ARM: OMAP: Allow platforms to hook reset cleanly
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-throttle.c
blob381b09bb562b277620479fa92313cc6631995630
1 /*
2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum = 8;
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum = 32;
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23 struct throtl_rb_root {
24 struct rb_root rb;
25 struct rb_node *left;
26 unsigned int count;
27 unsigned long min_disptime;
30 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
31 .count = 0, .min_disptime = 0}
33 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
35 struct throtl_grp {
36 /* List of throtl groups on the request queue*/
37 struct hlist_node tg_node;
39 /* active throtl group service_tree member */
40 struct rb_node rb_node;
43 * Dispatch time in jiffies. This is the estimated time when group
44 * will unthrottle and is ready to dispatch more bio. It is used as
45 * key to sort active groups in service tree.
47 unsigned long disptime;
49 struct blkio_group blkg;
50 atomic_t ref;
51 unsigned int flags;
53 /* Two lists for READ and WRITE */
54 struct bio_list bio_lists[2];
56 /* Number of queued bios on READ and WRITE lists */
57 unsigned int nr_queued[2];
59 /* bytes per second rate limits */
60 uint64_t bps[2];
62 /* IOPS limits */
63 unsigned int iops[2];
65 /* Number of bytes disptached in current slice */
66 uint64_t bytes_disp[2];
67 /* Number of bio's dispatched in current slice */
68 unsigned int io_disp[2];
70 /* When did we start a new slice */
71 unsigned long slice_start[2];
72 unsigned long slice_end[2];
74 /* Some throttle limits got updated for the group */
75 bool limits_changed;
78 struct throtl_data
80 /* List of throtl groups */
81 struct hlist_head tg_list;
83 /* service tree for active throtl groups */
84 struct throtl_rb_root tg_service_tree;
86 struct throtl_grp root_tg;
87 struct request_queue *queue;
89 /* Total Number of queued bios on READ and WRITE lists */
90 unsigned int nr_queued[2];
93 * number of total undestroyed groups
95 unsigned int nr_undestroyed_grps;
97 /* Work for dispatching throttled bios */
98 struct delayed_work throtl_work;
100 atomic_t limits_changed;
103 enum tg_state_flags {
104 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
107 #define THROTL_TG_FNS(name) \
108 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
110 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
112 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
114 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
116 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
118 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
121 THROTL_TG_FNS(on_rr);
123 #define throtl_log_tg(td, tg, fmt, args...) \
124 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
125 blkg_path(&(tg)->blkg), ##args); \
127 #define throtl_log(td, fmt, args...) \
128 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
130 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
132 if (blkg)
133 return container_of(blkg, struct throtl_grp, blkg);
135 return NULL;
138 static inline int total_nr_queued(struct throtl_data *td)
140 return (td->nr_queued[0] + td->nr_queued[1]);
143 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
145 atomic_inc(&tg->ref);
146 return tg;
149 static void throtl_put_tg(struct throtl_grp *tg)
151 BUG_ON(atomic_read(&tg->ref) <= 0);
152 if (!atomic_dec_and_test(&tg->ref))
153 return;
154 kfree(tg);
157 static struct throtl_grp * throtl_find_alloc_tg(struct throtl_data *td,
158 struct cgroup *cgroup)
160 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
161 struct throtl_grp *tg = NULL;
162 void *key = td;
163 struct backing_dev_info *bdi = &td->queue->backing_dev_info;
164 unsigned int major, minor;
167 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix
168 * tree of blkg (instead of traversing through hash list all
169 * the time.
171 tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
173 /* Fill in device details for root group */
174 if (tg && !tg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
175 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
176 tg->blkg.dev = MKDEV(major, minor);
177 goto done;
180 if (tg)
181 goto done;
183 tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
184 if (!tg)
185 goto done;
187 INIT_HLIST_NODE(&tg->tg_node);
188 RB_CLEAR_NODE(&tg->rb_node);
189 bio_list_init(&tg->bio_lists[0]);
190 bio_list_init(&tg->bio_lists[1]);
193 * Take the initial reference that will be released on destroy
194 * This can be thought of a joint reference by cgroup and
195 * request queue which will be dropped by either request queue
196 * exit or cgroup deletion path depending on who is exiting first.
198 atomic_set(&tg->ref, 1);
200 /* Add group onto cgroup list */
201 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
202 blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
203 MKDEV(major, minor), BLKIO_POLICY_THROTL);
205 tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
206 tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
207 tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
208 tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
210 hlist_add_head(&tg->tg_node, &td->tg_list);
211 td->nr_undestroyed_grps++;
212 done:
213 return tg;
216 static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
218 struct cgroup *cgroup;
219 struct throtl_grp *tg = NULL;
221 rcu_read_lock();
222 cgroup = task_cgroup(current, blkio_subsys_id);
223 tg = throtl_find_alloc_tg(td, cgroup);
224 if (!tg)
225 tg = &td->root_tg;
226 rcu_read_unlock();
227 return tg;
230 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
232 /* Service tree is empty */
233 if (!root->count)
234 return NULL;
236 if (!root->left)
237 root->left = rb_first(&root->rb);
239 if (root->left)
240 return rb_entry_tg(root->left);
242 return NULL;
245 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
247 rb_erase(n, root);
248 RB_CLEAR_NODE(n);
251 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
253 if (root->left == n)
254 root->left = NULL;
255 rb_erase_init(n, &root->rb);
256 --root->count;
259 static void update_min_dispatch_time(struct throtl_rb_root *st)
261 struct throtl_grp *tg;
263 tg = throtl_rb_first(st);
264 if (!tg)
265 return;
267 st->min_disptime = tg->disptime;
270 static void
271 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
273 struct rb_node **node = &st->rb.rb_node;
274 struct rb_node *parent = NULL;
275 struct throtl_grp *__tg;
276 unsigned long key = tg->disptime;
277 int left = 1;
279 while (*node != NULL) {
280 parent = *node;
281 __tg = rb_entry_tg(parent);
283 if (time_before(key, __tg->disptime))
284 node = &parent->rb_left;
285 else {
286 node = &parent->rb_right;
287 left = 0;
291 if (left)
292 st->left = &tg->rb_node;
294 rb_link_node(&tg->rb_node, parent, node);
295 rb_insert_color(&tg->rb_node, &st->rb);
298 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
300 struct throtl_rb_root *st = &td->tg_service_tree;
302 tg_service_tree_add(st, tg);
303 throtl_mark_tg_on_rr(tg);
304 st->count++;
307 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
309 if (!throtl_tg_on_rr(tg))
310 __throtl_enqueue_tg(td, tg);
313 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
315 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
316 throtl_clear_tg_on_rr(tg);
319 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
321 if (throtl_tg_on_rr(tg))
322 __throtl_dequeue_tg(td, tg);
325 static void throtl_schedule_next_dispatch(struct throtl_data *td)
327 struct throtl_rb_root *st = &td->tg_service_tree;
330 * If there are more bios pending, schedule more work.
332 if (!total_nr_queued(td))
333 return;
335 BUG_ON(!st->count);
337 update_min_dispatch_time(st);
339 if (time_before_eq(st->min_disptime, jiffies))
340 throtl_schedule_delayed_work(td->queue, 0);
341 else
342 throtl_schedule_delayed_work(td->queue,
343 (st->min_disptime - jiffies));
346 static inline void
347 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
349 tg->bytes_disp[rw] = 0;
350 tg->io_disp[rw] = 0;
351 tg->slice_start[rw] = jiffies;
352 tg->slice_end[rw] = jiffies + throtl_slice;
353 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
354 rw == READ ? 'R' : 'W', tg->slice_start[rw],
355 tg->slice_end[rw], jiffies);
358 static inline void throtl_set_slice_end(struct throtl_data *td,
359 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
361 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
364 static inline void throtl_extend_slice(struct throtl_data *td,
365 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
367 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
368 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
369 rw == READ ? 'R' : 'W', tg->slice_start[rw],
370 tg->slice_end[rw], jiffies);
373 /* Determine if previously allocated or extended slice is complete or not */
374 static bool
375 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
377 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
378 return 0;
380 return 1;
383 /* Trim the used slices and adjust slice start accordingly */
384 static inline void
385 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
387 unsigned long nr_slices, time_elapsed, io_trim;
388 u64 bytes_trim, tmp;
390 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
393 * If bps are unlimited (-1), then time slice don't get
394 * renewed. Don't try to trim the slice if slice is used. A new
395 * slice will start when appropriate.
397 if (throtl_slice_used(td, tg, rw))
398 return;
401 * A bio has been dispatched. Also adjust slice_end. It might happen
402 * that initially cgroup limit was very low resulting in high
403 * slice_end, but later limit was bumped up and bio was dispached
404 * sooner, then we need to reduce slice_end. A high bogus slice_end
405 * is bad because it does not allow new slice to start.
408 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
410 time_elapsed = jiffies - tg->slice_start[rw];
412 nr_slices = time_elapsed / throtl_slice;
414 if (!nr_slices)
415 return;
416 tmp = tg->bps[rw] * throtl_slice * nr_slices;
417 do_div(tmp, HZ);
418 bytes_trim = tmp;
420 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
422 if (!bytes_trim && !io_trim)
423 return;
425 if (tg->bytes_disp[rw] >= bytes_trim)
426 tg->bytes_disp[rw] -= bytes_trim;
427 else
428 tg->bytes_disp[rw] = 0;
430 if (tg->io_disp[rw] >= io_trim)
431 tg->io_disp[rw] -= io_trim;
432 else
433 tg->io_disp[rw] = 0;
435 tg->slice_start[rw] += nr_slices * throtl_slice;
437 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
438 " start=%lu end=%lu jiffies=%lu",
439 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
440 tg->slice_start[rw], tg->slice_end[rw], jiffies);
443 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
444 struct bio *bio, unsigned long *wait)
446 bool rw = bio_data_dir(bio);
447 unsigned int io_allowed;
448 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
449 u64 tmp;
451 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
453 /* Slice has just started. Consider one slice interval */
454 if (!jiffy_elapsed)
455 jiffy_elapsed_rnd = throtl_slice;
457 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
460 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
461 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
462 * will allow dispatch after 1 second and after that slice should
463 * have been trimmed.
466 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
467 do_div(tmp, HZ);
469 if (tmp > UINT_MAX)
470 io_allowed = UINT_MAX;
471 else
472 io_allowed = tmp;
474 if (tg->io_disp[rw] + 1 <= io_allowed) {
475 if (wait)
476 *wait = 0;
477 return 1;
480 /* Calc approx time to dispatch */
481 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
483 if (jiffy_wait > jiffy_elapsed)
484 jiffy_wait = jiffy_wait - jiffy_elapsed;
485 else
486 jiffy_wait = 1;
488 if (wait)
489 *wait = jiffy_wait;
490 return 0;
493 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
494 struct bio *bio, unsigned long *wait)
496 bool rw = bio_data_dir(bio);
497 u64 bytes_allowed, extra_bytes, tmp;
498 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
500 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
502 /* Slice has just started. Consider one slice interval */
503 if (!jiffy_elapsed)
504 jiffy_elapsed_rnd = throtl_slice;
506 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
508 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
509 do_div(tmp, HZ);
510 bytes_allowed = tmp;
512 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
513 if (wait)
514 *wait = 0;
515 return 1;
518 /* Calc approx time to dispatch */
519 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
520 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
522 if (!jiffy_wait)
523 jiffy_wait = 1;
526 * This wait time is without taking into consideration the rounding
527 * up we did. Add that time also.
529 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
530 if (wait)
531 *wait = jiffy_wait;
532 return 0;
536 * Returns whether one can dispatch a bio or not. Also returns approx number
537 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
539 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
540 struct bio *bio, unsigned long *wait)
542 bool rw = bio_data_dir(bio);
543 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
546 * Currently whole state machine of group depends on first bio
547 * queued in the group bio list. So one should not be calling
548 * this function with a different bio if there are other bios
549 * queued.
551 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
553 /* If tg->bps = -1, then BW is unlimited */
554 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
555 if (wait)
556 *wait = 0;
557 return 1;
561 * If previous slice expired, start a new one otherwise renew/extend
562 * existing slice to make sure it is at least throtl_slice interval
563 * long since now.
565 if (throtl_slice_used(td, tg, rw))
566 throtl_start_new_slice(td, tg, rw);
567 else {
568 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
569 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
572 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
573 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
574 if (wait)
575 *wait = 0;
576 return 1;
579 max_wait = max(bps_wait, iops_wait);
581 if (wait)
582 *wait = max_wait;
584 if (time_before(tg->slice_end[rw], jiffies + max_wait))
585 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
587 return 0;
590 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
592 bool rw = bio_data_dir(bio);
593 bool sync = bio->bi_rw & REQ_SYNC;
595 /* Charge the bio to the group */
596 tg->bytes_disp[rw] += bio->bi_size;
597 tg->io_disp[rw]++;
600 * TODO: This will take blkg->stats_lock. Figure out a way
601 * to avoid this cost.
603 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
606 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
607 struct bio *bio)
609 bool rw = bio_data_dir(bio);
611 bio_list_add(&tg->bio_lists[rw], bio);
612 /* Take a bio reference on tg */
613 throtl_ref_get_tg(tg);
614 tg->nr_queued[rw]++;
615 td->nr_queued[rw]++;
616 throtl_enqueue_tg(td, tg);
619 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
621 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
622 struct bio *bio;
624 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
625 tg_may_dispatch(td, tg, bio, &read_wait);
627 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
628 tg_may_dispatch(td, tg, bio, &write_wait);
630 min_wait = min(read_wait, write_wait);
631 disptime = jiffies + min_wait;
633 /* Update dispatch time */
634 throtl_dequeue_tg(td, tg);
635 tg->disptime = disptime;
636 throtl_enqueue_tg(td, tg);
639 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
640 bool rw, struct bio_list *bl)
642 struct bio *bio;
644 bio = bio_list_pop(&tg->bio_lists[rw]);
645 tg->nr_queued[rw]--;
646 /* Drop bio reference on tg */
647 throtl_put_tg(tg);
649 BUG_ON(td->nr_queued[rw] <= 0);
650 td->nr_queued[rw]--;
652 throtl_charge_bio(tg, bio);
653 bio_list_add(bl, bio);
654 bio->bi_rw |= REQ_THROTTLED;
656 throtl_trim_slice(td, tg, rw);
659 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
660 struct bio_list *bl)
662 unsigned int nr_reads = 0, nr_writes = 0;
663 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
664 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
665 struct bio *bio;
667 /* Try to dispatch 75% READS and 25% WRITES */
669 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
670 && tg_may_dispatch(td, tg, bio, NULL)) {
672 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
673 nr_reads++;
675 if (nr_reads >= max_nr_reads)
676 break;
679 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
680 && tg_may_dispatch(td, tg, bio, NULL)) {
682 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
683 nr_writes++;
685 if (nr_writes >= max_nr_writes)
686 break;
689 return nr_reads + nr_writes;
692 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
694 unsigned int nr_disp = 0;
695 struct throtl_grp *tg;
696 struct throtl_rb_root *st = &td->tg_service_tree;
698 while (1) {
699 tg = throtl_rb_first(st);
701 if (!tg)
702 break;
704 if (time_before(jiffies, tg->disptime))
705 break;
707 throtl_dequeue_tg(td, tg);
709 nr_disp += throtl_dispatch_tg(td, tg, bl);
711 if (tg->nr_queued[0] || tg->nr_queued[1]) {
712 tg_update_disptime(td, tg);
713 throtl_enqueue_tg(td, tg);
716 if (nr_disp >= throtl_quantum)
717 break;
720 return nr_disp;
723 static void throtl_process_limit_change(struct throtl_data *td)
725 struct throtl_grp *tg;
726 struct hlist_node *pos, *n;
728 if (!atomic_read(&td->limits_changed))
729 return;
731 throtl_log(td, "limit changed =%d", atomic_read(&td->limits_changed));
734 * Make sure updates from throtl_update_blkio_group_read_bps() group
735 * of functions to tg->limits_changed are visible. We do not
736 * want update td->limits_changed to be visible but update to
737 * tg->limits_changed not being visible yet on this cpu. Hence
738 * the read barrier.
740 smp_rmb();
742 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
743 if (throtl_tg_on_rr(tg) && tg->limits_changed) {
744 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
745 " riops=%u wiops=%u", tg->bps[READ],
746 tg->bps[WRITE], tg->iops[READ],
747 tg->iops[WRITE]);
748 tg_update_disptime(td, tg);
749 tg->limits_changed = false;
753 smp_mb__before_atomic_dec();
754 atomic_dec(&td->limits_changed);
755 smp_mb__after_atomic_dec();
758 /* Dispatch throttled bios. Should be called without queue lock held. */
759 static int throtl_dispatch(struct request_queue *q)
761 struct throtl_data *td = q->td;
762 unsigned int nr_disp = 0;
763 struct bio_list bio_list_on_stack;
764 struct bio *bio;
766 spin_lock_irq(q->queue_lock);
768 throtl_process_limit_change(td);
770 if (!total_nr_queued(td))
771 goto out;
773 bio_list_init(&bio_list_on_stack);
775 throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u",
776 total_nr_queued(td), td->nr_queued[READ],
777 td->nr_queued[WRITE]);
779 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
781 if (nr_disp)
782 throtl_log(td, "bios disp=%u", nr_disp);
784 throtl_schedule_next_dispatch(td);
785 out:
786 spin_unlock_irq(q->queue_lock);
789 * If we dispatched some requests, unplug the queue to make sure
790 * immediate dispatch
792 if (nr_disp) {
793 while((bio = bio_list_pop(&bio_list_on_stack)))
794 generic_make_request(bio);
795 blk_unplug(q);
797 return nr_disp;
800 void blk_throtl_work(struct work_struct *work)
802 struct throtl_data *td = container_of(work, struct throtl_data,
803 throtl_work.work);
804 struct request_queue *q = td->queue;
806 throtl_dispatch(q);
809 /* Call with queue lock held */
810 void throtl_schedule_delayed_work(struct request_queue *q, unsigned long delay)
813 struct throtl_data *td = q->td;
814 struct delayed_work *dwork = &td->throtl_work;
816 if (total_nr_queued(td) > 0) {
818 * We might have a work scheduled to be executed in future.
819 * Cancel that and schedule a new one.
821 __cancel_delayed_work(dwork);
822 kblockd_schedule_delayed_work(q, dwork, delay);
823 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
824 delay, jiffies);
827 EXPORT_SYMBOL(throtl_schedule_delayed_work);
829 static void
830 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
832 /* Something wrong if we are trying to remove same group twice */
833 BUG_ON(hlist_unhashed(&tg->tg_node));
835 hlist_del_init(&tg->tg_node);
838 * Put the reference taken at the time of creation so that when all
839 * queues are gone, group can be destroyed.
841 throtl_put_tg(tg);
842 td->nr_undestroyed_grps--;
845 static void throtl_release_tgs(struct throtl_data *td)
847 struct hlist_node *pos, *n;
848 struct throtl_grp *tg;
850 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
852 * If cgroup removal path got to blk_group first and removed
853 * it from cgroup list, then it will take care of destroying
854 * cfqg also.
856 if (!blkiocg_del_blkio_group(&tg->blkg))
857 throtl_destroy_tg(td, tg);
861 static void throtl_td_free(struct throtl_data *td)
863 kfree(td);
867 * Blk cgroup controller notification saying that blkio_group object is being
868 * delinked as associated cgroup object is going away. That also means that
869 * no new IO will come in this group. So get rid of this group as soon as
870 * any pending IO in the group is finished.
872 * This function is called under rcu_read_lock(). key is the rcu protected
873 * pointer. That means "key" is a valid throtl_data pointer as long as we are
874 * rcu read lock.
876 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
877 * it should not be NULL as even if queue was going away, cgroup deltion
878 * path got to it first.
880 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
882 unsigned long flags;
883 struct throtl_data *td = key;
885 spin_lock_irqsave(td->queue->queue_lock, flags);
886 throtl_destroy_tg(td, tg_of_blkg(blkg));
887 spin_unlock_irqrestore(td->queue->queue_lock, flags);
891 * For all update functions, key should be a valid pointer because these
892 * update functions are called under blkcg_lock, that means, blkg is
893 * valid and in turn key is valid. queue exit path can not race becuase
894 * of blkcg_lock
896 * Can not take queue lock in update functions as queue lock under blkcg_lock
897 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
899 static void throtl_update_blkio_group_read_bps(void *key,
900 struct blkio_group *blkg, u64 read_bps)
902 struct throtl_data *td = key;
904 tg_of_blkg(blkg)->bps[READ] = read_bps;
905 /* Make sure read_bps is updated before setting limits_changed */
906 smp_wmb();
907 tg_of_blkg(blkg)->limits_changed = true;
909 /* Make sure tg->limits_changed is updated before td->limits_changed */
910 smp_mb__before_atomic_inc();
911 atomic_inc(&td->limits_changed);
912 smp_mb__after_atomic_inc();
914 /* Schedule a work now to process the limit change */
915 throtl_schedule_delayed_work(td->queue, 0);
918 static void throtl_update_blkio_group_write_bps(void *key,
919 struct blkio_group *blkg, u64 write_bps)
921 struct throtl_data *td = key;
923 tg_of_blkg(blkg)->bps[WRITE] = write_bps;
924 smp_wmb();
925 tg_of_blkg(blkg)->limits_changed = true;
926 smp_mb__before_atomic_inc();
927 atomic_inc(&td->limits_changed);
928 smp_mb__after_atomic_inc();
929 throtl_schedule_delayed_work(td->queue, 0);
932 static void throtl_update_blkio_group_read_iops(void *key,
933 struct blkio_group *blkg, unsigned int read_iops)
935 struct throtl_data *td = key;
937 tg_of_blkg(blkg)->iops[READ] = read_iops;
938 smp_wmb();
939 tg_of_blkg(blkg)->limits_changed = true;
940 smp_mb__before_atomic_inc();
941 atomic_inc(&td->limits_changed);
942 smp_mb__after_atomic_inc();
943 throtl_schedule_delayed_work(td->queue, 0);
946 static void throtl_update_blkio_group_write_iops(void *key,
947 struct blkio_group *blkg, unsigned int write_iops)
949 struct throtl_data *td = key;
951 tg_of_blkg(blkg)->iops[WRITE] = write_iops;
952 smp_wmb();
953 tg_of_blkg(blkg)->limits_changed = true;
954 smp_mb__before_atomic_inc();
955 atomic_inc(&td->limits_changed);
956 smp_mb__after_atomic_inc();
957 throtl_schedule_delayed_work(td->queue, 0);
960 void throtl_shutdown_timer_wq(struct request_queue *q)
962 struct throtl_data *td = q->td;
964 cancel_delayed_work_sync(&td->throtl_work);
967 static struct blkio_policy_type blkio_policy_throtl = {
968 .ops = {
969 .blkio_unlink_group_fn = throtl_unlink_blkio_group,
970 .blkio_update_group_read_bps_fn =
971 throtl_update_blkio_group_read_bps,
972 .blkio_update_group_write_bps_fn =
973 throtl_update_blkio_group_write_bps,
974 .blkio_update_group_read_iops_fn =
975 throtl_update_blkio_group_read_iops,
976 .blkio_update_group_write_iops_fn =
977 throtl_update_blkio_group_write_iops,
979 .plid = BLKIO_POLICY_THROTL,
982 int blk_throtl_bio(struct request_queue *q, struct bio **biop)
984 struct throtl_data *td = q->td;
985 struct throtl_grp *tg;
986 struct bio *bio = *biop;
987 bool rw = bio_data_dir(bio), update_disptime = true;
989 if (bio->bi_rw & REQ_THROTTLED) {
990 bio->bi_rw &= ~REQ_THROTTLED;
991 return 0;
994 spin_lock_irq(q->queue_lock);
995 tg = throtl_get_tg(td);
997 if (tg->nr_queued[rw]) {
999 * There is already another bio queued in same dir. No
1000 * need to update dispatch time.
1001 * Still update the disptime if rate limits on this group
1002 * were changed.
1004 if (!tg->limits_changed)
1005 update_disptime = false;
1006 else
1007 tg->limits_changed = false;
1009 goto queue_bio;
1012 /* Bio is with-in rate limit of group */
1013 if (tg_may_dispatch(td, tg, bio, NULL)) {
1014 throtl_charge_bio(tg, bio);
1015 goto out;
1018 queue_bio:
1019 throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1020 " iodisp=%u iops=%u queued=%d/%d",
1021 rw == READ ? 'R' : 'W',
1022 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1023 tg->io_disp[rw], tg->iops[rw],
1024 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1026 throtl_add_bio_tg(q->td, tg, bio);
1027 *biop = NULL;
1029 if (update_disptime) {
1030 tg_update_disptime(td, tg);
1031 throtl_schedule_next_dispatch(td);
1034 out:
1035 spin_unlock_irq(q->queue_lock);
1036 return 0;
1039 int blk_throtl_init(struct request_queue *q)
1041 struct throtl_data *td;
1042 struct throtl_grp *tg;
1044 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1045 if (!td)
1046 return -ENOMEM;
1048 INIT_HLIST_HEAD(&td->tg_list);
1049 td->tg_service_tree = THROTL_RB_ROOT;
1050 atomic_set(&td->limits_changed, 0);
1052 /* Init root group */
1053 tg = &td->root_tg;
1054 INIT_HLIST_NODE(&tg->tg_node);
1055 RB_CLEAR_NODE(&tg->rb_node);
1056 bio_list_init(&tg->bio_lists[0]);
1057 bio_list_init(&tg->bio_lists[1]);
1059 /* Practically unlimited BW */
1060 tg->bps[0] = tg->bps[1] = -1;
1061 tg->iops[0] = tg->iops[1] = -1;
1064 * Set root group reference to 2. One reference will be dropped when
1065 * all groups on tg_list are being deleted during queue exit. Other
1066 * reference will remain there as we don't want to delete this group
1067 * as it is statically allocated and gets destroyed when throtl_data
1068 * goes away.
1070 atomic_set(&tg->ref, 2);
1071 hlist_add_head(&tg->tg_node, &td->tg_list);
1072 td->nr_undestroyed_grps++;
1074 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1076 rcu_read_lock();
1077 blkiocg_add_blkio_group(&blkio_root_cgroup, &tg->blkg, (void *)td,
1078 0, BLKIO_POLICY_THROTL);
1079 rcu_read_unlock();
1081 /* Attach throtl data to request queue */
1082 td->queue = q;
1083 q->td = td;
1084 return 0;
1087 void blk_throtl_exit(struct request_queue *q)
1089 struct throtl_data *td = q->td;
1090 bool wait = false;
1092 BUG_ON(!td);
1094 throtl_shutdown_timer_wq(q);
1096 spin_lock_irq(q->queue_lock);
1097 throtl_release_tgs(td);
1099 /* If there are other groups */
1100 if (td->nr_undestroyed_grps > 0)
1101 wait = true;
1103 spin_unlock_irq(q->queue_lock);
1106 * Wait for tg->blkg->key accessors to exit their grace periods.
1107 * Do this wait only if there are other undestroyed groups out
1108 * there (other than root group). This can happen if cgroup deletion
1109 * path claimed the responsibility of cleaning up a group before
1110 * queue cleanup code get to the group.
1112 * Do not call synchronize_rcu() unconditionally as there are drivers
1113 * which create/delete request queue hundreds of times during scan/boot
1114 * and synchronize_rcu() can take significant time and slow down boot.
1116 if (wait)
1117 synchronize_rcu();
1120 * Just being safe to make sure after previous flush if some body did
1121 * update limits through cgroup and another work got queued, cancel
1122 * it.
1124 throtl_shutdown_timer_wq(q);
1125 throtl_td_free(td);
1128 static int __init throtl_init(void)
1130 blkio_policy_register(&blkio_policy_throtl);
1131 return 0;
1134 module_init(throtl_init);