2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
44 #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
47 * Number of guaranteed r1bios in case of extreme VM load:
49 #define NR_RAID1_BIOS 256
52 static void allow_barrier(conf_t
*conf
);
53 static void lower_barrier(conf_t
*conf
);
55 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
57 struct pool_info
*pi
= data
;
58 int size
= offsetof(r1bio_t
, bios
[pi
->raid_disks
]);
60 /* allocate a r1bio with room for raid_disks entries in the bios array */
61 return kzalloc(size
, gfp_flags
);
64 static void r1bio_pool_free(void *r1_bio
, void *data
)
69 #define RESYNC_BLOCK_SIZE (64*1024)
70 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
71 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
72 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
73 #define RESYNC_WINDOW (2048*1024)
75 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
77 struct pool_info
*pi
= data
;
83 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
88 * Allocate bios : 1 for reading, n-1 for writing
90 for (j
= pi
->raid_disks
; j
-- ; ) {
91 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
94 r1_bio
->bios
[j
] = bio
;
97 * Allocate RESYNC_PAGES data pages and attach them to
99 * If this is a user-requested check/repair, allocate
100 * RESYNC_PAGES for each bio.
102 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
107 bio
= r1_bio
->bios
[j
];
108 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
109 page
= alloc_page(gfp_flags
);
113 bio
->bi_io_vec
[i
].bv_page
= page
;
117 /* If not user-requests, copy the page pointers to all bios */
118 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
119 for (i
=0; i
<RESYNC_PAGES
; i
++)
120 for (j
=1; j
<pi
->raid_disks
; j
++)
121 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
122 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
125 r1_bio
->master_bio
= NULL
;
130 for (j
=0 ; j
< pi
->raid_disks
; j
++)
131 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
132 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
135 while ( ++j
< pi
->raid_disks
)
136 bio_put(r1_bio
->bios
[j
]);
137 r1bio_pool_free(r1_bio
, data
);
141 static void r1buf_pool_free(void *__r1_bio
, void *data
)
143 struct pool_info
*pi
= data
;
145 r1bio_t
*r1bio
= __r1_bio
;
147 for (i
= 0; i
< RESYNC_PAGES
; i
++)
148 for (j
= pi
->raid_disks
; j
-- ;) {
150 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
151 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
152 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
154 for (i
=0 ; i
< pi
->raid_disks
; i
++)
155 bio_put(r1bio
->bios
[i
]);
157 r1bio_pool_free(r1bio
, data
);
160 static void put_all_bios(conf_t
*conf
, r1bio_t
*r1_bio
)
164 for (i
= 0; i
< conf
->raid_disks
; i
++) {
165 struct bio
**bio
= r1_bio
->bios
+ i
;
166 if (!BIO_SPECIAL(*bio
))
172 static void free_r1bio(r1bio_t
*r1_bio
)
174 conf_t
*conf
= r1_bio
->mddev
->private;
176 put_all_bios(conf
, r1_bio
);
177 mempool_free(r1_bio
, conf
->r1bio_pool
);
180 static void put_buf(r1bio_t
*r1_bio
)
182 conf_t
*conf
= r1_bio
->mddev
->private;
185 for (i
=0; i
<conf
->raid_disks
; i
++) {
186 struct bio
*bio
= r1_bio
->bios
[i
];
188 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
191 mempool_free(r1_bio
, conf
->r1buf_pool
);
196 static void reschedule_retry(r1bio_t
*r1_bio
)
199 mddev_t
*mddev
= r1_bio
->mddev
;
200 conf_t
*conf
= mddev
->private;
202 spin_lock_irqsave(&conf
->device_lock
, flags
);
203 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
205 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
207 wake_up(&conf
->wait_barrier
);
208 md_wakeup_thread(mddev
->thread
);
212 * raid_end_bio_io() is called when we have finished servicing a mirrored
213 * operation and are ready to return a success/failure code to the buffer
216 static void call_bio_endio(r1bio_t
*r1_bio
)
218 struct bio
*bio
= r1_bio
->master_bio
;
220 conf_t
*conf
= r1_bio
->mddev
->private;
222 if (bio
->bi_phys_segments
) {
224 spin_lock_irqsave(&conf
->device_lock
, flags
);
225 bio
->bi_phys_segments
--;
226 done
= (bio
->bi_phys_segments
== 0);
227 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
231 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
232 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
236 * Wake up any possible resync thread that waits for the device
243 static void raid_end_bio_io(r1bio_t
*r1_bio
)
245 struct bio
*bio
= r1_bio
->master_bio
;
247 /* if nobody has done the final endio yet, do it now */
248 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
249 PRINTK(KERN_DEBUG
"raid1: sync end %s on sectors %llu-%llu\n",
250 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
251 (unsigned long long) bio
->bi_sector
,
252 (unsigned long long) bio
->bi_sector
+
253 (bio
->bi_size
>> 9) - 1);
255 call_bio_endio(r1_bio
);
261 * Update disk head position estimator based on IRQ completion info.
263 static inline void update_head_pos(int disk
, r1bio_t
*r1_bio
)
265 conf_t
*conf
= r1_bio
->mddev
->private;
267 conf
->mirrors
[disk
].head_position
=
268 r1_bio
->sector
+ (r1_bio
->sectors
);
271 static void raid1_end_read_request(struct bio
*bio
, int error
)
273 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
274 r1bio_t
*r1_bio
= bio
->bi_private
;
276 conf_t
*conf
= r1_bio
->mddev
->private;
278 mirror
= r1_bio
->read_disk
;
280 * this branch is our 'one mirror IO has finished' event handler:
282 update_head_pos(mirror
, r1_bio
);
285 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
287 /* If all other devices have failed, we want to return
288 * the error upwards rather than fail the last device.
289 * Here we redefine "uptodate" to mean "Don't want to retry"
292 spin_lock_irqsave(&conf
->device_lock
, flags
);
293 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
294 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
295 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
297 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
301 raid_end_bio_io(r1_bio
);
306 char b
[BDEVNAME_SIZE
];
308 KERN_ERR
"md/raid1:%s: %s: "
309 "rescheduling sector %llu\n",
311 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
313 (unsigned long long)r1_bio
->sector
);
314 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
315 reschedule_retry(r1_bio
);
318 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
321 static void close_write(r1bio_t
*r1_bio
)
323 /* it really is the end of this request */
324 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
325 /* free extra copy of the data pages */
326 int i
= r1_bio
->behind_page_count
;
328 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
329 kfree(r1_bio
->behind_bvecs
);
330 r1_bio
->behind_bvecs
= NULL
;
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
335 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
336 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
337 md_write_end(r1_bio
->mddev
);
340 static void r1_bio_write_done(r1bio_t
*r1_bio
)
342 if (!atomic_dec_and_test(&r1_bio
->remaining
))
345 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
346 reschedule_retry(r1_bio
);
349 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
350 reschedule_retry(r1_bio
);
352 raid_end_bio_io(r1_bio
);
356 static void raid1_end_write_request(struct bio
*bio
, int error
)
358 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
359 r1bio_t
*r1_bio
= bio
->bi_private
;
360 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
361 conf_t
*conf
= r1_bio
->mddev
->private;
362 struct bio
*to_put
= NULL
;
365 for (mirror
= 0; mirror
< conf
->raid_disks
; mirror
++)
366 if (r1_bio
->bios
[mirror
] == bio
)
370 * 'one mirror IO has finished' event handler:
373 set_bit(WriteErrorSeen
,
374 &conf
->mirrors
[mirror
].rdev
->flags
);
375 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
378 * Set R1BIO_Uptodate in our master bio, so that we
379 * will return a good error code for to the higher
380 * levels even if IO on some other mirrored buffer
383 * The 'master' represents the composite IO operation
384 * to user-side. So if something waits for IO, then it
385 * will wait for the 'master' bio.
390 r1_bio
->bios
[mirror
] = NULL
;
392 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
396 r1_bio
->sector
, r1_bio
->sectors
,
397 &first_bad
, &bad_sectors
)) {
398 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
399 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
403 update_head_pos(mirror
, r1_bio
);
406 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
407 atomic_dec(&r1_bio
->behind_remaining
);
410 * In behind mode, we ACK the master bio once the I/O
411 * has safely reached all non-writemostly
412 * disks. Setting the Returned bit ensures that this
413 * gets done only once -- we don't ever want to return
414 * -EIO here, instead we'll wait
416 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
417 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
418 /* Maybe we can return now */
419 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
420 struct bio
*mbio
= r1_bio
->master_bio
;
421 PRINTK(KERN_DEBUG
"raid1: behind end write sectors %llu-%llu\n",
422 (unsigned long long) mbio
->bi_sector
,
423 (unsigned long long) mbio
->bi_sector
+
424 (mbio
->bi_size
>> 9) - 1);
425 call_bio_endio(r1_bio
);
429 if (r1_bio
->bios
[mirror
] == NULL
)
430 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
434 * Let's see if all mirrored write operations have finished
437 r1_bio_write_done(r1_bio
);
445 * This routine returns the disk from which the requested read should
446 * be done. There is a per-array 'next expected sequential IO' sector
447 * number - if this matches on the next IO then we use the last disk.
448 * There is also a per-disk 'last know head position' sector that is
449 * maintained from IRQ contexts, both the normal and the resync IO
450 * completion handlers update this position correctly. If there is no
451 * perfect sequential match then we pick the disk whose head is closest.
453 * If there are 2 mirrors in the same 2 devices, performance degrades
454 * because position is mirror, not device based.
456 * The rdev for the device selected will have nr_pending incremented.
458 static int read_balance(conf_t
*conf
, r1bio_t
*r1_bio
, int *max_sectors
)
460 const sector_t this_sector
= r1_bio
->sector
;
462 int best_good_sectors
;
472 * Check if we can balance. We can balance on the whole
473 * device if no resync is going on, or below the resync window.
474 * We take the first readable disk when above the resync window.
477 sectors
= r1_bio
->sectors
;
479 best_dist
= MaxSector
;
480 best_good_sectors
= 0;
482 if (conf
->mddev
->recovery_cp
< MaxSector
&&
483 (this_sector
+ sectors
>= conf
->next_resync
)) {
488 start_disk
= conf
->last_used
;
491 for (i
= 0 ; i
< conf
->raid_disks
; i
++) {
496 int disk
= start_disk
+ i
;
497 if (disk
>= conf
->raid_disks
)
498 disk
-= conf
->raid_disks
;
500 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
501 if (r1_bio
->bios
[disk
] == IO_BLOCKED
503 || test_bit(Faulty
, &rdev
->flags
))
505 if (!test_bit(In_sync
, &rdev
->flags
) &&
506 rdev
->recovery_offset
< this_sector
+ sectors
)
508 if (test_bit(WriteMostly
, &rdev
->flags
)) {
509 /* Don't balance among write-mostly, just
510 * use the first as a last resort */
512 if (is_badblock(rdev
, this_sector
, sectors
,
513 &first_bad
, &bad_sectors
)) {
514 if (first_bad
< this_sector
)
515 /* Cannot use this */
517 best_good_sectors
= first_bad
- this_sector
;
519 best_good_sectors
= sectors
;
524 /* This is a reasonable device to use. It might
527 if (is_badblock(rdev
, this_sector
, sectors
,
528 &first_bad
, &bad_sectors
)) {
529 if (best_dist
< MaxSector
)
530 /* already have a better device */
532 if (first_bad
<= this_sector
) {
533 /* cannot read here. If this is the 'primary'
534 * device, then we must not read beyond
535 * bad_sectors from another device..
537 bad_sectors
-= (this_sector
- first_bad
);
538 if (choose_first
&& sectors
> bad_sectors
)
539 sectors
= bad_sectors
;
540 if (best_good_sectors
> sectors
)
541 best_good_sectors
= sectors
;
544 sector_t good_sectors
= first_bad
- this_sector
;
545 if (good_sectors
> best_good_sectors
) {
546 best_good_sectors
= good_sectors
;
554 best_good_sectors
= sectors
;
556 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
558 /* Don't change to another disk for sequential reads */
559 || conf
->next_seq_sect
== this_sector
561 /* If device is idle, use it */
562 || atomic_read(&rdev
->nr_pending
) == 0) {
566 if (dist
< best_dist
) {
572 if (best_disk
>= 0) {
573 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
576 atomic_inc(&rdev
->nr_pending
);
577 if (test_bit(Faulty
, &rdev
->flags
)) {
578 /* cannot risk returning a device that failed
579 * before we inc'ed nr_pending
581 rdev_dec_pending(rdev
, conf
->mddev
);
584 sectors
= best_good_sectors
;
585 conf
->next_seq_sect
= this_sector
+ sectors
;
586 conf
->last_used
= best_disk
;
589 *max_sectors
= sectors
;
594 int md_raid1_congested(mddev_t
*mddev
, int bits
)
596 conf_t
*conf
= mddev
->private;
600 for (i
= 0; i
< mddev
->raid_disks
; i
++) {
601 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
602 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
603 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
607 /* Note the '|| 1' - when read_balance prefers
608 * non-congested targets, it can be removed
610 if ((bits
& (1<<BDI_async_congested
)) || 1)
611 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
613 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
619 EXPORT_SYMBOL_GPL(md_raid1_congested
);
621 static int raid1_congested(void *data
, int bits
)
623 mddev_t
*mddev
= data
;
625 return mddev_congested(mddev
, bits
) ||
626 md_raid1_congested(mddev
, bits
);
629 static void flush_pending_writes(conf_t
*conf
)
631 /* Any writes that have been queued but are awaiting
632 * bitmap updates get flushed here.
634 spin_lock_irq(&conf
->device_lock
);
636 if (conf
->pending_bio_list
.head
) {
638 bio
= bio_list_get(&conf
->pending_bio_list
);
639 spin_unlock_irq(&conf
->device_lock
);
640 /* flush any pending bitmap writes to
641 * disk before proceeding w/ I/O */
642 bitmap_unplug(conf
->mddev
->bitmap
);
644 while (bio
) { /* submit pending writes */
645 struct bio
*next
= bio
->bi_next
;
647 generic_make_request(bio
);
651 spin_unlock_irq(&conf
->device_lock
);
655 * Sometimes we need to suspend IO while we do something else,
656 * either some resync/recovery, or reconfigure the array.
657 * To do this we raise a 'barrier'.
658 * The 'barrier' is a counter that can be raised multiple times
659 * to count how many activities are happening which preclude
661 * We can only raise the barrier if there is no pending IO.
662 * i.e. if nr_pending == 0.
663 * We choose only to raise the barrier if no-one is waiting for the
664 * barrier to go down. This means that as soon as an IO request
665 * is ready, no other operations which require a barrier will start
666 * until the IO request has had a chance.
668 * So: regular IO calls 'wait_barrier'. When that returns there
669 * is no backgroup IO happening, It must arrange to call
670 * allow_barrier when it has finished its IO.
671 * backgroup IO calls must call raise_barrier. Once that returns
672 * there is no normal IO happeing. It must arrange to call
673 * lower_barrier when the particular background IO completes.
675 #define RESYNC_DEPTH 32
677 static void raise_barrier(conf_t
*conf
)
679 spin_lock_irq(&conf
->resync_lock
);
681 /* Wait until no block IO is waiting */
682 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
683 conf
->resync_lock
, );
685 /* block any new IO from starting */
688 /* Now wait for all pending IO to complete */
689 wait_event_lock_irq(conf
->wait_barrier
,
690 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
691 conf
->resync_lock
, );
693 spin_unlock_irq(&conf
->resync_lock
);
696 static void lower_barrier(conf_t
*conf
)
699 BUG_ON(conf
->barrier
<= 0);
700 spin_lock_irqsave(&conf
->resync_lock
, flags
);
702 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
703 wake_up(&conf
->wait_barrier
);
706 static void wait_barrier(conf_t
*conf
)
708 spin_lock_irq(&conf
->resync_lock
);
711 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
717 spin_unlock_irq(&conf
->resync_lock
);
720 static void allow_barrier(conf_t
*conf
)
723 spin_lock_irqsave(&conf
->resync_lock
, flags
);
725 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
726 wake_up(&conf
->wait_barrier
);
729 static void freeze_array(conf_t
*conf
)
731 /* stop syncio and normal IO and wait for everything to
733 * We increment barrier and nr_waiting, and then
734 * wait until nr_pending match nr_queued+1
735 * This is called in the context of one normal IO request
736 * that has failed. Thus any sync request that might be pending
737 * will be blocked by nr_pending, and we need to wait for
738 * pending IO requests to complete or be queued for re-try.
739 * Thus the number queued (nr_queued) plus this request (1)
740 * must match the number of pending IOs (nr_pending) before
743 spin_lock_irq(&conf
->resync_lock
);
746 wait_event_lock_irq(conf
->wait_barrier
,
747 conf
->nr_pending
== conf
->nr_queued
+1,
749 flush_pending_writes(conf
));
750 spin_unlock_irq(&conf
->resync_lock
);
752 static void unfreeze_array(conf_t
*conf
)
754 /* reverse the effect of the freeze */
755 spin_lock_irq(&conf
->resync_lock
);
758 wake_up(&conf
->wait_barrier
);
759 spin_unlock_irq(&conf
->resync_lock
);
763 /* duplicate the data pages for behind I/O
765 static void alloc_behind_pages(struct bio
*bio
, r1bio_t
*r1_bio
)
768 struct bio_vec
*bvec
;
769 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
771 if (unlikely(!bvecs
))
774 bio_for_each_segment(bvec
, bio
, i
) {
776 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
777 if (unlikely(!bvecs
[i
].bv_page
))
779 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
780 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
781 kunmap(bvecs
[i
].bv_page
);
782 kunmap(bvec
->bv_page
);
784 r1_bio
->behind_bvecs
= bvecs
;
785 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
786 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
790 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
791 if (bvecs
[i
].bv_page
)
792 put_page(bvecs
[i
].bv_page
);
794 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
797 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
799 conf_t
*conf
= mddev
->private;
800 mirror_info_t
*mirror
;
802 struct bio
*read_bio
;
804 struct bitmap
*bitmap
;
806 const int rw
= bio_data_dir(bio
);
807 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
808 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
809 mdk_rdev_t
*blocked_rdev
;
816 * Register the new request and wait if the reconstruction
817 * thread has put up a bar for new requests.
818 * Continue immediately if no resync is active currently.
821 md_write_start(mddev
, bio
); /* wait on superblock update early */
823 if (bio_data_dir(bio
) == WRITE
&&
824 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
825 bio
->bi_sector
< mddev
->suspend_hi
) {
826 /* As the suspend_* range is controlled by
827 * userspace, we want an interruptible
832 flush_signals(current
);
833 prepare_to_wait(&conf
->wait_barrier
,
834 &w
, TASK_INTERRUPTIBLE
);
835 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
836 bio
->bi_sector
>= mddev
->suspend_hi
)
840 finish_wait(&conf
->wait_barrier
, &w
);
845 bitmap
= mddev
->bitmap
;
848 * make_request() can abort the operation when READA is being
849 * used and no empty request is available.
852 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
854 r1_bio
->master_bio
= bio
;
855 r1_bio
->sectors
= bio
->bi_size
>> 9;
857 r1_bio
->mddev
= mddev
;
858 r1_bio
->sector
= bio
->bi_sector
;
860 /* We might need to issue multiple reads to different
861 * devices if there are bad blocks around, so we keep
862 * track of the number of reads in bio->bi_phys_segments.
863 * If this is 0, there is only one r1_bio and no locking
864 * will be needed when requests complete. If it is
865 * non-zero, then it is the number of not-completed requests.
867 bio
->bi_phys_segments
= 0;
868 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
872 * read balancing logic:
877 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
880 /* couldn't find anywhere to read from */
881 raid_end_bio_io(r1_bio
);
884 mirror
= conf
->mirrors
+ rdisk
;
886 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
888 /* Reading from a write-mostly device must
889 * take care not to over-take any writes
892 wait_event(bitmap
->behind_wait
,
893 atomic_read(&bitmap
->behind_writes
) == 0);
895 r1_bio
->read_disk
= rdisk
;
897 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
898 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
901 r1_bio
->bios
[rdisk
] = read_bio
;
903 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
904 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
905 read_bio
->bi_end_io
= raid1_end_read_request
;
906 read_bio
->bi_rw
= READ
| do_sync
;
907 read_bio
->bi_private
= r1_bio
;
909 if (max_sectors
< r1_bio
->sectors
) {
910 /* could not read all from this device, so we will
911 * need another r1_bio.
914 sectors_handled
= (r1_bio
->sector
+ max_sectors
916 r1_bio
->sectors
= max_sectors
;
917 spin_lock_irq(&conf
->device_lock
);
918 if (bio
->bi_phys_segments
== 0)
919 bio
->bi_phys_segments
= 2;
921 bio
->bi_phys_segments
++;
922 spin_unlock_irq(&conf
->device_lock
);
923 /* Cannot call generic_make_request directly
924 * as that will be queued in __make_request
925 * and subsequent mempool_alloc might block waiting
926 * for it. So hand bio over to raid1d.
928 reschedule_retry(r1_bio
);
930 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
932 r1_bio
->master_bio
= bio
;
933 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
935 r1_bio
->mddev
= mddev
;
936 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
939 generic_make_request(read_bio
);
946 /* first select target devices under rcu_lock and
947 * inc refcount on their rdev. Record them by setting
949 * If there are known/acknowledged bad blocks on any device on
950 * which we have seen a write error, we want to avoid writing those
952 * This potentially requires several writes to write around
953 * the bad blocks. Each set of writes gets it's own r1bio
954 * with a set of bios attached.
956 plugged
= mddev_check_plugged(mddev
);
958 disks
= conf
->raid_disks
;
962 max_sectors
= r1_bio
->sectors
;
963 for (i
= 0; i
< disks
; i
++) {
964 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
965 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
966 atomic_inc(&rdev
->nr_pending
);
970 r1_bio
->bios
[i
] = NULL
;
971 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
972 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
976 atomic_inc(&rdev
->nr_pending
);
977 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
982 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
984 &first_bad
, &bad_sectors
);
986 /* mustn't write here until the bad block is
988 set_bit(BlockedBadBlocks
, &rdev
->flags
);
992 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
993 /* Cannot write here at all */
994 bad_sectors
-= (r1_bio
->sector
- first_bad
);
995 if (bad_sectors
< max_sectors
)
996 /* mustn't write more than bad_sectors
997 * to other devices yet
999 max_sectors
= bad_sectors
;
1000 rdev_dec_pending(rdev
, mddev
);
1001 /* We don't set R1BIO_Degraded as that
1002 * only applies if the disk is
1003 * missing, so it might be re-added,
1004 * and we want to know to recover this
1006 * In this case the device is here,
1007 * and the fact that this chunk is not
1008 * in-sync is recorded in the bad
1014 int good_sectors
= first_bad
- r1_bio
->sector
;
1015 if (good_sectors
< max_sectors
)
1016 max_sectors
= good_sectors
;
1019 r1_bio
->bios
[i
] = bio
;
1023 if (unlikely(blocked_rdev
)) {
1024 /* Wait for this device to become unblocked */
1027 for (j
= 0; j
< i
; j
++)
1028 if (r1_bio
->bios
[j
])
1029 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1031 allow_barrier(conf
);
1032 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1037 if (max_sectors
< r1_bio
->sectors
) {
1038 /* We are splitting this write into multiple parts, so
1039 * we need to prepare for allocating another r1_bio.
1041 r1_bio
->sectors
= max_sectors
;
1042 spin_lock_irq(&conf
->device_lock
);
1043 if (bio
->bi_phys_segments
== 0)
1044 bio
->bi_phys_segments
= 2;
1046 bio
->bi_phys_segments
++;
1047 spin_unlock_irq(&conf
->device_lock
);
1049 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1051 atomic_set(&r1_bio
->remaining
, 1);
1052 atomic_set(&r1_bio
->behind_remaining
, 0);
1055 for (i
= 0; i
< disks
; i
++) {
1057 if (!r1_bio
->bios
[i
])
1060 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1061 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1065 * Not if there are too many, or cannot
1066 * allocate memory, or a reader on WriteMostly
1067 * is waiting for behind writes to flush */
1069 (atomic_read(&bitmap
->behind_writes
)
1070 < mddev
->bitmap_info
.max_write_behind
) &&
1071 !waitqueue_active(&bitmap
->behind_wait
))
1072 alloc_behind_pages(mbio
, r1_bio
);
1074 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1076 test_bit(R1BIO_BehindIO
,
1080 if (r1_bio
->behind_bvecs
) {
1081 struct bio_vec
*bvec
;
1084 /* Yes, I really want the '__' version so that
1085 * we clear any unused pointer in the io_vec, rather
1086 * than leave them unchanged. This is important
1087 * because when we come to free the pages, we won't
1088 * know the original bi_idx, so we just free
1091 __bio_for_each_segment(bvec
, mbio
, j
, 0)
1092 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1093 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1094 atomic_inc(&r1_bio
->behind_remaining
);
1097 r1_bio
->bios
[i
] = mbio
;
1099 mbio
->bi_sector
= (r1_bio
->sector
+
1100 conf
->mirrors
[i
].rdev
->data_offset
);
1101 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1102 mbio
->bi_end_io
= raid1_end_write_request
;
1103 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
1104 mbio
->bi_private
= r1_bio
;
1106 atomic_inc(&r1_bio
->remaining
);
1107 spin_lock_irqsave(&conf
->device_lock
, flags
);
1108 bio_list_add(&conf
->pending_bio_list
, mbio
);
1109 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1111 /* Mustn't call r1_bio_write_done before this next test,
1112 * as it could result in the bio being freed.
1114 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1115 r1_bio_write_done(r1_bio
);
1116 /* We need another r1_bio. It has already been counted
1117 * in bio->bi_phys_segments
1119 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1120 r1_bio
->master_bio
= bio
;
1121 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1123 r1_bio
->mddev
= mddev
;
1124 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1128 r1_bio_write_done(r1_bio
);
1130 /* In case raid1d snuck in to freeze_array */
1131 wake_up(&conf
->wait_barrier
);
1133 if (do_sync
|| !bitmap
|| !plugged
)
1134 md_wakeup_thread(mddev
->thread
);
1139 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
1141 conf_t
*conf
= mddev
->private;
1144 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1145 conf
->raid_disks
- mddev
->degraded
);
1147 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1148 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1149 seq_printf(seq
, "%s",
1150 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1153 seq_printf(seq
, "]");
1157 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1159 char b
[BDEVNAME_SIZE
];
1160 conf_t
*conf
= mddev
->private;
1163 * If it is not operational, then we have already marked it as dead
1164 * else if it is the last working disks, ignore the error, let the
1165 * next level up know.
1166 * else mark the drive as failed
1168 if (test_bit(In_sync
, &rdev
->flags
)
1169 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1171 * Don't fail the drive, act as though we were just a
1172 * normal single drive.
1173 * However don't try a recovery from this drive as
1174 * it is very likely to fail.
1176 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1179 set_bit(Blocked
, &rdev
->flags
);
1180 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1181 unsigned long flags
;
1182 spin_lock_irqsave(&conf
->device_lock
, flags
);
1184 set_bit(Faulty
, &rdev
->flags
);
1185 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1187 * if recovery is running, make sure it aborts.
1189 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1191 set_bit(Faulty
, &rdev
->flags
);
1192 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1194 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1195 "md/raid1:%s: Operation continuing on %d devices.\n",
1196 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1197 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1200 static void print_conf(conf_t
*conf
)
1204 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1206 printk(KERN_DEBUG
"(!conf)\n");
1209 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1213 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1214 char b
[BDEVNAME_SIZE
];
1215 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1217 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1218 i
, !test_bit(In_sync
, &rdev
->flags
),
1219 !test_bit(Faulty
, &rdev
->flags
),
1220 bdevname(rdev
->bdev
,b
));
1225 static void close_sync(conf_t
*conf
)
1228 allow_barrier(conf
);
1230 mempool_destroy(conf
->r1buf_pool
);
1231 conf
->r1buf_pool
= NULL
;
1234 static int raid1_spare_active(mddev_t
*mddev
)
1237 conf_t
*conf
= mddev
->private;
1239 unsigned long flags
;
1242 * Find all failed disks within the RAID1 configuration
1243 * and mark them readable.
1244 * Called under mddev lock, so rcu protection not needed.
1246 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1247 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1249 && !test_bit(Faulty
, &rdev
->flags
)
1250 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1252 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1255 spin_lock_irqsave(&conf
->device_lock
, flags
);
1256 mddev
->degraded
-= count
;
1257 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1264 static int raid1_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1266 conf_t
*conf
= mddev
->private;
1271 int last
= mddev
->raid_disks
- 1;
1273 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1276 if (rdev
->raid_disk
>= 0)
1277 first
= last
= rdev
->raid_disk
;
1279 for (mirror
= first
; mirror
<= last
; mirror
++)
1280 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1282 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1283 rdev
->data_offset
<< 9);
1284 /* as we don't honour merge_bvec_fn, we must
1285 * never risk violating it, so limit
1286 * ->max_segments to one lying with a single
1287 * page, as a one page request is never in
1290 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1291 blk_queue_max_segments(mddev
->queue
, 1);
1292 blk_queue_segment_boundary(mddev
->queue
,
1293 PAGE_CACHE_SIZE
- 1);
1296 p
->head_position
= 0;
1297 rdev
->raid_disk
= mirror
;
1299 /* As all devices are equivalent, we don't need a full recovery
1300 * if this was recently any drive of the array
1302 if (rdev
->saved_raid_disk
< 0)
1304 rcu_assign_pointer(p
->rdev
, rdev
);
1307 md_integrity_add_rdev(rdev
, mddev
);
1312 static int raid1_remove_disk(mddev_t
*mddev
, int number
)
1314 conf_t
*conf
= mddev
->private;
1317 mirror_info_t
*p
= conf
->mirrors
+ number
;
1322 if (test_bit(In_sync
, &rdev
->flags
) ||
1323 atomic_read(&rdev
->nr_pending
)) {
1327 /* Only remove non-faulty devices if recovery
1330 if (!test_bit(Faulty
, &rdev
->flags
) &&
1331 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1332 mddev
->degraded
< conf
->raid_disks
) {
1338 if (atomic_read(&rdev
->nr_pending
)) {
1339 /* lost the race, try later */
1344 err
= md_integrity_register(mddev
);
1353 static void end_sync_read(struct bio
*bio
, int error
)
1355 r1bio_t
*r1_bio
= bio
->bi_private
;
1358 for (i
=r1_bio
->mddev
->raid_disks
; i
--; )
1359 if (r1_bio
->bios
[i
] == bio
)
1362 update_head_pos(i
, r1_bio
);
1364 * we have read a block, now it needs to be re-written,
1365 * or re-read if the read failed.
1366 * We don't do much here, just schedule handling by raid1d
1368 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1369 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1371 if (atomic_dec_and_test(&r1_bio
->remaining
))
1372 reschedule_retry(r1_bio
);
1375 static void end_sync_write(struct bio
*bio
, int error
)
1377 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1378 r1bio_t
*r1_bio
= bio
->bi_private
;
1379 mddev_t
*mddev
= r1_bio
->mddev
;
1380 conf_t
*conf
= mddev
->private;
1386 for (i
= 0; i
< conf
->raid_disks
; i
++)
1387 if (r1_bio
->bios
[i
] == bio
) {
1392 sector_t sync_blocks
= 0;
1393 sector_t s
= r1_bio
->sector
;
1394 long sectors_to_go
= r1_bio
->sectors
;
1395 /* make sure these bits doesn't get cleared. */
1397 bitmap_end_sync(mddev
->bitmap
, s
,
1400 sectors_to_go
-= sync_blocks
;
1401 } while (sectors_to_go
> 0);
1402 set_bit(WriteErrorSeen
,
1403 &conf
->mirrors
[mirror
].rdev
->flags
);
1404 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1405 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1408 &first_bad
, &bad_sectors
) &&
1409 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1412 &first_bad
, &bad_sectors
)
1414 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1416 update_head_pos(mirror
, r1_bio
);
1418 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1419 int s
= r1_bio
->sectors
;
1420 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1421 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1422 reschedule_retry(r1_bio
);
1425 md_done_sync(mddev
, s
, uptodate
);
1430 static int r1_sync_page_io(mdk_rdev_t
*rdev
, sector_t sector
,
1431 int sectors
, struct page
*page
, int rw
)
1433 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1437 set_bit(WriteErrorSeen
, &rdev
->flags
);
1438 /* need to record an error - either for the block or the device */
1439 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1440 md_error(rdev
->mddev
, rdev
);
1444 static int fix_sync_read_error(r1bio_t
*r1_bio
)
1446 /* Try some synchronous reads of other devices to get
1447 * good data, much like with normal read errors. Only
1448 * read into the pages we already have so we don't
1449 * need to re-issue the read request.
1450 * We don't need to freeze the array, because being in an
1451 * active sync request, there is no normal IO, and
1452 * no overlapping syncs.
1453 * We don't need to check is_badblock() again as we
1454 * made sure that anything with a bad block in range
1455 * will have bi_end_io clear.
1457 mddev_t
*mddev
= r1_bio
->mddev
;
1458 conf_t
*conf
= mddev
->private;
1459 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1460 sector_t sect
= r1_bio
->sector
;
1461 int sectors
= r1_bio
->sectors
;
1466 int d
= r1_bio
->read_disk
;
1471 if (s
> (PAGE_SIZE
>>9))
1474 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1475 /* No rcu protection needed here devices
1476 * can only be removed when no resync is
1477 * active, and resync is currently active
1479 rdev
= conf
->mirrors
[d
].rdev
;
1480 if (sync_page_io(rdev
, sect
, s
<<9,
1481 bio
->bi_io_vec
[idx
].bv_page
,
1488 if (d
== conf
->raid_disks
)
1490 } while (!success
&& d
!= r1_bio
->read_disk
);
1493 char b
[BDEVNAME_SIZE
];
1495 /* Cannot read from anywhere, this block is lost.
1496 * Record a bad block on each device. If that doesn't
1497 * work just disable and interrupt the recovery.
1498 * Don't fail devices as that won't really help.
1500 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1501 " for block %llu\n",
1503 bdevname(bio
->bi_bdev
, b
),
1504 (unsigned long long)r1_bio
->sector
);
1505 for (d
= 0; d
< conf
->raid_disks
; d
++) {
1506 rdev
= conf
->mirrors
[d
].rdev
;
1507 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1509 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1513 mddev
->recovery_disabled
= 1;
1514 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1515 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1527 /* write it back and re-read */
1528 while (d
!= r1_bio
->read_disk
) {
1530 d
= conf
->raid_disks
;
1532 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1534 rdev
= conf
->mirrors
[d
].rdev
;
1535 if (r1_sync_page_io(rdev
, sect
, s
,
1536 bio
->bi_io_vec
[idx
].bv_page
,
1538 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1539 rdev_dec_pending(rdev
, mddev
);
1543 while (d
!= r1_bio
->read_disk
) {
1545 d
= conf
->raid_disks
;
1547 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1549 rdev
= conf
->mirrors
[d
].rdev
;
1550 if (r1_sync_page_io(rdev
, sect
, s
,
1551 bio
->bi_io_vec
[idx
].bv_page
,
1553 atomic_add(s
, &rdev
->corrected_errors
);
1559 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1560 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1564 static int process_checks(r1bio_t
*r1_bio
)
1566 /* We have read all readable devices. If we haven't
1567 * got the block, then there is no hope left.
1568 * If we have, then we want to do a comparison
1569 * and skip the write if everything is the same.
1570 * If any blocks failed to read, then we need to
1571 * attempt an over-write
1573 mddev_t
*mddev
= r1_bio
->mddev
;
1574 conf_t
*conf
= mddev
->private;
1578 for (primary
= 0; primary
< conf
->raid_disks
; primary
++)
1579 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1580 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1581 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1582 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1585 r1_bio
->read_disk
= primary
;
1586 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1588 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1589 struct bio
*pbio
= r1_bio
->bios
[primary
];
1590 struct bio
*sbio
= r1_bio
->bios
[i
];
1593 if (r1_bio
->bios
[i
]->bi_end_io
!= end_sync_read
)
1596 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1597 for (j
= vcnt
; j
-- ; ) {
1599 p
= pbio
->bi_io_vec
[j
].bv_page
;
1600 s
= sbio
->bi_io_vec
[j
].bv_page
;
1601 if (memcmp(page_address(p
),
1609 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1610 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1611 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1612 /* No need to write to this device. */
1613 sbio
->bi_end_io
= NULL
;
1614 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1617 /* fixup the bio for reuse */
1618 sbio
->bi_vcnt
= vcnt
;
1619 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1621 sbio
->bi_phys_segments
= 0;
1622 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1623 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1624 sbio
->bi_next
= NULL
;
1625 sbio
->bi_sector
= r1_bio
->sector
+
1626 conf
->mirrors
[i
].rdev
->data_offset
;
1627 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1628 size
= sbio
->bi_size
;
1629 for (j
= 0; j
< vcnt
; j
++) {
1631 bi
= &sbio
->bi_io_vec
[j
];
1633 if (size
> PAGE_SIZE
)
1634 bi
->bv_len
= PAGE_SIZE
;
1638 memcpy(page_address(bi
->bv_page
),
1639 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1646 static void sync_request_write(mddev_t
*mddev
, r1bio_t
*r1_bio
)
1648 conf_t
*conf
= mddev
->private;
1650 int disks
= conf
->raid_disks
;
1651 struct bio
*bio
, *wbio
;
1653 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1655 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1656 /* ouch - failed to read all of that. */
1657 if (!fix_sync_read_error(r1_bio
))
1660 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1661 if (process_checks(r1_bio
) < 0)
1666 atomic_set(&r1_bio
->remaining
, 1);
1667 for (i
= 0; i
< disks
; i
++) {
1668 wbio
= r1_bio
->bios
[i
];
1669 if (wbio
->bi_end_io
== NULL
||
1670 (wbio
->bi_end_io
== end_sync_read
&&
1671 (i
== r1_bio
->read_disk
||
1672 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1675 wbio
->bi_rw
= WRITE
;
1676 wbio
->bi_end_io
= end_sync_write
;
1677 atomic_inc(&r1_bio
->remaining
);
1678 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1680 generic_make_request(wbio
);
1683 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1684 /* if we're here, all write(s) have completed, so clean up */
1685 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1691 * This is a kernel thread which:
1693 * 1. Retries failed read operations on working mirrors.
1694 * 2. Updates the raid superblock when problems encounter.
1695 * 3. Performs writes following reads for array synchronising.
1698 static void fix_read_error(conf_t
*conf
, int read_disk
,
1699 sector_t sect
, int sectors
)
1701 mddev_t
*mddev
= conf
->mddev
;
1709 if (s
> (PAGE_SIZE
>>9))
1713 /* Note: no rcu protection needed here
1714 * as this is synchronous in the raid1d thread
1715 * which is the thread that might remove
1716 * a device. If raid1d ever becomes multi-threaded....
1721 rdev
= conf
->mirrors
[d
].rdev
;
1723 test_bit(In_sync
, &rdev
->flags
) &&
1724 is_badblock(rdev
, sect
, s
,
1725 &first_bad
, &bad_sectors
) == 0 &&
1726 sync_page_io(rdev
, sect
, s
<<9,
1727 conf
->tmppage
, READ
, false))
1731 if (d
== conf
->raid_disks
)
1734 } while (!success
&& d
!= read_disk
);
1737 /* Cannot read from anywhere - mark it bad */
1738 mdk_rdev_t
*rdev
= conf
->mirrors
[read_disk
].rdev
;
1739 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1740 md_error(mddev
, rdev
);
1743 /* write it back and re-read */
1745 while (d
!= read_disk
) {
1747 d
= conf
->raid_disks
;
1749 rdev
= conf
->mirrors
[d
].rdev
;
1751 test_bit(In_sync
, &rdev
->flags
))
1752 r1_sync_page_io(rdev
, sect
, s
,
1753 conf
->tmppage
, WRITE
);
1756 while (d
!= read_disk
) {
1757 char b
[BDEVNAME_SIZE
];
1759 d
= conf
->raid_disks
;
1761 rdev
= conf
->mirrors
[d
].rdev
;
1763 test_bit(In_sync
, &rdev
->flags
)) {
1764 if (r1_sync_page_io(rdev
, sect
, s
,
1765 conf
->tmppage
, READ
)) {
1766 atomic_add(s
, &rdev
->corrected_errors
);
1768 "md/raid1:%s: read error corrected "
1769 "(%d sectors at %llu on %s)\n",
1771 (unsigned long long)(sect
+
1773 bdevname(rdev
->bdev
, b
));
1782 static void bi_complete(struct bio
*bio
, int error
)
1784 complete((struct completion
*)bio
->bi_private
);
1787 static int submit_bio_wait(int rw
, struct bio
*bio
)
1789 struct completion event
;
1792 init_completion(&event
);
1793 bio
->bi_private
= &event
;
1794 bio
->bi_end_io
= bi_complete
;
1795 submit_bio(rw
, bio
);
1796 wait_for_completion(&event
);
1798 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1801 static int narrow_write_error(r1bio_t
*r1_bio
, int i
)
1803 mddev_t
*mddev
= r1_bio
->mddev
;
1804 conf_t
*conf
= mddev
->private;
1805 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1807 struct bio_vec
*vec
;
1809 /* bio has the data to be written to device 'i' where
1810 * we just recently had a write error.
1811 * We repeatedly clone the bio and trim down to one block,
1812 * then try the write. Where the write fails we record
1814 * It is conceivable that the bio doesn't exactly align with
1815 * blocks. We must handle this somehow.
1817 * We currently own a reference on the rdev.
1823 int sect_to_write
= r1_bio
->sectors
;
1826 if (rdev
->badblocks
.shift
< 0)
1829 block_sectors
= 1 << rdev
->badblocks
.shift
;
1830 sector
= r1_bio
->sector
;
1831 sectors
= ((sector
+ block_sectors
)
1832 & ~(sector_t
)(block_sectors
- 1))
1835 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
1836 vcnt
= r1_bio
->behind_page_count
;
1837 vec
= r1_bio
->behind_bvecs
;
1839 while (vec
[idx
].bv_page
== NULL
)
1842 vcnt
= r1_bio
->master_bio
->bi_vcnt
;
1843 vec
= r1_bio
->master_bio
->bi_io_vec
;
1844 idx
= r1_bio
->master_bio
->bi_idx
;
1846 while (sect_to_write
) {
1848 if (sectors
> sect_to_write
)
1849 sectors
= sect_to_write
;
1850 /* Write at 'sector' for 'sectors'*/
1852 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
1853 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
1854 wbio
->bi_sector
= r1_bio
->sector
;
1855 wbio
->bi_rw
= WRITE
;
1856 wbio
->bi_vcnt
= vcnt
;
1857 wbio
->bi_size
= r1_bio
->sectors
<< 9;
1860 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
1861 wbio
->bi_sector
+= rdev
->data_offset
;
1862 wbio
->bi_bdev
= rdev
->bdev
;
1863 if (submit_bio_wait(WRITE
, wbio
) == 0)
1865 ok
= rdev_set_badblocks(rdev
, sector
,
1870 sect_to_write
-= sectors
;
1872 sectors
= block_sectors
;
1877 static void handle_sync_write_finished(conf_t
*conf
, r1bio_t
*r1_bio
)
1880 int s
= r1_bio
->sectors
;
1881 for (m
= 0; m
< conf
->raid_disks
; m
++) {
1882 mdk_rdev_t
*rdev
= conf
->mirrors
[m
].rdev
;
1883 struct bio
*bio
= r1_bio
->bios
[m
];
1884 if (bio
->bi_end_io
== NULL
)
1886 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1887 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
1888 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
);
1890 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1891 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
1892 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
1893 md_error(conf
->mddev
, rdev
);
1897 md_done_sync(conf
->mddev
, s
, 1);
1900 static void handle_write_finished(conf_t
*conf
, r1bio_t
*r1_bio
)
1903 for (m
= 0; m
< conf
->raid_disks
; m
++)
1904 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
1905 mdk_rdev_t
*rdev
= conf
->mirrors
[m
].rdev
;
1906 rdev_clear_badblocks(rdev
,
1909 rdev_dec_pending(rdev
, conf
->mddev
);
1910 } else if (r1_bio
->bios
[m
] != NULL
) {
1911 /* This drive got a write error. We need to
1912 * narrow down and record precise write
1915 if (!narrow_write_error(r1_bio
, m
)) {
1916 md_error(conf
->mddev
,
1917 conf
->mirrors
[m
].rdev
);
1918 /* an I/O failed, we can't clear the bitmap */
1919 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1921 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
1924 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1925 close_write(r1_bio
);
1926 raid_end_bio_io(r1_bio
);
1929 static void handle_read_error(conf_t
*conf
, r1bio_t
*r1_bio
)
1933 mddev_t
*mddev
= conf
->mddev
;
1935 char b
[BDEVNAME_SIZE
];
1938 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
1939 /* we got a read error. Maybe the drive is bad. Maybe just
1940 * the block and we can fix it.
1941 * We freeze all other IO, and try reading the block from
1942 * other devices. When we find one, we re-write
1943 * and check it that fixes the read error.
1944 * This is all done synchronously while the array is
1947 if (mddev
->ro
== 0) {
1949 fix_read_error(conf
, r1_bio
->read_disk
,
1950 r1_bio
->sector
, r1_bio
->sectors
);
1951 unfreeze_array(conf
);
1953 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1955 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1956 bdevname(bio
->bi_bdev
, b
);
1958 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
1960 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
1961 " read error for block %llu\n",
1962 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
1963 raid_end_bio_io(r1_bio
);
1965 const unsigned long do_sync
1966 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
1968 r1_bio
->bios
[r1_bio
->read_disk
] =
1969 mddev
->ro
? IO_BLOCKED
: NULL
;
1972 r1_bio
->read_disk
= disk
;
1973 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
1974 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1975 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1976 rdev
= conf
->mirrors
[disk
].rdev
;
1977 printk_ratelimited(KERN_ERR
1978 "md/raid1:%s: redirecting sector %llu"
1979 " to other mirror: %s\n",
1981 (unsigned long long)r1_bio
->sector
,
1982 bdevname(rdev
->bdev
, b
));
1983 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1984 bio
->bi_bdev
= rdev
->bdev
;
1985 bio
->bi_end_io
= raid1_end_read_request
;
1986 bio
->bi_rw
= READ
| do_sync
;
1987 bio
->bi_private
= r1_bio
;
1988 if (max_sectors
< r1_bio
->sectors
) {
1989 /* Drat - have to split this up more */
1990 struct bio
*mbio
= r1_bio
->master_bio
;
1991 int sectors_handled
= (r1_bio
->sector
+ max_sectors
1993 r1_bio
->sectors
= max_sectors
;
1994 spin_lock_irq(&conf
->device_lock
);
1995 if (mbio
->bi_phys_segments
== 0)
1996 mbio
->bi_phys_segments
= 2;
1998 mbio
->bi_phys_segments
++;
1999 spin_unlock_irq(&conf
->device_lock
);
2000 generic_make_request(bio
);
2003 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2005 r1_bio
->master_bio
= mbio
;
2006 r1_bio
->sectors
= (mbio
->bi_size
>> 9)
2009 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2010 r1_bio
->mddev
= mddev
;
2011 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2015 generic_make_request(bio
);
2019 static void raid1d(mddev_t
*mddev
)
2022 unsigned long flags
;
2023 conf_t
*conf
= mddev
->private;
2024 struct list_head
*head
= &conf
->retry_list
;
2025 struct blk_plug plug
;
2027 md_check_recovery(mddev
);
2029 blk_start_plug(&plug
);
2032 if (atomic_read(&mddev
->plug_cnt
) == 0)
2033 flush_pending_writes(conf
);
2035 spin_lock_irqsave(&conf
->device_lock
, flags
);
2036 if (list_empty(head
)) {
2037 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2040 r1_bio
= list_entry(head
->prev
, r1bio_t
, retry_list
);
2041 list_del(head
->prev
);
2043 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2045 mddev
= r1_bio
->mddev
;
2046 conf
= mddev
->private;
2047 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2048 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2049 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2050 handle_sync_write_finished(conf
, r1_bio
);
2052 sync_request_write(mddev
, r1_bio
);
2053 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2054 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2055 handle_write_finished(conf
, r1_bio
);
2056 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2057 handle_read_error(conf
, r1_bio
);
2059 /* just a partial read to be scheduled from separate
2062 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2065 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2066 md_check_recovery(mddev
);
2068 blk_finish_plug(&plug
);
2072 static int init_resync(conf_t
*conf
)
2076 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2077 BUG_ON(conf
->r1buf_pool
);
2078 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2080 if (!conf
->r1buf_pool
)
2082 conf
->next_resync
= 0;
2087 * perform a "sync" on one "block"
2089 * We need to make sure that no normal I/O request - particularly write
2090 * requests - conflict with active sync requests.
2092 * This is achieved by tracking pending requests and a 'barrier' concept
2093 * that can be installed to exclude normal IO requests.
2096 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2098 conf_t
*conf
= mddev
->private;
2101 sector_t max_sector
, nr_sectors
;
2105 int write_targets
= 0, read_targets
= 0;
2106 sector_t sync_blocks
;
2107 int still_degraded
= 0;
2108 int good_sectors
= RESYNC_SECTORS
;
2109 int min_bad
= 0; /* number of sectors that are bad in all devices */
2111 if (!conf
->r1buf_pool
)
2112 if (init_resync(conf
))
2115 max_sector
= mddev
->dev_sectors
;
2116 if (sector_nr
>= max_sector
) {
2117 /* If we aborted, we need to abort the
2118 * sync on the 'current' bitmap chunk (there will
2119 * only be one in raid1 resync.
2120 * We can find the current addess in mddev->curr_resync
2122 if (mddev
->curr_resync
< max_sector
) /* aborted */
2123 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2125 else /* completed sync */
2128 bitmap_close_sync(mddev
->bitmap
);
2133 if (mddev
->bitmap
== NULL
&&
2134 mddev
->recovery_cp
== MaxSector
&&
2135 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2136 conf
->fullsync
== 0) {
2138 return max_sector
- sector_nr
;
2140 /* before building a request, check if we can skip these blocks..
2141 * This call the bitmap_start_sync doesn't actually record anything
2143 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2144 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2145 /* We can skip this block, and probably several more */
2150 * If there is non-resync activity waiting for a turn,
2151 * and resync is going fast enough,
2152 * then let it though before starting on this new sync request.
2154 if (!go_faster
&& conf
->nr_waiting
)
2155 msleep_interruptible(1000);
2157 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2158 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2159 raise_barrier(conf
);
2161 conf
->next_resync
= sector_nr
;
2165 * If we get a correctably read error during resync or recovery,
2166 * we might want to read from a different device. So we
2167 * flag all drives that could conceivably be read from for READ,
2168 * and any others (which will be non-In_sync devices) for WRITE.
2169 * If a read fails, we try reading from something else for which READ
2173 r1_bio
->mddev
= mddev
;
2174 r1_bio
->sector
= sector_nr
;
2176 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2178 for (i
=0; i
< conf
->raid_disks
; i
++) {
2180 bio
= r1_bio
->bios
[i
];
2182 /* take from bio_init */
2183 bio
->bi_next
= NULL
;
2184 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
2185 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2186 bio
->bi_comp_cpu
= -1;
2190 bio
->bi_phys_segments
= 0;
2192 bio
->bi_end_io
= NULL
;
2193 bio
->bi_private
= NULL
;
2195 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2197 test_bit(Faulty
, &rdev
->flags
)) {
2199 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2201 bio
->bi_end_io
= end_sync_write
;
2204 /* may need to read from here */
2205 sector_t first_bad
= MaxSector
;
2208 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2209 &first_bad
, &bad_sectors
)) {
2210 if (first_bad
> sector_nr
)
2211 good_sectors
= first_bad
- sector_nr
;
2213 bad_sectors
-= (sector_nr
- first_bad
);
2215 min_bad
> bad_sectors
)
2216 min_bad
= bad_sectors
;
2219 if (sector_nr
< first_bad
) {
2220 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2228 bio
->bi_end_io
= end_sync_read
;
2232 if (bio
->bi_end_io
) {
2233 atomic_inc(&rdev
->nr_pending
);
2234 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2235 bio
->bi_bdev
= rdev
->bdev
;
2236 bio
->bi_private
= r1_bio
;
2242 r1_bio
->read_disk
= disk
;
2244 if (read_targets
== 0 && min_bad
> 0) {
2245 /* These sectors are bad on all InSync devices, so we
2246 * need to mark them bad on all write targets
2249 for (i
= 0 ; i
< conf
->raid_disks
; i
++)
2250 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2252 rcu_dereference(conf
->mirrors
[i
].rdev
);
2253 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2257 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2262 /* Cannot record the badblocks, so need to
2264 * If there are multiple read targets, could just
2265 * fail the really bad ones ???
2267 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2268 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2274 if (min_bad
> 0 && min_bad
< good_sectors
) {
2275 /* only resync enough to reach the next bad->good
2277 good_sectors
= min_bad
;
2280 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2281 /* extra read targets are also write targets */
2282 write_targets
+= read_targets
-1;
2284 if (write_targets
== 0 || read_targets
== 0) {
2285 /* There is nowhere to write, so all non-sync
2286 * drives must be failed - so we are finished
2288 sector_t rv
= max_sector
- sector_nr
;
2294 if (max_sector
> mddev
->resync_max
)
2295 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2296 if (max_sector
> sector_nr
+ good_sectors
)
2297 max_sector
= sector_nr
+ good_sectors
;
2302 int len
= PAGE_SIZE
;
2303 if (sector_nr
+ (len
>>9) > max_sector
)
2304 len
= (max_sector
- sector_nr
) << 9;
2307 if (sync_blocks
== 0) {
2308 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2309 &sync_blocks
, still_degraded
) &&
2311 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2313 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2314 if ((len
>> 9) > sync_blocks
)
2315 len
= sync_blocks
<<9;
2318 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
2319 bio
= r1_bio
->bios
[i
];
2320 if (bio
->bi_end_io
) {
2321 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2322 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2324 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2327 bio
= r1_bio
->bios
[i
];
2328 if (bio
->bi_end_io
==NULL
)
2330 /* remove last page from this bio */
2332 bio
->bi_size
-= len
;
2333 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2339 nr_sectors
+= len
>>9;
2340 sector_nr
+= len
>>9;
2341 sync_blocks
-= (len
>>9);
2342 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2344 r1_bio
->sectors
= nr_sectors
;
2346 /* For a user-requested sync, we read all readable devices and do a
2349 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2350 atomic_set(&r1_bio
->remaining
, read_targets
);
2351 for (i
=0; i
<conf
->raid_disks
; i
++) {
2352 bio
= r1_bio
->bios
[i
];
2353 if (bio
->bi_end_io
== end_sync_read
) {
2354 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2355 generic_make_request(bio
);
2359 atomic_set(&r1_bio
->remaining
, 1);
2360 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2361 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2362 generic_make_request(bio
);
2368 static sector_t
raid1_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2373 return mddev
->dev_sectors
;
2376 static conf_t
*setup_conf(mddev_t
*mddev
)
2380 mirror_info_t
*disk
;
2384 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2388 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2393 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2397 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2398 if (!conf
->poolinfo
)
2400 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
2401 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2404 if (!conf
->r1bio_pool
)
2407 conf
->poolinfo
->mddev
= mddev
;
2409 spin_lock_init(&conf
->device_lock
);
2410 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2411 int disk_idx
= rdev
->raid_disk
;
2412 if (disk_idx
>= mddev
->raid_disks
2415 disk
= conf
->mirrors
+ disk_idx
;
2419 disk
->head_position
= 0;
2421 conf
->raid_disks
= mddev
->raid_disks
;
2422 conf
->mddev
= mddev
;
2423 INIT_LIST_HEAD(&conf
->retry_list
);
2425 spin_lock_init(&conf
->resync_lock
);
2426 init_waitqueue_head(&conf
->wait_barrier
);
2428 bio_list_init(&conf
->pending_bio_list
);
2430 conf
->last_used
= -1;
2431 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2433 disk
= conf
->mirrors
+ i
;
2436 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2437 disk
->head_position
= 0;
2440 } else if (conf
->last_used
< 0)
2442 * The first working device is used as a
2443 * starting point to read balancing.
2445 conf
->last_used
= i
;
2449 if (conf
->last_used
< 0) {
2450 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
2455 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
2456 if (!conf
->thread
) {
2458 "md/raid1:%s: couldn't allocate thread\n",
2467 if (conf
->r1bio_pool
)
2468 mempool_destroy(conf
->r1bio_pool
);
2469 kfree(conf
->mirrors
);
2470 safe_put_page(conf
->tmppage
);
2471 kfree(conf
->poolinfo
);
2474 return ERR_PTR(err
);
2477 static int run(mddev_t
*mddev
)
2483 if (mddev
->level
!= 1) {
2484 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2485 mdname(mddev
), mddev
->level
);
2488 if (mddev
->reshape_position
!= MaxSector
) {
2489 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2494 * copy the already verified devices into our private RAID1
2495 * bookkeeping area. [whatever we allocate in run(),
2496 * should be freed in stop()]
2498 if (mddev
->private == NULL
)
2499 conf
= setup_conf(mddev
);
2501 conf
= mddev
->private;
2504 return PTR_ERR(conf
);
2506 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2507 if (!mddev
->gendisk
)
2509 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2510 rdev
->data_offset
<< 9);
2511 /* as we don't honour merge_bvec_fn, we must never risk
2512 * violating it, so limit ->max_segments to 1 lying within
2513 * a single page, as a one page request is never in violation.
2515 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2516 blk_queue_max_segments(mddev
->queue
, 1);
2517 blk_queue_segment_boundary(mddev
->queue
,
2518 PAGE_CACHE_SIZE
- 1);
2522 mddev
->degraded
= 0;
2523 for (i
=0; i
< conf
->raid_disks
; i
++)
2524 if (conf
->mirrors
[i
].rdev
== NULL
||
2525 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2526 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2529 if (conf
->raid_disks
- mddev
->degraded
== 1)
2530 mddev
->recovery_cp
= MaxSector
;
2532 if (mddev
->recovery_cp
!= MaxSector
)
2533 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2534 " -- starting background reconstruction\n",
2537 "md/raid1:%s: active with %d out of %d mirrors\n",
2538 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2542 * Ok, everything is just fine now
2544 mddev
->thread
= conf
->thread
;
2545 conf
->thread
= NULL
;
2546 mddev
->private = conf
;
2548 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2551 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2552 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2554 return md_integrity_register(mddev
);
2557 static int stop(mddev_t
*mddev
)
2559 conf_t
*conf
= mddev
->private;
2560 struct bitmap
*bitmap
= mddev
->bitmap
;
2562 /* wait for behind writes to complete */
2563 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2564 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2566 /* need to kick something here to make sure I/O goes? */
2567 wait_event(bitmap
->behind_wait
,
2568 atomic_read(&bitmap
->behind_writes
) == 0);
2571 raise_barrier(conf
);
2572 lower_barrier(conf
);
2574 md_unregister_thread(&mddev
->thread
);
2575 if (conf
->r1bio_pool
)
2576 mempool_destroy(conf
->r1bio_pool
);
2577 kfree(conf
->mirrors
);
2578 kfree(conf
->poolinfo
);
2580 mddev
->private = NULL
;
2584 static int raid1_resize(mddev_t
*mddev
, sector_t sectors
)
2586 /* no resync is happening, and there is enough space
2587 * on all devices, so we can resize.
2588 * We need to make sure resync covers any new space.
2589 * If the array is shrinking we should possibly wait until
2590 * any io in the removed space completes, but it hardly seems
2593 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2594 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2596 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2597 revalidate_disk(mddev
->gendisk
);
2598 if (sectors
> mddev
->dev_sectors
&&
2599 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2600 mddev
->recovery_cp
= mddev
->dev_sectors
;
2601 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2603 mddev
->dev_sectors
= sectors
;
2604 mddev
->resync_max_sectors
= sectors
;
2608 static int raid1_reshape(mddev_t
*mddev
)
2611 * 1/ resize the r1bio_pool
2612 * 2/ resize conf->mirrors
2614 * We allocate a new r1bio_pool if we can.
2615 * Then raise a device barrier and wait until all IO stops.
2616 * Then resize conf->mirrors and swap in the new r1bio pool.
2618 * At the same time, we "pack" the devices so that all the missing
2619 * devices have the higher raid_disk numbers.
2621 mempool_t
*newpool
, *oldpool
;
2622 struct pool_info
*newpoolinfo
;
2623 mirror_info_t
*newmirrors
;
2624 conf_t
*conf
= mddev
->private;
2625 int cnt
, raid_disks
;
2626 unsigned long flags
;
2629 /* Cannot change chunk_size, layout, or level */
2630 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2631 mddev
->layout
!= mddev
->new_layout
||
2632 mddev
->level
!= mddev
->new_level
) {
2633 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2634 mddev
->new_layout
= mddev
->layout
;
2635 mddev
->new_level
= mddev
->level
;
2639 err
= md_allow_write(mddev
);
2643 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2645 if (raid_disks
< conf
->raid_disks
) {
2647 for (d
= 0; d
< conf
->raid_disks
; d
++)
2648 if (conf
->mirrors
[d
].rdev
)
2650 if (cnt
> raid_disks
)
2654 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2657 newpoolinfo
->mddev
= mddev
;
2658 newpoolinfo
->raid_disks
= raid_disks
;
2660 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2661 r1bio_pool_free
, newpoolinfo
);
2666 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2669 mempool_destroy(newpool
);
2673 raise_barrier(conf
);
2675 /* ok, everything is stopped */
2676 oldpool
= conf
->r1bio_pool
;
2677 conf
->r1bio_pool
= newpool
;
2679 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2680 mdk_rdev_t
*rdev
= conf
->mirrors
[d
].rdev
;
2681 if (rdev
&& rdev
->raid_disk
!= d2
) {
2682 sysfs_unlink_rdev(mddev
, rdev
);
2683 rdev
->raid_disk
= d2
;
2684 sysfs_unlink_rdev(mddev
, rdev
);
2685 if (sysfs_link_rdev(mddev
, rdev
))
2687 "md/raid1:%s: cannot register rd%d\n",
2688 mdname(mddev
), rdev
->raid_disk
);
2691 newmirrors
[d2
++].rdev
= rdev
;
2693 kfree(conf
->mirrors
);
2694 conf
->mirrors
= newmirrors
;
2695 kfree(conf
->poolinfo
);
2696 conf
->poolinfo
= newpoolinfo
;
2698 spin_lock_irqsave(&conf
->device_lock
, flags
);
2699 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2700 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2701 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2702 mddev
->delta_disks
= 0;
2704 conf
->last_used
= 0; /* just make sure it is in-range */
2705 lower_barrier(conf
);
2707 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2708 md_wakeup_thread(mddev
->thread
);
2710 mempool_destroy(oldpool
);
2714 static void raid1_quiesce(mddev_t
*mddev
, int state
)
2716 conf_t
*conf
= mddev
->private;
2719 case 2: /* wake for suspend */
2720 wake_up(&conf
->wait_barrier
);
2723 raise_barrier(conf
);
2726 lower_barrier(conf
);
2731 static void *raid1_takeover(mddev_t
*mddev
)
2733 /* raid1 can take over:
2734 * raid5 with 2 devices, any layout or chunk size
2736 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2738 mddev
->new_level
= 1;
2739 mddev
->new_layout
= 0;
2740 mddev
->new_chunk_sectors
= 0;
2741 conf
= setup_conf(mddev
);
2746 return ERR_PTR(-EINVAL
);
2749 static struct mdk_personality raid1_personality
=
2753 .owner
= THIS_MODULE
,
2754 .make_request
= make_request
,
2758 .error_handler
= error
,
2759 .hot_add_disk
= raid1_add_disk
,
2760 .hot_remove_disk
= raid1_remove_disk
,
2761 .spare_active
= raid1_spare_active
,
2762 .sync_request
= sync_request
,
2763 .resize
= raid1_resize
,
2765 .check_reshape
= raid1_reshape
,
2766 .quiesce
= raid1_quiesce
,
2767 .takeover
= raid1_takeover
,
2770 static int __init
raid_init(void)
2772 return register_md_personality(&raid1_personality
);
2775 static void raid_exit(void)
2777 unregister_md_personality(&raid1_personality
);
2780 module_init(raid_init
);
2781 module_exit(raid_exit
);
2782 MODULE_LICENSE("GPL");
2783 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2784 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2785 MODULE_ALIAS("md-raid1");
2786 MODULE_ALIAS("md-level-1");