count at 1. If the buffer is not a clone
570 * the original buffer is returned. When called with a spinlock held or
571 * from interrupt state @pri must be %GFP_ATOMIC
573 * %NULL is returned on a memory allocation failure.
575 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
578 might_sleep_if(pri
& __GFP_WAIT
);
579 if (skb_cloned(skb
)) {
580 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
581 kfree_skb(skb
); /* Free our shared copy */
589 * @list_: list to peek at
591 * Peek an &sk_buff. Unlike most other operations you _MUST_
592 * be careful with this one. A peek leaves the buffer on the
593 * list and someone else may run off with it. You must hold
594 * the appropriate locks or have a private queue to do this.
596 * Returns %NULL for an empty list or a pointer to the head element.
597 * The reference count is not incremented and the reference is therefore
598 * volatile. Use with caution.
600 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
602 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
603 if (list
== (struct sk_buff
*)list_
)
610 * @list_: list to peek at
612 * Peek an &sk_buff. Unlike most other operations you _MUST_
613 * be careful with this one. A peek leaves the buffer on the
614 * list and someone else may run off with it. You must hold
615 * the appropriate locks or have a private queue to do this.
617 * Returns %NULL for an empty list or a pointer to the tail element.
618 * The reference count is not incremented and the reference is therefore
619 * volatile. Use with caution.
621 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
623 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
624 if (list
== (struct sk_buff
*)list_
)
630 * skb_queue_len - get queue length
631 * @list_: list to measure
633 * Return the length of an &sk_buff queue.
635 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
641 * This function creates a split out lock class for each invocation;
642 * this is needed for now since a whole lot of users of the skb-queue
643 * infrastructure in drivers have different locking usage (in hardirq)
644 * than the networking core (in softirq only). In the long run either the
645 * network layer or drivers should need annotation to consolidate the
646 * main types of usage into 3 classes.
648 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
650 spin_lock_init(&list
->lock
);
651 list
->prev
= list
->next
= (struct sk_buff
*)list
;
655 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
656 struct lock_class_key
*class)
658 skb_queue_head_init(list
);
659 lockdep_set_class(&list
->lock
, class);
663 * Insert an sk_buff at the start of a list.
665 * The "__skb_xxxx()" functions are the non-atomic ones that
666 * can only be called with interrupts disabled.
670 * __skb_queue_after - queue a buffer at the list head
672 * @prev: place after this buffer
673 * @newsk: buffer to queue
675 * Queue a buffer int the middle of a list. This function takes no locks
676 * and you must therefore hold required locks before calling it.
678 * A buffer cannot be placed on two lists at the same time.
680 static inline void __skb_queue_after(struct sk_buff_head
*list
,
681 struct sk_buff
*prev
,
682 struct sk_buff
*newsk
)
684 struct sk_buff
*next
;
690 next
->prev
= prev
->next
= newsk
;
694 * __skb_queue_head - queue a buffer at the list head
696 * @newsk: buffer to queue
698 * Queue a buffer at the start of a list. This function takes no locks
699 * and you must therefore hold required locks before calling it.
701 * A buffer cannot be placed on two lists at the same time.
703 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
704 static inline void __skb_queue_head(struct sk_buff_head
*list
,
705 struct sk_buff
*newsk
)
707 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
711 * __skb_queue_tail - queue a buffer at the list tail
713 * @newsk: buffer to queue
715 * Queue a buffer at the end of a list. This function takes no locks
716 * and you must therefore hold required locks before calling it.
718 * A buffer cannot be placed on two lists at the same time.
720 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
721 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
722 struct sk_buff
*newsk
)
724 struct sk_buff
*prev
, *next
;
727 next
= (struct sk_buff
*)list
;
731 next
->prev
= prev
->next
= newsk
;
736 * __skb_dequeue - remove from the head of the queue
737 * @list: list to dequeue from
739 * Remove the head of the list. This function does not take any locks
740 * so must be used with appropriate locks held only. The head item is
741 * returned or %NULL if the list is empty.
743 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
744 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
746 struct sk_buff
*next
, *prev
, *result
;
748 prev
= (struct sk_buff
*) list
;
757 result
->next
= result
->prev
= NULL
;
764 * Insert a packet on a list.
766 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
767 static inline void __skb_insert(struct sk_buff
*newsk
,
768 struct sk_buff
*prev
, struct sk_buff
*next
,
769 struct sk_buff_head
*list
)
773 next
->prev
= prev
->next
= newsk
;
778 * Place a packet after a given packet in a list.
780 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
781 static inline void __skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
783 __skb_insert(newsk
, old
, old
->next
, list
);
787 * remove sk_buff from list. _Must_ be called atomically, and with
790 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
791 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
793 struct sk_buff
*next
, *prev
;
798 skb
->next
= skb
->prev
= NULL
;
804 /* XXX: more streamlined implementation */
807 * __skb_dequeue_tail - remove from the tail of the queue
808 * @list: list to dequeue from
810 * Remove the tail of the list. This function does not take any locks
811 * so must be used with appropriate locks held only. The tail item is
812 * returned or %NULL if the list is empty.
814 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
815 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
817 struct sk_buff
*skb
= skb_peek_tail(list
);
819 __skb_unlink(skb
, list
);
824 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
826 return skb
->data_len
;
829 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
831 return skb
->len
- skb
->data_len
;
834 static inline int skb_pagelen(const struct sk_buff
*skb
)
838 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
839 len
+= skb_shinfo(skb
)->frags
[i
].size
;
840 return len
+ skb_headlen(skb
);
843 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
844 struct page
*page
, int off
, int size
)
846 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
849 frag
->page_offset
= off
;
851 skb_shinfo(skb
)->nr_frags
= i
+ 1;
854 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
855 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
856 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
858 #ifdef NET_SKBUFF_DATA_USES_OFFSET
859 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
861 return skb
->head
+ skb
->tail
;
864 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
866 skb
->tail
= skb
->data
- skb
->head
;
869 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
871 skb_reset_tail_pointer(skb
);
874 #else /* NET_SKBUFF_DATA_USES_OFFSET */
875 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
880 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
882 skb
->tail
= skb
->data
;
885 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
887 skb
->tail
= skb
->data
+ offset
;
890 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
893 * Add data to an sk_buff
895 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
897 unsigned char *tmp
= skb_tail_pointer(skb
);
898 SKB_LINEAR_ASSERT(skb
);
905 * skb_put - add data to a buffer
906 * @skb: buffer to use
907 * @len: amount of data to add
909 * This function extends the used data area of the buffer. If this would
910 * exceed the total buffer size the kernel will panic. A pointer to the
911 * first byte of the extra data is returned.
913 static inline unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
915 unsigned char *tmp
= skb_tail_pointer(skb
);
916 SKB_LINEAR_ASSERT(skb
);
919 if (unlikely(skb
->tail
> skb
->end
))
920 skb_over_panic(skb
, len
, current_text_addr());
924 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
932 * skb_push - add data to the start of a buffer
933 * @skb: buffer to use
934 * @len: amount of data to add
936 * This function extends the used data area of the buffer at the buffer
937 * start. If this would exceed the total buffer headroom the kernel will
938 * panic. A pointer to the first byte of the extra data is returned.
940 static inline unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
944 if (unlikely(skb
->data
<skb
->head
))
945 skb_under_panic(skb
, len
, current_text_addr());
949 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
952 BUG_ON(skb
->len
< skb
->data_len
);
953 return skb
->data
+= len
;
957 * skb_pull - remove data from the start of a buffer
958 * @skb: buffer to use
959 * @len: amount of data to remove
961 * This function removes data from the start of a buffer, returning
962 * the memory to the headroom. A pointer to the next data in the buffer
963 * is returned. Once the data has been pulled future pushes will overwrite
966 static inline unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
968 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
971 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
973 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
975 if (len
> skb_headlen(skb
) &&
976 !__pskb_pull_tail(skb
, len
-skb_headlen(skb
)))
979 return skb
->data
+= len
;
982 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
984 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
987 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
989 if (likely(len
<= skb_headlen(skb
)))
991 if (unlikely(len
> skb
->len
))
993 return __pskb_pull_tail(skb
, len
-skb_headlen(skb
)) != NULL
;
997 * skb_headroom - bytes at buffer head
998 * @skb: buffer to check
1000 * Return the number of bytes of free space at the head of an &sk_buff.
1002 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1004 return skb
->data
- skb
->head
;
1008 * skb_tailroom - bytes at buffer end
1009 * @skb: buffer to check
1011 * Return the number of bytes of free space at the tail of an sk_buff
1013 static inline int skb_tailroom(const struct sk_buff
*skb
)
1015 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1019 * skb_reserve - adjust headroom
1020 * @skb: buffer to alter
1021 * @len: bytes to move
1023 * Increase the headroom of an empty &sk_buff by reducing the tail
1024 * room. This is only allowed for an empty buffer.
1026 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1032 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1033 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1035 return skb
->head
+ skb
->transport_header
;
1038 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1040 skb
->transport_header
= skb
->data
- skb
->head
;
1043 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1046 skb_reset_transport_header(skb
);
1047 skb
->transport_header
+= offset
;
1050 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1052 return skb
->head
+ skb
->network_header
;
1055 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1057 skb
->network_header
= skb
->data
- skb
->head
;
1060 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1062 skb_reset_network_header(skb
);
1063 skb
->network_header
+= offset
;
1066 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1068 return skb
->head
+ skb
->mac_header
;
1071 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1073 return skb
->mac_header
!= ~0U;
1076 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1078 skb
->mac_header
= skb
->data
- skb
->head
;
1081 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1083 skb_reset_mac_header(skb
);
1084 skb
->mac_header
+= offset
;
1087 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1089 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1091 return skb
->transport_header
;
1094 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1096 skb
->transport_header
= skb
->data
;
1099 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1102 skb
->transport_header
= skb
->data
+ offset
;
1105 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1107 return skb
->network_header
;
1110 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1112 skb
->network_header
= skb
->data
;
1115 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1117 skb
->network_header
= skb
->data
+ offset
;
1120 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1122 return skb
->mac_header
;
1125 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1127 return skb
->mac_header
!= NULL
;
1130 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1132 skb
->mac_header
= skb
->data
;
1135 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1137 skb
->mac_header
= skb
->data
+ offset
;
1139 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1141 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1143 return skb_transport_header(skb
) - skb
->data
;
1146 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1148 return skb
->transport_header
- skb
->network_header
;
1151 static inline int skb_network_offset(const struct sk_buff
*skb
)
1153 return skb_network_header(skb
) - skb
->data
;
1157 * CPUs often take a performance hit when accessing unaligned memory
1158 * locations. The actual performance hit varies, it can be small if the
1159 * hardware handles it or large if we have to take an exception and fix it
1162 * Since an ethernet header is 14 bytes network drivers often end up with
1163 * the IP header at an unaligned offset. The IP header can be aligned by
1164 * shifting the start of the packet by 2 bytes. Drivers should do this
1167 * skb_reserve(NET_IP_ALIGN);
1169 * The downside to this alignment of the IP header is that the DMA is now
1170 * unaligned. On some architectures the cost of an unaligned DMA is high
1171 * and this cost outweighs the gains made by aligning the IP header.
1173 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1176 #ifndef NET_IP_ALIGN
1177 #define NET_IP_ALIGN 2
1181 * The networking layer reserves some headroom in skb data (via
1182 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1183 * the header has to grow. In the default case, if the header has to grow
1184 * 16 bytes or less we avoid the reallocation.
1186 * Unfortunately this headroom changes the DMA alignment of the resulting
1187 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1188 * on some architectures. An architecture can override this value,
1189 * perhaps setting it to a cacheline in size (since that will maintain
1190 * cacheline alignment of the DMA). It must be a power of 2.
1192 * Various parts of the networking layer expect at least 16 bytes of
1193 * headroom, you should not reduce this.
1196 #define NET_SKB_PAD 16
1199 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1201 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1203 if (unlikely(skb
->data_len
)) {
1208 skb_set_tail_pointer(skb
, len
);
1212 * skb_trim - remove end from a buffer
1213 * @skb: buffer to alter
1216 * Cut the length of a buffer down by removing data from the tail. If
1217 * the buffer is already under the length specified it is not modified.
1218 * The skb must be linear.
1220 static inline void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1223 __skb_trim(skb
, len
);
1227 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1230 return ___pskb_trim(skb
, len
);
1231 __skb_trim(skb
, len
);
1235 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1237 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1241 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1242 * @skb: buffer to alter
1245 * This is identical to pskb_trim except that the caller knows that
1246 * the skb is not cloned so we should never get an error due to out-
1249 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1251 int err
= pskb_trim(skb
, len
);
1256 * skb_orphan - orphan a buffer
1257 * @skb: buffer to orphan
1259 * If a buffer currently has an owner then we call the owner's
1260 * destructor function and make the @skb unowned. The buffer continues
1261 * to exist but is no longer charged to its former owner.
1263 static inline void skb_orphan(struct sk_buff
*skb
)
1265 if (skb
->destructor
)
1266 skb
->destructor(skb
);
1267 skb
->destructor
= NULL
;
1272 * __skb_queue_purge - empty a list
1273 * @list: list to empty
1275 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1276 * the list and one reference dropped. This function does not take the
1277 * list lock and the caller must hold the relevant locks to use it.
1279 extern void skb_queue_purge(struct sk_buff_head
*list
);
1280 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1282 struct sk_buff
*skb
;
1283 while ((skb
= __skb_dequeue(list
)) != NULL
)
1288 * __dev_alloc_skb - allocate an skbuff for receiving
1289 * @length: length to allocate
1290 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1292 * Allocate a new &sk_buff and assign it a usage count of one. The
1293 * buffer has unspecified headroom built in. Users should allocate
1294 * the headroom they think they need without accounting for the
1295 * built in space. The built in space is used for optimisations.
1297 * %NULL is returned if there is no free memory.
1299 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1302 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1304 skb_reserve(skb
, NET_SKB_PAD
);
1309 * dev_alloc_skb - allocate an skbuff for receiving
1310 * @length: length to allocate
1312 * Allocate a new &sk_buff and assign it a usage count of one. The
1313 * buffer has unspecified headroom built in. Users should allocate
1314 * the headroom they think they need without accounting for the
1315 * built in space. The built in space is used for optimisations.
1317 * %NULL is returned if there is no free memory. Although this function
1318 * allocates memory it can be called from an interrupt.
1320 static inline struct sk_buff
*dev_alloc_skb(unsigned int length
)
1322 return __dev_alloc_skb(length
, GFP_ATOMIC
);
1325 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1326 unsigned int length
, gfp_t gfp_mask
);
1329 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1330 * @dev: network device to receive on
1331 * @length: length to allocate
1333 * Allocate a new &sk_buff and assign it a usage count of one. The
1334 * buffer has unspecified headroom built in. Users should allocate
1335 * the headroom they think they need without accounting for the
1336 * built in space. The built in space is used for optimisations.
1338 * %NULL is returned if there is no free memory. Although this function
1339 * allocates memory it can be called from an interrupt.
1341 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1342 unsigned int length
)
1344 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1348 * skb_clone_writable - is the header of a clone writable
1349 * @skb: buffer to check
1350 * @len: length up to which to write
1352 * Returns true if modifying the header part of the cloned buffer
1353 * does not requires the data to be copied.
1355 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1357 return !skb_header_cloned(skb
) &&
1358 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1361 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1366 if (headroom
< NET_SKB_PAD
)
1367 headroom
= NET_SKB_PAD
;
1368 if (headroom
> skb_headroom(skb
))
1369 delta
= headroom
- skb_headroom(skb
);
1371 if (delta
|| cloned
)
1372 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1378 * skb_cow - copy header of skb when it is required
1379 * @skb: buffer to cow
1380 * @headroom: needed headroom
1382 * If the skb passed lacks sufficient headroom or its data part
1383 * is shared, data is reallocated. If reallocation fails, an error
1384 * is returned and original skb is not changed.
1386 * The result is skb with writable area skb->head...skb->tail
1387 * and at least @headroom of space at head.
1389 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1391 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1395 * skb_cow_head - skb_cow but only making the head writable
1396 * @skb: buffer to cow
1397 * @headroom: needed headroom
1399 * This function is identical to skb_cow except that we replace the
1400 * skb_cloned check by skb_header_cloned. It should be used when
1401 * you only need to push on some header and do not need to modify
1404 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1406 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1410 * skb_padto - pad an skbuff up to a minimal size
1411 * @skb: buffer to pad
1412 * @len: minimal length
1414 * Pads up a buffer to ensure the trailing bytes exist and are
1415 * blanked. If the buffer already contains sufficient data it
1416 * is untouched. Otherwise it is extended. Returns zero on
1417 * success. The skb is freed on error.
1420 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1422 unsigned int size
= skb
->len
;
1423 if (likely(size
>= len
))
1425 return skb_pad(skb
, len
-size
);
1428 static inline int skb_add_data(struct sk_buff
*skb
,
1429 char __user
*from
, int copy
)
1431 const int off
= skb
->len
;
1433 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1435 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1438 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1441 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1444 __skb_trim(skb
, off
);
1448 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1449 struct page
*page
, int off
)
1452 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1454 return page
== frag
->page
&&
1455 off
== frag
->page_offset
+ frag
->size
;
1460 static inline int __skb_linearize(struct sk_buff
*skb
)
1462 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1466 * skb_linearize - convert paged skb to linear one
1467 * @skb: buffer to linarize
1469 * If there is no free memory -ENOMEM is returned, otherwise zero
1470 * is returned and the old skb data released.
1472 static inline int skb_linearize(struct sk_buff
*skb
)
1474 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1478 * skb_linearize_cow - make sure skb is linear and writable
1479 * @skb: buffer to process
1481 * If there is no free memory -ENOMEM is returned, otherwise zero
1482 * is returned and the old skb data released.
1484 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1486 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1487 __skb_linearize(skb
) : 0;
1491 * skb_postpull_rcsum - update checksum for received skb after pull
1492 * @skb: buffer to update
1493 * @start: start of data before pull
1494 * @len: length of data pulled
1496 * After doing a pull on a received packet, you need to call this to
1497 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1498 * CHECKSUM_NONE so that it can be recomputed from scratch.
1501 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1502 const void *start
, unsigned int len
)
1504 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1505 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1508 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1511 * pskb_trim_rcsum - trim received skb and update checksum
1512 * @skb: buffer to trim
1515 * This is exactly the same as pskb_trim except that it ensures the
1516 * checksum of received packets are still valid after the operation.
1519 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1521 if (likely(len
>= skb
->len
))
1523 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1524 skb
->ip_summed
= CHECKSUM_NONE
;
1525 return __pskb_trim(skb
, len
);
1528 #define skb_queue_walk(queue, skb) \
1529 for (skb = (queue)->next; \
1530 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1533 #define skb_queue_walk_safe(queue, skb, tmp) \
1534 for (skb = (queue)->next, tmp = skb->next; \
1535 skb != (struct sk_buff *)(queue); \
1536 skb = tmp, tmp = skb->next)
1538 #define skb_queue_reverse_walk(queue, skb) \
1539 for (skb = (queue)->prev; \
1540 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1544 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1545 int *peeked
, int *err
);
1546 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1547 int noblock
, int *err
);
1548 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1549 struct poll_table_struct
*wait
);
1550 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1551 int offset
, struct iovec
*to
,
1553 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1556 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1557 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1558 unsigned int flags
);
1559 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1560 int len
, __wsum csum
);
1561 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1563 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1564 const void *from
, int len
);
1565 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1566 int offset
, u8
*to
, int len
,
1568 extern int skb_splice_bits(struct sk_buff
*skb
,
1569 unsigned int offset
,
1570 struct pipe_inode_info
*pipe
,
1572 unsigned int flags
);
1573 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1574 extern void skb_split(struct sk_buff
*skb
,
1575 struct sk_buff
*skb1
, const u32 len
);
1577 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1579 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1580 int len
, void *buffer
)
1582 int hlen
= skb_headlen(skb
);
1584 if (hlen
- offset
>= len
)
1585 return skb
->data
+ offset
;
1587 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1593 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1595 const unsigned int len
)
1597 memcpy(to
, skb
->data
, len
);
1600 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1601 const int offset
, void *to
,
1602 const unsigned int len
)
1604 memcpy(to
, skb
->data
+ offset
, len
);
1607 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1609 const unsigned int len
)
1611 memcpy(skb
->data
, from
, len
);
1614 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1617 const unsigned int len
)
1619 memcpy(skb
->data
+ offset
, from
, len
);
1622 extern void skb_init(void);
1625 * skb_get_timestamp - get timestamp from a skb
1626 * @skb: skb to get stamp from
1627 * @stamp: pointer to struct timeval to store stamp in
1629 * Timestamps are stored in the skb as offsets to a base timestamp.
1630 * This function converts the offset back to a struct timeval and stores
1633 static inline void skb_get_timestamp(const struct sk_buff
*skb
, struct timeval
*stamp
)
1635 *stamp
= ktime_to_timeval(skb
->tstamp
);
1638 static inline void __net_timestamp(struct sk_buff
*skb
)
1640 skb
->tstamp
= ktime_get_real();
1643 static inline ktime_t
net_timedelta(ktime_t t
)
1645 return ktime_sub(ktime_get_real(), t
);
1648 static inline ktime_t
net_invalid_timestamp(void)
1650 return ktime_set(0, 0);
1653 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1654 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1656 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1658 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1662 * skb_checksum_complete - Calculate checksum of an entire packet
1663 * @skb: packet to process
1665 * This function calculates the checksum over the entire packet plus
1666 * the value of skb->csum. The latter can be used to supply the
1667 * checksum of a pseudo header as used by TCP/UDP. It returns the
1670 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1671 * this function can be used to verify that checksum on received
1672 * packets. In that case the function should return zero if the
1673 * checksum is correct. In particular, this function will return zero
1674 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1675 * hardware has already verified the correctness of the checksum.
1677 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1679 return skb_csum_unnecessary(skb
) ?
1680 0 : __skb_checksum_complete(skb
);
1683 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1684 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1685 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1687 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1688 nf_conntrack_destroy(nfct
);
1690 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1693 atomic_inc(&nfct
->use
);
1695 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1698 atomic_inc(&skb
->users
);
1700 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1706 #ifdef CONFIG_BRIDGE_NETFILTER
1707 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1709 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1712 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1715 atomic_inc(&nf_bridge
->use
);
1717 #endif /* CONFIG_BRIDGE_NETFILTER */
1718 static inline void nf_reset(struct sk_buff
*skb
)
1720 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1721 nf_conntrack_put(skb
->nfct
);
1723 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1724 skb
->nfct_reasm
= NULL
;
1726 #ifdef CONFIG_BRIDGE_NETFILTER
1727 nf_bridge_put(skb
->nf_bridge
);
1728 skb
->nf_bridge
= NULL
;
1732 /* Note: This doesn't put any conntrack and bridge info in dst. */
1733 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1736 dst
->nfct
= src
->nfct
;
1737 nf_conntrack_get(src
->nfct
);
1738 dst
->nfctinfo
= src
->nfctinfo
;
1739 dst
->nfct_reasm
= src
->nfct_reasm
;
1740 nf_conntrack_get_reasm(src
->nfct_reasm
);
1742 #ifdef CONFIG_BRIDGE_NETFILTER
1743 dst
->nf_bridge
= src
->nf_bridge
;
1744 nf_bridge_get(src
->nf_bridge
);
1748 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1750 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1751 nf_conntrack_put(dst
->nfct
);
1752 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1754 #ifdef CONFIG_BRIDGE_NETFILTER
1755 nf_bridge_put(dst
->nf_bridge
);
1757 __nf_copy(dst
, src
);
1760 #ifdef CONFIG_NETWORK_SECMARK
1761 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1763 to
->secmark
= from
->secmark
;
1766 static inline void skb_init_secmark(struct sk_buff
*skb
)
1771 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1774 static inline void skb_init_secmark(struct sk_buff
*skb
)
1778 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
1780 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1781 skb
->queue_mapping
= queue_mapping
;
1785 static inline u16
skb_get_queue_mapping(struct sk_buff
*skb
)
1787 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1788 return skb
->queue_mapping
;
1794 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
1796 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1797 to
->queue_mapping
= from
->queue_mapping
;
1801 static inline int skb_is_gso(const struct sk_buff
*skb
)
1803 return skb_shinfo(skb
)->gso_size
;
1806 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
1808 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
1811 static inline void skb_forward_csum(struct sk_buff
*skb
)
1813 /* Unfortunately we don't support this one. Any brave souls? */
1814 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1815 skb
->ip_summed
= CHECKSUM_NONE
;
1818 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
1819 #endif /* __KERNEL__ */
1820 #endif /* _LINUX_SKBUFF_H */