[SCSI] zfcp: Replace status modifier functions.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / trace / ring_buffer.c
blob19cccc3c302871beae5fd39ad937b0791a2e785d
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
24 #include <asm/local.h>
25 #include "trace.h"
28 * The ring buffer header is special. We must manually up keep it.
30 int ring_buffer_print_entry_header(struct trace_seq *s)
32 int ret;
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 return ret;
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
63 * Here's some silly ASCII art.
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
113 * We will be using cmpxchg soon to make all this lockless.
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
146 enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
151 enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 * tracing_on - enable all tracing buffers
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
166 void tracing_on(void)
168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
170 EXPORT_SYMBOL_GPL(tracing_on);
173 * tracing_off - turn off all tracing buffers
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
180 void tracing_off(void)
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
184 EXPORT_SYMBOL_GPL(tracing_off);
187 * tracing_off_permanent - permanently disable ring buffers
189 * This function, once called, will disable all ring buffers
190 * permanently.
192 void tracing_off_permanent(void)
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
198 * tracing_is_on - show state of ring buffers enabled
200 int tracing_is_on(void)
202 return ring_buffer_flags == RB_BUFFERS_ON;
204 EXPORT_SYMBOL_GPL(tracing_is_on);
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT 0
213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT 1
216 # define RB_ARCH_ALIGNMENT 8U
217 #endif
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
222 enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
227 static inline int rb_null_event(struct ring_buffer_event *event)
229 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
232 static void rb_event_set_padding(struct ring_buffer_event *event)
234 /* padding has a NULL time_delta */
235 event->type_len = RINGBUF_TYPE_PADDING;
236 event->time_delta = 0;
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
242 unsigned length;
244 if (event->type_len)
245 length = event->type_len * RB_ALIGNMENT;
246 else
247 length = event->array[0];
248 return length + RB_EVNT_HDR_SIZE;
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
255 switch (event->type_len) {
256 case RINGBUF_TYPE_PADDING:
257 if (rb_null_event(event))
258 /* undefined */
259 return -1;
260 return event->array[0] + RB_EVNT_HDR_SIZE;
262 case RINGBUF_TYPE_TIME_EXTEND:
263 return RB_LEN_TIME_EXTEND;
265 case RINGBUF_TYPE_TIME_STAMP:
266 return RB_LEN_TIME_STAMP;
268 case RINGBUF_TYPE_DATA:
269 return rb_event_data_length(event);
270 default:
271 BUG();
273 /* not hit */
274 return 0;
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 unsigned length = rb_event_length(event);
284 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285 return length;
286 length -= RB_EVNT_HDR_SIZE;
287 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288 length -= sizeof(event->array[0]);
289 return length;
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
297 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298 /* If length is in len field, then array[0] has the data */
299 if (event->type_len)
300 return (void *)&event->array[0];
301 /* Otherwise length is in array[0] and array[1] has the data */
302 return (void *)&event->array[1];
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
311 return rb_event_data(event);
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
315 #define for_each_buffer_cpu(buffer, cpu) \
316 for_each_cpu(cpu, buffer->cpumask)
318 #define TS_SHIFT 27
319 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST (~TS_MASK)
322 /* Flag when events were overwritten */
323 #define RB_MISSED_EVENTS (1 << 31)
324 /* Missed count stored at end */
325 #define RB_MISSED_STORED (1 << 30)
327 struct buffer_data_page {
328 u64 time_stamp; /* page time stamp */
329 local_t commit; /* write committed index */
330 unsigned char data[]; /* data of buffer page */
334 * Note, the buffer_page list must be first. The buffer pages
335 * are allocated in cache lines, which means that each buffer
336 * page will be at the beginning of a cache line, and thus
337 * the least significant bits will be zero. We use this to
338 * add flags in the list struct pointers, to make the ring buffer
339 * lockless.
341 struct buffer_page {
342 struct list_head list; /* list of buffer pages */
343 local_t write; /* index for next write */
344 unsigned read; /* index for next read */
345 local_t entries; /* entries on this page */
346 unsigned long real_end; /* real end of data */
347 struct buffer_data_page *page; /* Actual data page */
351 * The buffer page counters, write and entries, must be reset
352 * atomically when crossing page boundaries. To synchronize this
353 * update, two counters are inserted into the number. One is
354 * the actual counter for the write position or count on the page.
356 * The other is a counter of updaters. Before an update happens
357 * the update partition of the counter is incremented. This will
358 * allow the updater to update the counter atomically.
360 * The counter is 20 bits, and the state data is 12.
362 #define RB_WRITE_MASK 0xfffff
363 #define RB_WRITE_INTCNT (1 << 20)
365 static void rb_init_page(struct buffer_data_page *bpage)
367 local_set(&bpage->commit, 0);
371 * ring_buffer_page_len - the size of data on the page.
372 * @page: The page to read
374 * Returns the amount of data on the page, including buffer page header.
376 size_t ring_buffer_page_len(void *page)
378 return local_read(&((struct buffer_data_page *)page)->commit)
379 + BUF_PAGE_HDR_SIZE;
383 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
384 * this issue out.
386 static void free_buffer_page(struct buffer_page *bpage)
388 free_page((unsigned long)bpage->page);
389 kfree(bpage);
393 * We need to fit the time_stamp delta into 27 bits.
395 static inline int test_time_stamp(u64 delta)
397 if (delta & TS_DELTA_TEST)
398 return 1;
399 return 0;
402 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
404 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
405 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
407 /* Max number of timestamps that can fit on a page */
408 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
410 int ring_buffer_print_page_header(struct trace_seq *s)
412 struct buffer_data_page field;
413 int ret;
415 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
416 "offset:0;\tsize:%u;\tsigned:%u;\n",
417 (unsigned int)sizeof(field.time_stamp),
418 (unsigned int)is_signed_type(u64));
420 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
421 "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)offsetof(typeof(field), commit),
423 (unsigned int)sizeof(field.commit),
424 (unsigned int)is_signed_type(long));
426 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
427 "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 (unsigned int)offsetof(typeof(field), commit),
430 (unsigned int)is_signed_type(long));
432 ret = trace_seq_printf(s, "\tfield: char data;\t"
433 "offset:%u;\tsize:%u;\tsigned:%u;\n",
434 (unsigned int)offsetof(typeof(field), data),
435 (unsigned int)BUF_PAGE_SIZE,
436 (unsigned int)is_signed_type(char));
438 return ret;
442 * head_page == tail_page && head == tail then buffer is empty.
444 struct ring_buffer_per_cpu {
445 int cpu;
446 atomic_t record_disabled;
447 struct ring_buffer *buffer;
448 spinlock_t reader_lock; /* serialize readers */
449 arch_spinlock_t lock;
450 struct lock_class_key lock_key;
451 struct list_head *pages;
452 struct buffer_page *head_page; /* read from head */
453 struct buffer_page *tail_page; /* write to tail */
454 struct buffer_page *commit_page; /* committed pages */
455 struct buffer_page *reader_page;
456 unsigned long lost_events;
457 unsigned long last_overrun;
458 local_t commit_overrun;
459 local_t overrun;
460 local_t entries;
461 local_t committing;
462 local_t commits;
463 unsigned long read;
464 u64 write_stamp;
465 u64 read_stamp;
468 struct ring_buffer {
469 unsigned pages;
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 cpumask_var_t cpumask;
475 struct lock_class_key *reader_lock_key;
477 struct mutex mutex;
479 struct ring_buffer_per_cpu **buffers;
481 #ifdef CONFIG_HOTPLUG_CPU
482 struct notifier_block cpu_notify;
483 #endif
484 u64 (*clock)(void);
487 struct ring_buffer_iter {
488 struct ring_buffer_per_cpu *cpu_buffer;
489 unsigned long head;
490 struct buffer_page *head_page;
491 struct buffer_page *cache_reader_page;
492 unsigned long cache_read;
493 u64 read_stamp;
496 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
497 #define RB_WARN_ON(b, cond) \
498 ({ \
499 int _____ret = unlikely(cond); \
500 if (_____ret) { \
501 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
502 struct ring_buffer_per_cpu *__b = \
503 (void *)b; \
504 atomic_inc(&__b->buffer->record_disabled); \
505 } else \
506 atomic_inc(&b->record_disabled); \
507 WARN_ON(1); \
509 _____ret; \
512 /* Up this if you want to test the TIME_EXTENTS and normalization */
513 #define DEBUG_SHIFT 0
515 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
517 /* shift to debug/test normalization and TIME_EXTENTS */
518 return buffer->clock() << DEBUG_SHIFT;
521 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
523 u64 time;
525 preempt_disable_notrace();
526 time = rb_time_stamp(buffer);
527 preempt_enable_no_resched_notrace();
529 return time;
531 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
533 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
534 int cpu, u64 *ts)
536 /* Just stupid testing the normalize function and deltas */
537 *ts >>= DEBUG_SHIFT;
539 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
542 * Making the ring buffer lockless makes things tricky.
543 * Although writes only happen on the CPU that they are on,
544 * and they only need to worry about interrupts. Reads can
545 * happen on any CPU.
547 * The reader page is always off the ring buffer, but when the
548 * reader finishes with a page, it needs to swap its page with
549 * a new one from the buffer. The reader needs to take from
550 * the head (writes go to the tail). But if a writer is in overwrite
551 * mode and wraps, it must push the head page forward.
553 * Here lies the problem.
555 * The reader must be careful to replace only the head page, and
556 * not another one. As described at the top of the file in the
557 * ASCII art, the reader sets its old page to point to the next
558 * page after head. It then sets the page after head to point to
559 * the old reader page. But if the writer moves the head page
560 * during this operation, the reader could end up with the tail.
562 * We use cmpxchg to help prevent this race. We also do something
563 * special with the page before head. We set the LSB to 1.
565 * When the writer must push the page forward, it will clear the
566 * bit that points to the head page, move the head, and then set
567 * the bit that points to the new head page.
569 * We also don't want an interrupt coming in and moving the head
570 * page on another writer. Thus we use the second LSB to catch
571 * that too. Thus:
573 * head->list->prev->next bit 1 bit 0
574 * ------- -------
575 * Normal page 0 0
576 * Points to head page 0 1
577 * New head page 1 0
579 * Note we can not trust the prev pointer of the head page, because:
581 * +----+ +-----+ +-----+
582 * | |------>| T |---X--->| N |
583 * | |<------| | | |
584 * +----+ +-----+ +-----+
585 * ^ ^ |
586 * | +-----+ | |
587 * +----------| R |----------+ |
588 * | |<-----------+
589 * +-----+
591 * Key: ---X--> HEAD flag set in pointer
592 * T Tail page
593 * R Reader page
594 * N Next page
596 * (see __rb_reserve_next() to see where this happens)
598 * What the above shows is that the reader just swapped out
599 * the reader page with a page in the buffer, but before it
600 * could make the new header point back to the new page added
601 * it was preempted by a writer. The writer moved forward onto
602 * the new page added by the reader and is about to move forward
603 * again.
605 * You can see, it is legitimate for the previous pointer of
606 * the head (or any page) not to point back to itself. But only
607 * temporarially.
610 #define RB_PAGE_NORMAL 0UL
611 #define RB_PAGE_HEAD 1UL
612 #define RB_PAGE_UPDATE 2UL
615 #define RB_FLAG_MASK 3UL
617 /* PAGE_MOVED is not part of the mask */
618 #define RB_PAGE_MOVED 4UL
621 * rb_list_head - remove any bit
623 static struct list_head *rb_list_head(struct list_head *list)
625 unsigned long val = (unsigned long)list;
627 return (struct list_head *)(val & ~RB_FLAG_MASK);
631 * rb_is_head_page - test if the given page is the head page
633 * Because the reader may move the head_page pointer, we can
634 * not trust what the head page is (it may be pointing to
635 * the reader page). But if the next page is a header page,
636 * its flags will be non zero.
638 static int inline
639 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
640 struct buffer_page *page, struct list_head *list)
642 unsigned long val;
644 val = (unsigned long)list->next;
646 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
647 return RB_PAGE_MOVED;
649 return val & RB_FLAG_MASK;
653 * rb_is_reader_page
655 * The unique thing about the reader page, is that, if the
656 * writer is ever on it, the previous pointer never points
657 * back to the reader page.
659 static int rb_is_reader_page(struct buffer_page *page)
661 struct list_head *list = page->list.prev;
663 return rb_list_head(list->next) != &page->list;
667 * rb_set_list_to_head - set a list_head to be pointing to head.
669 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
670 struct list_head *list)
672 unsigned long *ptr;
674 ptr = (unsigned long *)&list->next;
675 *ptr |= RB_PAGE_HEAD;
676 *ptr &= ~RB_PAGE_UPDATE;
680 * rb_head_page_activate - sets up head page
682 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
684 struct buffer_page *head;
686 head = cpu_buffer->head_page;
687 if (!head)
688 return;
691 * Set the previous list pointer to have the HEAD flag.
693 rb_set_list_to_head(cpu_buffer, head->list.prev);
696 static void rb_list_head_clear(struct list_head *list)
698 unsigned long *ptr = (unsigned long *)&list->next;
700 *ptr &= ~RB_FLAG_MASK;
704 * rb_head_page_dactivate - clears head page ptr (for free list)
706 static void
707 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
709 struct list_head *hd;
711 /* Go through the whole list and clear any pointers found. */
712 rb_list_head_clear(cpu_buffer->pages);
714 list_for_each(hd, cpu_buffer->pages)
715 rb_list_head_clear(hd);
718 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
719 struct buffer_page *head,
720 struct buffer_page *prev,
721 int old_flag, int new_flag)
723 struct list_head *list;
724 unsigned long val = (unsigned long)&head->list;
725 unsigned long ret;
727 list = &prev->list;
729 val &= ~RB_FLAG_MASK;
731 ret = cmpxchg((unsigned long *)&list->next,
732 val | old_flag, val | new_flag);
734 /* check if the reader took the page */
735 if ((ret & ~RB_FLAG_MASK) != val)
736 return RB_PAGE_MOVED;
738 return ret & RB_FLAG_MASK;
741 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
742 struct buffer_page *head,
743 struct buffer_page *prev,
744 int old_flag)
746 return rb_head_page_set(cpu_buffer, head, prev,
747 old_flag, RB_PAGE_UPDATE);
750 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
751 struct buffer_page *head,
752 struct buffer_page *prev,
753 int old_flag)
755 return rb_head_page_set(cpu_buffer, head, prev,
756 old_flag, RB_PAGE_HEAD);
759 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
760 struct buffer_page *head,
761 struct buffer_page *prev,
762 int old_flag)
764 return rb_head_page_set(cpu_buffer, head, prev,
765 old_flag, RB_PAGE_NORMAL);
768 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
769 struct buffer_page **bpage)
771 struct list_head *p = rb_list_head((*bpage)->list.next);
773 *bpage = list_entry(p, struct buffer_page, list);
776 static struct buffer_page *
777 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
779 struct buffer_page *head;
780 struct buffer_page *page;
781 struct list_head *list;
782 int i;
784 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
785 return NULL;
787 /* sanity check */
788 list = cpu_buffer->pages;
789 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
790 return NULL;
792 page = head = cpu_buffer->head_page;
794 * It is possible that the writer moves the header behind
795 * where we started, and we miss in one loop.
796 * A second loop should grab the header, but we'll do
797 * three loops just because I'm paranoid.
799 for (i = 0; i < 3; i++) {
800 do {
801 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
802 cpu_buffer->head_page = page;
803 return page;
805 rb_inc_page(cpu_buffer, &page);
806 } while (page != head);
809 RB_WARN_ON(cpu_buffer, 1);
811 return NULL;
814 static int rb_head_page_replace(struct buffer_page *old,
815 struct buffer_page *new)
817 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
818 unsigned long val;
819 unsigned long ret;
821 val = *ptr & ~RB_FLAG_MASK;
822 val |= RB_PAGE_HEAD;
824 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
826 return ret == val;
830 * rb_tail_page_update - move the tail page forward
832 * Returns 1 if moved tail page, 0 if someone else did.
834 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
835 struct buffer_page *tail_page,
836 struct buffer_page *next_page)
838 struct buffer_page *old_tail;
839 unsigned long old_entries;
840 unsigned long old_write;
841 int ret = 0;
844 * The tail page now needs to be moved forward.
846 * We need to reset the tail page, but without messing
847 * with possible erasing of data brought in by interrupts
848 * that have moved the tail page and are currently on it.
850 * We add a counter to the write field to denote this.
852 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
853 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
856 * Just make sure we have seen our old_write and synchronize
857 * with any interrupts that come in.
859 barrier();
862 * If the tail page is still the same as what we think
863 * it is, then it is up to us to update the tail
864 * pointer.
866 if (tail_page == cpu_buffer->tail_page) {
867 /* Zero the write counter */
868 unsigned long val = old_write & ~RB_WRITE_MASK;
869 unsigned long eval = old_entries & ~RB_WRITE_MASK;
872 * This will only succeed if an interrupt did
873 * not come in and change it. In which case, we
874 * do not want to modify it.
876 * We add (void) to let the compiler know that we do not care
877 * about the return value of these functions. We use the
878 * cmpxchg to only update if an interrupt did not already
879 * do it for us. If the cmpxchg fails, we don't care.
881 (void)local_cmpxchg(&next_page->write, old_write, val);
882 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
885 * No need to worry about races with clearing out the commit.
886 * it only can increment when a commit takes place. But that
887 * only happens in the outer most nested commit.
889 local_set(&next_page->page->commit, 0);
891 old_tail = cmpxchg(&cpu_buffer->tail_page,
892 tail_page, next_page);
894 if (old_tail == tail_page)
895 ret = 1;
898 return ret;
901 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *bpage)
904 unsigned long val = (unsigned long)bpage;
906 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
907 return 1;
909 return 0;
913 * rb_check_list - make sure a pointer to a list has the last bits zero
915 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
916 struct list_head *list)
918 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
919 return 1;
920 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
921 return 1;
922 return 0;
926 * check_pages - integrity check of buffer pages
927 * @cpu_buffer: CPU buffer with pages to test
929 * As a safety measure we check to make sure the data pages have not
930 * been corrupted.
932 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
934 struct list_head *head = cpu_buffer->pages;
935 struct buffer_page *bpage, *tmp;
937 rb_head_page_deactivate(cpu_buffer);
939 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
940 return -1;
941 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
942 return -1;
944 if (rb_check_list(cpu_buffer, head))
945 return -1;
947 list_for_each_entry_safe(bpage, tmp, head, list) {
948 if (RB_WARN_ON(cpu_buffer,
949 bpage->list.next->prev != &bpage->list))
950 return -1;
951 if (RB_WARN_ON(cpu_buffer,
952 bpage->list.prev->next != &bpage->list))
953 return -1;
954 if (rb_check_list(cpu_buffer, &bpage->list))
955 return -1;
958 rb_head_page_activate(cpu_buffer);
960 return 0;
963 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
964 unsigned nr_pages)
966 struct buffer_page *bpage, *tmp;
967 unsigned long addr;
968 LIST_HEAD(pages);
969 unsigned i;
971 WARN_ON(!nr_pages);
973 for (i = 0; i < nr_pages; i++) {
974 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
975 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
976 if (!bpage)
977 goto free_pages;
979 rb_check_bpage(cpu_buffer, bpage);
981 list_add(&bpage->list, &pages);
983 addr = __get_free_page(GFP_KERNEL);
984 if (!addr)
985 goto free_pages;
986 bpage->page = (void *)addr;
987 rb_init_page(bpage->page);
991 * The ring buffer page list is a circular list that does not
992 * start and end with a list head. All page list items point to
993 * other pages.
995 cpu_buffer->pages = pages.next;
996 list_del(&pages);
998 rb_check_pages(cpu_buffer);
1000 return 0;
1002 free_pages:
1003 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1004 list_del_init(&bpage->list);
1005 free_buffer_page(bpage);
1007 return -ENOMEM;
1010 static struct ring_buffer_per_cpu *
1011 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1013 struct ring_buffer_per_cpu *cpu_buffer;
1014 struct buffer_page *bpage;
1015 unsigned long addr;
1016 int ret;
1018 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1019 GFP_KERNEL, cpu_to_node(cpu));
1020 if (!cpu_buffer)
1021 return NULL;
1023 cpu_buffer->cpu = cpu;
1024 cpu_buffer->buffer = buffer;
1025 spin_lock_init(&cpu_buffer->reader_lock);
1026 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1027 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1029 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1030 GFP_KERNEL, cpu_to_node(cpu));
1031 if (!bpage)
1032 goto fail_free_buffer;
1034 rb_check_bpage(cpu_buffer, bpage);
1036 cpu_buffer->reader_page = bpage;
1037 addr = __get_free_page(GFP_KERNEL);
1038 if (!addr)
1039 goto fail_free_reader;
1040 bpage->page = (void *)addr;
1041 rb_init_page(bpage->page);
1043 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1045 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1046 if (ret < 0)
1047 goto fail_free_reader;
1049 cpu_buffer->head_page
1050 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1051 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1053 rb_head_page_activate(cpu_buffer);
1055 return cpu_buffer;
1057 fail_free_reader:
1058 free_buffer_page(cpu_buffer->reader_page);
1060 fail_free_buffer:
1061 kfree(cpu_buffer);
1062 return NULL;
1065 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1067 struct list_head *head = cpu_buffer->pages;
1068 struct buffer_page *bpage, *tmp;
1070 free_buffer_page(cpu_buffer->reader_page);
1072 rb_head_page_deactivate(cpu_buffer);
1074 if (head) {
1075 list_for_each_entry_safe(bpage, tmp, head, list) {
1076 list_del_init(&bpage->list);
1077 free_buffer_page(bpage);
1079 bpage = list_entry(head, struct buffer_page, list);
1080 free_buffer_page(bpage);
1083 kfree(cpu_buffer);
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 static int rb_cpu_notify(struct notifier_block *self,
1088 unsigned long action, void *hcpu);
1089 #endif
1092 * ring_buffer_alloc - allocate a new ring_buffer
1093 * @size: the size in bytes per cpu that is needed.
1094 * @flags: attributes to set for the ring buffer.
1096 * Currently the only flag that is available is the RB_FL_OVERWRITE
1097 * flag. This flag means that the buffer will overwrite old data
1098 * when the buffer wraps. If this flag is not set, the buffer will
1099 * drop data when the tail hits the head.
1101 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1102 struct lock_class_key *key)
1104 struct ring_buffer *buffer;
1105 int bsize;
1106 int cpu;
1108 /* keep it in its own cache line */
1109 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1110 GFP_KERNEL);
1111 if (!buffer)
1112 return NULL;
1114 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1115 goto fail_free_buffer;
1117 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1118 buffer->flags = flags;
1119 buffer->clock = trace_clock_local;
1120 buffer->reader_lock_key = key;
1122 /* need at least two pages */
1123 if (buffer->pages < 2)
1124 buffer->pages = 2;
1127 * In case of non-hotplug cpu, if the ring-buffer is allocated
1128 * in early initcall, it will not be notified of secondary cpus.
1129 * In that off case, we need to allocate for all possible cpus.
1131 #ifdef CONFIG_HOTPLUG_CPU
1132 get_online_cpus();
1133 cpumask_copy(buffer->cpumask, cpu_online_mask);
1134 #else
1135 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1136 #endif
1137 buffer->cpus = nr_cpu_ids;
1139 bsize = sizeof(void *) * nr_cpu_ids;
1140 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1141 GFP_KERNEL);
1142 if (!buffer->buffers)
1143 goto fail_free_cpumask;
1145 for_each_buffer_cpu(buffer, cpu) {
1146 buffer->buffers[cpu] =
1147 rb_allocate_cpu_buffer(buffer, cpu);
1148 if (!buffer->buffers[cpu])
1149 goto fail_free_buffers;
1152 #ifdef CONFIG_HOTPLUG_CPU
1153 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1154 buffer->cpu_notify.priority = 0;
1155 register_cpu_notifier(&buffer->cpu_notify);
1156 #endif
1158 put_online_cpus();
1159 mutex_init(&buffer->mutex);
1161 return buffer;
1163 fail_free_buffers:
1164 for_each_buffer_cpu(buffer, cpu) {
1165 if (buffer->buffers[cpu])
1166 rb_free_cpu_buffer(buffer->buffers[cpu]);
1168 kfree(buffer->buffers);
1170 fail_free_cpumask:
1171 free_cpumask_var(buffer->cpumask);
1172 put_online_cpus();
1174 fail_free_buffer:
1175 kfree(buffer);
1176 return NULL;
1178 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1181 * ring_buffer_free - free a ring buffer.
1182 * @buffer: the buffer to free.
1184 void
1185 ring_buffer_free(struct ring_buffer *buffer)
1187 int cpu;
1189 get_online_cpus();
1191 #ifdef CONFIG_HOTPLUG_CPU
1192 unregister_cpu_notifier(&buffer->cpu_notify);
1193 #endif
1195 for_each_buffer_cpu(buffer, cpu)
1196 rb_free_cpu_buffer(buffer->buffers[cpu]);
1198 put_online_cpus();
1200 kfree(buffer->buffers);
1201 free_cpumask_var(buffer->cpumask);
1203 kfree(buffer);
1205 EXPORT_SYMBOL_GPL(ring_buffer_free);
1207 void ring_buffer_set_clock(struct ring_buffer *buffer,
1208 u64 (*clock)(void))
1210 buffer->clock = clock;
1213 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1215 static void
1216 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1218 struct buffer_page *bpage;
1219 struct list_head *p;
1220 unsigned i;
1222 spin_lock_irq(&cpu_buffer->reader_lock);
1223 rb_head_page_deactivate(cpu_buffer);
1225 for (i = 0; i < nr_pages; i++) {
1226 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1227 goto out;
1228 p = cpu_buffer->pages->next;
1229 bpage = list_entry(p, struct buffer_page, list);
1230 list_del_init(&bpage->list);
1231 free_buffer_page(bpage);
1233 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1234 goto out;
1236 rb_reset_cpu(cpu_buffer);
1237 rb_check_pages(cpu_buffer);
1239 out:
1240 spin_unlock_irq(&cpu_buffer->reader_lock);
1243 static void
1244 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1245 struct list_head *pages, unsigned nr_pages)
1247 struct buffer_page *bpage;
1248 struct list_head *p;
1249 unsigned i;
1251 spin_lock_irq(&cpu_buffer->reader_lock);
1252 rb_head_page_deactivate(cpu_buffer);
1254 for (i = 0; i < nr_pages; i++) {
1255 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1256 goto out;
1257 p = pages->next;
1258 bpage = list_entry(p, struct buffer_page, list);
1259 list_del_init(&bpage->list);
1260 list_add_tail(&bpage->list, cpu_buffer->pages);
1262 rb_reset_cpu(cpu_buffer);
1263 rb_check_pages(cpu_buffer);
1265 out:
1266 spin_unlock_irq(&cpu_buffer->reader_lock);
1270 * ring_buffer_resize - resize the ring buffer
1271 * @buffer: the buffer to resize.
1272 * @size: the new size.
1274 * Minimum size is 2 * BUF_PAGE_SIZE.
1276 * Returns -1 on failure.
1278 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1280 struct ring_buffer_per_cpu *cpu_buffer;
1281 unsigned nr_pages, rm_pages, new_pages;
1282 struct buffer_page *bpage, *tmp;
1283 unsigned long buffer_size;
1284 unsigned long addr;
1285 LIST_HEAD(pages);
1286 int i, cpu;
1289 * Always succeed at resizing a non-existent buffer:
1291 if (!buffer)
1292 return size;
1294 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1295 size *= BUF_PAGE_SIZE;
1296 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1298 /* we need a minimum of two pages */
1299 if (size < BUF_PAGE_SIZE * 2)
1300 size = BUF_PAGE_SIZE * 2;
1302 if (size == buffer_size)
1303 return size;
1305 atomic_inc(&buffer->record_disabled);
1307 /* Make sure all writers are done with this buffer. */
1308 synchronize_sched();
1310 mutex_lock(&buffer->mutex);
1311 get_online_cpus();
1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1315 if (size < buffer_size) {
1317 /* easy case, just free pages */
1318 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1319 goto out_fail;
1321 rm_pages = buffer->pages - nr_pages;
1323 for_each_buffer_cpu(buffer, cpu) {
1324 cpu_buffer = buffer->buffers[cpu];
1325 rb_remove_pages(cpu_buffer, rm_pages);
1327 goto out;
1331 * This is a bit more difficult. We only want to add pages
1332 * when we can allocate enough for all CPUs. We do this
1333 * by allocating all the pages and storing them on a local
1334 * link list. If we succeed in our allocation, then we
1335 * add these pages to the cpu_buffers. Otherwise we just free
1336 * them all and return -ENOMEM;
1338 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1339 goto out_fail;
1341 new_pages = nr_pages - buffer->pages;
1343 for_each_buffer_cpu(buffer, cpu) {
1344 for (i = 0; i < new_pages; i++) {
1345 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1346 cache_line_size()),
1347 GFP_KERNEL, cpu_to_node(cpu));
1348 if (!bpage)
1349 goto free_pages;
1350 list_add(&bpage->list, &pages);
1351 addr = __get_free_page(GFP_KERNEL);
1352 if (!addr)
1353 goto free_pages;
1354 bpage->page = (void *)addr;
1355 rb_init_page(bpage->page);
1359 for_each_buffer_cpu(buffer, cpu) {
1360 cpu_buffer = buffer->buffers[cpu];
1361 rb_insert_pages(cpu_buffer, &pages, new_pages);
1364 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1365 goto out_fail;
1367 out:
1368 buffer->pages = nr_pages;
1369 put_online_cpus();
1370 mutex_unlock(&buffer->mutex);
1372 atomic_dec(&buffer->record_disabled);
1374 return size;
1376 free_pages:
1377 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1378 list_del_init(&bpage->list);
1379 free_buffer_page(bpage);
1381 put_online_cpus();
1382 mutex_unlock(&buffer->mutex);
1383 atomic_dec(&buffer->record_disabled);
1384 return -ENOMEM;
1387 * Something went totally wrong, and we are too paranoid
1388 * to even clean up the mess.
1390 out_fail:
1391 put_online_cpus();
1392 mutex_unlock(&buffer->mutex);
1393 atomic_dec(&buffer->record_disabled);
1394 return -1;
1396 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1398 static inline void *
1399 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1401 return bpage->data + index;
1404 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1406 return bpage->page->data + index;
1409 static inline struct ring_buffer_event *
1410 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1412 return __rb_page_index(cpu_buffer->reader_page,
1413 cpu_buffer->reader_page->read);
1416 static inline struct ring_buffer_event *
1417 rb_iter_head_event(struct ring_buffer_iter *iter)
1419 return __rb_page_index(iter->head_page, iter->head);
1422 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1424 return local_read(&bpage->write) & RB_WRITE_MASK;
1427 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1429 return local_read(&bpage->page->commit);
1432 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1434 return local_read(&bpage->entries) & RB_WRITE_MASK;
1437 /* Size is determined by what has been commited */
1438 static inline unsigned rb_page_size(struct buffer_page *bpage)
1440 return rb_page_commit(bpage);
1443 static inline unsigned
1444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1446 return rb_page_commit(cpu_buffer->commit_page);
1449 static inline unsigned
1450 rb_event_index(struct ring_buffer_event *event)
1452 unsigned long addr = (unsigned long)event;
1454 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1457 static inline int
1458 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1459 struct ring_buffer_event *event)
1461 unsigned long addr = (unsigned long)event;
1462 unsigned long index;
1464 index = rb_event_index(event);
1465 addr &= PAGE_MASK;
1467 return cpu_buffer->commit_page->page == (void *)addr &&
1468 rb_commit_index(cpu_buffer) == index;
1471 static void
1472 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1474 unsigned long max_count;
1477 * We only race with interrupts and NMIs on this CPU.
1478 * If we own the commit event, then we can commit
1479 * all others that interrupted us, since the interruptions
1480 * are in stack format (they finish before they come
1481 * back to us). This allows us to do a simple loop to
1482 * assign the commit to the tail.
1484 again:
1485 max_count = cpu_buffer->buffer->pages * 100;
1487 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1488 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1489 return;
1490 if (RB_WARN_ON(cpu_buffer,
1491 rb_is_reader_page(cpu_buffer->tail_page)))
1492 return;
1493 local_set(&cpu_buffer->commit_page->page->commit,
1494 rb_page_write(cpu_buffer->commit_page));
1495 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1496 cpu_buffer->write_stamp =
1497 cpu_buffer->commit_page->page->time_stamp;
1498 /* add barrier to keep gcc from optimizing too much */
1499 barrier();
1501 while (rb_commit_index(cpu_buffer) !=
1502 rb_page_write(cpu_buffer->commit_page)) {
1504 local_set(&cpu_buffer->commit_page->page->commit,
1505 rb_page_write(cpu_buffer->commit_page));
1506 RB_WARN_ON(cpu_buffer,
1507 local_read(&cpu_buffer->commit_page->page->commit) &
1508 ~RB_WRITE_MASK);
1509 barrier();
1512 /* again, keep gcc from optimizing */
1513 barrier();
1516 * If an interrupt came in just after the first while loop
1517 * and pushed the tail page forward, we will be left with
1518 * a dangling commit that will never go forward.
1520 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1521 goto again;
1524 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1526 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1527 cpu_buffer->reader_page->read = 0;
1530 static void rb_inc_iter(struct ring_buffer_iter *iter)
1532 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1535 * The iterator could be on the reader page (it starts there).
1536 * But the head could have moved, since the reader was
1537 * found. Check for this case and assign the iterator
1538 * to the head page instead of next.
1540 if (iter->head_page == cpu_buffer->reader_page)
1541 iter->head_page = rb_set_head_page(cpu_buffer);
1542 else
1543 rb_inc_page(cpu_buffer, &iter->head_page);
1545 iter->read_stamp = iter->head_page->page->time_stamp;
1546 iter->head = 0;
1550 * ring_buffer_update_event - update event type and data
1551 * @event: the even to update
1552 * @type: the type of event
1553 * @length: the size of the event field in the ring buffer
1555 * Update the type and data fields of the event. The length
1556 * is the actual size that is written to the ring buffer,
1557 * and with this, we can determine what to place into the
1558 * data field.
1560 static void
1561 rb_update_event(struct ring_buffer_event *event,
1562 unsigned type, unsigned length)
1564 event->type_len = type;
1566 switch (type) {
1568 case RINGBUF_TYPE_PADDING:
1569 case RINGBUF_TYPE_TIME_EXTEND:
1570 case RINGBUF_TYPE_TIME_STAMP:
1571 break;
1573 case 0:
1574 length -= RB_EVNT_HDR_SIZE;
1575 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1576 event->array[0] = length;
1577 else
1578 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1579 break;
1580 default:
1581 BUG();
1586 * rb_handle_head_page - writer hit the head page
1588 * Returns: +1 to retry page
1589 * 0 to continue
1590 * -1 on error
1592 static int
1593 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1594 struct buffer_page *tail_page,
1595 struct buffer_page *next_page)
1597 struct buffer_page *new_head;
1598 int entries;
1599 int type;
1600 int ret;
1602 entries = rb_page_entries(next_page);
1605 * The hard part is here. We need to move the head
1606 * forward, and protect against both readers on
1607 * other CPUs and writers coming in via interrupts.
1609 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1610 RB_PAGE_HEAD);
1613 * type can be one of four:
1614 * NORMAL - an interrupt already moved it for us
1615 * HEAD - we are the first to get here.
1616 * UPDATE - we are the interrupt interrupting
1617 * a current move.
1618 * MOVED - a reader on another CPU moved the next
1619 * pointer to its reader page. Give up
1620 * and try again.
1623 switch (type) {
1624 case RB_PAGE_HEAD:
1626 * We changed the head to UPDATE, thus
1627 * it is our responsibility to update
1628 * the counters.
1630 local_add(entries, &cpu_buffer->overrun);
1633 * The entries will be zeroed out when we move the
1634 * tail page.
1637 /* still more to do */
1638 break;
1640 case RB_PAGE_UPDATE:
1642 * This is an interrupt that interrupt the
1643 * previous update. Still more to do.
1645 break;
1646 case RB_PAGE_NORMAL:
1648 * An interrupt came in before the update
1649 * and processed this for us.
1650 * Nothing left to do.
1652 return 1;
1653 case RB_PAGE_MOVED:
1655 * The reader is on another CPU and just did
1656 * a swap with our next_page.
1657 * Try again.
1659 return 1;
1660 default:
1661 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1662 return -1;
1666 * Now that we are here, the old head pointer is
1667 * set to UPDATE. This will keep the reader from
1668 * swapping the head page with the reader page.
1669 * The reader (on another CPU) will spin till
1670 * we are finished.
1672 * We just need to protect against interrupts
1673 * doing the job. We will set the next pointer
1674 * to HEAD. After that, we set the old pointer
1675 * to NORMAL, but only if it was HEAD before.
1676 * otherwise we are an interrupt, and only
1677 * want the outer most commit to reset it.
1679 new_head = next_page;
1680 rb_inc_page(cpu_buffer, &new_head);
1682 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1683 RB_PAGE_NORMAL);
1686 * Valid returns are:
1687 * HEAD - an interrupt came in and already set it.
1688 * NORMAL - One of two things:
1689 * 1) We really set it.
1690 * 2) A bunch of interrupts came in and moved
1691 * the page forward again.
1693 switch (ret) {
1694 case RB_PAGE_HEAD:
1695 case RB_PAGE_NORMAL:
1696 /* OK */
1697 break;
1698 default:
1699 RB_WARN_ON(cpu_buffer, 1);
1700 return -1;
1704 * It is possible that an interrupt came in,
1705 * set the head up, then more interrupts came in
1706 * and moved it again. When we get back here,
1707 * the page would have been set to NORMAL but we
1708 * just set it back to HEAD.
1710 * How do you detect this? Well, if that happened
1711 * the tail page would have moved.
1713 if (ret == RB_PAGE_NORMAL) {
1715 * If the tail had moved passed next, then we need
1716 * to reset the pointer.
1718 if (cpu_buffer->tail_page != tail_page &&
1719 cpu_buffer->tail_page != next_page)
1720 rb_head_page_set_normal(cpu_buffer, new_head,
1721 next_page,
1722 RB_PAGE_HEAD);
1726 * If this was the outer most commit (the one that
1727 * changed the original pointer from HEAD to UPDATE),
1728 * then it is up to us to reset it to NORMAL.
1730 if (type == RB_PAGE_HEAD) {
1731 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1732 tail_page,
1733 RB_PAGE_UPDATE);
1734 if (RB_WARN_ON(cpu_buffer,
1735 ret != RB_PAGE_UPDATE))
1736 return -1;
1739 return 0;
1742 static unsigned rb_calculate_event_length(unsigned length)
1744 struct ring_buffer_event event; /* Used only for sizeof array */
1746 /* zero length can cause confusions */
1747 if (!length)
1748 length = 1;
1750 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1751 length += sizeof(event.array[0]);
1753 length += RB_EVNT_HDR_SIZE;
1754 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1756 return length;
1759 static inline void
1760 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1761 struct buffer_page *tail_page,
1762 unsigned long tail, unsigned long length)
1764 struct ring_buffer_event *event;
1767 * Only the event that crossed the page boundary
1768 * must fill the old tail_page with padding.
1770 if (tail >= BUF_PAGE_SIZE) {
1772 * If the page was filled, then we still need
1773 * to update the real_end. Reset it to zero
1774 * and the reader will ignore it.
1776 if (tail == BUF_PAGE_SIZE)
1777 tail_page->real_end = 0;
1779 local_sub(length, &tail_page->write);
1780 return;
1783 event = __rb_page_index(tail_page, tail);
1784 kmemcheck_annotate_bitfield(event, bitfield);
1787 * Save the original length to the meta data.
1788 * This will be used by the reader to add lost event
1789 * counter.
1791 tail_page->real_end = tail;
1794 * If this event is bigger than the minimum size, then
1795 * we need to be careful that we don't subtract the
1796 * write counter enough to allow another writer to slip
1797 * in on this page.
1798 * We put in a discarded commit instead, to make sure
1799 * that this space is not used again.
1801 * If we are less than the minimum size, we don't need to
1802 * worry about it.
1804 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1805 /* No room for any events */
1807 /* Mark the rest of the page with padding */
1808 rb_event_set_padding(event);
1810 /* Set the write back to the previous setting */
1811 local_sub(length, &tail_page->write);
1812 return;
1815 /* Put in a discarded event */
1816 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1817 event->type_len = RINGBUF_TYPE_PADDING;
1818 /* time delta must be non zero */
1819 event->time_delta = 1;
1821 /* Set write to end of buffer */
1822 length = (tail + length) - BUF_PAGE_SIZE;
1823 local_sub(length, &tail_page->write);
1826 static struct ring_buffer_event *
1827 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1828 unsigned long length, unsigned long tail,
1829 struct buffer_page *tail_page, u64 *ts)
1831 struct buffer_page *commit_page = cpu_buffer->commit_page;
1832 struct ring_buffer *buffer = cpu_buffer->buffer;
1833 struct buffer_page *next_page;
1834 int ret;
1836 next_page = tail_page;
1838 rb_inc_page(cpu_buffer, &next_page);
1841 * If for some reason, we had an interrupt storm that made
1842 * it all the way around the buffer, bail, and warn
1843 * about it.
1845 if (unlikely(next_page == commit_page)) {
1846 local_inc(&cpu_buffer->commit_overrun);
1847 goto out_reset;
1851 * This is where the fun begins!
1853 * We are fighting against races between a reader that
1854 * could be on another CPU trying to swap its reader
1855 * page with the buffer head.
1857 * We are also fighting against interrupts coming in and
1858 * moving the head or tail on us as well.
1860 * If the next page is the head page then we have filled
1861 * the buffer, unless the commit page is still on the
1862 * reader page.
1864 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1867 * If the commit is not on the reader page, then
1868 * move the header page.
1870 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1872 * If we are not in overwrite mode,
1873 * this is easy, just stop here.
1875 if (!(buffer->flags & RB_FL_OVERWRITE))
1876 goto out_reset;
1878 ret = rb_handle_head_page(cpu_buffer,
1879 tail_page,
1880 next_page);
1881 if (ret < 0)
1882 goto out_reset;
1883 if (ret)
1884 goto out_again;
1885 } else {
1887 * We need to be careful here too. The
1888 * commit page could still be on the reader
1889 * page. We could have a small buffer, and
1890 * have filled up the buffer with events
1891 * from interrupts and such, and wrapped.
1893 * Note, if the tail page is also the on the
1894 * reader_page, we let it move out.
1896 if (unlikely((cpu_buffer->commit_page !=
1897 cpu_buffer->tail_page) &&
1898 (cpu_buffer->commit_page ==
1899 cpu_buffer->reader_page))) {
1900 local_inc(&cpu_buffer->commit_overrun);
1901 goto out_reset;
1906 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1907 if (ret) {
1909 * Nested commits always have zero deltas, so
1910 * just reread the time stamp
1912 *ts = rb_time_stamp(buffer);
1913 next_page->page->time_stamp = *ts;
1916 out_again:
1918 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1920 /* fail and let the caller try again */
1921 return ERR_PTR(-EAGAIN);
1923 out_reset:
1924 /* reset write */
1925 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1927 return NULL;
1930 static struct ring_buffer_event *
1931 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1932 unsigned type, unsigned long length, u64 *ts)
1934 struct buffer_page *tail_page;
1935 struct ring_buffer_event *event;
1936 unsigned long tail, write;
1938 tail_page = cpu_buffer->tail_page;
1939 write = local_add_return(length, &tail_page->write);
1941 /* set write to only the index of the write */
1942 write &= RB_WRITE_MASK;
1943 tail = write - length;
1945 /* See if we shot pass the end of this buffer page */
1946 if (write > BUF_PAGE_SIZE)
1947 return rb_move_tail(cpu_buffer, length, tail,
1948 tail_page, ts);
1950 /* We reserved something on the buffer */
1952 event = __rb_page_index(tail_page, tail);
1953 kmemcheck_annotate_bitfield(event, bitfield);
1954 rb_update_event(event, type, length);
1956 /* The passed in type is zero for DATA */
1957 if (likely(!type))
1958 local_inc(&tail_page->entries);
1961 * If this is the first commit on the page, then update
1962 * its timestamp.
1964 if (!tail)
1965 tail_page->page->time_stamp = *ts;
1967 return event;
1970 static inline int
1971 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1972 struct ring_buffer_event *event)
1974 unsigned long new_index, old_index;
1975 struct buffer_page *bpage;
1976 unsigned long index;
1977 unsigned long addr;
1979 new_index = rb_event_index(event);
1980 old_index = new_index + rb_event_length(event);
1981 addr = (unsigned long)event;
1982 addr &= PAGE_MASK;
1984 bpage = cpu_buffer->tail_page;
1986 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1987 unsigned long write_mask =
1988 local_read(&bpage->write) & ~RB_WRITE_MASK;
1990 * This is on the tail page. It is possible that
1991 * a write could come in and move the tail page
1992 * and write to the next page. That is fine
1993 * because we just shorten what is on this page.
1995 old_index += write_mask;
1996 new_index += write_mask;
1997 index = local_cmpxchg(&bpage->write, old_index, new_index);
1998 if (index == old_index)
1999 return 1;
2002 /* could not discard */
2003 return 0;
2006 static int
2007 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2008 u64 *ts, u64 *delta)
2010 struct ring_buffer_event *event;
2011 int ret;
2013 WARN_ONCE(*delta > (1ULL << 59),
2014 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2015 (unsigned long long)*delta,
2016 (unsigned long long)*ts,
2017 (unsigned long long)cpu_buffer->write_stamp);
2020 * The delta is too big, we to add a
2021 * new timestamp.
2023 event = __rb_reserve_next(cpu_buffer,
2024 RINGBUF_TYPE_TIME_EXTEND,
2025 RB_LEN_TIME_EXTEND,
2026 ts);
2027 if (!event)
2028 return -EBUSY;
2030 if (PTR_ERR(event) == -EAGAIN)
2031 return -EAGAIN;
2033 /* Only a commited time event can update the write stamp */
2034 if (rb_event_is_commit(cpu_buffer, event)) {
2036 * If this is the first on the page, then it was
2037 * updated with the page itself. Try to discard it
2038 * and if we can't just make it zero.
2040 if (rb_event_index(event)) {
2041 event->time_delta = *delta & TS_MASK;
2042 event->array[0] = *delta >> TS_SHIFT;
2043 } else {
2044 /* try to discard, since we do not need this */
2045 if (!rb_try_to_discard(cpu_buffer, event)) {
2046 /* nope, just zero it */
2047 event->time_delta = 0;
2048 event->array[0] = 0;
2051 cpu_buffer->write_stamp = *ts;
2052 /* let the caller know this was the commit */
2053 ret = 1;
2054 } else {
2055 /* Try to discard the event */
2056 if (!rb_try_to_discard(cpu_buffer, event)) {
2057 /* Darn, this is just wasted space */
2058 event->time_delta = 0;
2059 event->array[0] = 0;
2061 ret = 0;
2064 *delta = 0;
2066 return ret;
2069 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2071 local_inc(&cpu_buffer->committing);
2072 local_inc(&cpu_buffer->commits);
2075 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2077 unsigned long commits;
2079 if (RB_WARN_ON(cpu_buffer,
2080 !local_read(&cpu_buffer->committing)))
2081 return;
2083 again:
2084 commits = local_read(&cpu_buffer->commits);
2085 /* synchronize with interrupts */
2086 barrier();
2087 if (local_read(&cpu_buffer->committing) == 1)
2088 rb_set_commit_to_write(cpu_buffer);
2090 local_dec(&cpu_buffer->committing);
2092 /* synchronize with interrupts */
2093 barrier();
2096 * Need to account for interrupts coming in between the
2097 * updating of the commit page and the clearing of the
2098 * committing counter.
2100 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2101 !local_read(&cpu_buffer->committing)) {
2102 local_inc(&cpu_buffer->committing);
2103 goto again;
2107 static struct ring_buffer_event *
2108 rb_reserve_next_event(struct ring_buffer *buffer,
2109 struct ring_buffer_per_cpu *cpu_buffer,
2110 unsigned long length)
2112 struct ring_buffer_event *event;
2113 u64 ts, delta = 0;
2114 int commit = 0;
2115 int nr_loops = 0;
2117 rb_start_commit(cpu_buffer);
2119 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2121 * Due to the ability to swap a cpu buffer from a buffer
2122 * it is possible it was swapped before we committed.
2123 * (committing stops a swap). We check for it here and
2124 * if it happened, we have to fail the write.
2126 barrier();
2127 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2128 local_dec(&cpu_buffer->committing);
2129 local_dec(&cpu_buffer->commits);
2130 return NULL;
2132 #endif
2134 length = rb_calculate_event_length(length);
2135 again:
2137 * We allow for interrupts to reenter here and do a trace.
2138 * If one does, it will cause this original code to loop
2139 * back here. Even with heavy interrupts happening, this
2140 * should only happen a few times in a row. If this happens
2141 * 1000 times in a row, there must be either an interrupt
2142 * storm or we have something buggy.
2143 * Bail!
2145 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2146 goto out_fail;
2148 ts = rb_time_stamp(cpu_buffer->buffer);
2151 * Only the first commit can update the timestamp.
2152 * Yes there is a race here. If an interrupt comes in
2153 * just after the conditional and it traces too, then it
2154 * will also check the deltas. More than one timestamp may
2155 * also be made. But only the entry that did the actual
2156 * commit will be something other than zero.
2158 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2159 rb_page_write(cpu_buffer->tail_page) ==
2160 rb_commit_index(cpu_buffer))) {
2161 u64 diff;
2163 diff = ts - cpu_buffer->write_stamp;
2165 /* make sure this diff is calculated here */
2166 barrier();
2168 /* Did the write stamp get updated already? */
2169 if (unlikely(ts < cpu_buffer->write_stamp))
2170 goto get_event;
2172 delta = diff;
2173 if (unlikely(test_time_stamp(delta))) {
2175 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2176 if (commit == -EBUSY)
2177 goto out_fail;
2179 if (commit == -EAGAIN)
2180 goto again;
2182 RB_WARN_ON(cpu_buffer, commit < 0);
2186 get_event:
2187 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2188 if (unlikely(PTR_ERR(event) == -EAGAIN))
2189 goto again;
2191 if (!event)
2192 goto out_fail;
2194 if (!rb_event_is_commit(cpu_buffer, event))
2195 delta = 0;
2197 event->time_delta = delta;
2199 return event;
2201 out_fail:
2202 rb_end_commit(cpu_buffer);
2203 return NULL;
2206 #ifdef CONFIG_TRACING
2208 #define TRACE_RECURSIVE_DEPTH 16
2210 static int trace_recursive_lock(void)
2212 current->trace_recursion++;
2214 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2215 return 0;
2217 /* Disable all tracing before we do anything else */
2218 tracing_off_permanent();
2220 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2221 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2222 current->trace_recursion,
2223 hardirq_count() >> HARDIRQ_SHIFT,
2224 softirq_count() >> SOFTIRQ_SHIFT,
2225 in_nmi());
2227 WARN_ON_ONCE(1);
2228 return -1;
2231 static void trace_recursive_unlock(void)
2233 WARN_ON_ONCE(!current->trace_recursion);
2235 current->trace_recursion--;
2238 #else
2240 #define trace_recursive_lock() (0)
2241 #define trace_recursive_unlock() do { } while (0)
2243 #endif
2246 * ring_buffer_lock_reserve - reserve a part of the buffer
2247 * @buffer: the ring buffer to reserve from
2248 * @length: the length of the data to reserve (excluding event header)
2250 * Returns a reseverd event on the ring buffer to copy directly to.
2251 * The user of this interface will need to get the body to write into
2252 * and can use the ring_buffer_event_data() interface.
2254 * The length is the length of the data needed, not the event length
2255 * which also includes the event header.
2257 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2258 * If NULL is returned, then nothing has been allocated or locked.
2260 struct ring_buffer_event *
2261 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2263 struct ring_buffer_per_cpu *cpu_buffer;
2264 struct ring_buffer_event *event;
2265 int cpu;
2267 if (ring_buffer_flags != RB_BUFFERS_ON)
2268 return NULL;
2270 /* If we are tracing schedule, we don't want to recurse */
2271 preempt_disable_notrace();
2273 if (atomic_read(&buffer->record_disabled))
2274 goto out_nocheck;
2276 if (trace_recursive_lock())
2277 goto out_nocheck;
2279 cpu = raw_smp_processor_id();
2281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2282 goto out;
2284 cpu_buffer = buffer->buffers[cpu];
2286 if (atomic_read(&cpu_buffer->record_disabled))
2287 goto out;
2289 if (length > BUF_MAX_DATA_SIZE)
2290 goto out;
2292 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2293 if (!event)
2294 goto out;
2296 return event;
2298 out:
2299 trace_recursive_unlock();
2301 out_nocheck:
2302 preempt_enable_notrace();
2303 return NULL;
2305 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2307 static void
2308 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2309 struct ring_buffer_event *event)
2312 * The event first in the commit queue updates the
2313 * time stamp.
2315 if (rb_event_is_commit(cpu_buffer, event))
2316 cpu_buffer->write_stamp += event->time_delta;
2319 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2320 struct ring_buffer_event *event)
2322 local_inc(&cpu_buffer->entries);
2323 rb_update_write_stamp(cpu_buffer, event);
2324 rb_end_commit(cpu_buffer);
2328 * ring_buffer_unlock_commit - commit a reserved
2329 * @buffer: The buffer to commit to
2330 * @event: The event pointer to commit.
2332 * This commits the data to the ring buffer, and releases any locks held.
2334 * Must be paired with ring_buffer_lock_reserve.
2336 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2337 struct ring_buffer_event *event)
2339 struct ring_buffer_per_cpu *cpu_buffer;
2340 int cpu = raw_smp_processor_id();
2342 cpu_buffer = buffer->buffers[cpu];
2344 rb_commit(cpu_buffer, event);
2346 trace_recursive_unlock();
2348 preempt_enable_notrace();
2350 return 0;
2352 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2354 static inline void rb_event_discard(struct ring_buffer_event *event)
2356 /* array[0] holds the actual length for the discarded event */
2357 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2358 event->type_len = RINGBUF_TYPE_PADDING;
2359 /* time delta must be non zero */
2360 if (!event->time_delta)
2361 event->time_delta = 1;
2365 * Decrement the entries to the page that an event is on.
2366 * The event does not even need to exist, only the pointer
2367 * to the page it is on. This may only be called before the commit
2368 * takes place.
2370 static inline void
2371 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2372 struct ring_buffer_event *event)
2374 unsigned long addr = (unsigned long)event;
2375 struct buffer_page *bpage = cpu_buffer->commit_page;
2376 struct buffer_page *start;
2378 addr &= PAGE_MASK;
2380 /* Do the likely case first */
2381 if (likely(bpage->page == (void *)addr)) {
2382 local_dec(&bpage->entries);
2383 return;
2387 * Because the commit page may be on the reader page we
2388 * start with the next page and check the end loop there.
2390 rb_inc_page(cpu_buffer, &bpage);
2391 start = bpage;
2392 do {
2393 if (bpage->page == (void *)addr) {
2394 local_dec(&bpage->entries);
2395 return;
2397 rb_inc_page(cpu_buffer, &bpage);
2398 } while (bpage != start);
2400 /* commit not part of this buffer?? */
2401 RB_WARN_ON(cpu_buffer, 1);
2405 * ring_buffer_commit_discard - discard an event that has not been committed
2406 * @buffer: the ring buffer
2407 * @event: non committed event to discard
2409 * Sometimes an event that is in the ring buffer needs to be ignored.
2410 * This function lets the user discard an event in the ring buffer
2411 * and then that event will not be read later.
2413 * This function only works if it is called before the the item has been
2414 * committed. It will try to free the event from the ring buffer
2415 * if another event has not been added behind it.
2417 * If another event has been added behind it, it will set the event
2418 * up as discarded, and perform the commit.
2420 * If this function is called, do not call ring_buffer_unlock_commit on
2421 * the event.
2423 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2424 struct ring_buffer_event *event)
2426 struct ring_buffer_per_cpu *cpu_buffer;
2427 int cpu;
2429 /* The event is discarded regardless */
2430 rb_event_discard(event);
2432 cpu = smp_processor_id();
2433 cpu_buffer = buffer->buffers[cpu];
2436 * This must only be called if the event has not been
2437 * committed yet. Thus we can assume that preemption
2438 * is still disabled.
2440 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2442 rb_decrement_entry(cpu_buffer, event);
2443 if (rb_try_to_discard(cpu_buffer, event))
2444 goto out;
2447 * The commit is still visible by the reader, so we
2448 * must still update the timestamp.
2450 rb_update_write_stamp(cpu_buffer, event);
2451 out:
2452 rb_end_commit(cpu_buffer);
2454 trace_recursive_unlock();
2456 preempt_enable_notrace();
2459 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2462 * ring_buffer_write - write data to the buffer without reserving
2463 * @buffer: The ring buffer to write to.
2464 * @length: The length of the data being written (excluding the event header)
2465 * @data: The data to write to the buffer.
2467 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2468 * one function. If you already have the data to write to the buffer, it
2469 * may be easier to simply call this function.
2471 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2472 * and not the length of the event which would hold the header.
2474 int ring_buffer_write(struct ring_buffer *buffer,
2475 unsigned long length,
2476 void *data)
2478 struct ring_buffer_per_cpu *cpu_buffer;
2479 struct ring_buffer_event *event;
2480 void *body;
2481 int ret = -EBUSY;
2482 int cpu;
2484 if (ring_buffer_flags != RB_BUFFERS_ON)
2485 return -EBUSY;
2487 preempt_disable_notrace();
2489 if (atomic_read(&buffer->record_disabled))
2490 goto out;
2492 cpu = raw_smp_processor_id();
2494 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2495 goto out;
2497 cpu_buffer = buffer->buffers[cpu];
2499 if (atomic_read(&cpu_buffer->record_disabled))
2500 goto out;
2502 if (length > BUF_MAX_DATA_SIZE)
2503 goto out;
2505 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2506 if (!event)
2507 goto out;
2509 body = rb_event_data(event);
2511 memcpy(body, data, length);
2513 rb_commit(cpu_buffer, event);
2515 ret = 0;
2516 out:
2517 preempt_enable_notrace();
2519 return ret;
2521 EXPORT_SYMBOL_GPL(ring_buffer_write);
2523 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2525 struct buffer_page *reader = cpu_buffer->reader_page;
2526 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2527 struct buffer_page *commit = cpu_buffer->commit_page;
2529 /* In case of error, head will be NULL */
2530 if (unlikely(!head))
2531 return 1;
2533 return reader->read == rb_page_commit(reader) &&
2534 (commit == reader ||
2535 (commit == head &&
2536 head->read == rb_page_commit(commit)));
2540 * ring_buffer_record_disable - stop all writes into the buffer
2541 * @buffer: The ring buffer to stop writes to.
2543 * This prevents all writes to the buffer. Any attempt to write
2544 * to the buffer after this will fail and return NULL.
2546 * The caller should call synchronize_sched() after this.
2548 void ring_buffer_record_disable(struct ring_buffer *buffer)
2550 atomic_inc(&buffer->record_disabled);
2552 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2555 * ring_buffer_record_enable - enable writes to the buffer
2556 * @buffer: The ring buffer to enable writes
2558 * Note, multiple disables will need the same number of enables
2559 * to truly enable the writing (much like preempt_disable).
2561 void ring_buffer_record_enable(struct ring_buffer *buffer)
2563 atomic_dec(&buffer->record_disabled);
2565 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2568 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2569 * @buffer: The ring buffer to stop writes to.
2570 * @cpu: The CPU buffer to stop
2572 * This prevents all writes to the buffer. Any attempt to write
2573 * to the buffer after this will fail and return NULL.
2575 * The caller should call synchronize_sched() after this.
2577 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2579 struct ring_buffer_per_cpu *cpu_buffer;
2581 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2582 return;
2584 cpu_buffer = buffer->buffers[cpu];
2585 atomic_inc(&cpu_buffer->record_disabled);
2587 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2590 * ring_buffer_record_enable_cpu - enable writes to the buffer
2591 * @buffer: The ring buffer to enable writes
2592 * @cpu: The CPU to enable.
2594 * Note, multiple disables will need the same number of enables
2595 * to truly enable the writing (much like preempt_disable).
2597 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2599 struct ring_buffer_per_cpu *cpu_buffer;
2601 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2602 return;
2604 cpu_buffer = buffer->buffers[cpu];
2605 atomic_dec(&cpu_buffer->record_disabled);
2607 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2610 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2611 * @buffer: The ring buffer
2612 * @cpu: The per CPU buffer to get the entries from.
2614 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2616 struct ring_buffer_per_cpu *cpu_buffer;
2617 unsigned long ret;
2619 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2620 return 0;
2622 cpu_buffer = buffer->buffers[cpu];
2623 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2624 - cpu_buffer->read;
2626 return ret;
2628 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2631 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2632 * @buffer: The ring buffer
2633 * @cpu: The per CPU buffer to get the number of overruns from
2635 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2637 struct ring_buffer_per_cpu *cpu_buffer;
2638 unsigned long ret;
2640 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2641 return 0;
2643 cpu_buffer = buffer->buffers[cpu];
2644 ret = local_read(&cpu_buffer->overrun);
2646 return ret;
2648 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2651 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2652 * @buffer: The ring buffer
2653 * @cpu: The per CPU buffer to get the number of overruns from
2655 unsigned long
2656 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2658 struct ring_buffer_per_cpu *cpu_buffer;
2659 unsigned long ret;
2661 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2662 return 0;
2664 cpu_buffer = buffer->buffers[cpu];
2665 ret = local_read(&cpu_buffer->commit_overrun);
2667 return ret;
2669 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2672 * ring_buffer_entries - get the number of entries in a buffer
2673 * @buffer: The ring buffer
2675 * Returns the total number of entries in the ring buffer
2676 * (all CPU entries)
2678 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2680 struct ring_buffer_per_cpu *cpu_buffer;
2681 unsigned long entries = 0;
2682 int cpu;
2684 /* if you care about this being correct, lock the buffer */
2685 for_each_buffer_cpu(buffer, cpu) {
2686 cpu_buffer = buffer->buffers[cpu];
2687 entries += (local_read(&cpu_buffer->entries) -
2688 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2691 return entries;
2693 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2696 * ring_buffer_overruns - get the number of overruns in buffer
2697 * @buffer: The ring buffer
2699 * Returns the total number of overruns in the ring buffer
2700 * (all CPU entries)
2702 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2704 struct ring_buffer_per_cpu *cpu_buffer;
2705 unsigned long overruns = 0;
2706 int cpu;
2708 /* if you care about this being correct, lock the buffer */
2709 for_each_buffer_cpu(buffer, cpu) {
2710 cpu_buffer = buffer->buffers[cpu];
2711 overruns += local_read(&cpu_buffer->overrun);
2714 return overruns;
2716 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2718 static void rb_iter_reset(struct ring_buffer_iter *iter)
2720 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2722 /* Iterator usage is expected to have record disabled */
2723 if (list_empty(&cpu_buffer->reader_page->list)) {
2724 iter->head_page = rb_set_head_page(cpu_buffer);
2725 if (unlikely(!iter->head_page))
2726 return;
2727 iter->head = iter->head_page->read;
2728 } else {
2729 iter->head_page = cpu_buffer->reader_page;
2730 iter->head = cpu_buffer->reader_page->read;
2732 if (iter->head)
2733 iter->read_stamp = cpu_buffer->read_stamp;
2734 else
2735 iter->read_stamp = iter->head_page->page->time_stamp;
2736 iter->cache_reader_page = cpu_buffer->reader_page;
2737 iter->cache_read = cpu_buffer->read;
2741 * ring_buffer_iter_reset - reset an iterator
2742 * @iter: The iterator to reset
2744 * Resets the iterator, so that it will start from the beginning
2745 * again.
2747 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2749 struct ring_buffer_per_cpu *cpu_buffer;
2750 unsigned long flags;
2752 if (!iter)
2753 return;
2755 cpu_buffer = iter->cpu_buffer;
2757 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2758 rb_iter_reset(iter);
2759 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2761 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2764 * ring_buffer_iter_empty - check if an iterator has no more to read
2765 * @iter: The iterator to check
2767 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2769 struct ring_buffer_per_cpu *cpu_buffer;
2771 cpu_buffer = iter->cpu_buffer;
2773 return iter->head_page == cpu_buffer->commit_page &&
2774 iter->head == rb_commit_index(cpu_buffer);
2776 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2778 static void
2779 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2780 struct ring_buffer_event *event)
2782 u64 delta;
2784 switch (event->type_len) {
2785 case RINGBUF_TYPE_PADDING:
2786 return;
2788 case RINGBUF_TYPE_TIME_EXTEND:
2789 delta = event->array[0];
2790 delta <<= TS_SHIFT;
2791 delta += event->time_delta;
2792 cpu_buffer->read_stamp += delta;
2793 return;
2795 case RINGBUF_TYPE_TIME_STAMP:
2796 /* FIXME: not implemented */
2797 return;
2799 case RINGBUF_TYPE_DATA:
2800 cpu_buffer->read_stamp += event->time_delta;
2801 return;
2803 default:
2804 BUG();
2806 return;
2809 static void
2810 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2811 struct ring_buffer_event *event)
2813 u64 delta;
2815 switch (event->type_len) {
2816 case RINGBUF_TYPE_PADDING:
2817 return;
2819 case RINGBUF_TYPE_TIME_EXTEND:
2820 delta = event->array[0];
2821 delta <<= TS_SHIFT;
2822 delta += event->time_delta;
2823 iter->read_stamp += delta;
2824 return;
2826 case RINGBUF_TYPE_TIME_STAMP:
2827 /* FIXME: not implemented */
2828 return;
2830 case RINGBUF_TYPE_DATA:
2831 iter->read_stamp += event->time_delta;
2832 return;
2834 default:
2835 BUG();
2837 return;
2840 static struct buffer_page *
2841 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2843 struct buffer_page *reader = NULL;
2844 unsigned long overwrite;
2845 unsigned long flags;
2846 int nr_loops = 0;
2847 int ret;
2849 local_irq_save(flags);
2850 arch_spin_lock(&cpu_buffer->lock);
2852 again:
2854 * This should normally only loop twice. But because the
2855 * start of the reader inserts an empty page, it causes
2856 * a case where we will loop three times. There should be no
2857 * reason to loop four times (that I know of).
2859 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2860 reader = NULL;
2861 goto out;
2864 reader = cpu_buffer->reader_page;
2866 /* If there's more to read, return this page */
2867 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2868 goto out;
2870 /* Never should we have an index greater than the size */
2871 if (RB_WARN_ON(cpu_buffer,
2872 cpu_buffer->reader_page->read > rb_page_size(reader)))
2873 goto out;
2875 /* check if we caught up to the tail */
2876 reader = NULL;
2877 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2878 goto out;
2881 * Reset the reader page to size zero.
2883 local_set(&cpu_buffer->reader_page->write, 0);
2884 local_set(&cpu_buffer->reader_page->entries, 0);
2885 local_set(&cpu_buffer->reader_page->page->commit, 0);
2886 cpu_buffer->reader_page->real_end = 0;
2888 spin:
2890 * Splice the empty reader page into the list around the head.
2892 reader = rb_set_head_page(cpu_buffer);
2893 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2894 cpu_buffer->reader_page->list.prev = reader->list.prev;
2897 * cpu_buffer->pages just needs to point to the buffer, it
2898 * has no specific buffer page to point to. Lets move it out
2899 * of our way so we don't accidently swap it.
2901 cpu_buffer->pages = reader->list.prev;
2903 /* The reader page will be pointing to the new head */
2904 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2907 * We want to make sure we read the overruns after we set up our
2908 * pointers to the next object. The writer side does a
2909 * cmpxchg to cross pages which acts as the mb on the writer
2910 * side. Note, the reader will constantly fail the swap
2911 * while the writer is updating the pointers, so this
2912 * guarantees that the overwrite recorded here is the one we
2913 * want to compare with the last_overrun.
2915 smp_mb();
2916 overwrite = local_read(&(cpu_buffer->overrun));
2919 * Here's the tricky part.
2921 * We need to move the pointer past the header page.
2922 * But we can only do that if a writer is not currently
2923 * moving it. The page before the header page has the
2924 * flag bit '1' set if it is pointing to the page we want.
2925 * but if the writer is in the process of moving it
2926 * than it will be '2' or already moved '0'.
2929 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2932 * If we did not convert it, then we must try again.
2934 if (!ret)
2935 goto spin;
2938 * Yeah! We succeeded in replacing the page.
2940 * Now make the new head point back to the reader page.
2942 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2943 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2945 /* Finally update the reader page to the new head */
2946 cpu_buffer->reader_page = reader;
2947 rb_reset_reader_page(cpu_buffer);
2949 if (overwrite != cpu_buffer->last_overrun) {
2950 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2951 cpu_buffer->last_overrun = overwrite;
2954 goto again;
2956 out:
2957 arch_spin_unlock(&cpu_buffer->lock);
2958 local_irq_restore(flags);
2960 return reader;
2963 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2965 struct ring_buffer_event *event;
2966 struct buffer_page *reader;
2967 unsigned length;
2969 reader = rb_get_reader_page(cpu_buffer);
2971 /* This function should not be called when buffer is empty */
2972 if (RB_WARN_ON(cpu_buffer, !reader))
2973 return;
2975 event = rb_reader_event(cpu_buffer);
2977 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2978 cpu_buffer->read++;
2980 rb_update_read_stamp(cpu_buffer, event);
2982 length = rb_event_length(event);
2983 cpu_buffer->reader_page->read += length;
2986 static void rb_advance_iter(struct ring_buffer_iter *iter)
2988 struct ring_buffer *buffer;
2989 struct ring_buffer_per_cpu *cpu_buffer;
2990 struct ring_buffer_event *event;
2991 unsigned length;
2993 cpu_buffer = iter->cpu_buffer;
2994 buffer = cpu_buffer->buffer;
2997 * Check if we are at the end of the buffer.
2999 if (iter->head >= rb_page_size(iter->head_page)) {
3000 /* discarded commits can make the page empty */
3001 if (iter->head_page == cpu_buffer->commit_page)
3002 return;
3003 rb_inc_iter(iter);
3004 return;
3007 event = rb_iter_head_event(iter);
3009 length = rb_event_length(event);
3012 * This should not be called to advance the header if we are
3013 * at the tail of the buffer.
3015 if (RB_WARN_ON(cpu_buffer,
3016 (iter->head_page == cpu_buffer->commit_page) &&
3017 (iter->head + length > rb_commit_index(cpu_buffer))))
3018 return;
3020 rb_update_iter_read_stamp(iter, event);
3022 iter->head += length;
3024 /* check for end of page padding */
3025 if ((iter->head >= rb_page_size(iter->head_page)) &&
3026 (iter->head_page != cpu_buffer->commit_page))
3027 rb_advance_iter(iter);
3030 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3032 return cpu_buffer->lost_events;
3035 static struct ring_buffer_event *
3036 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3037 unsigned long *lost_events)
3039 struct ring_buffer_event *event;
3040 struct buffer_page *reader;
3041 int nr_loops = 0;
3043 again:
3045 * We repeat when a timestamp is encountered. It is possible
3046 * to get multiple timestamps from an interrupt entering just
3047 * as one timestamp is about to be written, or from discarded
3048 * commits. The most that we can have is the number on a single page.
3050 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3051 return NULL;
3053 reader = rb_get_reader_page(cpu_buffer);
3054 if (!reader)
3055 return NULL;
3057 event = rb_reader_event(cpu_buffer);
3059 switch (event->type_len) {
3060 case RINGBUF_TYPE_PADDING:
3061 if (rb_null_event(event))
3062 RB_WARN_ON(cpu_buffer, 1);
3064 * Because the writer could be discarding every
3065 * event it creates (which would probably be bad)
3066 * if we were to go back to "again" then we may never
3067 * catch up, and will trigger the warn on, or lock
3068 * the box. Return the padding, and we will release
3069 * the current locks, and try again.
3071 return event;
3073 case RINGBUF_TYPE_TIME_EXTEND:
3074 /* Internal data, OK to advance */
3075 rb_advance_reader(cpu_buffer);
3076 goto again;
3078 case RINGBUF_TYPE_TIME_STAMP:
3079 /* FIXME: not implemented */
3080 rb_advance_reader(cpu_buffer);
3081 goto again;
3083 case RINGBUF_TYPE_DATA:
3084 if (ts) {
3085 *ts = cpu_buffer->read_stamp + event->time_delta;
3086 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3087 cpu_buffer->cpu, ts);
3089 if (lost_events)
3090 *lost_events = rb_lost_events(cpu_buffer);
3091 return event;
3093 default:
3094 BUG();
3097 return NULL;
3099 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3101 static struct ring_buffer_event *
3102 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3104 struct ring_buffer *buffer;
3105 struct ring_buffer_per_cpu *cpu_buffer;
3106 struct ring_buffer_event *event;
3107 int nr_loops = 0;
3109 cpu_buffer = iter->cpu_buffer;
3110 buffer = cpu_buffer->buffer;
3113 * Check if someone performed a consuming read to
3114 * the buffer. A consuming read invalidates the iterator
3115 * and we need to reset the iterator in this case.
3117 if (unlikely(iter->cache_read != cpu_buffer->read ||
3118 iter->cache_reader_page != cpu_buffer->reader_page))
3119 rb_iter_reset(iter);
3121 again:
3122 if (ring_buffer_iter_empty(iter))
3123 return NULL;
3126 * We repeat when a timestamp is encountered.
3127 * We can get multiple timestamps by nested interrupts or also
3128 * if filtering is on (discarding commits). Since discarding
3129 * commits can be frequent we can get a lot of timestamps.
3130 * But we limit them by not adding timestamps if they begin
3131 * at the start of a page.
3133 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3134 return NULL;
3136 if (rb_per_cpu_empty(cpu_buffer))
3137 return NULL;
3139 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3140 rb_inc_iter(iter);
3141 goto again;
3144 event = rb_iter_head_event(iter);
3146 switch (event->type_len) {
3147 case RINGBUF_TYPE_PADDING:
3148 if (rb_null_event(event)) {
3149 rb_inc_iter(iter);
3150 goto again;
3152 rb_advance_iter(iter);
3153 return event;
3155 case RINGBUF_TYPE_TIME_EXTEND:
3156 /* Internal data, OK to advance */
3157 rb_advance_iter(iter);
3158 goto again;
3160 case RINGBUF_TYPE_TIME_STAMP:
3161 /* FIXME: not implemented */
3162 rb_advance_iter(iter);
3163 goto again;
3165 case RINGBUF_TYPE_DATA:
3166 if (ts) {
3167 *ts = iter->read_stamp + event->time_delta;
3168 ring_buffer_normalize_time_stamp(buffer,
3169 cpu_buffer->cpu, ts);
3171 return event;
3173 default:
3174 BUG();
3177 return NULL;
3179 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3181 static inline int rb_ok_to_lock(void)
3184 * If an NMI die dumps out the content of the ring buffer
3185 * do not grab locks. We also permanently disable the ring
3186 * buffer too. A one time deal is all you get from reading
3187 * the ring buffer from an NMI.
3189 if (likely(!in_nmi()))
3190 return 1;
3192 tracing_off_permanent();
3193 return 0;
3197 * ring_buffer_peek - peek at the next event to be read
3198 * @buffer: The ring buffer to read
3199 * @cpu: The cpu to peak at
3200 * @ts: The timestamp counter of this event.
3201 * @lost_events: a variable to store if events were lost (may be NULL)
3203 * This will return the event that will be read next, but does
3204 * not consume the data.
3206 struct ring_buffer_event *
3207 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3208 unsigned long *lost_events)
3210 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3211 struct ring_buffer_event *event;
3212 unsigned long flags;
3213 int dolock;
3215 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3216 return NULL;
3218 dolock = rb_ok_to_lock();
3219 again:
3220 local_irq_save(flags);
3221 if (dolock)
3222 spin_lock(&cpu_buffer->reader_lock);
3223 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3224 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3225 rb_advance_reader(cpu_buffer);
3226 if (dolock)
3227 spin_unlock(&cpu_buffer->reader_lock);
3228 local_irq_restore(flags);
3230 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3231 goto again;
3233 return event;
3237 * ring_buffer_iter_peek - peek at the next event to be read
3238 * @iter: The ring buffer iterator
3239 * @ts: The timestamp counter of this event.
3241 * This will return the event that will be read next, but does
3242 * not increment the iterator.
3244 struct ring_buffer_event *
3245 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3247 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3248 struct ring_buffer_event *event;
3249 unsigned long flags;
3251 again:
3252 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3253 event = rb_iter_peek(iter, ts);
3254 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3256 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3257 goto again;
3259 return event;
3263 * ring_buffer_consume - return an event and consume it
3264 * @buffer: The ring buffer to get the next event from
3265 * @cpu: the cpu to read the buffer from
3266 * @ts: a variable to store the timestamp (may be NULL)
3267 * @lost_events: a variable to store if events were lost (may be NULL)
3269 * Returns the next event in the ring buffer, and that event is consumed.
3270 * Meaning, that sequential reads will keep returning a different event,
3271 * and eventually empty the ring buffer if the producer is slower.
3273 struct ring_buffer_event *
3274 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3275 unsigned long *lost_events)
3277 struct ring_buffer_per_cpu *cpu_buffer;
3278 struct ring_buffer_event *event = NULL;
3279 unsigned long flags;
3280 int dolock;
3282 dolock = rb_ok_to_lock();
3284 again:
3285 /* might be called in atomic */
3286 preempt_disable();
3288 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3289 goto out;
3291 cpu_buffer = buffer->buffers[cpu];
3292 local_irq_save(flags);
3293 if (dolock)
3294 spin_lock(&cpu_buffer->reader_lock);
3296 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3297 if (event) {
3298 cpu_buffer->lost_events = 0;
3299 rb_advance_reader(cpu_buffer);
3302 if (dolock)
3303 spin_unlock(&cpu_buffer->reader_lock);
3304 local_irq_restore(flags);
3306 out:
3307 preempt_enable();
3309 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3310 goto again;
3312 return event;
3314 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3317 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3318 * @buffer: The ring buffer to read from
3319 * @cpu: The cpu buffer to iterate over
3321 * This performs the initial preparations necessary to iterate
3322 * through the buffer. Memory is allocated, buffer recording
3323 * is disabled, and the iterator pointer is returned to the caller.
3325 * Disabling buffer recordng prevents the reading from being
3326 * corrupted. This is not a consuming read, so a producer is not
3327 * expected.
3329 * After a sequence of ring_buffer_read_prepare calls, the user is
3330 * expected to make at least one call to ring_buffer_prepare_sync.
3331 * Afterwards, ring_buffer_read_start is invoked to get things going
3332 * for real.
3334 * This overall must be paired with ring_buffer_finish.
3336 struct ring_buffer_iter *
3337 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3339 struct ring_buffer_per_cpu *cpu_buffer;
3340 struct ring_buffer_iter *iter;
3342 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3343 return NULL;
3345 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3346 if (!iter)
3347 return NULL;
3349 cpu_buffer = buffer->buffers[cpu];
3351 iter->cpu_buffer = cpu_buffer;
3353 atomic_inc(&cpu_buffer->record_disabled);
3355 return iter;
3357 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3360 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3362 * All previously invoked ring_buffer_read_prepare calls to prepare
3363 * iterators will be synchronized. Afterwards, read_buffer_read_start
3364 * calls on those iterators are allowed.
3366 void
3367 ring_buffer_read_prepare_sync(void)
3369 synchronize_sched();
3371 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3374 * ring_buffer_read_start - start a non consuming read of the buffer
3375 * @iter: The iterator returned by ring_buffer_read_prepare
3377 * This finalizes the startup of an iteration through the buffer.
3378 * The iterator comes from a call to ring_buffer_read_prepare and
3379 * an intervening ring_buffer_read_prepare_sync must have been
3380 * performed.
3382 * Must be paired with ring_buffer_finish.
3384 void
3385 ring_buffer_read_start(struct ring_buffer_iter *iter)
3387 struct ring_buffer_per_cpu *cpu_buffer;
3388 unsigned long flags;
3390 if (!iter)
3391 return;
3393 cpu_buffer = iter->cpu_buffer;
3395 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396 arch_spin_lock(&cpu_buffer->lock);
3397 rb_iter_reset(iter);
3398 arch_spin_unlock(&cpu_buffer->lock);
3399 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3401 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3404 * ring_buffer_finish - finish reading the iterator of the buffer
3405 * @iter: The iterator retrieved by ring_buffer_start
3407 * This re-enables the recording to the buffer, and frees the
3408 * iterator.
3410 void
3411 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3413 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3415 atomic_dec(&cpu_buffer->record_disabled);
3416 kfree(iter);
3418 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3421 * ring_buffer_read - read the next item in the ring buffer by the iterator
3422 * @iter: The ring buffer iterator
3423 * @ts: The time stamp of the event read.
3425 * This reads the next event in the ring buffer and increments the iterator.
3427 struct ring_buffer_event *
3428 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3430 struct ring_buffer_event *event;
3431 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3432 unsigned long flags;
3434 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3435 again:
3436 event = rb_iter_peek(iter, ts);
3437 if (!event)
3438 goto out;
3440 if (event->type_len == RINGBUF_TYPE_PADDING)
3441 goto again;
3443 rb_advance_iter(iter);
3444 out:
3445 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3447 return event;
3449 EXPORT_SYMBOL_GPL(ring_buffer_read);
3452 * ring_buffer_size - return the size of the ring buffer (in bytes)
3453 * @buffer: The ring buffer.
3455 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3457 return BUF_PAGE_SIZE * buffer->pages;
3459 EXPORT_SYMBOL_GPL(ring_buffer_size);
3461 static void
3462 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3464 rb_head_page_deactivate(cpu_buffer);
3466 cpu_buffer->head_page
3467 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3468 local_set(&cpu_buffer->head_page->write, 0);
3469 local_set(&cpu_buffer->head_page->entries, 0);
3470 local_set(&cpu_buffer->head_page->page->commit, 0);
3472 cpu_buffer->head_page->read = 0;
3474 cpu_buffer->tail_page = cpu_buffer->head_page;
3475 cpu_buffer->commit_page = cpu_buffer->head_page;
3477 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3478 local_set(&cpu_buffer->reader_page->write, 0);
3479 local_set(&cpu_buffer->reader_page->entries, 0);
3480 local_set(&cpu_buffer->reader_page->page->commit, 0);
3481 cpu_buffer->reader_page->read = 0;
3483 local_set(&cpu_buffer->commit_overrun, 0);
3484 local_set(&cpu_buffer->overrun, 0);
3485 local_set(&cpu_buffer->entries, 0);
3486 local_set(&cpu_buffer->committing, 0);
3487 local_set(&cpu_buffer->commits, 0);
3488 cpu_buffer->read = 0;
3490 cpu_buffer->write_stamp = 0;
3491 cpu_buffer->read_stamp = 0;
3493 cpu_buffer->lost_events = 0;
3494 cpu_buffer->last_overrun = 0;
3496 rb_head_page_activate(cpu_buffer);
3500 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3501 * @buffer: The ring buffer to reset a per cpu buffer of
3502 * @cpu: The CPU buffer to be reset
3504 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3506 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3507 unsigned long flags;
3509 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3510 return;
3512 atomic_inc(&cpu_buffer->record_disabled);
3514 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3516 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3517 goto out;
3519 arch_spin_lock(&cpu_buffer->lock);
3521 rb_reset_cpu(cpu_buffer);
3523 arch_spin_unlock(&cpu_buffer->lock);
3525 out:
3526 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3528 atomic_dec(&cpu_buffer->record_disabled);
3530 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3533 * ring_buffer_reset - reset a ring buffer
3534 * @buffer: The ring buffer to reset all cpu buffers
3536 void ring_buffer_reset(struct ring_buffer *buffer)
3538 int cpu;
3540 for_each_buffer_cpu(buffer, cpu)
3541 ring_buffer_reset_cpu(buffer, cpu);
3543 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3546 * rind_buffer_empty - is the ring buffer empty?
3547 * @buffer: The ring buffer to test
3549 int ring_buffer_empty(struct ring_buffer *buffer)
3551 struct ring_buffer_per_cpu *cpu_buffer;
3552 unsigned long flags;
3553 int dolock;
3554 int cpu;
3555 int ret;
3557 dolock = rb_ok_to_lock();
3559 /* yes this is racy, but if you don't like the race, lock the buffer */
3560 for_each_buffer_cpu(buffer, cpu) {
3561 cpu_buffer = buffer->buffers[cpu];
3562 local_irq_save(flags);
3563 if (dolock)
3564 spin_lock(&cpu_buffer->reader_lock);
3565 ret = rb_per_cpu_empty(cpu_buffer);
3566 if (dolock)
3567 spin_unlock(&cpu_buffer->reader_lock);
3568 local_irq_restore(flags);
3570 if (!ret)
3571 return 0;
3574 return 1;
3576 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3579 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3580 * @buffer: The ring buffer
3581 * @cpu: The CPU buffer to test
3583 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3585 struct ring_buffer_per_cpu *cpu_buffer;
3586 unsigned long flags;
3587 int dolock;
3588 int ret;
3590 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3591 return 1;
3593 dolock = rb_ok_to_lock();
3595 cpu_buffer = buffer->buffers[cpu];
3596 local_irq_save(flags);
3597 if (dolock)
3598 spin_lock(&cpu_buffer->reader_lock);
3599 ret = rb_per_cpu_empty(cpu_buffer);
3600 if (dolock)
3601 spin_unlock(&cpu_buffer->reader_lock);
3602 local_irq_restore(flags);
3604 return ret;
3606 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3608 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3610 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3611 * @buffer_a: One buffer to swap with
3612 * @buffer_b: The other buffer to swap with
3614 * This function is useful for tracers that want to take a "snapshot"
3615 * of a CPU buffer and has another back up buffer lying around.
3616 * it is expected that the tracer handles the cpu buffer not being
3617 * used at the moment.
3619 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3620 struct ring_buffer *buffer_b, int cpu)
3622 struct ring_buffer_per_cpu *cpu_buffer_a;
3623 struct ring_buffer_per_cpu *cpu_buffer_b;
3624 int ret = -EINVAL;
3626 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3627 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3628 goto out;
3630 /* At least make sure the two buffers are somewhat the same */
3631 if (buffer_a->pages != buffer_b->pages)
3632 goto out;
3634 ret = -EAGAIN;
3636 if (ring_buffer_flags != RB_BUFFERS_ON)
3637 goto out;
3639 if (atomic_read(&buffer_a->record_disabled))
3640 goto out;
3642 if (atomic_read(&buffer_b->record_disabled))
3643 goto out;
3645 cpu_buffer_a = buffer_a->buffers[cpu];
3646 cpu_buffer_b = buffer_b->buffers[cpu];
3648 if (atomic_read(&cpu_buffer_a->record_disabled))
3649 goto out;
3651 if (atomic_read(&cpu_buffer_b->record_disabled))
3652 goto out;
3655 * We can't do a synchronize_sched here because this
3656 * function can be called in atomic context.
3657 * Normally this will be called from the same CPU as cpu.
3658 * If not it's up to the caller to protect this.
3660 atomic_inc(&cpu_buffer_a->record_disabled);
3661 atomic_inc(&cpu_buffer_b->record_disabled);
3663 ret = -EBUSY;
3664 if (local_read(&cpu_buffer_a->committing))
3665 goto out_dec;
3666 if (local_read(&cpu_buffer_b->committing))
3667 goto out_dec;
3669 buffer_a->buffers[cpu] = cpu_buffer_b;
3670 buffer_b->buffers[cpu] = cpu_buffer_a;
3672 cpu_buffer_b->buffer = buffer_a;
3673 cpu_buffer_a->buffer = buffer_b;
3675 ret = 0;
3677 out_dec:
3678 atomic_dec(&cpu_buffer_a->record_disabled);
3679 atomic_dec(&cpu_buffer_b->record_disabled);
3680 out:
3681 return ret;
3683 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3684 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3687 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3688 * @buffer: the buffer to allocate for.
3690 * This function is used in conjunction with ring_buffer_read_page.
3691 * When reading a full page from the ring buffer, these functions
3692 * can be used to speed up the process. The calling function should
3693 * allocate a few pages first with this function. Then when it
3694 * needs to get pages from the ring buffer, it passes the result
3695 * of this function into ring_buffer_read_page, which will swap
3696 * the page that was allocated, with the read page of the buffer.
3698 * Returns:
3699 * The page allocated, or NULL on error.
3701 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3703 struct buffer_data_page *bpage;
3704 unsigned long addr;
3706 addr = __get_free_page(GFP_KERNEL);
3707 if (!addr)
3708 return NULL;
3710 bpage = (void *)addr;
3712 rb_init_page(bpage);
3714 return bpage;
3716 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3719 * ring_buffer_free_read_page - free an allocated read page
3720 * @buffer: the buffer the page was allocate for
3721 * @data: the page to free
3723 * Free a page allocated from ring_buffer_alloc_read_page.
3725 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3727 free_page((unsigned long)data);
3729 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3732 * ring_buffer_read_page - extract a page from the ring buffer
3733 * @buffer: buffer to extract from
3734 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3735 * @len: amount to extract
3736 * @cpu: the cpu of the buffer to extract
3737 * @full: should the extraction only happen when the page is full.
3739 * This function will pull out a page from the ring buffer and consume it.
3740 * @data_page must be the address of the variable that was returned
3741 * from ring_buffer_alloc_read_page. This is because the page might be used
3742 * to swap with a page in the ring buffer.
3744 * for example:
3745 * rpage = ring_buffer_alloc_read_page(buffer);
3746 * if (!rpage)
3747 * return error;
3748 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3749 * if (ret >= 0)
3750 * process_page(rpage, ret);
3752 * When @full is set, the function will not return true unless
3753 * the writer is off the reader page.
3755 * Note: it is up to the calling functions to handle sleeps and wakeups.
3756 * The ring buffer can be used anywhere in the kernel and can not
3757 * blindly call wake_up. The layer that uses the ring buffer must be
3758 * responsible for that.
3760 * Returns:
3761 * >=0 if data has been transferred, returns the offset of consumed data.
3762 * <0 if no data has been transferred.
3764 int ring_buffer_read_page(struct ring_buffer *buffer,
3765 void **data_page, size_t len, int cpu, int full)
3767 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3768 struct ring_buffer_event *event;
3769 struct buffer_data_page *bpage;
3770 struct buffer_page *reader;
3771 unsigned long missed_events;
3772 unsigned long flags;
3773 unsigned int commit;
3774 unsigned int read;
3775 u64 save_timestamp;
3776 int ret = -1;
3778 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3779 goto out;
3782 * If len is not big enough to hold the page header, then
3783 * we can not copy anything.
3785 if (len <= BUF_PAGE_HDR_SIZE)
3786 goto out;
3788 len -= BUF_PAGE_HDR_SIZE;
3790 if (!data_page)
3791 goto out;
3793 bpage = *data_page;
3794 if (!bpage)
3795 goto out;
3797 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3799 reader = rb_get_reader_page(cpu_buffer);
3800 if (!reader)
3801 goto out_unlock;
3803 event = rb_reader_event(cpu_buffer);
3805 read = reader->read;
3806 commit = rb_page_commit(reader);
3808 /* Check if any events were dropped */
3809 missed_events = cpu_buffer->lost_events;
3812 * If this page has been partially read or
3813 * if len is not big enough to read the rest of the page or
3814 * a writer is still on the page, then
3815 * we must copy the data from the page to the buffer.
3816 * Otherwise, we can simply swap the page with the one passed in.
3818 if (read || (len < (commit - read)) ||
3819 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3820 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3821 unsigned int rpos = read;
3822 unsigned int pos = 0;
3823 unsigned int size;
3825 if (full)
3826 goto out_unlock;
3828 if (len > (commit - read))
3829 len = (commit - read);
3831 size = rb_event_length(event);
3833 if (len < size)
3834 goto out_unlock;
3836 /* save the current timestamp, since the user will need it */
3837 save_timestamp = cpu_buffer->read_stamp;
3839 /* Need to copy one event at a time */
3840 do {
3841 memcpy(bpage->data + pos, rpage->data + rpos, size);
3843 len -= size;
3845 rb_advance_reader(cpu_buffer);
3846 rpos = reader->read;
3847 pos += size;
3849 if (rpos >= commit)
3850 break;
3852 event = rb_reader_event(cpu_buffer);
3853 size = rb_event_length(event);
3854 } while (len > size);
3856 /* update bpage */
3857 local_set(&bpage->commit, pos);
3858 bpage->time_stamp = save_timestamp;
3860 /* we copied everything to the beginning */
3861 read = 0;
3862 } else {
3863 /* update the entry counter */
3864 cpu_buffer->read += rb_page_entries(reader);
3866 /* swap the pages */
3867 rb_init_page(bpage);
3868 bpage = reader->page;
3869 reader->page = *data_page;
3870 local_set(&reader->write, 0);
3871 local_set(&reader->entries, 0);
3872 reader->read = 0;
3873 *data_page = bpage;
3876 * Use the real_end for the data size,
3877 * This gives us a chance to store the lost events
3878 * on the page.
3880 if (reader->real_end)
3881 local_set(&bpage->commit, reader->real_end);
3883 ret = read;
3885 cpu_buffer->lost_events = 0;
3887 commit = local_read(&bpage->commit);
3889 * Set a flag in the commit field if we lost events
3891 if (missed_events) {
3892 /* If there is room at the end of the page to save the
3893 * missed events, then record it there.
3895 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3896 memcpy(&bpage->data[commit], &missed_events,
3897 sizeof(missed_events));
3898 local_add(RB_MISSED_STORED, &bpage->commit);
3899 commit += sizeof(missed_events);
3901 local_add(RB_MISSED_EVENTS, &bpage->commit);
3905 * This page may be off to user land. Zero it out here.
3907 if (commit < BUF_PAGE_SIZE)
3908 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3910 out_unlock:
3911 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3913 out:
3914 return ret;
3916 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3918 #ifdef CONFIG_TRACING
3919 static ssize_t
3920 rb_simple_read(struct file *filp, char __user *ubuf,
3921 size_t cnt, loff_t *ppos)
3923 unsigned long *p = filp->private_data;
3924 char buf[64];
3925 int r;
3927 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3928 r = sprintf(buf, "permanently disabled\n");
3929 else
3930 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3932 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3935 static ssize_t
3936 rb_simple_write(struct file *filp, const char __user *ubuf,
3937 size_t cnt, loff_t *ppos)
3939 unsigned long *p = filp->private_data;
3940 char buf[64];
3941 unsigned long val;
3942 int ret;
3944 if (cnt >= sizeof(buf))
3945 return -EINVAL;
3947 if (copy_from_user(&buf, ubuf, cnt))
3948 return -EFAULT;
3950 buf[cnt] = 0;
3952 ret = strict_strtoul(buf, 10, &val);
3953 if (ret < 0)
3954 return ret;
3956 if (val)
3957 set_bit(RB_BUFFERS_ON_BIT, p);
3958 else
3959 clear_bit(RB_BUFFERS_ON_BIT, p);
3961 (*ppos)++;
3963 return cnt;
3966 static const struct file_operations rb_simple_fops = {
3967 .open = tracing_open_generic,
3968 .read = rb_simple_read,
3969 .write = rb_simple_write,
3973 static __init int rb_init_debugfs(void)
3975 struct dentry *d_tracer;
3977 d_tracer = tracing_init_dentry();
3979 trace_create_file("tracing_on", 0644, d_tracer,
3980 &ring_buffer_flags, &rb_simple_fops);
3982 return 0;
3985 fs_initcall(rb_init_debugfs);
3986 #endif
3988 #ifdef CONFIG_HOTPLUG_CPU
3989 static int rb_cpu_notify(struct notifier_block *self,
3990 unsigned long action, void *hcpu)
3992 struct ring_buffer *buffer =
3993 container_of(self, struct ring_buffer, cpu_notify);
3994 long cpu = (long)hcpu;
3996 switch (action) {
3997 case CPU_UP_PREPARE:
3998 case CPU_UP_PREPARE_FROZEN:
3999 if (cpumask_test_cpu(cpu, buffer->cpumask))
4000 return NOTIFY_OK;
4002 buffer->buffers[cpu] =
4003 rb_allocate_cpu_buffer(buffer, cpu);
4004 if (!buffer->buffers[cpu]) {
4005 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4006 cpu);
4007 return NOTIFY_OK;
4009 smp_wmb();
4010 cpumask_set_cpu(cpu, buffer->cpumask);
4011 break;
4012 case CPU_DOWN_PREPARE:
4013 case CPU_DOWN_PREPARE_FROZEN:
4015 * Do nothing.
4016 * If we were to free the buffer, then the user would
4017 * lose any trace that was in the buffer.
4019 break;
4020 default:
4021 break;
4023 return NOTIFY_OK;
4025 #endif