2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
22 #include "transaction.h"
25 #include "print-tree.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct inode
*inode
,
97 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_path
*path
, u64 objectid
);
100 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_root
*log
,
103 struct btrfs_path
*path
,
104 u64 dirid
, int del_all
);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle
*trans
,
135 struct btrfs_root
*root
)
140 mutex_lock(&root
->log_mutex
);
141 if (root
->log_root
) {
142 if (!root
->log_start_pid
) {
143 root
->log_start_pid
= current
->pid
;
144 root
->log_multiple_pids
= false;
145 } else if (root
->log_start_pid
!= current
->pid
) {
146 root
->log_multiple_pids
= true;
150 atomic_inc(&root
->log_writers
);
151 mutex_unlock(&root
->log_mutex
);
154 root
->log_multiple_pids
= false;
155 root
->log_start_pid
= current
->pid
;
156 mutex_lock(&root
->fs_info
->tree_log_mutex
);
157 if (!root
->fs_info
->log_root_tree
) {
158 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
162 if (err
== 0 && !root
->log_root
) {
163 ret
= btrfs_add_log_tree(trans
, root
);
167 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
169 atomic_inc(&root
->log_writers
);
170 mutex_unlock(&root
->log_mutex
);
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
179 static int join_running_log_trans(struct btrfs_root
*root
)
187 mutex_lock(&root
->log_mutex
);
188 if (root
->log_root
) {
190 atomic_inc(&root
->log_writers
);
192 mutex_unlock(&root
->log_mutex
);
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root
*root
)
205 mutex_lock(&root
->log_mutex
);
206 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root
*root
)
217 if (atomic_dec_and_test(&root
->log_writers
)) {
219 if (waitqueue_active(&root
->log_writer_wait
))
220 wake_up(&root
->log_writer_wait
);
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control
{
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
248 /* pin only walk, we record which extents on disk belong to the
253 /* what stage of the replay code we're currently in */
256 /* the root we are currently replaying */
257 struct btrfs_root
*replay_dest
;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle
*trans
;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
267 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
268 struct walk_control
*wc
, u64 gen
);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root
*log
,
275 struct extent_buffer
*eb
,
276 struct walk_control
*wc
, u64 gen
)
279 btrfs_pin_extent(log
->fs_info
->extent_root
,
280 eb
->start
, eb
->len
, 0);
282 if (btrfs_buffer_uptodate(eb
, gen
)) {
284 btrfs_write_tree_block(eb
);
286 btrfs_wait_tree_block_writeback(eb
);
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
306 struct btrfs_root
*root
,
307 struct btrfs_path
*path
,
308 struct extent_buffer
*eb
, int slot
,
309 struct btrfs_key
*key
)
313 u64 saved_i_size
= 0;
314 int save_old_i_size
= 0;
315 unsigned long src_ptr
;
316 unsigned long dst_ptr
;
317 int overwrite_root
= 0;
319 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
322 item_size
= btrfs_item_size_nr(eb
, slot
);
323 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
325 /* look for the key in the destination tree */
326 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
330 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
332 if (dst_size
!= item_size
)
335 if (item_size
== 0) {
336 btrfs_release_path(root
, path
);
339 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
340 src_copy
= kmalloc(item_size
, GFP_NOFS
);
342 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
344 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
345 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
347 ret
= memcmp(dst_copy
, src_copy
, item_size
);
352 * they have the same contents, just return, this saves
353 * us from cowing blocks in the destination tree and doing
354 * extra writes that may not have been done by a previous
358 btrfs_release_path(root
, path
);
364 btrfs_release_path(root
, path
);
365 /* try to insert the key into the destination tree */
366 ret
= btrfs_insert_empty_item(trans
, root
, path
,
369 /* make sure any existing item is the correct size */
370 if (ret
== -EEXIST
) {
372 found_size
= btrfs_item_size_nr(path
->nodes
[0],
374 if (found_size
> item_size
) {
375 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
376 } else if (found_size
< item_size
) {
377 ret
= btrfs_extend_item(trans
, root
, path
,
378 item_size
- found_size
);
384 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
387 /* don't overwrite an existing inode if the generation number
388 * was logged as zero. This is done when the tree logging code
389 * is just logging an inode to make sure it exists after recovery.
391 * Also, don't overwrite i_size on directories during replay.
392 * log replay inserts and removes directory items based on the
393 * state of the tree found in the subvolume, and i_size is modified
396 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
397 struct btrfs_inode_item
*src_item
;
398 struct btrfs_inode_item
*dst_item
;
400 src_item
= (struct btrfs_inode_item
*)src_ptr
;
401 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
403 if (btrfs_inode_generation(eb
, src_item
) == 0)
406 if (overwrite_root
&&
407 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
408 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
410 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
415 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
418 if (save_old_i_size
) {
419 struct btrfs_inode_item
*dst_item
;
420 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
421 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
424 /* make sure the generation is filled in */
425 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
426 struct btrfs_inode_item
*dst_item
;
427 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
428 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
429 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
434 btrfs_mark_buffer_dirty(path
->nodes
[0]);
435 btrfs_release_path(root
, path
);
440 * simple helper to read an inode off the disk from a given root
441 * This can only be called for subvolume roots and not for the log
443 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
446 struct btrfs_key key
;
449 key
.objectid
= objectid
;
450 key
.type
= BTRFS_INODE_ITEM_KEY
;
452 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
455 } else if (is_bad_inode(inode
)) {
462 /* replays a single extent in 'eb' at 'slot' with 'key' into the
463 * subvolume 'root'. path is released on entry and should be released
466 * extents in the log tree have not been allocated out of the extent
467 * tree yet. So, this completes the allocation, taking a reference
468 * as required if the extent already exists or creating a new extent
469 * if it isn't in the extent allocation tree yet.
471 * The extent is inserted into the file, dropping any existing extents
472 * from the file that overlap the new one.
474 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
475 struct btrfs_root
*root
,
476 struct btrfs_path
*path
,
477 struct extent_buffer
*eb
, int slot
,
478 struct btrfs_key
*key
)
481 u64 mask
= root
->sectorsize
- 1;
484 u64 start
= key
->offset
;
486 struct btrfs_file_extent_item
*item
;
487 struct inode
*inode
= NULL
;
491 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
492 found_type
= btrfs_file_extent_type(eb
, item
);
494 if (found_type
== BTRFS_FILE_EXTENT_REG
||
495 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
496 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
497 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
498 size
= btrfs_file_extent_inline_len(eb
, item
);
499 extent_end
= (start
+ size
+ mask
) & ~mask
;
505 inode
= read_one_inode(root
, key
->objectid
);
512 * first check to see if we already have this extent in the
513 * file. This must be done before the btrfs_drop_extents run
514 * so we don't try to drop this extent.
516 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
520 (found_type
== BTRFS_FILE_EXTENT_REG
||
521 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
522 struct btrfs_file_extent_item cmp1
;
523 struct btrfs_file_extent_item cmp2
;
524 struct btrfs_file_extent_item
*existing
;
525 struct extent_buffer
*leaf
;
527 leaf
= path
->nodes
[0];
528 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
529 struct btrfs_file_extent_item
);
531 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
533 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
537 * we already have a pointer to this exact extent,
538 * we don't have to do anything
540 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
541 btrfs_release_path(root
, path
);
545 btrfs_release_path(root
, path
);
547 saved_nbytes
= inode_get_bytes(inode
);
548 /* drop any overlapping extents */
549 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
553 if (found_type
== BTRFS_FILE_EXTENT_REG
||
554 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
556 unsigned long dest_offset
;
557 struct btrfs_key ins
;
559 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
562 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
564 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
565 (unsigned long)item
, sizeof(*item
));
567 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
568 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
569 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
570 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
572 if (ins
.objectid
> 0) {
575 LIST_HEAD(ordered_sums
);
577 * is this extent already allocated in the extent
578 * allocation tree? If so, just add a reference
580 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
583 ret
= btrfs_inc_extent_ref(trans
, root
,
584 ins
.objectid
, ins
.offset
,
585 0, root
->root_key
.objectid
,
586 key
->objectid
, offset
);
589 * insert the extent pointer in the extent
592 ret
= btrfs_alloc_logged_file_extent(trans
,
593 root
, root
->root_key
.objectid
,
594 key
->objectid
, offset
, &ins
);
597 btrfs_release_path(root
, path
);
599 if (btrfs_file_extent_compression(eb
, item
)) {
600 csum_start
= ins
.objectid
;
601 csum_end
= csum_start
+ ins
.offset
;
603 csum_start
= ins
.objectid
+
604 btrfs_file_extent_offset(eb
, item
);
605 csum_end
= csum_start
+
606 btrfs_file_extent_num_bytes(eb
, item
);
609 ret
= btrfs_lookup_csums_range(root
->log_root
,
610 csum_start
, csum_end
- 1,
613 while (!list_empty(&ordered_sums
)) {
614 struct btrfs_ordered_sum
*sums
;
615 sums
= list_entry(ordered_sums
.next
,
616 struct btrfs_ordered_sum
,
618 ret
= btrfs_csum_file_blocks(trans
,
619 root
->fs_info
->csum_root
,
622 list_del(&sums
->list
);
626 btrfs_release_path(root
, path
);
628 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
629 /* inline extents are easy, we just overwrite them */
630 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
634 inode_set_bytes(inode
, saved_nbytes
);
635 btrfs_update_inode(trans
, root
, inode
);
643 * when cleaning up conflicts between the directory names in the
644 * subvolume, directory names in the log and directory names in the
645 * inode back references, we may have to unlink inodes from directories.
647 * This is a helper function to do the unlink of a specific directory
650 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
651 struct btrfs_root
*root
,
652 struct btrfs_path
*path
,
654 struct btrfs_dir_item
*di
)
659 struct extent_buffer
*leaf
;
660 struct btrfs_key location
;
663 leaf
= path
->nodes
[0];
665 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
666 name_len
= btrfs_dir_name_len(leaf
, di
);
667 name
= kmalloc(name_len
, GFP_NOFS
);
668 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
669 btrfs_release_path(root
, path
);
671 inode
= read_one_inode(root
, location
.objectid
);
674 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
677 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
686 * helper function to see if a given name and sequence number found
687 * in an inode back reference are already in a directory and correctly
688 * point to this inode
690 static noinline
int inode_in_dir(struct btrfs_root
*root
,
691 struct btrfs_path
*path
,
692 u64 dirid
, u64 objectid
, u64 index
,
693 const char *name
, int name_len
)
695 struct btrfs_dir_item
*di
;
696 struct btrfs_key location
;
699 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
700 index
, name
, name_len
, 0);
701 if (di
&& !IS_ERR(di
)) {
702 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
703 if (location
.objectid
!= objectid
)
707 btrfs_release_path(root
, path
);
709 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
710 if (di
&& !IS_ERR(di
)) {
711 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
712 if (location
.objectid
!= objectid
)
718 btrfs_release_path(root
, path
);
723 * helper function to check a log tree for a named back reference in
724 * an inode. This is used to decide if a back reference that is
725 * found in the subvolume conflicts with what we find in the log.
727 * inode backreferences may have multiple refs in a single item,
728 * during replay we process one reference at a time, and we don't
729 * want to delete valid links to a file from the subvolume if that
730 * link is also in the log.
732 static noinline
int backref_in_log(struct btrfs_root
*log
,
733 struct btrfs_key
*key
,
734 char *name
, int namelen
)
736 struct btrfs_path
*path
;
737 struct btrfs_inode_ref
*ref
;
739 unsigned long ptr_end
;
740 unsigned long name_ptr
;
746 path
= btrfs_alloc_path();
747 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
751 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
752 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
753 ptr_end
= ptr
+ item_size
;
754 while (ptr
< ptr_end
) {
755 ref
= (struct btrfs_inode_ref
*)ptr
;
756 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
757 if (found_name_len
== namelen
) {
758 name_ptr
= (unsigned long)(ref
+ 1);
759 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
766 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
769 btrfs_free_path(path
);
775 * replay one inode back reference item found in the log tree.
776 * eb, slot and key refer to the buffer and key found in the log tree.
777 * root is the destination we are replaying into, and path is for temp
778 * use by this function. (it should be released on return).
780 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
781 struct btrfs_root
*root
,
782 struct btrfs_root
*log
,
783 struct btrfs_path
*path
,
784 struct extent_buffer
*eb
, int slot
,
785 struct btrfs_key
*key
)
789 struct btrfs_key location
;
790 struct btrfs_inode_ref
*ref
;
791 struct btrfs_dir_item
*di
;
795 unsigned long ref_ptr
;
796 unsigned long ref_end
;
798 location
.objectid
= key
->objectid
;
799 location
.type
= BTRFS_INODE_ITEM_KEY
;
803 * it is possible that we didn't log all the parent directories
804 * for a given inode. If we don't find the dir, just don't
805 * copy the back ref in. The link count fixup code will take
808 dir
= read_one_inode(root
, key
->offset
);
812 inode
= read_one_inode(root
, key
->objectid
);
815 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
816 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
819 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
821 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
822 name
= kmalloc(namelen
, GFP_NOFS
);
825 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
827 /* if we already have a perfect match, we're done */
828 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
829 btrfs_inode_ref_index(eb
, ref
),
835 * look for a conflicting back reference in the metadata.
836 * if we find one we have to unlink that name of the file
837 * before we add our new link. Later on, we overwrite any
838 * existing back reference, and we don't want to create
839 * dangling pointers in the directory.
842 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
846 struct btrfs_inode_ref
*victim_ref
;
848 unsigned long ptr_end
;
849 struct extent_buffer
*leaf
= path
->nodes
[0];
851 /* are we trying to overwrite a back ref for the root directory
852 * if so, just jump out, we're done
854 if (key
->objectid
== key
->offset
)
857 /* check all the names in this back reference to see
858 * if they are in the log. if so, we allow them to stay
859 * otherwise they must be unlinked as a conflict
861 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
862 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
863 while (ptr
< ptr_end
) {
864 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
865 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
867 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
868 BUG_ON(!victim_name
);
870 read_extent_buffer(leaf
, victim_name
,
871 (unsigned long)(victim_ref
+ 1),
874 if (!backref_in_log(log
, key
, victim_name
,
876 btrfs_inc_nlink(inode
);
877 btrfs_release_path(root
, path
);
879 ret
= btrfs_unlink_inode(trans
, root
, dir
,
883 btrfs_release_path(root
, path
);
887 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
891 btrfs_release_path(root
, path
);
893 /* look for a conflicting sequence number */
894 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
895 btrfs_inode_ref_index(eb
, ref
),
897 if (di
&& !IS_ERR(di
)) {
898 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
901 btrfs_release_path(root
, path
);
904 /* look for a conflicting name */
905 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
907 if (di
&& !IS_ERR(di
)) {
908 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
911 btrfs_release_path(root
, path
);
913 /* insert our name */
914 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
915 btrfs_inode_ref_index(eb
, ref
));
918 btrfs_update_inode(trans
, root
, inode
);
921 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
923 if (ref_ptr
< ref_end
)
926 /* finally write the back reference in the inode */
927 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
931 btrfs_release_path(root
, path
);
937 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
938 struct btrfs_root
*root
, u64 offset
)
941 ret
= btrfs_find_orphan_item(root
, offset
);
943 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
949 * There are a few corners where the link count of the file can't
950 * be properly maintained during replay. So, instead of adding
951 * lots of complexity to the log code, we just scan the backrefs
952 * for any file that has been through replay.
954 * The scan will update the link count on the inode to reflect the
955 * number of back refs found. If it goes down to zero, the iput
956 * will free the inode.
958 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
959 struct btrfs_root
*root
,
962 struct btrfs_path
*path
;
964 struct btrfs_key key
;
967 unsigned long ptr_end
;
970 key
.objectid
= inode
->i_ino
;
971 key
.type
= BTRFS_INODE_REF_KEY
;
972 key
.offset
= (u64
)-1;
974 path
= btrfs_alloc_path();
977 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
981 if (path
->slots
[0] == 0)
985 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
987 if (key
.objectid
!= inode
->i_ino
||
988 key
.type
!= BTRFS_INODE_REF_KEY
)
990 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
991 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
993 while (ptr
< ptr_end
) {
994 struct btrfs_inode_ref
*ref
;
996 ref
= (struct btrfs_inode_ref
*)ptr
;
997 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
999 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1003 if (key
.offset
== 0)
1006 btrfs_release_path(root
, path
);
1008 btrfs_release_path(root
, path
);
1009 if (nlink
!= inode
->i_nlink
) {
1010 inode
->i_nlink
= nlink
;
1011 btrfs_update_inode(trans
, root
, inode
);
1013 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1015 if (inode
->i_nlink
== 0) {
1016 if (S_ISDIR(inode
->i_mode
)) {
1017 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1021 ret
= insert_orphan_item(trans
, root
, inode
->i_ino
);
1024 btrfs_free_path(path
);
1029 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1030 struct btrfs_root
*root
,
1031 struct btrfs_path
*path
)
1034 struct btrfs_key key
;
1035 struct inode
*inode
;
1037 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1038 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1039 key
.offset
= (u64
)-1;
1041 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1046 if (path
->slots
[0] == 0)
1051 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1052 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1053 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1056 ret
= btrfs_del_item(trans
, root
, path
);
1059 btrfs_release_path(root
, path
);
1060 inode
= read_one_inode(root
, key
.offset
);
1063 ret
= fixup_inode_link_count(trans
, root
, inode
);
1069 * fixup on a directory may create new entries,
1070 * make sure we always look for the highset possible
1073 key
.offset
= (u64
)-1;
1075 btrfs_release_path(root
, path
);
1081 * record a given inode in the fixup dir so we can check its link
1082 * count when replay is done. The link count is incremented here
1083 * so the inode won't go away until we check it
1085 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1086 struct btrfs_root
*root
,
1087 struct btrfs_path
*path
,
1090 struct btrfs_key key
;
1092 struct inode
*inode
;
1094 inode
= read_one_inode(root
, objectid
);
1097 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1098 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1099 key
.offset
= objectid
;
1101 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1103 btrfs_release_path(root
, path
);
1105 btrfs_inc_nlink(inode
);
1106 btrfs_update_inode(trans
, root
, inode
);
1107 } else if (ret
== -EEXIST
) {
1118 * when replaying the log for a directory, we only insert names
1119 * for inodes that actually exist. This means an fsync on a directory
1120 * does not implicitly fsync all the new files in it
1122 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1123 struct btrfs_root
*root
,
1124 struct btrfs_path
*path
,
1125 u64 dirid
, u64 index
,
1126 char *name
, int name_len
, u8 type
,
1127 struct btrfs_key
*location
)
1129 struct inode
*inode
;
1133 inode
= read_one_inode(root
, location
->objectid
);
1137 dir
= read_one_inode(root
, dirid
);
1142 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1144 /* FIXME, put inode into FIXUP list */
1152 * take a single entry in a log directory item and replay it into
1155 * if a conflicting item exists in the subdirectory already,
1156 * the inode it points to is unlinked and put into the link count
1159 * If a name from the log points to a file or directory that does
1160 * not exist in the FS, it is skipped. fsyncs on directories
1161 * do not force down inodes inside that directory, just changes to the
1162 * names or unlinks in a directory.
1164 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1165 struct btrfs_root
*root
,
1166 struct btrfs_path
*path
,
1167 struct extent_buffer
*eb
,
1168 struct btrfs_dir_item
*di
,
1169 struct btrfs_key
*key
)
1173 struct btrfs_dir_item
*dst_di
;
1174 struct btrfs_key found_key
;
1175 struct btrfs_key log_key
;
1181 dir
= read_one_inode(root
, key
->objectid
);
1184 name_len
= btrfs_dir_name_len(eb
, di
);
1185 name
= kmalloc(name_len
, GFP_NOFS
);
1186 log_type
= btrfs_dir_type(eb
, di
);
1187 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1190 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1191 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1196 btrfs_release_path(root
, path
);
1198 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1199 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1201 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1202 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1209 if (!dst_di
|| IS_ERR(dst_di
)) {
1210 /* we need a sequence number to insert, so we only
1211 * do inserts for the BTRFS_DIR_INDEX_KEY types
1213 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1218 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1219 /* the existing item matches the logged item */
1220 if (found_key
.objectid
== log_key
.objectid
&&
1221 found_key
.type
== log_key
.type
&&
1222 found_key
.offset
== log_key
.offset
&&
1223 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1228 * don't drop the conflicting directory entry if the inode
1229 * for the new entry doesn't exist
1234 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1237 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1240 btrfs_release_path(root
, path
);
1246 btrfs_release_path(root
, path
);
1247 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1248 name
, name_len
, log_type
, &log_key
);
1250 BUG_ON(ret
&& ret
!= -ENOENT
);
1255 * find all the names in a directory item and reconcile them into
1256 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1257 * one name in a directory item, but the same code gets used for
1258 * both directory index types
1260 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1261 struct btrfs_root
*root
,
1262 struct btrfs_path
*path
,
1263 struct extent_buffer
*eb
, int slot
,
1264 struct btrfs_key
*key
)
1267 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1268 struct btrfs_dir_item
*di
;
1271 unsigned long ptr_end
;
1273 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1274 ptr_end
= ptr
+ item_size
;
1275 while (ptr
< ptr_end
) {
1276 di
= (struct btrfs_dir_item
*)ptr
;
1277 name_len
= btrfs_dir_name_len(eb
, di
);
1278 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1280 ptr
= (unsigned long)(di
+ 1);
1287 * directory replay has two parts. There are the standard directory
1288 * items in the log copied from the subvolume, and range items
1289 * created in the log while the subvolume was logged.
1291 * The range items tell us which parts of the key space the log
1292 * is authoritative for. During replay, if a key in the subvolume
1293 * directory is in a logged range item, but not actually in the log
1294 * that means it was deleted from the directory before the fsync
1295 * and should be removed.
1297 static noinline
int find_dir_range(struct btrfs_root
*root
,
1298 struct btrfs_path
*path
,
1299 u64 dirid
, int key_type
,
1300 u64
*start_ret
, u64
*end_ret
)
1302 struct btrfs_key key
;
1304 struct btrfs_dir_log_item
*item
;
1308 if (*start_ret
== (u64
)-1)
1311 key
.objectid
= dirid
;
1312 key
.type
= key_type
;
1313 key
.offset
= *start_ret
;
1315 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1319 if (path
->slots
[0] == 0)
1324 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1326 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1330 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1331 struct btrfs_dir_log_item
);
1332 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1334 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1336 *start_ret
= key
.offset
;
1337 *end_ret
= found_end
;
1342 /* check the next slot in the tree to see if it is a valid item */
1343 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1344 if (path
->slots
[0] >= nritems
) {
1345 ret
= btrfs_next_leaf(root
, path
);
1352 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1354 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1358 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1359 struct btrfs_dir_log_item
);
1360 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1361 *start_ret
= key
.offset
;
1362 *end_ret
= found_end
;
1365 btrfs_release_path(root
, path
);
1370 * this looks for a given directory item in the log. If the directory
1371 * item is not in the log, the item is removed and the inode it points
1374 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1375 struct btrfs_root
*root
,
1376 struct btrfs_root
*log
,
1377 struct btrfs_path
*path
,
1378 struct btrfs_path
*log_path
,
1380 struct btrfs_key
*dir_key
)
1383 struct extent_buffer
*eb
;
1386 struct btrfs_dir_item
*di
;
1387 struct btrfs_dir_item
*log_di
;
1390 unsigned long ptr_end
;
1392 struct inode
*inode
;
1393 struct btrfs_key location
;
1396 eb
= path
->nodes
[0];
1397 slot
= path
->slots
[0];
1398 item_size
= btrfs_item_size_nr(eb
, slot
);
1399 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1400 ptr_end
= ptr
+ item_size
;
1401 while (ptr
< ptr_end
) {
1402 di
= (struct btrfs_dir_item
*)ptr
;
1403 name_len
= btrfs_dir_name_len(eb
, di
);
1404 name
= kmalloc(name_len
, GFP_NOFS
);
1409 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1412 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1413 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1416 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1417 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1423 if (!log_di
|| IS_ERR(log_di
)) {
1424 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1425 btrfs_release_path(root
, path
);
1426 btrfs_release_path(log
, log_path
);
1427 inode
= read_one_inode(root
, location
.objectid
);
1430 ret
= link_to_fixup_dir(trans
, root
,
1431 path
, location
.objectid
);
1433 btrfs_inc_nlink(inode
);
1434 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1440 /* there might still be more names under this key
1441 * check and repeat if required
1443 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1450 btrfs_release_path(log
, log_path
);
1453 ptr
= (unsigned long)(di
+ 1);
1458 btrfs_release_path(root
, path
);
1459 btrfs_release_path(log
, log_path
);
1464 * deletion replay happens before we copy any new directory items
1465 * out of the log or out of backreferences from inodes. It
1466 * scans the log to find ranges of keys that log is authoritative for,
1467 * and then scans the directory to find items in those ranges that are
1468 * not present in the log.
1470 * Anything we don't find in the log is unlinked and removed from the
1473 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1474 struct btrfs_root
*root
,
1475 struct btrfs_root
*log
,
1476 struct btrfs_path
*path
,
1477 u64 dirid
, int del_all
)
1481 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1483 struct btrfs_key dir_key
;
1484 struct btrfs_key found_key
;
1485 struct btrfs_path
*log_path
;
1488 dir_key
.objectid
= dirid
;
1489 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1490 log_path
= btrfs_alloc_path();
1494 dir
= read_one_inode(root
, dirid
);
1495 /* it isn't an error if the inode isn't there, that can happen
1496 * because we replay the deletes before we copy in the inode item
1500 btrfs_free_path(log_path
);
1508 range_end
= (u64
)-1;
1510 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1511 &range_start
, &range_end
);
1516 dir_key
.offset
= range_start
;
1519 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1524 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1525 if (path
->slots
[0] >= nritems
) {
1526 ret
= btrfs_next_leaf(root
, path
);
1530 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1532 if (found_key
.objectid
!= dirid
||
1533 found_key
.type
!= dir_key
.type
)
1536 if (found_key
.offset
> range_end
)
1539 ret
= check_item_in_log(trans
, root
, log
, path
,
1543 if (found_key
.offset
== (u64
)-1)
1545 dir_key
.offset
= found_key
.offset
+ 1;
1547 btrfs_release_path(root
, path
);
1548 if (range_end
== (u64
)-1)
1550 range_start
= range_end
+ 1;
1555 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1556 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1557 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1558 btrfs_release_path(root
, path
);
1562 btrfs_release_path(root
, path
);
1563 btrfs_free_path(log_path
);
1569 * the process_func used to replay items from the log tree. This
1570 * gets called in two different stages. The first stage just looks
1571 * for inodes and makes sure they are all copied into the subvolume.
1573 * The second stage copies all the other item types from the log into
1574 * the subvolume. The two stage approach is slower, but gets rid of
1575 * lots of complexity around inodes referencing other inodes that exist
1576 * only in the log (references come from either directory items or inode
1579 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1580 struct walk_control
*wc
, u64 gen
)
1583 struct btrfs_path
*path
;
1584 struct btrfs_root
*root
= wc
->replay_dest
;
1585 struct btrfs_key key
;
1591 btrfs_read_buffer(eb
, gen
);
1593 level
= btrfs_header_level(eb
);
1598 path
= btrfs_alloc_path();
1601 nritems
= btrfs_header_nritems(eb
);
1602 for (i
= 0; i
< nritems
; i
++) {
1603 btrfs_item_key_to_cpu(eb
, &key
, i
);
1604 item_size
= btrfs_item_size_nr(eb
, i
);
1606 /* inode keys are done during the first stage */
1607 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1608 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1609 struct btrfs_inode_item
*inode_item
;
1612 inode_item
= btrfs_item_ptr(eb
, i
,
1613 struct btrfs_inode_item
);
1614 mode
= btrfs_inode_mode(eb
, inode_item
);
1615 if (S_ISDIR(mode
)) {
1616 ret
= replay_dir_deletes(wc
->trans
,
1617 root
, log
, path
, key
.objectid
, 0);
1620 ret
= overwrite_item(wc
->trans
, root
, path
,
1624 /* for regular files, make sure corresponding
1625 * orhpan item exist. extents past the new EOF
1626 * will be truncated later by orphan cleanup.
1628 if (S_ISREG(mode
)) {
1629 ret
= insert_orphan_item(wc
->trans
, root
,
1634 ret
= link_to_fixup_dir(wc
->trans
, root
,
1635 path
, key
.objectid
);
1638 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1641 /* these keys are simply copied */
1642 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1643 ret
= overwrite_item(wc
->trans
, root
, path
,
1646 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1647 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1649 BUG_ON(ret
&& ret
!= -ENOENT
);
1650 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1651 ret
= replay_one_extent(wc
->trans
, root
, path
,
1654 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1655 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1656 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1661 btrfs_free_path(path
);
1665 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1666 struct btrfs_root
*root
,
1667 struct btrfs_path
*path
, int *level
,
1668 struct walk_control
*wc
)
1674 struct extent_buffer
*next
;
1675 struct extent_buffer
*cur
;
1676 struct extent_buffer
*parent
;
1680 WARN_ON(*level
< 0);
1681 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1683 while (*level
> 0) {
1684 WARN_ON(*level
< 0);
1685 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1686 cur
= path
->nodes
[*level
];
1688 if (btrfs_header_level(cur
) != *level
)
1691 if (path
->slots
[*level
] >=
1692 btrfs_header_nritems(cur
))
1695 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1696 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1697 blocksize
= btrfs_level_size(root
, *level
- 1);
1699 parent
= path
->nodes
[*level
];
1700 root_owner
= btrfs_header_owner(parent
);
1701 root_gen
= btrfs_header_generation(parent
);
1703 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1706 wc
->process_func(root
, next
, wc
, ptr_gen
);
1708 path
->slots
[*level
]++;
1710 btrfs_read_buffer(next
, ptr_gen
);
1712 btrfs_tree_lock(next
);
1713 clean_tree_block(trans
, root
, next
);
1714 btrfs_set_lock_blocking(next
);
1715 btrfs_wait_tree_block_writeback(next
);
1716 btrfs_tree_unlock(next
);
1718 WARN_ON(root_owner
!=
1719 BTRFS_TREE_LOG_OBJECTID
);
1720 ret
= btrfs_free_reserved_extent(root
,
1724 free_extent_buffer(next
);
1727 btrfs_read_buffer(next
, ptr_gen
);
1729 WARN_ON(*level
<= 0);
1730 if (path
->nodes
[*level
-1])
1731 free_extent_buffer(path
->nodes
[*level
-1]);
1732 path
->nodes
[*level
-1] = next
;
1733 *level
= btrfs_header_level(next
);
1734 path
->slots
[*level
] = 0;
1737 WARN_ON(*level
< 0);
1738 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1740 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
1746 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1747 struct btrfs_root
*root
,
1748 struct btrfs_path
*path
, int *level
,
1749 struct walk_control
*wc
)
1757 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1758 slot
= path
->slots
[i
];
1759 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
1760 struct extent_buffer
*node
;
1761 node
= path
->nodes
[i
];
1764 WARN_ON(*level
== 0);
1767 struct extent_buffer
*parent
;
1768 if (path
->nodes
[*level
] == root
->node
)
1769 parent
= path
->nodes
[*level
];
1771 parent
= path
->nodes
[*level
+ 1];
1773 root_owner
= btrfs_header_owner(parent
);
1774 root_gen
= btrfs_header_generation(parent
);
1775 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1776 btrfs_header_generation(path
->nodes
[*level
]));
1778 struct extent_buffer
*next
;
1780 next
= path
->nodes
[*level
];
1782 btrfs_tree_lock(next
);
1783 clean_tree_block(trans
, root
, next
);
1784 btrfs_set_lock_blocking(next
);
1785 btrfs_wait_tree_block_writeback(next
);
1786 btrfs_tree_unlock(next
);
1788 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1789 ret
= btrfs_free_reserved_extent(root
,
1790 path
->nodes
[*level
]->start
,
1791 path
->nodes
[*level
]->len
);
1794 free_extent_buffer(path
->nodes
[*level
]);
1795 path
->nodes
[*level
] = NULL
;
1803 * drop the reference count on the tree rooted at 'snap'. This traverses
1804 * the tree freeing any blocks that have a ref count of zero after being
1807 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1808 struct btrfs_root
*log
, struct walk_control
*wc
)
1813 struct btrfs_path
*path
;
1817 path
= btrfs_alloc_path();
1820 level
= btrfs_header_level(log
->node
);
1822 path
->nodes
[level
] = log
->node
;
1823 extent_buffer_get(log
->node
);
1824 path
->slots
[level
] = 0;
1827 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1833 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1840 /* was the root node processed? if not, catch it here */
1841 if (path
->nodes
[orig_level
]) {
1842 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1843 btrfs_header_generation(path
->nodes
[orig_level
]));
1845 struct extent_buffer
*next
;
1847 next
= path
->nodes
[orig_level
];
1849 btrfs_tree_lock(next
);
1850 clean_tree_block(trans
, log
, next
);
1851 btrfs_set_lock_blocking(next
);
1852 btrfs_wait_tree_block_writeback(next
);
1853 btrfs_tree_unlock(next
);
1855 WARN_ON(log
->root_key
.objectid
!=
1856 BTRFS_TREE_LOG_OBJECTID
);
1857 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1863 for (i
= 0; i
<= orig_level
; i
++) {
1864 if (path
->nodes
[i
]) {
1865 free_extent_buffer(path
->nodes
[i
]);
1866 path
->nodes
[i
] = NULL
;
1869 btrfs_free_path(path
);
1874 * helper function to update the item for a given subvolumes log root
1875 * in the tree of log roots
1877 static int update_log_root(struct btrfs_trans_handle
*trans
,
1878 struct btrfs_root
*log
)
1882 if (log
->log_transid
== 1) {
1883 /* insert root item on the first sync */
1884 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1885 &log
->root_key
, &log
->root_item
);
1887 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1888 &log
->root_key
, &log
->root_item
);
1893 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1894 struct btrfs_root
*root
, unsigned long transid
)
1897 int index
= transid
% 2;
1900 * we only allow two pending log transactions at a time,
1901 * so we know that if ours is more than 2 older than the
1902 * current transaction, we're done
1905 prepare_to_wait(&root
->log_commit_wait
[index
],
1906 &wait
, TASK_UNINTERRUPTIBLE
);
1907 mutex_unlock(&root
->log_mutex
);
1909 if (root
->fs_info
->last_trans_log_full_commit
!=
1910 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1911 atomic_read(&root
->log_commit
[index
]))
1914 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1915 mutex_lock(&root
->log_mutex
);
1916 } while (root
->log_transid
< transid
+ 2 &&
1917 atomic_read(&root
->log_commit
[index
]));
1921 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1922 struct btrfs_root
*root
)
1925 while (atomic_read(&root
->log_writers
)) {
1926 prepare_to_wait(&root
->log_writer_wait
,
1927 &wait
, TASK_UNINTERRUPTIBLE
);
1928 mutex_unlock(&root
->log_mutex
);
1929 if (root
->fs_info
->last_trans_log_full_commit
!=
1930 trans
->transid
&& atomic_read(&root
->log_writers
))
1932 mutex_lock(&root
->log_mutex
);
1933 finish_wait(&root
->log_writer_wait
, &wait
);
1939 * btrfs_sync_log does sends a given tree log down to the disk and
1940 * updates the super blocks to record it. When this call is done,
1941 * you know that any inodes previously logged are safely on disk only
1944 * Any other return value means you need to call btrfs_commit_transaction.
1945 * Some of the edge cases for fsyncing directories that have had unlinks
1946 * or renames done in the past mean that sometimes the only safe
1947 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1948 * that has happened.
1950 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1951 struct btrfs_root
*root
)
1957 struct btrfs_root
*log
= root
->log_root
;
1958 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1959 unsigned long log_transid
= 0;
1961 mutex_lock(&root
->log_mutex
);
1962 index1
= root
->log_transid
% 2;
1963 if (atomic_read(&root
->log_commit
[index1
])) {
1964 wait_log_commit(trans
, root
, root
->log_transid
);
1965 mutex_unlock(&root
->log_mutex
);
1968 atomic_set(&root
->log_commit
[index1
], 1);
1970 /* wait for previous tree log sync to complete */
1971 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1972 wait_log_commit(trans
, root
, root
->log_transid
- 1);
1975 unsigned long batch
= root
->log_batch
;
1976 if (root
->log_multiple_pids
) {
1977 mutex_unlock(&root
->log_mutex
);
1978 schedule_timeout_uninterruptible(1);
1979 mutex_lock(&root
->log_mutex
);
1981 wait_for_writer(trans
, root
);
1982 if (batch
== root
->log_batch
)
1986 /* bail out if we need to do a full commit */
1987 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
1989 mutex_unlock(&root
->log_mutex
);
1993 log_transid
= root
->log_transid
;
1994 if (log_transid
% 2 == 0)
1995 mark
= EXTENT_DIRTY
;
1999 /* we start IO on all the marked extents here, but we don't actually
2000 * wait for them until later.
2002 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2005 btrfs_set_root_node(&log
->root_item
, log
->node
);
2007 root
->log_batch
= 0;
2008 root
->log_transid
++;
2009 log
->log_transid
= root
->log_transid
;
2010 root
->log_start_pid
= 0;
2013 * IO has been started, blocks of the log tree have WRITTEN flag set
2014 * in their headers. new modifications of the log will be written to
2015 * new positions. so it's safe to allow log writers to go in.
2017 mutex_unlock(&root
->log_mutex
);
2019 mutex_lock(&log_root_tree
->log_mutex
);
2020 log_root_tree
->log_batch
++;
2021 atomic_inc(&log_root_tree
->log_writers
);
2022 mutex_unlock(&log_root_tree
->log_mutex
);
2024 ret
= update_log_root(trans
, log
);
2026 mutex_lock(&log_root_tree
->log_mutex
);
2027 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2029 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2030 wake_up(&log_root_tree
->log_writer_wait
);
2034 BUG_ON(ret
!= -ENOSPC
);
2035 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2036 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2037 mutex_unlock(&log_root_tree
->log_mutex
);
2042 index2
= log_root_tree
->log_transid
% 2;
2043 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2044 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2045 wait_log_commit(trans
, log_root_tree
,
2046 log_root_tree
->log_transid
);
2047 mutex_unlock(&log_root_tree
->log_mutex
);
2050 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2052 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2053 wait_log_commit(trans
, log_root_tree
,
2054 log_root_tree
->log_transid
- 1);
2057 wait_for_writer(trans
, log_root_tree
);
2060 * now that we've moved on to the tree of log tree roots,
2061 * check the full commit flag again
2063 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2064 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2065 mutex_unlock(&log_root_tree
->log_mutex
);
2067 goto out_wake_log_root
;
2070 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2071 &log_root_tree
->dirty_log_pages
,
2072 EXTENT_DIRTY
| EXTENT_NEW
);
2074 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2076 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2077 log_root_tree
->node
->start
);
2078 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2079 btrfs_header_level(log_root_tree
->node
));
2081 log_root_tree
->log_batch
= 0;
2082 log_root_tree
->log_transid
++;
2085 mutex_unlock(&log_root_tree
->log_mutex
);
2088 * nobody else is going to jump in and write the the ctree
2089 * super here because the log_commit atomic below is protecting
2090 * us. We must be called with a transaction handle pinning
2091 * the running transaction open, so a full commit can't hop
2092 * in and cause problems either.
2094 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2097 mutex_lock(&root
->log_mutex
);
2098 if (root
->last_log_commit
< log_transid
)
2099 root
->last_log_commit
= log_transid
;
2100 mutex_unlock(&root
->log_mutex
);
2103 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2105 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2106 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2108 atomic_set(&root
->log_commit
[index1
], 0);
2110 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2111 wake_up(&root
->log_commit_wait
[index1
]);
2115 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2116 struct btrfs_root
*log
)
2121 struct walk_control wc
= {
2123 .process_func
= process_one_buffer
2126 ret
= walk_log_tree(trans
, log
, &wc
);
2130 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2131 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2135 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2136 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2139 free_extent_buffer(log
->node
);
2144 * free all the extents used by the tree log. This should be called
2145 * at commit time of the full transaction
2147 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2149 if (root
->log_root
) {
2150 free_log_tree(trans
, root
->log_root
);
2151 root
->log_root
= NULL
;
2156 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2157 struct btrfs_fs_info
*fs_info
)
2159 if (fs_info
->log_root_tree
) {
2160 free_log_tree(trans
, fs_info
->log_root_tree
);
2161 fs_info
->log_root_tree
= NULL
;
2167 * If both a file and directory are logged, and unlinks or renames are
2168 * mixed in, we have a few interesting corners:
2170 * create file X in dir Y
2171 * link file X to X.link in dir Y
2173 * unlink file X but leave X.link
2176 * After a crash we would expect only X.link to exist. But file X
2177 * didn't get fsync'd again so the log has back refs for X and X.link.
2179 * We solve this by removing directory entries and inode backrefs from the
2180 * log when a file that was logged in the current transaction is
2181 * unlinked. Any later fsync will include the updated log entries, and
2182 * we'll be able to reconstruct the proper directory items from backrefs.
2184 * This optimizations allows us to avoid relogging the entire inode
2185 * or the entire directory.
2187 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2188 struct btrfs_root
*root
,
2189 const char *name
, int name_len
,
2190 struct inode
*dir
, u64 index
)
2192 struct btrfs_root
*log
;
2193 struct btrfs_dir_item
*di
;
2194 struct btrfs_path
*path
;
2199 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2202 ret
= join_running_log_trans(root
);
2206 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2208 log
= root
->log_root
;
2209 path
= btrfs_alloc_path();
2210 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2211 name
, name_len
, -1);
2217 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2218 bytes_del
+= name_len
;
2221 btrfs_release_path(log
, path
);
2222 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2223 index
, name
, name_len
, -1);
2229 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2230 bytes_del
+= name_len
;
2234 /* update the directory size in the log to reflect the names
2238 struct btrfs_key key
;
2240 key
.objectid
= dir
->i_ino
;
2242 key
.type
= BTRFS_INODE_ITEM_KEY
;
2243 btrfs_release_path(log
, path
);
2245 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2251 struct btrfs_inode_item
*item
;
2254 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2255 struct btrfs_inode_item
);
2256 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2257 if (i_size
> bytes_del
)
2258 i_size
-= bytes_del
;
2261 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2262 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2265 btrfs_release_path(log
, path
);
2268 btrfs_free_path(path
);
2269 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2270 if (ret
== -ENOSPC
) {
2271 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2274 btrfs_end_log_trans(root
);
2279 /* see comments for btrfs_del_dir_entries_in_log */
2280 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2281 struct btrfs_root
*root
,
2282 const char *name
, int name_len
,
2283 struct inode
*inode
, u64 dirid
)
2285 struct btrfs_root
*log
;
2289 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2292 ret
= join_running_log_trans(root
);
2295 log
= root
->log_root
;
2296 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2298 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2300 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2301 if (ret
== -ENOSPC
) {
2302 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2305 btrfs_end_log_trans(root
);
2311 * creates a range item in the log for 'dirid'. first_offset and
2312 * last_offset tell us which parts of the key space the log should
2313 * be considered authoritative for.
2315 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2316 struct btrfs_root
*log
,
2317 struct btrfs_path
*path
,
2318 int key_type
, u64 dirid
,
2319 u64 first_offset
, u64 last_offset
)
2322 struct btrfs_key key
;
2323 struct btrfs_dir_log_item
*item
;
2325 key
.objectid
= dirid
;
2326 key
.offset
= first_offset
;
2327 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2328 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2330 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2331 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2335 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2336 struct btrfs_dir_log_item
);
2337 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2338 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2339 btrfs_release_path(log
, path
);
2344 * log all the items included in the current transaction for a given
2345 * directory. This also creates the range items in the log tree required
2346 * to replay anything deleted before the fsync
2348 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2349 struct btrfs_root
*root
, struct inode
*inode
,
2350 struct btrfs_path
*path
,
2351 struct btrfs_path
*dst_path
, int key_type
,
2352 u64 min_offset
, u64
*last_offset_ret
)
2354 struct btrfs_key min_key
;
2355 struct btrfs_key max_key
;
2356 struct btrfs_root
*log
= root
->log_root
;
2357 struct extent_buffer
*src
;
2362 u64 first_offset
= min_offset
;
2363 u64 last_offset
= (u64
)-1;
2365 log
= root
->log_root
;
2366 max_key
.objectid
= inode
->i_ino
;
2367 max_key
.offset
= (u64
)-1;
2368 max_key
.type
= key_type
;
2370 min_key
.objectid
= inode
->i_ino
;
2371 min_key
.type
= key_type
;
2372 min_key
.offset
= min_offset
;
2374 path
->keep_locks
= 1;
2376 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2377 path
, 0, trans
->transid
);
2380 * we didn't find anything from this transaction, see if there
2381 * is anything at all
2383 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2384 min_key
.type
!= key_type
) {
2385 min_key
.objectid
= inode
->i_ino
;
2386 min_key
.type
= key_type
;
2387 min_key
.offset
= (u64
)-1;
2388 btrfs_release_path(root
, path
);
2389 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2391 btrfs_release_path(root
, path
);
2394 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2396 /* if ret == 0 there are items for this type,
2397 * create a range to tell us the last key of this type.
2398 * otherwise, there are no items in this directory after
2399 * *min_offset, and we create a range to indicate that.
2402 struct btrfs_key tmp
;
2403 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2405 if (key_type
== tmp
.type
)
2406 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2411 /* go backward to find any previous key */
2412 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2414 struct btrfs_key tmp
;
2415 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2416 if (key_type
== tmp
.type
) {
2417 first_offset
= tmp
.offset
;
2418 ret
= overwrite_item(trans
, log
, dst_path
,
2419 path
->nodes
[0], path
->slots
[0],
2427 btrfs_release_path(root
, path
);
2429 /* find the first key from this transaction again */
2430 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2437 * we have a block from this transaction, log every item in it
2438 * from our directory
2441 struct btrfs_key tmp
;
2442 src
= path
->nodes
[0];
2443 nritems
= btrfs_header_nritems(src
);
2444 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2445 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2447 if (min_key
.objectid
!= inode
->i_ino
||
2448 min_key
.type
!= key_type
)
2450 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2457 path
->slots
[0] = nritems
;
2460 * look ahead to the next item and see if it is also
2461 * from this directory and from this transaction
2463 ret
= btrfs_next_leaf(root
, path
);
2465 last_offset
= (u64
)-1;
2468 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2469 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2470 last_offset
= (u64
)-1;
2473 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2474 ret
= overwrite_item(trans
, log
, dst_path
,
2475 path
->nodes
[0], path
->slots
[0],
2480 last_offset
= tmp
.offset
;
2485 btrfs_release_path(root
, path
);
2486 btrfs_release_path(log
, dst_path
);
2489 *last_offset_ret
= last_offset
;
2491 * insert the log range keys to indicate where the log
2494 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
2495 inode
->i_ino
, first_offset
,
2504 * logging directories is very similar to logging inodes, We find all the items
2505 * from the current transaction and write them to the log.
2507 * The recovery code scans the directory in the subvolume, and if it finds a
2508 * key in the range logged that is not present in the log tree, then it means
2509 * that dir entry was unlinked during the transaction.
2511 * In order for that scan to work, we must include one key smaller than
2512 * the smallest logged by this transaction and one key larger than the largest
2513 * key logged by this transaction.
2515 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2516 struct btrfs_root
*root
, struct inode
*inode
,
2517 struct btrfs_path
*path
,
2518 struct btrfs_path
*dst_path
)
2523 int key_type
= BTRFS_DIR_ITEM_KEY
;
2529 ret
= log_dir_items(trans
, root
, inode
, path
,
2530 dst_path
, key_type
, min_key
,
2534 if (max_key
== (u64
)-1)
2536 min_key
= max_key
+ 1;
2539 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2540 key_type
= BTRFS_DIR_INDEX_KEY
;
2547 * a helper function to drop items from the log before we relog an
2548 * inode. max_key_type indicates the highest item type to remove.
2549 * This cannot be run for file data extents because it does not
2550 * free the extents they point to.
2552 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2553 struct btrfs_root
*log
,
2554 struct btrfs_path
*path
,
2555 u64 objectid
, int max_key_type
)
2558 struct btrfs_key key
;
2559 struct btrfs_key found_key
;
2561 key
.objectid
= objectid
;
2562 key
.type
= max_key_type
;
2563 key
.offset
= (u64
)-1;
2566 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2571 if (path
->slots
[0] == 0)
2575 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2578 if (found_key
.objectid
!= objectid
)
2581 ret
= btrfs_del_item(trans
, log
, path
);
2583 btrfs_release_path(log
, path
);
2585 btrfs_release_path(log
, path
);
2589 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2590 struct btrfs_root
*log
,
2591 struct btrfs_path
*dst_path
,
2592 struct extent_buffer
*src
,
2593 int start_slot
, int nr
, int inode_only
)
2595 unsigned long src_offset
;
2596 unsigned long dst_offset
;
2597 struct btrfs_file_extent_item
*extent
;
2598 struct btrfs_inode_item
*inode_item
;
2600 struct btrfs_key
*ins_keys
;
2604 struct list_head ordered_sums
;
2606 INIT_LIST_HEAD(&ordered_sums
);
2608 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2609 nr
* sizeof(u32
), GFP_NOFS
);
2610 ins_sizes
= (u32
*)ins_data
;
2611 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2613 for (i
= 0; i
< nr
; i
++) {
2614 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2615 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2617 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2618 ins_keys
, ins_sizes
, nr
);
2624 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2625 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2626 dst_path
->slots
[0]);
2628 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2630 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2631 src_offset
, ins_sizes
[i
]);
2633 if (inode_only
== LOG_INODE_EXISTS
&&
2634 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2635 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2637 struct btrfs_inode_item
);
2638 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2640 /* set the generation to zero so the recover code
2641 * can tell the difference between an logging
2642 * just to say 'this inode exists' and a logging
2643 * to say 'update this inode with these values'
2645 btrfs_set_inode_generation(dst_path
->nodes
[0],
2648 /* take a reference on file data extents so that truncates
2649 * or deletes of this inode don't have to relog the inode
2652 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2654 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2655 struct btrfs_file_extent_item
);
2657 found_type
= btrfs_file_extent_type(src
, extent
);
2658 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2659 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2661 ds
= btrfs_file_extent_disk_bytenr(src
,
2663 /* ds == 0 is a hole */
2667 dl
= btrfs_file_extent_disk_num_bytes(src
,
2669 cs
= btrfs_file_extent_offset(src
, extent
);
2670 cl
= btrfs_file_extent_num_bytes(src
,
2672 if (btrfs_file_extent_compression(src
,
2678 ret
= btrfs_lookup_csums_range(
2679 log
->fs_info
->csum_root
,
2680 ds
+ cs
, ds
+ cs
+ cl
- 1,
2687 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2688 btrfs_release_path(log
, dst_path
);
2692 * we have to do this after the loop above to avoid changing the
2693 * log tree while trying to change the log tree.
2696 while (!list_empty(&ordered_sums
)) {
2697 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2698 struct btrfs_ordered_sum
,
2701 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2702 list_del(&sums
->list
);
2708 /* log a single inode in the tree log.
2709 * At least one parent directory for this inode must exist in the tree
2710 * or be logged already.
2712 * Any items from this inode changed by the current transaction are copied
2713 * to the log tree. An extra reference is taken on any extents in this
2714 * file, allowing us to avoid a whole pile of corner cases around logging
2715 * blocks that have been removed from the tree.
2717 * See LOG_INODE_ALL and related defines for a description of what inode_only
2720 * This handles both files and directories.
2722 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2723 struct btrfs_root
*root
, struct inode
*inode
,
2726 struct btrfs_path
*path
;
2727 struct btrfs_path
*dst_path
;
2728 struct btrfs_key min_key
;
2729 struct btrfs_key max_key
;
2730 struct btrfs_root
*log
= root
->log_root
;
2731 struct extent_buffer
*src
= NULL
;
2736 int ins_start_slot
= 0;
2739 log
= root
->log_root
;
2741 path
= btrfs_alloc_path();
2742 dst_path
= btrfs_alloc_path();
2744 min_key
.objectid
= inode
->i_ino
;
2745 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2748 max_key
.objectid
= inode
->i_ino
;
2750 /* today the code can only do partial logging of directories */
2751 if (!S_ISDIR(inode
->i_mode
))
2752 inode_only
= LOG_INODE_ALL
;
2754 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2755 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2757 max_key
.type
= (u8
)-1;
2758 max_key
.offset
= (u64
)-1;
2760 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2763 * a brute force approach to making sure we get the most uptodate
2764 * copies of everything.
2766 if (S_ISDIR(inode
->i_mode
)) {
2767 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2769 if (inode_only
== LOG_INODE_EXISTS
)
2770 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2771 ret
= drop_objectid_items(trans
, log
, path
,
2772 inode
->i_ino
, max_key_type
);
2774 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2780 path
->keep_locks
= 1;
2784 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2785 path
, 0, trans
->transid
);
2789 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2790 if (min_key
.objectid
!= inode
->i_ino
)
2792 if (min_key
.type
> max_key
.type
)
2795 src
= path
->nodes
[0];
2796 size
= btrfs_item_size_nr(src
, path
->slots
[0]);
2797 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2800 } else if (!ins_nr
) {
2801 ins_start_slot
= path
->slots
[0];
2806 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2807 ins_nr
, inode_only
);
2813 ins_start_slot
= path
->slots
[0];
2816 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2818 if (path
->slots
[0] < nritems
) {
2819 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2824 ret
= copy_items(trans
, log
, dst_path
, src
,
2826 ins_nr
, inode_only
);
2833 btrfs_release_path(root
, path
);
2835 if (min_key
.offset
< (u64
)-1)
2837 else if (min_key
.type
< (u8
)-1)
2839 else if (min_key
.objectid
< (u64
)-1)
2845 ret
= copy_items(trans
, log
, dst_path
, src
,
2847 ins_nr
, inode_only
);
2855 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2856 btrfs_release_path(root
, path
);
2857 btrfs_release_path(log
, dst_path
);
2858 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2864 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2866 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2868 btrfs_free_path(path
);
2869 btrfs_free_path(dst_path
);
2874 * follow the dentry parent pointers up the chain and see if any
2875 * of the directories in it require a full commit before they can
2876 * be logged. Returns zero if nothing special needs to be done or 1 if
2877 * a full commit is required.
2879 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2880 struct inode
*inode
,
2881 struct dentry
*parent
,
2882 struct super_block
*sb
,
2886 struct btrfs_root
*root
;
2889 * for regular files, if its inode is already on disk, we don't
2890 * have to worry about the parents at all. This is because
2891 * we can use the last_unlink_trans field to record renames
2892 * and other fun in this file.
2894 if (S_ISREG(inode
->i_mode
) &&
2895 BTRFS_I(inode
)->generation
<= last_committed
&&
2896 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2899 if (!S_ISDIR(inode
->i_mode
)) {
2900 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2902 inode
= parent
->d_inode
;
2906 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2909 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2910 root
= BTRFS_I(inode
)->root
;
2913 * make sure any commits to the log are forced
2914 * to be full commits
2916 root
->fs_info
->last_trans_log_full_commit
=
2922 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2925 if (IS_ROOT(parent
))
2928 parent
= parent
->d_parent
;
2929 inode
= parent
->d_inode
;
2936 static int inode_in_log(struct btrfs_trans_handle
*trans
,
2937 struct inode
*inode
)
2939 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2942 mutex_lock(&root
->log_mutex
);
2943 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
2944 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
2946 mutex_unlock(&root
->log_mutex
);
2952 * helper function around btrfs_log_inode to make sure newly created
2953 * parent directories also end up in the log. A minimal inode and backref
2954 * only logging is done of any parent directories that are older than
2955 * the last committed transaction
2957 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2958 struct btrfs_root
*root
, struct inode
*inode
,
2959 struct dentry
*parent
, int exists_only
)
2961 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2962 struct super_block
*sb
;
2964 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2968 if (btrfs_test_opt(root
, NOTREELOG
)) {
2973 if (root
->fs_info
->last_trans_log_full_commit
>
2974 root
->fs_info
->last_trans_committed
) {
2979 if (root
!= BTRFS_I(inode
)->root
||
2980 btrfs_root_refs(&root
->root_item
) == 0) {
2985 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
2986 sb
, last_committed
);
2990 if (inode_in_log(trans
, inode
)) {
2991 ret
= BTRFS_NO_LOG_SYNC
;
2995 ret
= start_log_trans(trans
, root
);
2999 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3004 * for regular files, if its inode is already on disk, we don't
3005 * have to worry about the parents at all. This is because
3006 * we can use the last_unlink_trans field to record renames
3007 * and other fun in this file.
3009 if (S_ISREG(inode
->i_mode
) &&
3010 BTRFS_I(inode
)->generation
<= last_committed
&&
3011 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
3016 inode_only
= LOG_INODE_EXISTS
;
3018 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3021 inode
= parent
->d_inode
;
3022 if (root
!= BTRFS_I(inode
)->root
)
3025 if (BTRFS_I(inode
)->generation
>
3026 root
->fs_info
->last_trans_committed
) {
3027 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3031 if (IS_ROOT(parent
))
3034 parent
= parent
->d_parent
;
3039 BUG_ON(ret
!= -ENOSPC
);
3040 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
3043 btrfs_end_log_trans(root
);
3049 * it is not safe to log dentry if the chunk root has added new
3050 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3051 * If this returns 1, you must commit the transaction to safely get your
3054 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
3055 struct btrfs_root
*root
, struct dentry
*dentry
)
3057 return btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
,
3058 dentry
->d_parent
, 0);
3062 * should be called during mount to recover any replay any log trees
3065 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3068 struct btrfs_path
*path
;
3069 struct btrfs_trans_handle
*trans
;
3070 struct btrfs_key key
;
3071 struct btrfs_key found_key
;
3072 struct btrfs_key tmp_key
;
3073 struct btrfs_root
*log
;
3074 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3075 struct walk_control wc
= {
3076 .process_func
= process_one_buffer
,
3080 fs_info
->log_root_recovering
= 1;
3081 path
= btrfs_alloc_path();
3084 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3089 walk_log_tree(trans
, log_root_tree
, &wc
);
3092 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3093 key
.offset
= (u64
)-1;
3094 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3097 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3101 if (path
->slots
[0] == 0)
3105 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3107 btrfs_release_path(log_root_tree
, path
);
3108 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3111 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3116 tmp_key
.objectid
= found_key
.offset
;
3117 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3118 tmp_key
.offset
= (u64
)-1;
3120 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3121 BUG_ON(!wc
.replay_dest
);
3123 wc
.replay_dest
->log_root
= log
;
3124 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3125 ret
= walk_log_tree(trans
, log
, &wc
);
3128 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3129 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3134 key
.offset
= found_key
.offset
- 1;
3135 wc
.replay_dest
->log_root
= NULL
;
3136 free_extent_buffer(log
->node
);
3137 free_extent_buffer(log
->commit_root
);
3140 if (found_key
.offset
== 0)
3143 btrfs_release_path(log_root_tree
, path
);
3145 /* step one is to pin it all, step two is to replay just inodes */
3148 wc
.process_func
= replay_one_buffer
;
3149 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3152 /* step three is to replay everything */
3153 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3158 btrfs_free_path(path
);
3160 free_extent_buffer(log_root_tree
->node
);
3161 log_root_tree
->log_root
= NULL
;
3162 fs_info
->log_root_recovering
= 0;
3164 /* step 4: commit the transaction, which also unpins the blocks */
3165 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3167 kfree(log_root_tree
);
3172 * there are some corner cases where we want to force a full
3173 * commit instead of allowing a directory to be logged.
3175 * They revolve around files there were unlinked from the directory, and
3176 * this function updates the parent directory so that a full commit is
3177 * properly done if it is fsync'd later after the unlinks are done.
3179 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3180 struct inode
*dir
, struct inode
*inode
,
3184 * when we're logging a file, if it hasn't been renamed
3185 * or unlinked, and its inode is fully committed on disk,
3186 * we don't have to worry about walking up the directory chain
3187 * to log its parents.
3189 * So, we use the last_unlink_trans field to put this transid
3190 * into the file. When the file is logged we check it and
3191 * don't log the parents if the file is fully on disk.
3193 if (S_ISREG(inode
->i_mode
))
3194 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3197 * if this directory was already logged any new
3198 * names for this file/dir will get recorded
3201 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3205 * if the inode we're about to unlink was logged,
3206 * the log will be properly updated for any new names
3208 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3212 * when renaming files across directories, if the directory
3213 * there we're unlinking from gets fsync'd later on, there's
3214 * no way to find the destination directory later and fsync it
3215 * properly. So, we have to be conservative and force commits
3216 * so the new name gets discovered.
3221 /* we can safely do the unlink without any special recording */
3225 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3229 * Call this after adding a new name for a file and it will properly
3230 * update the log to reflect the new name.
3232 * It will return zero if all goes well, and it will return 1 if a
3233 * full transaction commit is required.
3235 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3236 struct inode
*inode
, struct inode
*old_dir
,
3237 struct dentry
*parent
)
3239 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3242 * this will force the logging code to walk the dentry chain
3245 if (S_ISREG(inode
->i_mode
))
3246 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3249 * if this inode hasn't been logged and directory we're renaming it
3250 * from hasn't been logged, we don't need to log it
3252 if (BTRFS_I(inode
)->logged_trans
<=
3253 root
->fs_info
->last_trans_committed
&&
3254 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3255 root
->fs_info
->last_trans_committed
))
3258 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);