1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
28 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
30 * Because of the reduced scope of CAP_SETPCAP when filesystem
31 * capabilities are in effect, it is safe to allow this capability to
32 * be available in the default configuration.
34 # define CAP_INIT_BSET CAP_FULL_SET
35 #else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */
36 # define CAP_INIT_BSET CAP_INIT_EFF_SET
37 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
39 kernel_cap_t cap_bset
= CAP_INIT_BSET
; /* systemwide capability bound */
40 EXPORT_SYMBOL(cap_bset
);
42 /* Global security state */
44 unsigned securebits
= SECUREBITS_DEFAULT
; /* systemwide security settings */
45 EXPORT_SYMBOL(securebits
);
47 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
49 NETLINK_CB(skb
).eff_cap
= current
->cap_effective
;
53 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
55 if (!cap_raised(NETLINK_CB(skb
).eff_cap
, cap
))
60 EXPORT_SYMBOL(cap_netlink_recv
);
62 int cap_capable (struct task_struct
*tsk
, int cap
)
64 /* Derived from include/linux/sched.h:capable. */
65 if (cap_raised(tsk
->cap_effective
, cap
))
70 int cap_settime(struct timespec
*ts
, struct timezone
*tz
)
72 if (!capable(CAP_SYS_TIME
))
77 int cap_ptrace (struct task_struct
*parent
, struct task_struct
*child
)
79 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
80 if (!cap_issubset(child
->cap_permitted
, parent
->cap_permitted
) &&
81 !__capable(parent
, CAP_SYS_PTRACE
))
86 int cap_capget (struct task_struct
*target
, kernel_cap_t
*effective
,
87 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
89 /* Derived from kernel/capability.c:sys_capget. */
90 *effective
= cap_t (target
->cap_effective
);
91 *inheritable
= cap_t (target
->cap_inheritable
);
92 *permitted
= cap_t (target
->cap_permitted
);
96 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
98 static inline int cap_block_setpcap(struct task_struct
*target
)
101 * No support for remote process capability manipulation with
102 * filesystem capability support.
104 return (target
!= current
);
107 static inline int cap_inh_is_capped(void)
110 * return 1 if changes to the inheritable set are limited
111 * to the old permitted set.
113 return !cap_capable(current
, CAP_SETPCAP
);
116 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
118 static inline int cap_block_setpcap(struct task_struct
*t
) { return 0; }
119 static inline int cap_inh_is_capped(void) { return 1; }
121 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
123 int cap_capset_check (struct task_struct
*target
, kernel_cap_t
*effective
,
124 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
126 if (cap_block_setpcap(target
)) {
129 if (cap_inh_is_capped()
130 && !cap_issubset(*inheritable
,
131 cap_combine(target
->cap_inheritable
,
132 current
->cap_permitted
))) {
133 /* incapable of using this inheritable set */
137 /* verify restrictions on target's new Permitted set */
138 if (!cap_issubset (*permitted
,
139 cap_combine (target
->cap_permitted
,
140 current
->cap_permitted
))) {
144 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
145 if (!cap_issubset (*effective
, *permitted
)) {
152 void cap_capset_set (struct task_struct
*target
, kernel_cap_t
*effective
,
153 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
155 target
->cap_effective
= *effective
;
156 target
->cap_inheritable
= *inheritable
;
157 target
->cap_permitted
= *permitted
;
160 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
162 cap_clear(bprm
->cap_inheritable
);
163 cap_clear(bprm
->cap_permitted
);
164 bprm
->cap_effective
= false;
167 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
169 int cap_inode_need_killpriv(struct dentry
*dentry
)
171 struct inode
*inode
= dentry
->d_inode
;
174 if (!inode
->i_op
|| !inode
->i_op
->getxattr
)
177 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
183 int cap_inode_killpriv(struct dentry
*dentry
)
185 struct inode
*inode
= dentry
->d_inode
;
187 if (!inode
->i_op
|| !inode
->i_op
->removexattr
)
190 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
193 static inline int cap_from_disk(__le32
*caps
, struct linux_binprm
*bprm
,
198 if (size
!= XATTR_CAPS_SZ
)
201 magic_etc
= le32_to_cpu(caps
[0]);
203 switch ((magic_etc
& VFS_CAP_REVISION_MASK
)) {
204 case VFS_CAP_REVISION
:
205 if (magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
206 bprm
->cap_effective
= true;
208 bprm
->cap_effective
= false;
209 bprm
->cap_permitted
= to_cap_t( le32_to_cpu(caps
[1]) );
210 bprm
->cap_inheritable
= to_cap_t( le32_to_cpu(caps
[2]) );
217 /* Locate any VFS capabilities: */
218 static int get_file_caps(struct linux_binprm
*bprm
)
220 struct dentry
*dentry
;
222 __le32 v1caps
[XATTR_CAPS_SZ
];
225 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
) {
226 bprm_clear_caps(bprm
);
230 dentry
= dget(bprm
->file
->f_dentry
);
231 inode
= dentry
->d_inode
;
232 if (!inode
->i_op
|| !inode
->i_op
->getxattr
)
235 rc
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, &v1caps
,
237 if (rc
== -ENODATA
|| rc
== -EOPNOTSUPP
) {
238 /* no data, that's ok */
245 rc
= cap_from_disk(v1caps
, bprm
, rc
);
247 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
248 __FUNCTION__
, rc
, bprm
->filename
);
253 bprm_clear_caps(bprm
);
259 int cap_inode_need_killpriv(struct dentry
*dentry
)
264 int cap_inode_killpriv(struct dentry
*dentry
)
269 static inline int get_file_caps(struct linux_binprm
*bprm
)
271 bprm_clear_caps(bprm
);
276 int cap_bprm_set_security (struct linux_binprm
*bprm
)
280 ret
= get_file_caps(bprm
);
282 printk(KERN_NOTICE
"%s: get_file_caps returned %d for %s\n",
283 __FUNCTION__
, ret
, bprm
->filename
);
285 /* To support inheritance of root-permissions and suid-root
286 * executables under compatibility mode, we raise all three
287 * capability sets for the file.
289 * If only the real uid is 0, we only raise the inheritable
290 * and permitted sets of the executable file.
293 if (!issecure (SECURE_NOROOT
)) {
294 if (bprm
->e_uid
== 0 || current
->uid
== 0) {
295 cap_set_full (bprm
->cap_inheritable
);
296 cap_set_full (bprm
->cap_permitted
);
298 if (bprm
->e_uid
== 0)
299 bprm
->cap_effective
= true;
305 void cap_bprm_apply_creds (struct linux_binprm
*bprm
, int unsafe
)
307 /* Derived from fs/exec.c:compute_creds. */
308 kernel_cap_t new_permitted
, working
;
310 new_permitted
= cap_intersect (bprm
->cap_permitted
, cap_bset
);
311 working
= cap_intersect (bprm
->cap_inheritable
,
312 current
->cap_inheritable
);
313 new_permitted
= cap_combine (new_permitted
, working
);
315 if (bprm
->e_uid
!= current
->uid
|| bprm
->e_gid
!= current
->gid
||
316 !cap_issubset (new_permitted
, current
->cap_permitted
)) {
317 set_dumpable(current
->mm
, suid_dumpable
);
318 current
->pdeath_signal
= 0;
320 if (unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
321 if (!capable(CAP_SETUID
)) {
322 bprm
->e_uid
= current
->uid
;
323 bprm
->e_gid
= current
->gid
;
325 if (!capable (CAP_SETPCAP
)) {
326 new_permitted
= cap_intersect (new_permitted
,
327 current
->cap_permitted
);
332 current
->suid
= current
->euid
= current
->fsuid
= bprm
->e_uid
;
333 current
->sgid
= current
->egid
= current
->fsgid
= bprm
->e_gid
;
335 /* For init, we want to retain the capabilities set
336 * in the init_task struct. Thus we skip the usual
337 * capability rules */
338 if (!is_global_init(current
)) {
339 current
->cap_permitted
= new_permitted
;
340 current
->cap_effective
= bprm
->cap_effective
?
344 /* AUD: Audit candidate if current->cap_effective is set */
346 current
->keep_capabilities
= 0;
349 int cap_bprm_secureexec (struct linux_binprm
*bprm
)
351 if (current
->uid
!= 0) {
352 if (bprm
->cap_effective
)
354 if (!cap_isclear(bprm
->cap_permitted
))
356 if (!cap_isclear(bprm
->cap_inheritable
))
360 return (current
->euid
!= current
->uid
||
361 current
->egid
!= current
->gid
);
364 int cap_inode_setxattr(struct dentry
*dentry
, char *name
, void *value
,
365 size_t size
, int flags
)
367 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
368 if (!capable(CAP_SETFCAP
))
371 } else if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
372 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
373 !capable(CAP_SYS_ADMIN
))
378 int cap_inode_removexattr(struct dentry
*dentry
, char *name
)
380 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
381 if (!capable(CAP_SETFCAP
))
384 } else if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
385 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
386 !capable(CAP_SYS_ADMIN
))
391 /* moved from kernel/sys.c. */
393 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
394 * a process after a call to setuid, setreuid, or setresuid.
396 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
397 * {r,e,s}uid != 0, the permitted and effective capabilities are
400 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
401 * capabilities of the process are cleared.
403 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
404 * capabilities are set to the permitted capabilities.
406 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
411 * cevans - New behaviour, Oct '99
412 * A process may, via prctl(), elect to keep its capabilities when it
413 * calls setuid() and switches away from uid==0. Both permitted and
414 * effective sets will be retained.
415 * Without this change, it was impossible for a daemon to drop only some
416 * of its privilege. The call to setuid(!=0) would drop all privileges!
417 * Keeping uid 0 is not an option because uid 0 owns too many vital
419 * Thanks to Olaf Kirch and Peter Benie for spotting this.
421 static inline void cap_emulate_setxuid (int old_ruid
, int old_euid
,
424 if ((old_ruid
== 0 || old_euid
== 0 || old_suid
== 0) &&
425 (current
->uid
!= 0 && current
->euid
!= 0 && current
->suid
!= 0) &&
426 !current
->keep_capabilities
) {
427 cap_clear (current
->cap_permitted
);
428 cap_clear (current
->cap_effective
);
430 if (old_euid
== 0 && current
->euid
!= 0) {
431 cap_clear (current
->cap_effective
);
433 if (old_euid
!= 0 && current
->euid
== 0) {
434 current
->cap_effective
= current
->cap_permitted
;
438 int cap_task_post_setuid (uid_t old_ruid
, uid_t old_euid
, uid_t old_suid
,
445 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
446 if (!issecure (SECURE_NO_SETUID_FIXUP
)) {
447 cap_emulate_setxuid (old_ruid
, old_euid
, old_suid
);
452 uid_t old_fsuid
= old_ruid
;
454 /* Copied from kernel/sys.c:setfsuid. */
457 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
458 * if not, we might be a bit too harsh here.
461 if (!issecure (SECURE_NO_SETUID_FIXUP
)) {
462 if (old_fsuid
== 0 && current
->fsuid
!= 0) {
463 cap_t (current
->cap_effective
) &=
466 if (old_fsuid
!= 0 && current
->fsuid
== 0) {
467 cap_t (current
->cap_effective
) |=
468 (cap_t (current
->cap_permitted
) &
481 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
483 * Rationale: code calling task_setscheduler, task_setioprio, and
484 * task_setnice, assumes that
485 * . if capable(cap_sys_nice), then those actions should be allowed
486 * . if not capable(cap_sys_nice), but acting on your own processes,
487 * then those actions should be allowed
488 * This is insufficient now since you can call code without suid, but
489 * yet with increased caps.
490 * So we check for increased caps on the target process.
492 static inline int cap_safe_nice(struct task_struct
*p
)
494 if (!cap_issubset(p
->cap_permitted
, current
->cap_permitted
) &&
495 !__capable(current
, CAP_SYS_NICE
))
500 int cap_task_setscheduler (struct task_struct
*p
, int policy
,
501 struct sched_param
*lp
)
503 return cap_safe_nice(p
);
506 int cap_task_setioprio (struct task_struct
*p
, int ioprio
)
508 return cap_safe_nice(p
);
511 int cap_task_setnice (struct task_struct
*p
, int nice
)
513 return cap_safe_nice(p
);
516 int cap_task_kill(struct task_struct
*p
, struct siginfo
*info
,
519 if (info
!= SEND_SIG_NOINFO
&& (is_si_special(info
) || SI_FROMKERNEL(info
)))
524 * Signal sent as a particular user.
525 * Capabilities are ignored. May be wrong, but it's the
526 * only thing we can do at the moment.
527 * Used only by usb drivers?
530 if (cap_issubset(p
->cap_permitted
, current
->cap_permitted
))
532 if (capable(CAP_KILL
))
538 int cap_task_setscheduler (struct task_struct
*p
, int policy
,
539 struct sched_param
*lp
)
543 int cap_task_setioprio (struct task_struct
*p
, int ioprio
)
547 int cap_task_setnice (struct task_struct
*p
, int nice
)
551 int cap_task_kill(struct task_struct
*p
, struct siginfo
*info
,
558 void cap_task_reparent_to_init (struct task_struct
*p
)
560 p
->cap_effective
= CAP_INIT_EFF_SET
;
561 p
->cap_inheritable
= CAP_INIT_INH_SET
;
562 p
->cap_permitted
= CAP_FULL_SET
;
563 p
->keep_capabilities
= 0;
567 int cap_syslog (int type
)
569 if ((type
!= 3 && type
!= 10) && !capable(CAP_SYS_ADMIN
))
574 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
576 int cap_sys_admin
= 0;
578 if (cap_capable(current
, CAP_SYS_ADMIN
) == 0)
580 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);