2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
109 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
110 unsigned long nr_segs
, loff_t pos
);
111 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
112 unsigned long nr_segs
, loff_t pos
);
113 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
115 static int sock_close(struct inode
*inode
, struct file
*file
);
116 static unsigned int sock_poll(struct file
*file
,
117 struct poll_table_struct
*wait
);
118 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
120 static long compat_sock_ioctl(struct file
*file
,
121 unsigned int cmd
, unsigned long arg
);
123 static int sock_fasync(int fd
, struct file
*filp
, int on
);
124 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
125 int offset
, size_t size
, loff_t
*ppos
, int more
);
126 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
127 struct pipe_inode_info
*pipe
, size_t len
,
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops
= {
136 .owner
= THIS_MODULE
,
138 .aio_read
= sock_aio_read
,
139 .aio_write
= sock_aio_write
,
141 .unlocked_ioctl
= sock_ioctl
,
143 .compat_ioctl
= compat_sock_ioctl
,
146 .open
= sock_no_open
, /* special open code to disallow open via /proc */
147 .release
= sock_close
,
148 .fasync
= sock_fasync
,
149 .sendpage
= sock_sendpage
,
150 .splice_write
= generic_splice_sendpage
,
151 .splice_read
= sock_splice_read
,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock
);
159 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use
);
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr
*kaddr
, int klen
,
213 void __user
*uaddr
, int __user
*ulen
)
218 err
= get_user(len
, ulen
);
223 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
226 if (audit_sockaddr(klen
, kaddr
))
228 if (copy_to_user(uaddr
, kaddr
, len
))
232 * "fromlen shall refer to the value before truncation.."
235 return __put_user(klen
, ulen
);
238 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
240 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
242 struct socket_alloc
*ei
;
244 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
247 ei
->socket
.wq
= kmalloc(sizeof(struct socket_wq
), GFP_KERNEL
);
248 if (!ei
->socket
.wq
) {
249 kmem_cache_free(sock_inode_cachep
, ei
);
252 init_waitqueue_head(&ei
->socket
.wq
->wait
);
253 ei
->socket
.wq
->fasync_list
= NULL
;
255 ei
->socket
.state
= SS_UNCONNECTED
;
256 ei
->socket
.flags
= 0;
257 ei
->socket
.ops
= NULL
;
258 ei
->socket
.sk
= NULL
;
259 ei
->socket
.file
= NULL
;
261 return &ei
->vfs_inode
;
266 static void wq_free_rcu(struct rcu_head
*head
)
268 struct socket_wq
*wq
= container_of(head
, struct socket_wq
, rcu
);
273 static void sock_destroy_inode(struct inode
*inode
)
275 struct socket_alloc
*ei
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 call_rcu(&ei
->socket
.wq
->rcu
, wq_free_rcu
);
279 kmem_cache_free(sock_inode_cachep
, ei
);
282 static void init_once(void *foo
)
284 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
286 inode_init_once(&ei
->vfs_inode
);
289 static int init_inodecache(void)
291 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc
),
294 (SLAB_HWCACHE_ALIGN
|
295 SLAB_RECLAIM_ACCOUNT
|
298 if (sock_inode_cachep
== NULL
)
303 static const struct super_operations sockfs_ops
= {
304 .alloc_inode
= sock_alloc_inode
,
305 .destroy_inode
= sock_destroy_inode
,
306 .statfs
= simple_statfs
,
310 * sockfs_dname() is called from d_path().
312 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
314 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
315 dentry
->d_inode
->i_ino
);
318 static const struct dentry_operations sockfs_dentry_operations
= {
319 .d_dname
= sockfs_dname
,
322 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
323 int flags
, const char *dev_name
, void *data
)
325 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
326 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
329 static struct vfsmount
*sock_mnt __read_mostly
;
331 static struct file_system_type sock_fs_type
= {
333 .mount
= sockfs_mount
,
334 .kill_sb
= kill_anon_super
,
338 * Obtains the first available file descriptor and sets it up for use.
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
354 static int sock_alloc_file(struct socket
*sock
, struct file
**f
, int flags
)
356 struct qstr name
= { .name
= "" };
361 fd
= get_unused_fd_flags(flags
);
362 if (unlikely(fd
< 0))
365 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
366 if (unlikely(!path
.dentry
)) {
370 path
.mnt
= mntget(sock_mnt
);
372 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
373 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
375 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
377 if (unlikely(!file
)) {
378 /* drop dentry, keep inode */
379 ihold(path
.dentry
->d_inode
);
386 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
388 file
->private_data
= sock
;
394 int sock_map_fd(struct socket
*sock
, int flags
)
396 struct file
*newfile
;
397 int fd
= sock_alloc_file(sock
, &newfile
, flags
);
400 fd_install(fd
, newfile
);
404 EXPORT_SYMBOL(sock_map_fd
);
406 static struct socket
*sock_from_file(struct file
*file
, int *err
)
408 if (file
->f_op
== &socket_file_ops
)
409 return file
->private_data
; /* set in sock_map_fd */
416 * sockfd_lookup - Go from a file number to its socket slot
418 * @err: pointer to an error code return
420 * The file handle passed in is locked and the socket it is bound
421 * too is returned. If an error occurs the err pointer is overwritten
422 * with a negative errno code and NULL is returned. The function checks
423 * for both invalid handles and passing a handle which is not a socket.
425 * On a success the socket object pointer is returned.
428 struct socket
*sockfd_lookup(int fd
, int *err
)
439 sock
= sock_from_file(file
, err
);
444 EXPORT_SYMBOL(sockfd_lookup
);
446 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
452 file
= fget_light(fd
, fput_needed
);
454 sock
= sock_from_file(file
, err
);
457 fput_light(file
, *fput_needed
);
463 * sock_alloc - allocate a socket
465 * Allocate a new inode and socket object. The two are bound together
466 * and initialised. The socket is then returned. If we are out of inodes
470 static struct socket
*sock_alloc(void)
475 inode
= new_inode(sock_mnt
->mnt_sb
);
479 sock
= SOCKET_I(inode
);
481 kmemcheck_annotate_bitfield(sock
, type
);
482 inode
->i_ino
= get_next_ino();
483 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
484 inode
->i_uid
= current_fsuid();
485 inode
->i_gid
= current_fsgid();
487 percpu_add(sockets_in_use
, 1);
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
497 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
502 const struct file_operations bad_sock_fops
= {
503 .owner
= THIS_MODULE
,
504 .open
= sock_no_open
,
505 .llseek
= noop_llseek
,
509 * sock_release - close a socket
510 * @sock: socket to close
512 * The socket is released from the protocol stack if it has a release
513 * callback, and the inode is then released if the socket is bound to
514 * an inode not a file.
517 void sock_release(struct socket
*sock
)
520 struct module
*owner
= sock
->ops
->owner
;
522 sock
->ops
->release(sock
);
527 if (sock
->wq
->fasync_list
)
528 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
530 percpu_sub(sockets_in_use
, 1);
532 iput(SOCK_INODE(sock
));
537 EXPORT_SYMBOL(sock_release
);
539 int sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
542 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
543 *tx_flags
|= SKBTX_HW_TSTAMP
;
544 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
545 *tx_flags
|= SKBTX_SW_TSTAMP
;
548 EXPORT_SYMBOL(sock_tx_timestamp
);
550 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
551 struct msghdr
*msg
, size_t size
)
553 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
556 sock_update_classid(sock
->sk
);
563 err
= security_socket_sendmsg(sock
, msg
, size
);
567 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
570 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
573 struct sock_iocb siocb
;
576 init_sync_kiocb(&iocb
, NULL
);
577 iocb
.private = &siocb
;
578 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
579 if (-EIOCBQUEUED
== ret
)
580 ret
= wait_on_sync_kiocb(&iocb
);
583 EXPORT_SYMBOL(sock_sendmsg
);
585 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
586 struct kvec
*vec
, size_t num
, size_t size
)
588 mm_segment_t oldfs
= get_fs();
593 * the following is safe, since for compiler definitions of kvec and
594 * iovec are identical, yielding the same in-core layout and alignment
596 msg
->msg_iov
= (struct iovec
*)vec
;
597 msg
->msg_iovlen
= num
;
598 result
= sock_sendmsg(sock
, msg
, size
);
602 EXPORT_SYMBOL(kernel_sendmsg
);
604 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
607 *ts
= ktime_to_timespec(kt
);
615 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
617 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
620 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
621 struct timespec ts
[3];
623 struct skb_shared_hwtstamps
*shhwtstamps
=
626 /* Race occurred between timestamp enabling and packet
627 receiving. Fill in the current time for now. */
628 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
629 __net_timestamp(skb
);
631 if (need_software_tstamp
) {
632 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
634 skb_get_timestamp(skb
, &tv
);
635 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
638 skb_get_timestampns(skb
, &ts
[0]);
639 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
640 sizeof(ts
[0]), &ts
[0]);
645 memset(ts
, 0, sizeof(ts
));
646 if (skb
->tstamp
.tv64
&&
647 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
648 skb_get_timestampns(skb
, ts
+ 0);
652 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
653 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
655 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
656 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
660 put_cmsg(msg
, SOL_SOCKET
,
661 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
663 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
665 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
668 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
669 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
670 sizeof(__u32
), &skb
->dropcount
);
673 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
676 sock_recv_timestamp(msg
, sk
, skb
);
677 sock_recv_drops(msg
, sk
, skb
);
679 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
681 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
682 struct msghdr
*msg
, size_t size
, int flags
)
684 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
686 sock_update_classid(sock
->sk
);
694 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
697 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
698 struct msghdr
*msg
, size_t size
, int flags
)
700 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
702 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
705 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
706 size_t size
, int flags
)
709 struct sock_iocb siocb
;
712 init_sync_kiocb(&iocb
, NULL
);
713 iocb
.private = &siocb
;
714 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
715 if (-EIOCBQUEUED
== ret
)
716 ret
= wait_on_sync_kiocb(&iocb
);
719 EXPORT_SYMBOL(sock_recvmsg
);
721 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
722 size_t size
, int flags
)
725 struct sock_iocb siocb
;
728 init_sync_kiocb(&iocb
, NULL
);
729 iocb
.private = &siocb
;
730 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
731 if (-EIOCBQUEUED
== ret
)
732 ret
= wait_on_sync_kiocb(&iocb
);
737 * kernel_recvmsg - Receive a message from a socket (kernel space)
738 * @sock: The socket to receive the message from
739 * @msg: Received message
740 * @vec: Input s/g array for message data
741 * @num: Size of input s/g array
742 * @size: Number of bytes to read
743 * @flags: Message flags (MSG_DONTWAIT, etc...)
745 * On return the msg structure contains the scatter/gather array passed in the
746 * vec argument. The array is modified so that it consists of the unfilled
747 * portion of the original array.
749 * The returned value is the total number of bytes received, or an error.
751 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
752 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
754 mm_segment_t oldfs
= get_fs();
759 * the following is safe, since for compiler definitions of kvec and
760 * iovec are identical, yielding the same in-core layout and alignment
762 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
763 result
= sock_recvmsg(sock
, msg
, size
, flags
);
767 EXPORT_SYMBOL(kernel_recvmsg
);
769 static void sock_aio_dtor(struct kiocb
*iocb
)
771 kfree(iocb
->private);
774 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
775 int offset
, size_t size
, loff_t
*ppos
, int more
)
780 sock
= file
->private_data
;
782 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
786 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
789 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
790 struct pipe_inode_info
*pipe
, size_t len
,
793 struct socket
*sock
= file
->private_data
;
795 if (unlikely(!sock
->ops
->splice_read
))
798 sock_update_classid(sock
->sk
);
800 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
803 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
804 struct sock_iocb
*siocb
)
806 if (!is_sync_kiocb(iocb
)) {
807 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
810 iocb
->ki_dtor
= sock_aio_dtor
;
814 iocb
->private = siocb
;
818 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
819 struct file
*file
, const struct iovec
*iov
,
820 unsigned long nr_segs
)
822 struct socket
*sock
= file
->private_data
;
826 for (i
= 0; i
< nr_segs
; i
++)
827 size
+= iov
[i
].iov_len
;
829 msg
->msg_name
= NULL
;
830 msg
->msg_namelen
= 0;
831 msg
->msg_control
= NULL
;
832 msg
->msg_controllen
= 0;
833 msg
->msg_iov
= (struct iovec
*)iov
;
834 msg
->msg_iovlen
= nr_segs
;
835 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
837 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
840 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
841 unsigned long nr_segs
, loff_t pos
)
843 struct sock_iocb siocb
, *x
;
848 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
852 x
= alloc_sock_iocb(iocb
, &siocb
);
855 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
858 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
859 struct file
*file
, const struct iovec
*iov
,
860 unsigned long nr_segs
)
862 struct socket
*sock
= file
->private_data
;
866 for (i
= 0; i
< nr_segs
; i
++)
867 size
+= iov
[i
].iov_len
;
869 msg
->msg_name
= NULL
;
870 msg
->msg_namelen
= 0;
871 msg
->msg_control
= NULL
;
872 msg
->msg_controllen
= 0;
873 msg
->msg_iov
= (struct iovec
*)iov
;
874 msg
->msg_iovlen
= nr_segs
;
875 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
876 if (sock
->type
== SOCK_SEQPACKET
)
877 msg
->msg_flags
|= MSG_EOR
;
879 return __sock_sendmsg(iocb
, sock
, msg
, size
);
882 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
883 unsigned long nr_segs
, loff_t pos
)
885 struct sock_iocb siocb
, *x
;
890 x
= alloc_sock_iocb(iocb
, &siocb
);
894 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
898 * Atomic setting of ioctl hooks to avoid race
899 * with module unload.
902 static DEFINE_MUTEX(br_ioctl_mutex
);
903 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
905 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
907 mutex_lock(&br_ioctl_mutex
);
908 br_ioctl_hook
= hook
;
909 mutex_unlock(&br_ioctl_mutex
);
911 EXPORT_SYMBOL(brioctl_set
);
913 static DEFINE_MUTEX(vlan_ioctl_mutex
);
914 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
916 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
918 mutex_lock(&vlan_ioctl_mutex
);
919 vlan_ioctl_hook
= hook
;
920 mutex_unlock(&vlan_ioctl_mutex
);
922 EXPORT_SYMBOL(vlan_ioctl_set
);
924 static DEFINE_MUTEX(dlci_ioctl_mutex
);
925 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
927 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
929 mutex_lock(&dlci_ioctl_mutex
);
930 dlci_ioctl_hook
= hook
;
931 mutex_unlock(&dlci_ioctl_mutex
);
933 EXPORT_SYMBOL(dlci_ioctl_set
);
935 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
936 unsigned int cmd
, unsigned long arg
)
939 void __user
*argp
= (void __user
*)arg
;
941 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
944 * If this ioctl is unknown try to hand it down
947 if (err
== -ENOIOCTLCMD
)
948 err
= dev_ioctl(net
, cmd
, argp
);
954 * With an ioctl, arg may well be a user mode pointer, but we don't know
955 * what to do with it - that's up to the protocol still.
958 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
962 void __user
*argp
= (void __user
*)arg
;
966 sock
= file
->private_data
;
969 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
970 err
= dev_ioctl(net
, cmd
, argp
);
972 #ifdef CONFIG_WEXT_CORE
973 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
974 err
= dev_ioctl(net
, cmd
, argp
);
981 if (get_user(pid
, (int __user
*)argp
))
983 err
= f_setown(sock
->file
, pid
, 1);
987 err
= put_user(f_getown(sock
->file
),
996 request_module("bridge");
998 mutex_lock(&br_ioctl_mutex
);
1000 err
= br_ioctl_hook(net
, cmd
, argp
);
1001 mutex_unlock(&br_ioctl_mutex
);
1006 if (!vlan_ioctl_hook
)
1007 request_module("8021q");
1009 mutex_lock(&vlan_ioctl_mutex
);
1010 if (vlan_ioctl_hook
)
1011 err
= vlan_ioctl_hook(net
, argp
);
1012 mutex_unlock(&vlan_ioctl_mutex
);
1017 if (!dlci_ioctl_hook
)
1018 request_module("dlci");
1020 mutex_lock(&dlci_ioctl_mutex
);
1021 if (dlci_ioctl_hook
)
1022 err
= dlci_ioctl_hook(cmd
, argp
);
1023 mutex_unlock(&dlci_ioctl_mutex
);
1026 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1032 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1035 struct socket
*sock
= NULL
;
1037 err
= security_socket_create(family
, type
, protocol
, 1);
1041 sock
= sock_alloc();
1048 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1060 EXPORT_SYMBOL(sock_create_lite
);
1062 /* No kernel lock held - perfect */
1063 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1065 struct socket
*sock
;
1068 * We can't return errors to poll, so it's either yes or no.
1070 sock
= file
->private_data
;
1071 return sock
->ops
->poll(file
, sock
, wait
);
1074 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1076 struct socket
*sock
= file
->private_data
;
1078 return sock
->ops
->mmap(file
, sock
, vma
);
1081 static int sock_close(struct inode
*inode
, struct file
*filp
)
1084 * It was possible the inode is NULL we were
1085 * closing an unfinished socket.
1089 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1092 sock_release(SOCKET_I(inode
));
1097 * Update the socket async list
1099 * Fasync_list locking strategy.
1101 * 1. fasync_list is modified only under process context socket lock
1102 * i.e. under semaphore.
1103 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1104 * or under socket lock
1107 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1109 struct socket
*sock
= filp
->private_data
;
1110 struct sock
*sk
= sock
->sk
;
1117 fasync_helper(fd
, filp
, on
, &sock
->wq
->fasync_list
);
1119 if (!sock
->wq
->fasync_list
)
1120 sock_reset_flag(sk
, SOCK_FASYNC
);
1122 sock_set_flag(sk
, SOCK_FASYNC
);
1128 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1130 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1132 struct socket_wq
*wq
;
1137 wq
= rcu_dereference(sock
->wq
);
1138 if (!wq
|| !wq
->fasync_list
) {
1143 case SOCK_WAKE_WAITD
:
1144 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1147 case SOCK_WAKE_SPACE
:
1148 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1153 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1156 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1161 EXPORT_SYMBOL(sock_wake_async
);
1163 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1164 struct socket
**res
, int kern
)
1167 struct socket
*sock
;
1168 const struct net_proto_family
*pf
;
1171 * Check protocol is in range
1173 if (family
< 0 || family
>= NPROTO
)
1174 return -EAFNOSUPPORT
;
1175 if (type
< 0 || type
>= SOCK_MAX
)
1180 This uglymoron is moved from INET layer to here to avoid
1181 deadlock in module load.
1183 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1187 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1193 err
= security_socket_create(family
, type
, protocol
, kern
);
1198 * Allocate the socket and allow the family to set things up. if
1199 * the protocol is 0, the family is instructed to select an appropriate
1202 sock
= sock_alloc();
1204 if (net_ratelimit())
1205 printk(KERN_WARNING
"socket: no more sockets\n");
1206 return -ENFILE
; /* Not exactly a match, but its the
1207 closest posix thing */
1212 #ifdef CONFIG_MODULES
1213 /* Attempt to load a protocol module if the find failed.
1215 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1216 * requested real, full-featured networking support upon configuration.
1217 * Otherwise module support will break!
1219 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1220 request_module("net-pf-%d", family
);
1224 pf
= rcu_dereference(net_families
[family
]);
1225 err
= -EAFNOSUPPORT
;
1230 * We will call the ->create function, that possibly is in a loadable
1231 * module, so we have to bump that loadable module refcnt first.
1233 if (!try_module_get(pf
->owner
))
1236 /* Now protected by module ref count */
1239 err
= pf
->create(net
, sock
, protocol
, kern
);
1241 goto out_module_put
;
1244 * Now to bump the refcnt of the [loadable] module that owns this
1245 * socket at sock_release time we decrement its refcnt.
1247 if (!try_module_get(sock
->ops
->owner
))
1248 goto out_module_busy
;
1251 * Now that we're done with the ->create function, the [loadable]
1252 * module can have its refcnt decremented
1254 module_put(pf
->owner
);
1255 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1257 goto out_sock_release
;
1263 err
= -EAFNOSUPPORT
;
1266 module_put(pf
->owner
);
1273 goto out_sock_release
;
1275 EXPORT_SYMBOL(__sock_create
);
1277 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1279 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1281 EXPORT_SYMBOL(sock_create
);
1283 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1285 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1287 EXPORT_SYMBOL(sock_create_kern
);
1289 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1292 struct socket
*sock
;
1295 /* Check the SOCK_* constants for consistency. */
1296 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1297 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1298 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1299 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1301 flags
= type
& ~SOCK_TYPE_MASK
;
1302 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1304 type
&= SOCK_TYPE_MASK
;
1306 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1307 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1309 retval
= sock_create(family
, type
, protocol
, &sock
);
1313 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1318 /* It may be already another descriptor 8) Not kernel problem. */
1327 * Create a pair of connected sockets.
1330 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1331 int __user
*, usockvec
)
1333 struct socket
*sock1
, *sock2
;
1335 struct file
*newfile1
, *newfile2
;
1338 flags
= type
& ~SOCK_TYPE_MASK
;
1339 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1341 type
&= SOCK_TYPE_MASK
;
1343 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1344 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1347 * Obtain the first socket and check if the underlying protocol
1348 * supports the socketpair call.
1351 err
= sock_create(family
, type
, protocol
, &sock1
);
1355 err
= sock_create(family
, type
, protocol
, &sock2
);
1359 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1361 goto out_release_both
;
1363 fd1
= sock_alloc_file(sock1
, &newfile1
, flags
);
1364 if (unlikely(fd1
< 0)) {
1366 goto out_release_both
;
1369 fd2
= sock_alloc_file(sock2
, &newfile2
, flags
);
1370 if (unlikely(fd2
< 0)) {
1374 sock_release(sock2
);
1378 audit_fd_pair(fd1
, fd2
);
1379 fd_install(fd1
, newfile1
);
1380 fd_install(fd2
, newfile2
);
1381 /* fd1 and fd2 may be already another descriptors.
1382 * Not kernel problem.
1385 err
= put_user(fd1
, &usockvec
[0]);
1387 err
= put_user(fd2
, &usockvec
[1]);
1396 sock_release(sock2
);
1398 sock_release(sock1
);
1404 * Bind a name to a socket. Nothing much to do here since it's
1405 * the protocol's responsibility to handle the local address.
1407 * We move the socket address to kernel space before we call
1408 * the protocol layer (having also checked the address is ok).
1411 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1413 struct socket
*sock
;
1414 struct sockaddr_storage address
;
1415 int err
, fput_needed
;
1417 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1419 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1421 err
= security_socket_bind(sock
,
1422 (struct sockaddr
*)&address
,
1425 err
= sock
->ops
->bind(sock
,
1429 fput_light(sock
->file
, fput_needed
);
1435 * Perform a listen. Basically, we allow the protocol to do anything
1436 * necessary for a listen, and if that works, we mark the socket as
1437 * ready for listening.
1440 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1442 struct socket
*sock
;
1443 int err
, fput_needed
;
1446 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1448 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1449 if ((unsigned)backlog
> somaxconn
)
1450 backlog
= somaxconn
;
1452 err
= security_socket_listen(sock
, backlog
);
1454 err
= sock
->ops
->listen(sock
, backlog
);
1456 fput_light(sock
->file
, fput_needed
);
1462 * For accept, we attempt to create a new socket, set up the link
1463 * with the client, wake up the client, then return the new
1464 * connected fd. We collect the address of the connector in kernel
1465 * space and move it to user at the very end. This is unclean because
1466 * we open the socket then return an error.
1468 * 1003.1g adds the ability to recvmsg() to query connection pending
1469 * status to recvmsg. We need to add that support in a way thats
1470 * clean when we restucture accept also.
1473 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1474 int __user
*, upeer_addrlen
, int, flags
)
1476 struct socket
*sock
, *newsock
;
1477 struct file
*newfile
;
1478 int err
, len
, newfd
, fput_needed
;
1479 struct sockaddr_storage address
;
1481 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1484 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1485 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1487 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1492 newsock
= sock_alloc();
1496 newsock
->type
= sock
->type
;
1497 newsock
->ops
= sock
->ops
;
1500 * We don't need try_module_get here, as the listening socket (sock)
1501 * has the protocol module (sock->ops->owner) held.
1503 __module_get(newsock
->ops
->owner
);
1505 newfd
= sock_alloc_file(newsock
, &newfile
, flags
);
1506 if (unlikely(newfd
< 0)) {
1508 sock_release(newsock
);
1512 err
= security_socket_accept(sock
, newsock
);
1516 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1520 if (upeer_sockaddr
) {
1521 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1523 err
= -ECONNABORTED
;
1526 err
= move_addr_to_user((struct sockaddr
*)&address
,
1527 len
, upeer_sockaddr
, upeer_addrlen
);
1532 /* File flags are not inherited via accept() unlike another OSes. */
1534 fd_install(newfd
, newfile
);
1538 fput_light(sock
->file
, fput_needed
);
1543 put_unused_fd(newfd
);
1547 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1548 int __user
*, upeer_addrlen
)
1550 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1554 * Attempt to connect to a socket with the server address. The address
1555 * is in user space so we verify it is OK and move it to kernel space.
1557 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1560 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1561 * other SEQPACKET protocols that take time to connect() as it doesn't
1562 * include the -EINPROGRESS status for such sockets.
1565 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1568 struct socket
*sock
;
1569 struct sockaddr_storage address
;
1570 int err
, fput_needed
;
1572 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1575 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1580 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1584 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1585 sock
->file
->f_flags
);
1587 fput_light(sock
->file
, fput_needed
);
1593 * Get the local address ('name') of a socket object. Move the obtained
1594 * name to user space.
1597 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1598 int __user
*, usockaddr_len
)
1600 struct socket
*sock
;
1601 struct sockaddr_storage address
;
1602 int len
, err
, fput_needed
;
1604 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1608 err
= security_socket_getsockname(sock
);
1612 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1615 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1618 fput_light(sock
->file
, fput_needed
);
1624 * Get the remote address ('name') of a socket object. Move the obtained
1625 * name to user space.
1628 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1629 int __user
*, usockaddr_len
)
1631 struct socket
*sock
;
1632 struct sockaddr_storage address
;
1633 int len
, err
, fput_needed
;
1635 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1637 err
= security_socket_getpeername(sock
);
1639 fput_light(sock
->file
, fput_needed
);
1644 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1647 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1649 fput_light(sock
->file
, fput_needed
);
1655 * Send a datagram to a given address. We move the address into kernel
1656 * space and check the user space data area is readable before invoking
1660 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1661 unsigned, flags
, struct sockaddr __user
*, addr
,
1664 struct socket
*sock
;
1665 struct sockaddr_storage address
;
1673 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1677 iov
.iov_base
= buff
;
1679 msg
.msg_name
= NULL
;
1682 msg
.msg_control
= NULL
;
1683 msg
.msg_controllen
= 0;
1684 msg
.msg_namelen
= 0;
1686 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1689 msg
.msg_name
= (struct sockaddr
*)&address
;
1690 msg
.msg_namelen
= addr_len
;
1692 if (sock
->file
->f_flags
& O_NONBLOCK
)
1693 flags
|= MSG_DONTWAIT
;
1694 msg
.msg_flags
= flags
;
1695 err
= sock_sendmsg(sock
, &msg
, len
);
1698 fput_light(sock
->file
, fput_needed
);
1704 * Send a datagram down a socket.
1707 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1710 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1714 * Receive a frame from the socket and optionally record the address of the
1715 * sender. We verify the buffers are writable and if needed move the
1716 * sender address from kernel to user space.
1719 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1720 unsigned, flags
, struct sockaddr __user
*, addr
,
1721 int __user
*, addr_len
)
1723 struct socket
*sock
;
1726 struct sockaddr_storage address
;
1732 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1736 msg
.msg_control
= NULL
;
1737 msg
.msg_controllen
= 0;
1741 iov
.iov_base
= ubuf
;
1742 msg
.msg_name
= (struct sockaddr
*)&address
;
1743 msg
.msg_namelen
= sizeof(address
);
1744 if (sock
->file
->f_flags
& O_NONBLOCK
)
1745 flags
|= MSG_DONTWAIT
;
1746 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1748 if (err
>= 0 && addr
!= NULL
) {
1749 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1750 msg
.msg_namelen
, addr
, addr_len
);
1755 fput_light(sock
->file
, fput_needed
);
1761 * Receive a datagram from a socket.
1764 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1767 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1771 * Set a socket option. Because we don't know the option lengths we have
1772 * to pass the user mode parameter for the protocols to sort out.
1775 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1776 char __user
*, optval
, int, optlen
)
1778 int err
, fput_needed
;
1779 struct socket
*sock
;
1784 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1786 err
= security_socket_setsockopt(sock
, level
, optname
);
1790 if (level
== SOL_SOCKET
)
1792 sock_setsockopt(sock
, level
, optname
, optval
,
1796 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1799 fput_light(sock
->file
, fput_needed
);
1805 * Get a socket option. Because we don't know the option lengths we have
1806 * to pass a user mode parameter for the protocols to sort out.
1809 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1810 char __user
*, optval
, int __user
*, optlen
)
1812 int err
, fput_needed
;
1813 struct socket
*sock
;
1815 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1817 err
= security_socket_getsockopt(sock
, level
, optname
);
1821 if (level
== SOL_SOCKET
)
1823 sock_getsockopt(sock
, level
, optname
, optval
,
1827 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1830 fput_light(sock
->file
, fput_needed
);
1836 * Shutdown a socket.
1839 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1841 int err
, fput_needed
;
1842 struct socket
*sock
;
1844 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1846 err
= security_socket_shutdown(sock
, how
);
1848 err
= sock
->ops
->shutdown(sock
, how
);
1849 fput_light(sock
->file
, fput_needed
);
1854 /* A couple of helpful macros for getting the address of the 32/64 bit
1855 * fields which are the same type (int / unsigned) on our platforms.
1857 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1858 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1859 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1862 * BSD sendmsg interface
1865 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned, flags
)
1867 struct compat_msghdr __user
*msg_compat
=
1868 (struct compat_msghdr __user
*)msg
;
1869 struct socket
*sock
;
1870 struct sockaddr_storage address
;
1871 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1872 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1873 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1874 /* 20 is size of ipv6_pktinfo */
1875 unsigned char *ctl_buf
= ctl
;
1876 struct msghdr msg_sys
;
1877 int err
, ctl_len
, iov_size
, total_len
;
1881 if (MSG_CMSG_COMPAT
& flags
) {
1882 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1884 } else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1887 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1891 /* do not move before msg_sys is valid */
1893 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1896 /* Check whether to allocate the iovec area */
1898 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1899 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1900 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1905 /* This will also move the address data into kernel space */
1906 if (MSG_CMSG_COMPAT
& flags
) {
1907 err
= verify_compat_iovec(&msg_sys
, iov
,
1908 (struct sockaddr
*)&address
,
1911 err
= verify_iovec(&msg_sys
, iov
,
1912 (struct sockaddr
*)&address
,
1920 if (msg_sys
.msg_controllen
> INT_MAX
)
1922 ctl_len
= msg_sys
.msg_controllen
;
1923 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1925 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1929 ctl_buf
= msg_sys
.msg_control
;
1930 ctl_len
= msg_sys
.msg_controllen
;
1931 } else if (ctl_len
) {
1932 if (ctl_len
> sizeof(ctl
)) {
1933 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1934 if (ctl_buf
== NULL
)
1939 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1940 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1941 * checking falls down on this.
1943 if (copy_from_user(ctl_buf
,
1944 (void __user __force
*)msg_sys
.msg_control
,
1947 msg_sys
.msg_control
= ctl_buf
;
1949 msg_sys
.msg_flags
= flags
;
1951 if (sock
->file
->f_flags
& O_NONBLOCK
)
1952 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1953 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1957 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1959 if (iov
!= iovstack
)
1960 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1962 fput_light(sock
->file
, fput_needed
);
1967 static int __sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1968 struct msghdr
*msg_sys
, unsigned flags
, int nosec
)
1970 struct compat_msghdr __user
*msg_compat
=
1971 (struct compat_msghdr __user
*)msg
;
1972 struct iovec iovstack
[UIO_FASTIOV
];
1973 struct iovec
*iov
= iovstack
;
1974 unsigned long cmsg_ptr
;
1975 int err
, iov_size
, total_len
, len
;
1977 /* kernel mode address */
1978 struct sockaddr_storage addr
;
1980 /* user mode address pointers */
1981 struct sockaddr __user
*uaddr
;
1982 int __user
*uaddr_len
;
1984 if (MSG_CMSG_COMPAT
& flags
) {
1985 if (get_compat_msghdr(msg_sys
, msg_compat
))
1987 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
1991 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
1994 /* Check whether to allocate the iovec area */
1996 iov_size
= msg_sys
->msg_iovlen
* sizeof(struct iovec
);
1997 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
1998 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2004 * Save the user-mode address (verify_iovec will change the
2005 * kernel msghdr to use the kernel address space)
2008 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2009 uaddr_len
= COMPAT_NAMELEN(msg
);
2010 if (MSG_CMSG_COMPAT
& flags
) {
2011 err
= verify_compat_iovec(msg_sys
, iov
,
2012 (struct sockaddr
*)&addr
,
2015 err
= verify_iovec(msg_sys
, iov
,
2016 (struct sockaddr
*)&addr
,
2022 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2023 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2025 if (sock
->file
->f_flags
& O_NONBLOCK
)
2026 flags
|= MSG_DONTWAIT
;
2027 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2033 if (uaddr
!= NULL
) {
2034 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2035 msg_sys
->msg_namelen
, uaddr
,
2040 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2044 if (MSG_CMSG_COMPAT
& flags
)
2045 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2046 &msg_compat
->msg_controllen
);
2048 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2049 &msg
->msg_controllen
);
2055 if (iov
!= iovstack
)
2056 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2062 * BSD recvmsg interface
2065 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2066 unsigned int, flags
)
2068 int fput_needed
, err
;
2069 struct msghdr msg_sys
;
2070 struct socket
*sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2075 err
= __sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2077 fput_light(sock
->file
, fput_needed
);
2083 * Linux recvmmsg interface
2086 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2087 unsigned int flags
, struct timespec
*timeout
)
2089 int fput_needed
, err
, datagrams
;
2090 struct socket
*sock
;
2091 struct mmsghdr __user
*entry
;
2092 struct compat_mmsghdr __user
*compat_entry
;
2093 struct msghdr msg_sys
;
2094 struct timespec end_time
;
2097 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2103 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2107 err
= sock_error(sock
->sk
);
2112 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2114 while (datagrams
< vlen
) {
2116 * No need to ask LSM for more than the first datagram.
2118 if (MSG_CMSG_COMPAT
& flags
) {
2119 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2120 &msg_sys
, flags
, datagrams
);
2123 err
= __put_user(err
, &compat_entry
->msg_len
);
2126 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)entry
,
2127 &msg_sys
, flags
, datagrams
);
2130 err
= put_user(err
, &entry
->msg_len
);
2138 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2139 if (flags
& MSG_WAITFORONE
)
2140 flags
|= MSG_DONTWAIT
;
2143 ktime_get_ts(timeout
);
2144 *timeout
= timespec_sub(end_time
, *timeout
);
2145 if (timeout
->tv_sec
< 0) {
2146 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2150 /* Timeout, return less than vlen datagrams */
2151 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2155 /* Out of band data, return right away */
2156 if (msg_sys
.msg_flags
& MSG_OOB
)
2161 fput_light(sock
->file
, fput_needed
);
2166 if (datagrams
!= 0) {
2168 * We may return less entries than requested (vlen) if the
2169 * sock is non block and there aren't enough datagrams...
2171 if (err
!= -EAGAIN
) {
2173 * ... or if recvmsg returns an error after we
2174 * received some datagrams, where we record the
2175 * error to return on the next call or if the
2176 * app asks about it using getsockopt(SO_ERROR).
2178 sock
->sk
->sk_err
= -err
;
2187 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2188 unsigned int, vlen
, unsigned int, flags
,
2189 struct timespec __user
*, timeout
)
2192 struct timespec timeout_sys
;
2195 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2197 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2200 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2202 if (datagrams
> 0 &&
2203 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2204 datagrams
= -EFAULT
;
2209 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2210 /* Argument list sizes for sys_socketcall */
2211 #define AL(x) ((x) * sizeof(unsigned long))
2212 static const unsigned char nargs
[20] = {
2213 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2214 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2215 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2222 * System call vectors.
2224 * Argument checking cleaned up. Saved 20% in size.
2225 * This function doesn't need to set the kernel lock because
2226 * it is set by the callees.
2229 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2232 unsigned long a0
, a1
;
2236 if (call
< 1 || call
> SYS_RECVMMSG
)
2240 if (len
> sizeof(a
))
2243 /* copy_from_user should be SMP safe. */
2244 if (copy_from_user(a
, args
, len
))
2247 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2254 err
= sys_socket(a0
, a1
, a
[2]);
2257 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2260 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2263 err
= sys_listen(a0
, a1
);
2266 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2267 (int __user
*)a
[2], 0);
2269 case SYS_GETSOCKNAME
:
2271 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2272 (int __user
*)a
[2]);
2274 case SYS_GETPEERNAME
:
2276 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2277 (int __user
*)a
[2]);
2279 case SYS_SOCKETPAIR
:
2280 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2283 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2286 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2287 (struct sockaddr __user
*)a
[4], a
[5]);
2290 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2293 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2294 (struct sockaddr __user
*)a
[4],
2295 (int __user
*)a
[5]);
2298 err
= sys_shutdown(a0
, a1
);
2300 case SYS_SETSOCKOPT
:
2301 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2303 case SYS_GETSOCKOPT
:
2305 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2306 (int __user
*)a
[4]);
2309 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2312 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2315 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2316 (struct timespec __user
*)a
[4]);
2319 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2320 (int __user
*)a
[2], a
[3]);
2329 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2332 * sock_register - add a socket protocol handler
2333 * @ops: description of protocol
2335 * This function is called by a protocol handler that wants to
2336 * advertise its address family, and have it linked into the
2337 * socket interface. The value ops->family coresponds to the
2338 * socket system call protocol family.
2340 int sock_register(const struct net_proto_family
*ops
)
2344 if (ops
->family
>= NPROTO
) {
2345 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2350 spin_lock(&net_family_lock
);
2351 if (rcu_dereference_protected(net_families
[ops
->family
],
2352 lockdep_is_held(&net_family_lock
)))
2355 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2358 spin_unlock(&net_family_lock
);
2360 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2363 EXPORT_SYMBOL(sock_register
);
2366 * sock_unregister - remove a protocol handler
2367 * @family: protocol family to remove
2369 * This function is called by a protocol handler that wants to
2370 * remove its address family, and have it unlinked from the
2371 * new socket creation.
2373 * If protocol handler is a module, then it can use module reference
2374 * counts to protect against new references. If protocol handler is not
2375 * a module then it needs to provide its own protection in
2376 * the ops->create routine.
2378 void sock_unregister(int family
)
2380 BUG_ON(family
< 0 || family
>= NPROTO
);
2382 spin_lock(&net_family_lock
);
2383 rcu_assign_pointer(net_families
[family
], NULL
);
2384 spin_unlock(&net_family_lock
);
2388 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2390 EXPORT_SYMBOL(sock_unregister
);
2392 static int __init
sock_init(void)
2397 * Initialize sock SLAB cache.
2403 * Initialize skbuff SLAB cache
2408 * Initialize the protocols module.
2413 err
= register_filesystem(&sock_fs_type
);
2416 sock_mnt
= kern_mount(&sock_fs_type
);
2417 if (IS_ERR(sock_mnt
)) {
2418 err
= PTR_ERR(sock_mnt
);
2422 /* The real protocol initialization is performed in later initcalls.
2425 #ifdef CONFIG_NETFILTER
2429 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2430 skb_timestamping_init();
2437 unregister_filesystem(&sock_fs_type
);
2442 core_initcall(sock_init
); /* early initcall */
2444 #ifdef CONFIG_PROC_FS
2445 void socket_seq_show(struct seq_file
*seq
)
2450 for_each_possible_cpu(cpu
)
2451 counter
+= per_cpu(sockets_in_use
, cpu
);
2453 /* It can be negative, by the way. 8) */
2457 seq_printf(seq
, "sockets: used %d\n", counter
);
2459 #endif /* CONFIG_PROC_FS */
2461 #ifdef CONFIG_COMPAT
2462 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2463 unsigned int cmd
, struct compat_timeval __user
*up
)
2465 mm_segment_t old_fs
= get_fs();
2470 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2473 err
= put_user(ktv
.tv_sec
, &up
->tv_sec
);
2474 err
|= __put_user(ktv
.tv_usec
, &up
->tv_usec
);
2479 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2480 unsigned int cmd
, struct compat_timespec __user
*up
)
2482 mm_segment_t old_fs
= get_fs();
2483 struct timespec kts
;
2487 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2490 err
= put_user(kts
.tv_sec
, &up
->tv_sec
);
2491 err
|= __put_user(kts
.tv_nsec
, &up
->tv_nsec
);
2496 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2498 struct ifreq __user
*uifr
;
2501 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2502 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2505 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2509 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2515 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2517 struct compat_ifconf ifc32
;
2519 struct ifconf __user
*uifc
;
2520 struct compat_ifreq __user
*ifr32
;
2521 struct ifreq __user
*ifr
;
2525 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2528 if (ifc32
.ifcbuf
== 0) {
2532 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2534 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2535 sizeof(struct ifreq
);
2536 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2538 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2539 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2540 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2541 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2547 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2550 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2554 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2558 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2560 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2561 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2562 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2568 if (ifc32
.ifcbuf
== 0) {
2569 /* Translate from 64-bit structure multiple to
2573 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2578 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2584 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2586 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2587 bool convert_in
= false, convert_out
= false;
2588 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2589 struct ethtool_rxnfc __user
*rxnfc
;
2590 struct ifreq __user
*ifr
;
2591 u32 rule_cnt
= 0, actual_rule_cnt
;
2596 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2599 compat_rxnfc
= compat_ptr(data
);
2601 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2604 /* Most ethtool structures are defined without padding.
2605 * Unfortunately struct ethtool_rxnfc is an exception.
2610 case ETHTOOL_GRXCLSRLALL
:
2611 /* Buffer size is variable */
2612 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2614 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2616 buf_size
+= rule_cnt
* sizeof(u32
);
2618 case ETHTOOL_GRXRINGS
:
2619 case ETHTOOL_GRXCLSRLCNT
:
2620 case ETHTOOL_GRXCLSRULE
:
2623 case ETHTOOL_SRXCLSRLDEL
:
2624 case ETHTOOL_SRXCLSRLINS
:
2625 buf_size
+= sizeof(struct ethtool_rxnfc
);
2630 ifr
= compat_alloc_user_space(buf_size
);
2631 rxnfc
= (void *)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2633 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2636 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2637 &ifr
->ifr_ifru
.ifru_data
))
2641 /* We expect there to be holes between fs.m_u and
2642 * fs.ring_cookie and at the end of fs, but nowhere else.
2644 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_u
) +
2645 sizeof(compat_rxnfc
->fs
.m_u
) !=
2646 offsetof(struct ethtool_rxnfc
, fs
.m_u
) +
2647 sizeof(rxnfc
->fs
.m_u
));
2649 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2650 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2651 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2652 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2654 if (copy_in_user(rxnfc
, compat_rxnfc
,
2655 (void *)(&rxnfc
->fs
.m_u
+ 1) -
2657 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2658 &compat_rxnfc
->fs
.ring_cookie
,
2659 (void *)(&rxnfc
->fs
.location
+ 1) -
2660 (void *)&rxnfc
->fs
.ring_cookie
) ||
2661 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2662 sizeof(rxnfc
->rule_cnt
)))
2666 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2671 if (copy_in_user(compat_rxnfc
, rxnfc
,
2672 (const void *)(&rxnfc
->fs
.m_u
+ 1) -
2673 (const void *)rxnfc
) ||
2674 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2675 &rxnfc
->fs
.ring_cookie
,
2676 (const void *)(&rxnfc
->fs
.location
+ 1) -
2677 (const void *)&rxnfc
->fs
.ring_cookie
) ||
2678 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2679 sizeof(rxnfc
->rule_cnt
)))
2682 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2683 /* As an optimisation, we only copy the actual
2684 * number of rules that the underlying
2685 * function returned. Since Mallory might
2686 * change the rule count in user memory, we
2687 * check that it is less than the rule count
2688 * originally given (as the user buffer size),
2689 * which has been range-checked.
2691 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2693 if (actual_rule_cnt
< rule_cnt
)
2694 rule_cnt
= actual_rule_cnt
;
2695 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2696 &rxnfc
->rule_locs
[0],
2697 rule_cnt
* sizeof(u32
)))
2705 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2708 compat_uptr_t uptr32
;
2709 struct ifreq __user
*uifr
;
2711 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2712 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2715 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2718 uptr
= compat_ptr(uptr32
);
2720 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2723 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2726 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2727 struct compat_ifreq __user
*ifr32
)
2730 struct ifreq __user
*uifr
;
2731 mm_segment_t old_fs
;
2737 case SIOCBONDENSLAVE
:
2738 case SIOCBONDRELEASE
:
2739 case SIOCBONDSETHWADDR
:
2740 case SIOCBONDCHANGEACTIVE
:
2741 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2746 err
= dev_ioctl(net
, cmd
, &kifr
);
2750 case SIOCBONDSLAVEINFOQUERY
:
2751 case SIOCBONDINFOQUERY
:
2752 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2753 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2756 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2759 datap
= compat_ptr(data
);
2760 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
2763 return dev_ioctl(net
, cmd
, uifr
);
2769 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
2770 struct compat_ifreq __user
*u_ifreq32
)
2772 struct ifreq __user
*u_ifreq64
;
2773 char tmp_buf
[IFNAMSIZ
];
2774 void __user
*data64
;
2777 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2780 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2782 data64
= compat_ptr(data32
);
2784 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2786 /* Don't check these user accesses, just let that get trapped
2787 * in the ioctl handler instead.
2789 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2792 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2795 return dev_ioctl(net
, cmd
, u_ifreq64
);
2798 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2799 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2801 struct ifreq __user
*uifr
;
2804 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2805 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2808 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2819 case SIOCGIFBRDADDR
:
2820 case SIOCGIFDSTADDR
:
2821 case SIOCGIFNETMASK
:
2826 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2834 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2835 struct compat_ifreq __user
*uifr32
)
2838 struct compat_ifmap __user
*uifmap32
;
2839 mm_segment_t old_fs
;
2842 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2843 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2844 err
|= __get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2845 err
|= __get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2846 err
|= __get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2847 err
|= __get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2848 err
|= __get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2849 err
|= __get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2855 err
= dev_ioctl(net
, cmd
, (void __user
*)&ifr
);
2858 if (cmd
== SIOCGIFMAP
&& !err
) {
2859 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2860 err
|= __put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2861 err
|= __put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2862 err
|= __put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2863 err
|= __put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2864 err
|= __put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2865 err
|= __put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2872 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2875 compat_uptr_t uptr32
;
2876 struct ifreq __user
*uifr
;
2878 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2879 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2882 if (get_user(uptr32
, &uifr32
->ifr_data
))
2885 uptr
= compat_ptr(uptr32
);
2887 if (put_user(uptr
, &uifr
->ifr_data
))
2890 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
2895 struct sockaddr rt_dst
; /* target address */
2896 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2897 struct sockaddr rt_genmask
; /* target network mask (IP) */
2898 unsigned short rt_flags
;
2901 unsigned char rt_tos
;
2902 unsigned char rt_class
;
2904 short rt_metric
; /* +1 for binary compatibility! */
2905 /* char * */ u32 rt_dev
; /* forcing the device at add */
2906 u32 rt_mtu
; /* per route MTU/Window */
2907 u32 rt_window
; /* Window clamping */
2908 unsigned short rt_irtt
; /* Initial RTT */
2911 struct in6_rtmsg32
{
2912 struct in6_addr rtmsg_dst
;
2913 struct in6_addr rtmsg_src
;
2914 struct in6_addr rtmsg_gateway
;
2924 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
2925 unsigned int cmd
, void __user
*argp
)
2929 struct in6_rtmsg r6
;
2933 mm_segment_t old_fs
= get_fs();
2935 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
2936 struct in6_rtmsg32 __user
*ur6
= argp
;
2937 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
2938 3 * sizeof(struct in6_addr
));
2939 ret
|= __get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
2940 ret
|= __get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
2941 ret
|= __get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
2942 ret
|= __get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
2943 ret
|= __get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
2944 ret
|= __get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
2945 ret
|= __get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
2949 struct rtentry32 __user
*ur4
= argp
;
2950 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
2951 3 * sizeof(struct sockaddr
));
2952 ret
|= __get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
2953 ret
|= __get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
2954 ret
|= __get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
2955 ret
|= __get_user(r4
.rt_window
, &(ur4
->rt_window
));
2956 ret
|= __get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
2957 ret
|= __get_user(rtdev
, &(ur4
->rt_dev
));
2959 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
2960 r4
.rt_dev
= devname
; devname
[15] = 0;
2973 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
2980 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2981 * for some operations; this forces use of the newer bridge-utils that
2982 * use compatiable ioctls
2984 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
2988 if (get_user(tmp
, argp
))
2990 if (tmp
== BRCTL_GET_VERSION
)
2991 return BRCTL_VERSION
+ 1;
2995 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
2996 unsigned int cmd
, unsigned long arg
)
2998 void __user
*argp
= compat_ptr(arg
);
2999 struct sock
*sk
= sock
->sk
;
3000 struct net
*net
= sock_net(sk
);
3002 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3003 return siocdevprivate_ioctl(net
, cmd
, argp
);
3008 return old_bridge_ioctl(argp
);
3010 return dev_ifname32(net
, argp
);
3012 return dev_ifconf(net
, argp
);
3014 return ethtool_ioctl(net
, argp
);
3016 return compat_siocwandev(net
, argp
);
3019 return compat_sioc_ifmap(net
, cmd
, argp
);
3020 case SIOCBONDENSLAVE
:
3021 case SIOCBONDRELEASE
:
3022 case SIOCBONDSETHWADDR
:
3023 case SIOCBONDSLAVEINFOQUERY
:
3024 case SIOCBONDINFOQUERY
:
3025 case SIOCBONDCHANGEACTIVE
:
3026 return bond_ioctl(net
, cmd
, argp
);
3029 return routing_ioctl(net
, sock
, cmd
, argp
);
3031 return do_siocgstamp(net
, sock
, cmd
, argp
);
3033 return do_siocgstampns(net
, sock
, cmd
, argp
);
3035 return compat_siocshwtstamp(net
, argp
);
3047 return sock_ioctl(file
, cmd
, arg
);
3064 case SIOCSIFHWBROADCAST
:
3066 case SIOCGIFBRDADDR
:
3067 case SIOCSIFBRDADDR
:
3068 case SIOCGIFDSTADDR
:
3069 case SIOCSIFDSTADDR
:
3070 case SIOCGIFNETMASK
:
3071 case SIOCSIFNETMASK
:
3082 return dev_ifsioc(net
, sock
, cmd
, argp
);
3088 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3091 /* Prevent warning from compat_sys_ioctl, these always
3092 * result in -EINVAL in the native case anyway. */
3105 return -ENOIOCTLCMD
;
3108 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
3111 struct socket
*sock
= file
->private_data
;
3112 int ret
= -ENOIOCTLCMD
;
3119 if (sock
->ops
->compat_ioctl
)
3120 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3122 if (ret
== -ENOIOCTLCMD
&&
3123 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3124 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3126 if (ret
== -ENOIOCTLCMD
)
3127 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3133 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3135 return sock
->ops
->bind(sock
, addr
, addrlen
);
3137 EXPORT_SYMBOL(kernel_bind
);
3139 int kernel_listen(struct socket
*sock
, int backlog
)
3141 return sock
->ops
->listen(sock
, backlog
);
3143 EXPORT_SYMBOL(kernel_listen
);
3145 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3147 struct sock
*sk
= sock
->sk
;
3150 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3155 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3157 sock_release(*newsock
);
3162 (*newsock
)->ops
= sock
->ops
;
3163 __module_get((*newsock
)->ops
->owner
);
3168 EXPORT_SYMBOL(kernel_accept
);
3170 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3173 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3175 EXPORT_SYMBOL(kernel_connect
);
3177 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3180 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3182 EXPORT_SYMBOL(kernel_getsockname
);
3184 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3187 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3189 EXPORT_SYMBOL(kernel_getpeername
);
3191 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3192 char *optval
, int *optlen
)
3194 mm_segment_t oldfs
= get_fs();
3195 char __user
*uoptval
;
3196 int __user
*uoptlen
;
3199 uoptval
= (char __user __force
*) optval
;
3200 uoptlen
= (int __user __force
*) optlen
;
3203 if (level
== SOL_SOCKET
)
3204 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3206 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3211 EXPORT_SYMBOL(kernel_getsockopt
);
3213 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3214 char *optval
, unsigned int optlen
)
3216 mm_segment_t oldfs
= get_fs();
3217 char __user
*uoptval
;
3220 uoptval
= (char __user __force
*) optval
;
3223 if (level
== SOL_SOCKET
)
3224 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3226 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3231 EXPORT_SYMBOL(kernel_setsockopt
);
3233 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3234 size_t size
, int flags
)
3236 sock_update_classid(sock
->sk
);
3238 if (sock
->ops
->sendpage
)
3239 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3241 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3243 EXPORT_SYMBOL(kernel_sendpage
);
3245 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3247 mm_segment_t oldfs
= get_fs();
3251 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3256 EXPORT_SYMBOL(kernel_sock_ioctl
);
3258 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3260 return sock
->ops
->shutdown(sock
, how
);
3262 EXPORT_SYMBOL(kernel_sock_shutdown
);