DMI-based module autoloading
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firmware / dmi_scan.c
blobf7318b3b51f2a0860bf2f952896d60f746bd98a8
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
11 static char * __init dmi_string(struct dmi_header *dm, u8 s)
13 u8 *bp = ((u8 *) dm) + dm->length;
14 char *str = "";
16 if (s) {
17 s--;
18 while (s > 0 && *bp) {
19 bp += strlen(bp) + 1;
20 s--;
23 if (*bp != 0) {
24 str = dmi_alloc(strlen(bp) + 1);
25 if (str != NULL)
26 strcpy(str, bp);
27 else
28 printk(KERN_ERR "dmi_string: out of memory.\n");
32 return str;
36 * We have to be cautious here. We have seen BIOSes with DMI pointers
37 * pointing to completely the wrong place for example
39 static int __init dmi_table(u32 base, int len, int num,
40 void (*decode)(struct dmi_header *))
42 u8 *buf, *data;
43 int i = 0;
45 buf = dmi_ioremap(base, len);
46 if (buf == NULL)
47 return -1;
49 data = buf;
52 * Stop when we see all the items the table claimed to have
53 * OR we run off the end of the table (also happens)
55 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
56 struct dmi_header *dm = (struct dmi_header *)data;
58 * We want to know the total length (formated area and strings)
59 * before decoding to make sure we won't run off the table in
60 * dmi_decode or dmi_string
62 data += dm->length;
63 while ((data - buf < len - 1) && (data[0] || data[1]))
64 data++;
65 if (data - buf < len - 1)
66 decode(dm);
67 data += 2;
68 i++;
70 dmi_iounmap(buf, len);
71 return 0;
74 static int __init dmi_checksum(u8 *buf)
76 u8 sum = 0;
77 int a;
79 for (a = 0; a < 15; a++)
80 sum += buf[a];
82 return sum == 0;
85 static char *dmi_ident[DMI_STRING_MAX];
86 static LIST_HEAD(dmi_devices);
87 int dmi_available;
90 * Save a DMI string
92 static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string)
94 char *p, *d = (char*) dm;
96 if (dmi_ident[slot])
97 return;
99 p = dmi_string(dm, d[string]);
100 if (p == NULL)
101 return;
103 dmi_ident[slot] = p;
106 static void __init dmi_save_uuid(struct dmi_header *dm, int slot, int index)
108 u8 *d = (u8*) dm + index;
109 char *s;
110 int is_ff = 1, is_00 = 1, i;
112 if (dmi_ident[slot])
113 return;
115 for (i = 0; i < 16 && (is_ff || is_00); i++) {
116 if(d[i] != 0x00) is_ff = 0;
117 if(d[i] != 0xFF) is_00 = 0;
120 if (is_ff || is_00)
121 return;
123 s = dmi_alloc(16*2+4+1);
124 if (!s)
125 return;
127 sprintf(s,
128 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
129 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
130 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
132 dmi_ident[slot] = s;
135 static void __init dmi_save_type(struct dmi_header *dm, int slot, int index)
137 u8 *d = (u8*) dm + index;
138 char *s;
140 if (dmi_ident[slot])
141 return;
143 s = dmi_alloc(4);
144 if (!s)
145 return;
147 sprintf(s, "%u", *d & 0x7F);
148 dmi_ident[slot] = s;
151 static void __init dmi_save_devices(struct dmi_header *dm)
153 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
154 struct dmi_device *dev;
156 for (i = 0; i < count; i++) {
157 char *d = (char *)(dm + 1) + (i * 2);
159 /* Skip disabled device */
160 if ((*d & 0x80) == 0)
161 continue;
163 dev = dmi_alloc(sizeof(*dev));
164 if (!dev) {
165 printk(KERN_ERR "dmi_save_devices: out of memory.\n");
166 break;
169 dev->type = *d++ & 0x7f;
170 dev->name = dmi_string(dm, *d);
171 dev->device_data = NULL;
172 list_add(&dev->list, &dmi_devices);
176 static void __init dmi_save_oem_strings_devices(struct dmi_header *dm)
178 int i, count = *(u8 *)(dm + 1);
179 struct dmi_device *dev;
181 for (i = 1; i <= count; i++) {
182 dev = dmi_alloc(sizeof(*dev));
183 if (!dev) {
184 printk(KERN_ERR
185 "dmi_save_oem_strings_devices: out of memory.\n");
186 break;
189 dev->type = DMI_DEV_TYPE_OEM_STRING;
190 dev->name = dmi_string(dm, i);
191 dev->device_data = NULL;
193 list_add(&dev->list, &dmi_devices);
197 static void __init dmi_save_ipmi_device(struct dmi_header *dm)
199 struct dmi_device *dev;
200 void * data;
202 data = dmi_alloc(dm->length);
203 if (data == NULL) {
204 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
205 return;
208 memcpy(data, dm, dm->length);
210 dev = dmi_alloc(sizeof(*dev));
211 if (!dev) {
212 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
213 return;
216 dev->type = DMI_DEV_TYPE_IPMI;
217 dev->name = "IPMI controller";
218 dev->device_data = data;
220 list_add(&dev->list, &dmi_devices);
224 * Process a DMI table entry. Right now all we care about are the BIOS
225 * and machine entries. For 2.5 we should pull the smbus controller info
226 * out of here.
228 static void __init dmi_decode(struct dmi_header *dm)
230 switch(dm->type) {
231 case 0: /* BIOS Information */
232 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
233 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
234 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
235 break;
236 case 1: /* System Information */
237 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
238 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
239 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
240 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
241 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
242 break;
243 case 2: /* Base Board Information */
244 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
245 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
246 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
247 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
248 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
249 break;
250 case 3: /* Chassis Information */
251 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
252 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
253 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
254 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
255 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
256 break;
257 case 10: /* Onboard Devices Information */
258 dmi_save_devices(dm);
259 break;
260 case 11: /* OEM Strings */
261 dmi_save_oem_strings_devices(dm);
262 break;
263 case 38: /* IPMI Device Information */
264 dmi_save_ipmi_device(dm);
268 static int __init dmi_present(char __iomem *p)
270 u8 buf[15];
271 memcpy_fromio(buf, p, 15);
272 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
273 u16 num = (buf[13] << 8) | buf[12];
274 u16 len = (buf[7] << 8) | buf[6];
275 u32 base = (buf[11] << 24) | (buf[10] << 16) |
276 (buf[9] << 8) | buf[8];
279 * DMI version 0.0 means that the real version is taken from
280 * the SMBIOS version, which we don't know at this point.
282 if (buf[14] != 0)
283 printk(KERN_INFO "DMI %d.%d present.\n",
284 buf[14] >> 4, buf[14] & 0xF);
285 else
286 printk(KERN_INFO "DMI present.\n");
287 if (dmi_table(base,len, num, dmi_decode) == 0)
288 return 0;
290 return 1;
293 void __init dmi_scan_machine(void)
295 char __iomem *p, *q;
296 int rc;
298 if (efi_enabled) {
299 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
300 goto out;
302 /* This is called as a core_initcall() because it isn't
303 * needed during early boot. This also means we can
304 * iounmap the space when we're done with it.
306 p = dmi_ioremap(efi.smbios, 32);
307 if (p == NULL)
308 goto out;
310 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
311 dmi_iounmap(p, 32);
312 if (!rc) {
313 dmi_available = 1;
314 return;
317 else {
319 * no iounmap() for that ioremap(); it would be a no-op, but
320 * it's so early in setup that sucker gets confused into doing
321 * what it shouldn't if we actually call it.
323 p = dmi_ioremap(0xF0000, 0x10000);
324 if (p == NULL)
325 goto out;
327 for (q = p; q < p + 0x10000; q += 16) {
328 rc = dmi_present(q);
329 if (!rc) {
330 dmi_available = 1;
331 return;
335 out: printk(KERN_INFO "DMI not present or invalid.\n");
339 * dmi_check_system - check system DMI data
340 * @list: array of dmi_system_id structures to match against
341 * All non-null elements of the list must match
342 * their slot's (field index's) data (i.e., each
343 * list string must be a substring of the specified
344 * DMI slot's string data) to be considered a
345 * successful match.
347 * Walk the blacklist table running matching functions until someone
348 * returns non zero or we hit the end. Callback function is called for
349 * each successful match. Returns the number of matches.
351 int dmi_check_system(struct dmi_system_id *list)
353 int i, count = 0;
354 struct dmi_system_id *d = list;
356 while (d->ident) {
357 for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
358 int s = d->matches[i].slot;
359 if (s == DMI_NONE)
360 continue;
361 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
362 continue;
363 /* No match */
364 goto fail;
366 count++;
367 if (d->callback && d->callback(d))
368 break;
369 fail: d++;
372 return count;
374 EXPORT_SYMBOL(dmi_check_system);
377 * dmi_get_system_info - return DMI data value
378 * @field: data index (see enum dmi_field)
380 * Returns one DMI data value, can be used to perform
381 * complex DMI data checks.
383 char *dmi_get_system_info(int field)
385 return dmi_ident[field];
387 EXPORT_SYMBOL(dmi_get_system_info);
391 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
392 * @str: Case sensitive Name
394 int dmi_name_in_vendors(char *str)
396 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
397 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
398 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
399 int i;
400 for (i = 0; fields[i] != DMI_NONE; i++) {
401 int f = fields[i];
402 if (dmi_ident[f] && strstr(dmi_ident[f], str))
403 return 1;
405 return 0;
407 EXPORT_SYMBOL(dmi_name_in_vendors);
410 * dmi_find_device - find onboard device by type/name
411 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
412 * @name: device name string or %NULL to match all
413 * @from: previous device found in search, or %NULL for new search.
415 * Iterates through the list of known onboard devices. If a device is
416 * found with a matching @vendor and @device, a pointer to its device
417 * structure is returned. Otherwise, %NULL is returned.
418 * A new search is initiated by passing %NULL as the @from argument.
419 * If @from is not %NULL, searches continue from next device.
421 struct dmi_device * dmi_find_device(int type, const char *name,
422 struct dmi_device *from)
424 struct list_head *d, *head = from ? &from->list : &dmi_devices;
426 for(d = head->next; d != &dmi_devices; d = d->next) {
427 struct dmi_device *dev = list_entry(d, struct dmi_device, list);
429 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
430 ((name == NULL) || (strcmp(dev->name, name) == 0)))
431 return dev;
434 return NULL;
436 EXPORT_SYMBOL(dmi_find_device);
439 * dmi_get_year - Return year of a DMI date
440 * @field: data index (like dmi_get_system_info)
442 * Returns -1 when the field doesn't exist. 0 when it is broken.
444 int dmi_get_year(int field)
446 int year;
447 char *s = dmi_get_system_info(field);
449 if (!s)
450 return -1;
451 if (*s == '\0')
452 return 0;
453 s = strrchr(s, '/');
454 if (!s)
455 return 0;
457 s += 1;
458 year = simple_strtoul(s, NULL, 0);
459 if (year && year < 100) { /* 2-digit year */
460 year += 1900;
461 if (year < 1996) /* no dates < spec 1.0 */
462 year += 100;
465 return year;