ACPI: asus_acpi: support A3G
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / irda / irttp.c
blob49c51c5f1a86774c3369d2ae057eb2321fa9dc38
1 /*********************************************************************
2 *
3 * Filename: irttp.c
4 * Version: 1.2
5 * Description: Tiny Transport Protocol (TTP) implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Aug 31 20:14:31 1997
9 * Modified at: Wed Jan 5 11:31:27 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
12 * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 * All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * Neither Dag Brattli nor University of Tromsø admit liability nor
22 * provide warranty for any of this software. This material is
23 * provided "AS-IS" and at no charge.
25 ********************************************************************/
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/seq_file.h>
31 #include <asm/byteorder.h>
32 #include <asm/unaligned.h>
34 #include <net/irda/irda.h>
35 #include <net/irda/irlap.h>
36 #include <net/irda/irlmp.h>
37 #include <net/irda/parameters.h>
38 #include <net/irda/irttp.h>
40 static struct irttp_cb *irttp;
42 static void __irttp_close_tsap(struct tsap_cb *self);
44 static int irttp_data_indication(void *instance, void *sap,
45 struct sk_buff *skb);
46 static int irttp_udata_indication(void *instance, void *sap,
47 struct sk_buff *skb);
48 static void irttp_disconnect_indication(void *instance, void *sap,
49 LM_REASON reason, struct sk_buff *);
50 static void irttp_connect_indication(void *instance, void *sap,
51 struct qos_info *qos, __u32 max_sdu_size,
52 __u8 header_size, struct sk_buff *skb);
53 static void irttp_connect_confirm(void *instance, void *sap,
54 struct qos_info *qos, __u32 max_sdu_size,
55 __u8 header_size, struct sk_buff *skb);
56 static void irttp_run_tx_queue(struct tsap_cb *self);
57 static void irttp_run_rx_queue(struct tsap_cb *self);
59 static void irttp_flush_queues(struct tsap_cb *self);
60 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
61 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
62 static void irttp_todo_expired(unsigned long data);
63 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
64 int get);
66 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
67 static void irttp_status_indication(void *instance,
68 LINK_STATUS link, LOCK_STATUS lock);
70 /* Information for parsing parameters in IrTTP */
71 static pi_minor_info_t pi_minor_call_table[] = {
72 { NULL, 0 }, /* 0x00 */
73 { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
75 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
76 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
78 /************************ GLOBAL PROCEDURES ************************/
81 * Function irttp_init (void)
83 * Initialize the IrTTP layer. Called by module initialization code
86 int __init irttp_init(void)
88 irttp = kmalloc(sizeof(struct irttp_cb), GFP_KERNEL);
89 if (irttp == NULL)
90 return -ENOMEM;
91 memset(irttp, 0, sizeof(struct irttp_cb));
93 irttp->magic = TTP_MAGIC;
95 irttp->tsaps = hashbin_new(HB_LOCK);
96 if (!irttp->tsaps) {
97 IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
98 __FUNCTION__);
99 kfree(irttp);
100 return -ENOMEM;
103 return 0;
107 * Function irttp_cleanup (void)
109 * Called by module destruction/cleanup code
112 void __exit irttp_cleanup(void)
114 /* Check for main structure */
115 IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
118 * Delete hashbin and close all TSAP instances in it
120 hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
122 irttp->magic = 0;
124 /* De-allocate main structure */
125 kfree(irttp);
127 irttp = NULL;
130 /*************************** SUBROUTINES ***************************/
133 * Function irttp_start_todo_timer (self, timeout)
135 * Start todo timer.
137 * Made it more effient and unsensitive to race conditions - Jean II
139 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
141 /* Set new value for timer */
142 mod_timer(&self->todo_timer, jiffies + timeout);
146 * Function irttp_todo_expired (data)
148 * Todo timer has expired!
150 * One of the restriction of the timer is that it is run only on the timer
151 * interrupt which run every 10ms. This mean that even if you set the timer
152 * with a delay of 0, it may take up to 10ms before it's run.
153 * So, to minimise latency and keep cache fresh, we try to avoid using
154 * it as much as possible.
155 * Note : we can't use tasklets, because they can't be asynchronously
156 * killed (need user context), and we can't guarantee that here...
157 * Jean II
159 static void irttp_todo_expired(unsigned long data)
161 struct tsap_cb *self = (struct tsap_cb *) data;
163 /* Check that we still exist */
164 if (!self || self->magic != TTP_TSAP_MAGIC)
165 return;
167 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
169 /* Try to make some progress, especially on Tx side - Jean II */
170 irttp_run_rx_queue(self);
171 irttp_run_tx_queue(self);
173 /* Check if time for disconnect */
174 if (test_bit(0, &self->disconnect_pend)) {
175 /* Check if it's possible to disconnect yet */
176 if (skb_queue_empty(&self->tx_queue)) {
177 /* Make sure disconnect is not pending anymore */
178 clear_bit(0, &self->disconnect_pend); /* FALSE */
180 /* Note : self->disconnect_skb may be NULL */
181 irttp_disconnect_request(self, self->disconnect_skb,
182 P_NORMAL);
183 self->disconnect_skb = NULL;
184 } else {
185 /* Try again later */
186 irttp_start_todo_timer(self, HZ/10);
188 /* No reason to try and close now */
189 return;
193 /* Check if it's closing time */
194 if (self->close_pend)
195 /* Finish cleanup */
196 irttp_close_tsap(self);
200 * Function irttp_flush_queues (self)
202 * Flushes (removes all frames) in transitt-buffer (tx_list)
204 void irttp_flush_queues(struct tsap_cb *self)
206 struct sk_buff* skb;
208 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
210 IRDA_ASSERT(self != NULL, return;);
211 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
213 /* Deallocate frames waiting to be sent */
214 while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
215 dev_kfree_skb(skb);
217 /* Deallocate received frames */
218 while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
219 dev_kfree_skb(skb);
221 /* Deallocate received fragments */
222 while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
223 dev_kfree_skb(skb);
227 * Function irttp_reassemble (self)
229 * Makes a new (continuous) skb of all the fragments in the fragment
230 * queue
233 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
235 struct sk_buff *skb, *frag;
236 int n = 0; /* Fragment index */
238 IRDA_ASSERT(self != NULL, return NULL;);
239 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
241 IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__,
242 self->rx_sdu_size);
244 skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
245 if (!skb)
246 return NULL;
249 * Need to reserve space for TTP header in case this skb needs to
250 * be requeued in case delivery failes
252 skb_reserve(skb, TTP_HEADER);
253 skb_put(skb, self->rx_sdu_size);
256 * Copy all fragments to a new buffer
258 while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
259 memcpy(skb->data+n, frag->data, frag->len);
260 n += frag->len;
262 dev_kfree_skb(frag);
265 IRDA_DEBUG(2,
266 "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
267 __FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size);
268 /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
269 * by summing the size of all fragments, so we should always
270 * have n == self->rx_sdu_size, except in cases where we
271 * droped the last fragment (when self->rx_sdu_size exceed
272 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
273 * Jean II */
274 IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
276 /* Set the new length */
277 skb_trim(skb, n);
279 self->rx_sdu_size = 0;
281 return skb;
285 * Function irttp_fragment_skb (skb)
287 * Fragments a frame and queues all the fragments for transmission
290 static inline void irttp_fragment_skb(struct tsap_cb *self,
291 struct sk_buff *skb)
293 struct sk_buff *frag;
294 __u8 *frame;
296 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
298 IRDA_ASSERT(self != NULL, return;);
299 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
300 IRDA_ASSERT(skb != NULL, return;);
303 * Split frame into a number of segments
305 while (skb->len > self->max_seg_size) {
306 IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__);
308 /* Make new segment */
309 frag = dev_alloc_skb(self->max_seg_size+self->max_header_size);
310 if (!frag)
311 return;
313 skb_reserve(frag, self->max_header_size);
315 /* Copy data from the original skb into this fragment. */
316 memcpy(skb_put(frag, self->max_seg_size), skb->data,
317 self->max_seg_size);
319 /* Insert TTP header, with the more bit set */
320 frame = skb_push(frag, TTP_HEADER);
321 frame[0] = TTP_MORE;
323 /* Hide the copied data from the original skb */
324 skb_pull(skb, self->max_seg_size);
326 /* Queue fragment */
327 skb_queue_tail(&self->tx_queue, frag);
329 /* Queue what is left of the original skb */
330 IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__);
332 frame = skb_push(skb, TTP_HEADER);
333 frame[0] = 0x00; /* Clear more bit */
335 /* Queue fragment */
336 skb_queue_tail(&self->tx_queue, skb);
340 * Function irttp_param_max_sdu_size (self, param)
342 * Handle the MaxSduSize parameter in the connect frames, this function
343 * will be called both when this parameter needs to be inserted into, and
344 * extracted from the connect frames
346 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
347 int get)
349 struct tsap_cb *self;
351 self = (struct tsap_cb *) instance;
353 IRDA_ASSERT(self != NULL, return -1;);
354 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
356 if (get)
357 param->pv.i = self->tx_max_sdu_size;
358 else
359 self->tx_max_sdu_size = param->pv.i;
361 IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i);
363 return 0;
366 /*************************** CLIENT CALLS ***************************/
367 /************************** LMP CALLBACKS **************************/
368 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
371 * Function irttp_open_tsap (stsap, notify)
373 * Create TSAP connection endpoint,
375 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
377 struct tsap_cb *self;
378 struct lsap_cb *lsap;
379 notify_t ttp_notify;
381 IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
383 /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
384 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
385 * JeanII */
386 if((stsap_sel != LSAP_ANY) &&
387 ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
388 IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__);
389 return NULL;
392 self = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
393 if (self == NULL) {
394 IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__);
395 return NULL;
397 memset(self, 0, sizeof(struct tsap_cb));
398 spin_lock_init(&self->lock);
400 /* Initialise todo timer */
401 init_timer(&self->todo_timer);
402 self->todo_timer.data = (unsigned long) self;
403 self->todo_timer.function = &irttp_todo_expired;
405 /* Initialize callbacks for IrLMP to use */
406 irda_notify_init(&ttp_notify);
407 ttp_notify.connect_confirm = irttp_connect_confirm;
408 ttp_notify.connect_indication = irttp_connect_indication;
409 ttp_notify.disconnect_indication = irttp_disconnect_indication;
410 ttp_notify.data_indication = irttp_data_indication;
411 ttp_notify.udata_indication = irttp_udata_indication;
412 ttp_notify.flow_indication = irttp_flow_indication;
413 if(notify->status_indication != NULL)
414 ttp_notify.status_indication = irttp_status_indication;
415 ttp_notify.instance = self;
416 strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
418 self->magic = TTP_TSAP_MAGIC;
419 self->connected = FALSE;
421 skb_queue_head_init(&self->rx_queue);
422 skb_queue_head_init(&self->tx_queue);
423 skb_queue_head_init(&self->rx_fragments);
425 * Create LSAP at IrLMP layer
427 lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
428 if (lsap == NULL) {
429 IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__);
430 return NULL;
434 * If user specified LSAP_ANY as source TSAP selector, then IrLMP
435 * will replace it with whatever source selector which is free, so
436 * the stsap_sel we have might not be valid anymore
438 self->stsap_sel = lsap->slsap_sel;
439 IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel);
441 self->notify = *notify;
442 self->lsap = lsap;
444 hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
446 if (credit > TTP_RX_MAX_CREDIT)
447 self->initial_credit = TTP_RX_MAX_CREDIT;
448 else
449 self->initial_credit = credit;
451 return self;
453 EXPORT_SYMBOL(irttp_open_tsap);
456 * Function irttp_close (handle)
458 * Remove an instance of a TSAP. This function should only deal with the
459 * deallocation of the TSAP, and resetting of the TSAPs values;
462 static void __irttp_close_tsap(struct tsap_cb *self)
464 /* First make sure we're connected. */
465 IRDA_ASSERT(self != NULL, return;);
466 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
468 irttp_flush_queues(self);
470 del_timer(&self->todo_timer);
472 /* This one won't be cleaned up if we are disconnect_pend + close_pend
473 * and we receive a disconnect_indication */
474 if (self->disconnect_skb)
475 dev_kfree_skb(self->disconnect_skb);
477 self->connected = FALSE;
478 self->magic = ~TTP_TSAP_MAGIC;
480 kfree(self);
484 * Function irttp_close (self)
486 * Remove TSAP from list of all TSAPs and then deallocate all resources
487 * associated with this TSAP
489 * Note : because we *free* the tsap structure, it is the responsibility
490 * of the caller to make sure we are called only once and to deal with
491 * possible race conditions. - Jean II
493 int irttp_close_tsap(struct tsap_cb *self)
495 struct tsap_cb *tsap;
497 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
499 IRDA_ASSERT(self != NULL, return -1;);
500 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
502 /* Make sure tsap has been disconnected */
503 if (self->connected) {
504 /* Check if disconnect is not pending */
505 if (!test_bit(0, &self->disconnect_pend)) {
506 IRDA_WARNING("%s: TSAP still connected!\n",
507 __FUNCTION__);
508 irttp_disconnect_request(self, NULL, P_NORMAL);
510 self->close_pend = TRUE;
511 irttp_start_todo_timer(self, HZ/10);
513 return 0; /* Will be back! */
516 tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
518 IRDA_ASSERT(tsap == self, return -1;);
520 /* Close corresponding LSAP */
521 if (self->lsap) {
522 irlmp_close_lsap(self->lsap);
523 self->lsap = NULL;
526 __irttp_close_tsap(self);
528 return 0;
530 EXPORT_SYMBOL(irttp_close_tsap);
533 * Function irttp_udata_request (self, skb)
535 * Send unreliable data on this TSAP
538 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
540 IRDA_ASSERT(self != NULL, return -1;);
541 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
542 IRDA_ASSERT(skb != NULL, return -1;);
544 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
546 /* Check that nothing bad happens */
547 if ((skb->len == 0) || (!self->connected)) {
548 IRDA_DEBUG(1, "%s(), No data, or not connected\n",
549 __FUNCTION__);
550 goto err;
553 if (skb->len > self->max_seg_size) {
554 IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n",
555 __FUNCTION__);
556 goto err;
559 irlmp_udata_request(self->lsap, skb);
560 self->stats.tx_packets++;
562 return 0;
564 err:
565 dev_kfree_skb(skb);
566 return -1;
568 EXPORT_SYMBOL(irttp_udata_request);
572 * Function irttp_data_request (handle, skb)
574 * Queue frame for transmission. If SAR is enabled, fragement the frame
575 * and queue the fragments for transmission
577 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
579 __u8 *frame;
580 int ret;
582 IRDA_ASSERT(self != NULL, return -1;);
583 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
584 IRDA_ASSERT(skb != NULL, return -1;);
586 IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__,
587 skb_queue_len(&self->tx_queue));
589 /* Check that nothing bad happens */
590 if ((skb->len == 0) || (!self->connected)) {
591 IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__);
592 ret = -ENOTCONN;
593 goto err;
597 * Check if SAR is disabled, and the frame is larger than what fits
598 * inside an IrLAP frame
600 if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
601 IRDA_ERROR("%s: SAR disabled, and data is to large for IrLAP!\n",
602 __FUNCTION__);
603 ret = -EMSGSIZE;
604 goto err;
608 * Check if SAR is enabled, and the frame is larger than the
609 * TxMaxSduSize
611 if ((self->tx_max_sdu_size != 0) &&
612 (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
613 (skb->len > self->tx_max_sdu_size))
615 IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
616 __FUNCTION__);
617 ret = -EMSGSIZE;
618 goto err;
621 * Check if transmit queue is full
623 if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
625 * Give it a chance to empty itself
627 irttp_run_tx_queue(self);
629 /* Drop packet. This error code should trigger the caller
630 * to resend the data in the client code - Jean II */
631 ret = -ENOBUFS;
632 goto err;
635 /* Queue frame, or queue frame segments */
636 if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
637 /* Queue frame */
638 IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
639 frame = skb_push(skb, TTP_HEADER);
640 frame[0] = 0x00; /* Clear more bit */
642 skb_queue_tail(&self->tx_queue, skb);
643 } else {
645 * Fragment the frame, this function will also queue the
646 * fragments, we don't care about the fact the transmit
647 * queue may be overfilled by all the segments for a little
648 * while
650 irttp_fragment_skb(self, skb);
653 /* Check if we can accept more data from client */
654 if ((!self->tx_sdu_busy) &&
655 (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
656 /* Tx queue filling up, so stop client. */
657 if (self->notify.flow_indication) {
658 self->notify.flow_indication(self->notify.instance,
659 self, FLOW_STOP);
661 /* self->tx_sdu_busy is the state of the client.
662 * Update state after notifying client to avoid
663 * race condition with irttp_flow_indication().
664 * If the queue empty itself after our test but before
665 * we set the flag, we will fix ourselves below in
666 * irttp_run_tx_queue().
667 * Jean II */
668 self->tx_sdu_busy = TRUE;
671 /* Try to make some progress */
672 irttp_run_tx_queue(self);
674 return 0;
676 err:
677 dev_kfree_skb(skb);
678 return ret;
680 EXPORT_SYMBOL(irttp_data_request);
683 * Function irttp_run_tx_queue (self)
685 * Transmit packets queued for transmission (if possible)
688 static void irttp_run_tx_queue(struct tsap_cb *self)
690 struct sk_buff *skb;
691 unsigned long flags;
692 int n;
694 IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
695 __FUNCTION__,
696 self->send_credit, skb_queue_len(&self->tx_queue));
698 /* Get exclusive access to the tx queue, otherwise don't touch it */
699 if (irda_lock(&self->tx_queue_lock) == FALSE)
700 return;
702 /* Try to send out frames as long as we have credits
703 * and as long as LAP is not full. If LAP is full, it will
704 * poll us through irttp_flow_indication() - Jean II */
705 while ((self->send_credit > 0) &&
706 (!irlmp_lap_tx_queue_full(self->lsap)) &&
707 (skb = skb_dequeue(&self->tx_queue)))
710 * Since we can transmit and receive frames concurrently,
711 * the code below is a critical region and we must assure that
712 * nobody messes with the credits while we update them.
714 spin_lock_irqsave(&self->lock, flags);
716 n = self->avail_credit;
717 self->avail_credit = 0;
719 /* Only room for 127 credits in frame */
720 if (n > 127) {
721 self->avail_credit = n-127;
722 n = 127;
724 self->remote_credit += n;
725 self->send_credit--;
727 spin_unlock_irqrestore(&self->lock, flags);
730 * More bit must be set by the data_request() or fragment()
731 * functions
733 skb->data[0] |= (n & 0x7f);
735 /* Detach from socket.
736 * The current skb has a reference to the socket that sent
737 * it (skb->sk). When we pass it to IrLMP, the skb will be
738 * stored in in IrLAP (self->wx_list). When we are within
739 * IrLAP, we lose the notion of socket, so we should not
740 * have a reference to a socket. So, we drop it here.
742 * Why does it matter ?
743 * When the skb is freed (kfree_skb), if it is associated
744 * with a socket, it release buffer space on the socket
745 * (through sock_wfree() and sock_def_write_space()).
746 * If the socket no longer exist, we may crash. Hard.
747 * When we close a socket, we make sure that associated packets
748 * in IrTTP are freed. However, we have no way to cancel
749 * the packet that we have passed to IrLAP. So, if a packet
750 * remains in IrLAP (retry on the link or else) after we
751 * close the socket, we are dead !
752 * Jean II */
753 if (skb->sk != NULL) {
754 /* IrSOCK application, IrOBEX, ... */
755 skb_orphan(skb);
757 /* IrCOMM over IrTTP, IrLAN, ... */
759 /* Pass the skb to IrLMP - done */
760 irlmp_data_request(self->lsap, skb);
761 self->stats.tx_packets++;
764 /* Check if we can accept more frames from client.
765 * We don't want to wait until the todo timer to do that, and we
766 * can't use tasklets (grr...), so we are obliged to give control
767 * to client. That's ok, this test will be true not too often
768 * (max once per LAP window) and we are called from places
769 * where we can spend a bit of time doing stuff. - Jean II */
770 if ((self->tx_sdu_busy) &&
771 (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
772 (!self->close_pend))
774 if (self->notify.flow_indication)
775 self->notify.flow_indication(self->notify.instance,
776 self, FLOW_START);
778 /* self->tx_sdu_busy is the state of the client.
779 * We don't really have a race here, but it's always safer
780 * to update our state after the client - Jean II */
781 self->tx_sdu_busy = FALSE;
784 /* Reset lock */
785 self->tx_queue_lock = 0;
789 * Function irttp_give_credit (self)
791 * Send a dataless flowdata TTP-PDU and give available credit to peer
792 * TSAP
794 static inline void irttp_give_credit(struct tsap_cb *self)
796 struct sk_buff *tx_skb = NULL;
797 unsigned long flags;
798 int n;
800 IRDA_ASSERT(self != NULL, return;);
801 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
803 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
804 __FUNCTION__,
805 self->send_credit, self->avail_credit, self->remote_credit);
807 /* Give credit to peer */
808 tx_skb = dev_alloc_skb(64);
809 if (!tx_skb)
810 return;
812 /* Reserve space for LMP, and LAP header */
813 skb_reserve(tx_skb, self->max_header_size);
816 * Since we can transmit and receive frames concurrently,
817 * the code below is a critical region and we must assure that
818 * nobody messes with the credits while we update them.
820 spin_lock_irqsave(&self->lock, flags);
822 n = self->avail_credit;
823 self->avail_credit = 0;
825 /* Only space for 127 credits in frame */
826 if (n > 127) {
827 self->avail_credit = n - 127;
828 n = 127;
830 self->remote_credit += n;
832 spin_unlock_irqrestore(&self->lock, flags);
834 skb_put(tx_skb, 1);
835 tx_skb->data[0] = (__u8) (n & 0x7f);
837 irlmp_data_request(self->lsap, tx_skb);
838 self->stats.tx_packets++;
842 * Function irttp_udata_indication (instance, sap, skb)
844 * Received some unit-data (unreliable)
847 static int irttp_udata_indication(void *instance, void *sap,
848 struct sk_buff *skb)
850 struct tsap_cb *self;
851 int err;
853 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
855 self = (struct tsap_cb *) instance;
857 IRDA_ASSERT(self != NULL, return -1;);
858 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
859 IRDA_ASSERT(skb != NULL, return -1;);
861 self->stats.rx_packets++;
863 /* Just pass data to layer above */
864 if (self->notify.udata_indication) {
865 err = self->notify.udata_indication(self->notify.instance,
866 self,skb);
867 /* Same comment as in irttp_do_data_indication() */
868 if (!err)
869 return 0;
871 /* Either no handler, or handler returns an error */
872 dev_kfree_skb(skb);
874 return 0;
878 * Function irttp_data_indication (instance, sap, skb)
880 * Receive segment from IrLMP.
883 static int irttp_data_indication(void *instance, void *sap,
884 struct sk_buff *skb)
886 struct tsap_cb *self;
887 unsigned long flags;
888 int n;
890 self = (struct tsap_cb *) instance;
892 n = skb->data[0] & 0x7f; /* Extract the credits */
894 self->stats.rx_packets++;
896 /* Deal with inbound credit
897 * Since we can transmit and receive frames concurrently,
898 * the code below is a critical region and we must assure that
899 * nobody messes with the credits while we update them.
901 spin_lock_irqsave(&self->lock, flags);
902 self->send_credit += n;
903 if (skb->len > 1)
904 self->remote_credit--;
905 spin_unlock_irqrestore(&self->lock, flags);
908 * Data or dataless packet? Dataless frames contains only the
909 * TTP_HEADER.
911 if (skb->len > 1) {
913 * We don't remove the TTP header, since we must preserve the
914 * more bit, so the defragment routing knows what to do
916 skb_queue_tail(&self->rx_queue, skb);
917 } else {
918 /* Dataless flowdata TTP-PDU */
919 dev_kfree_skb(skb);
923 /* Push data to the higher layer.
924 * We do it synchronously because running the todo timer for each
925 * receive packet would be too much overhead and latency.
926 * By passing control to the higher layer, we run the risk that
927 * it may take time or grab a lock. Most often, the higher layer
928 * will only put packet in a queue.
929 * Anyway, packets are only dripping through the IrDA, so we can
930 * have time before the next packet.
931 * Further, we are run from NET_BH, so the worse that can happen is
932 * us missing the optimal time to send back the PF bit in LAP.
933 * Jean II */
934 irttp_run_rx_queue(self);
936 /* We now give credits to peer in irttp_run_rx_queue().
937 * We need to send credit *NOW*, otherwise we are going
938 * to miss the next Tx window. The todo timer may take
939 * a while before it's run... - Jean II */
942 * If the peer device has given us some credits and we didn't have
943 * anyone from before, then we need to shedule the tx queue.
944 * We need to do that because our Tx have stopped (so we may not
945 * get any LAP flow indication) and the user may be stopped as
946 * well. - Jean II
948 if (self->send_credit == n) {
949 /* Restart pushing stuff to LAP */
950 irttp_run_tx_queue(self);
951 /* Note : we don't want to schedule the todo timer
952 * because it has horrible latency. No tasklets
953 * because the tasklet API is broken. - Jean II */
956 return 0;
960 * Function irttp_status_indication (self, reason)
962 * Status_indication, just pass to the higher layer...
965 static void irttp_status_indication(void *instance,
966 LINK_STATUS link, LOCK_STATUS lock)
968 struct tsap_cb *self;
970 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
972 self = (struct tsap_cb *) instance;
974 IRDA_ASSERT(self != NULL, return;);
975 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
977 /* Check if client has already closed the TSAP and gone away */
978 if (self->close_pend)
979 return;
982 * Inform service user if he has requested it
984 if (self->notify.status_indication != NULL)
985 self->notify.status_indication(self->notify.instance,
986 link, lock);
987 else
988 IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__);
992 * Function irttp_flow_indication (self, reason)
994 * Flow_indication : IrLAP tells us to send more data.
997 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
999 struct tsap_cb *self;
1001 self = (struct tsap_cb *) instance;
1003 IRDA_ASSERT(self != NULL, return;);
1004 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1006 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
1008 /* We are "polled" directly from LAP, and the LAP want to fill
1009 * its Tx window. We want to do our best to send it data, so that
1010 * we maximise the window. On the other hand, we want to limit the
1011 * amount of work here so that LAP doesn't hang forever waiting
1012 * for packets. - Jean II */
1014 /* Try to send some packets. Currently, LAP calls us every time
1015 * there is one free slot, so we will send only one packet.
1016 * This allow the scheduler to do its round robin - Jean II */
1017 irttp_run_tx_queue(self);
1019 /* Note regarding the interraction with higher layer.
1020 * irttp_run_tx_queue() may call the client when its queue
1021 * start to empty, via notify.flow_indication(). Initially.
1022 * I wanted this to happen in a tasklet, to avoid client
1023 * grabbing the CPU, but we can't use tasklets safely. And timer
1024 * is definitely too slow.
1025 * This will happen only once per LAP window, and usually at
1026 * the third packet (unless window is smaller). LAP is still
1027 * doing mtt and sending first packet so it's sort of OK
1028 * to do that. Jean II */
1030 /* If we need to send disconnect. try to do it now */
1031 if(self->disconnect_pend)
1032 irttp_start_todo_timer(self, 0);
1036 * Function irttp_flow_request (self, command)
1038 * This function could be used by the upper layers to tell IrTTP to stop
1039 * delivering frames if the receive queues are starting to get full, or
1040 * to tell IrTTP to start delivering frames again.
1042 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1044 IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1046 IRDA_ASSERT(self != NULL, return;);
1047 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1049 switch (flow) {
1050 case FLOW_STOP:
1051 IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__);
1052 self->rx_sdu_busy = TRUE;
1053 break;
1054 case FLOW_START:
1055 IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__);
1056 self->rx_sdu_busy = FALSE;
1058 /* Client say he can accept more data, try to free our
1059 * queues ASAP - Jean II */
1060 irttp_run_rx_queue(self);
1062 break;
1063 default:
1064 IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__);
1067 EXPORT_SYMBOL(irttp_flow_request);
1070 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1072 * Try to connect to remote destination TSAP selector
1075 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1076 __u32 saddr, __u32 daddr,
1077 struct qos_info *qos, __u32 max_sdu_size,
1078 struct sk_buff *userdata)
1080 struct sk_buff *tx_skb;
1081 __u8 *frame;
1082 __u8 n;
1084 IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size);
1086 IRDA_ASSERT(self != NULL, return -EBADR;);
1087 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1089 if (self->connected) {
1090 if(userdata)
1091 dev_kfree_skb(userdata);
1092 return -EISCONN;
1095 /* Any userdata supplied? */
1096 if (userdata == NULL) {
1097 tx_skb = dev_alloc_skb(64);
1098 if (!tx_skb)
1099 return -ENOMEM;
1101 /* Reserve space for MUX_CONTROL and LAP header */
1102 skb_reserve(tx_skb, TTP_MAX_HEADER);
1103 } else {
1104 tx_skb = userdata;
1106 * Check that the client has reserved enough space for
1107 * headers
1109 IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1110 { dev_kfree_skb(userdata); return -1; } );
1113 /* Initialize connection parameters */
1114 self->connected = FALSE;
1115 self->avail_credit = 0;
1116 self->rx_max_sdu_size = max_sdu_size;
1117 self->rx_sdu_size = 0;
1118 self->rx_sdu_busy = FALSE;
1119 self->dtsap_sel = dtsap_sel;
1121 n = self->initial_credit;
1123 self->remote_credit = 0;
1124 self->send_credit = 0;
1127 * Give away max 127 credits for now
1129 if (n > 127) {
1130 self->avail_credit=n-127;
1131 n = 127;
1134 self->remote_credit = n;
1136 /* SAR enabled? */
1137 if (max_sdu_size > 0) {
1138 IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1139 { dev_kfree_skb(tx_skb); return -1; } );
1141 /* Insert SAR parameters */
1142 frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1144 frame[0] = TTP_PARAMETERS | n;
1145 frame[1] = 0x04; /* Length */
1146 frame[2] = 0x01; /* MaxSduSize */
1147 frame[3] = 0x02; /* Value length */
1149 put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1150 (__u16 *)(frame+4));
1151 } else {
1152 /* Insert plain TTP header */
1153 frame = skb_push(tx_skb, TTP_HEADER);
1155 /* Insert initial credit in frame */
1156 frame[0] = n & 0x7f;
1159 /* Connect with IrLMP. No QoS parameters for now */
1160 return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1161 tx_skb);
1163 EXPORT_SYMBOL(irttp_connect_request);
1166 * Function irttp_connect_confirm (handle, qos, skb)
1168 * Sevice user confirms TSAP connection with peer.
1171 static void irttp_connect_confirm(void *instance, void *sap,
1172 struct qos_info *qos, __u32 max_seg_size,
1173 __u8 max_header_size, struct sk_buff *skb)
1175 struct tsap_cb *self;
1176 int parameters;
1177 int ret;
1178 __u8 plen;
1179 __u8 n;
1181 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1183 self = (struct tsap_cb *) instance;
1185 IRDA_ASSERT(self != NULL, return;);
1186 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1187 IRDA_ASSERT(skb != NULL, return;);
1189 self->max_seg_size = max_seg_size - TTP_HEADER;
1190 self->max_header_size = max_header_size + TTP_HEADER;
1193 * Check if we have got some QoS parameters back! This should be the
1194 * negotiated QoS for the link.
1196 if (qos) {
1197 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1198 qos->baud_rate.bits);
1199 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1200 qos->baud_rate.value);
1203 n = skb->data[0] & 0x7f;
1205 IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n);
1207 self->send_credit = n;
1208 self->tx_max_sdu_size = 0;
1209 self->connected = TRUE;
1211 parameters = skb->data[0] & 0x80;
1213 IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1214 skb_pull(skb, TTP_HEADER);
1216 if (parameters) {
1217 plen = skb->data[0];
1219 ret = irda_param_extract_all(self, skb->data+1,
1220 IRDA_MIN(skb->len-1, plen),
1221 &param_info);
1223 /* Any errors in the parameter list? */
1224 if (ret < 0) {
1225 IRDA_WARNING("%s: error extracting parameters\n",
1226 __FUNCTION__);
1227 dev_kfree_skb(skb);
1229 /* Do not accept this connection attempt */
1230 return;
1232 /* Remove parameters */
1233 skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1236 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1237 self->send_credit, self->avail_credit, self->remote_credit);
1239 IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__,
1240 self->tx_max_sdu_size);
1242 if (self->notify.connect_confirm) {
1243 self->notify.connect_confirm(self->notify.instance, self, qos,
1244 self->tx_max_sdu_size,
1245 self->max_header_size, skb);
1246 } else
1247 dev_kfree_skb(skb);
1251 * Function irttp_connect_indication (handle, skb)
1253 * Some other device is connecting to this TSAP
1256 void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos,
1257 __u32 max_seg_size, __u8 max_header_size,
1258 struct sk_buff *skb)
1260 struct tsap_cb *self;
1261 struct lsap_cb *lsap;
1262 int parameters;
1263 int ret;
1264 __u8 plen;
1265 __u8 n;
1267 self = (struct tsap_cb *) instance;
1269 IRDA_ASSERT(self != NULL, return;);
1270 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1271 IRDA_ASSERT(skb != NULL, return;);
1273 lsap = (struct lsap_cb *) sap;
1275 self->max_seg_size = max_seg_size - TTP_HEADER;
1276 self->max_header_size = max_header_size+TTP_HEADER;
1278 IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel);
1280 /* Need to update dtsap_sel if its equal to LSAP_ANY */
1281 self->dtsap_sel = lsap->dlsap_sel;
1283 n = skb->data[0] & 0x7f;
1285 self->send_credit = n;
1286 self->tx_max_sdu_size = 0;
1288 parameters = skb->data[0] & 0x80;
1290 IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1291 skb_pull(skb, TTP_HEADER);
1293 if (parameters) {
1294 plen = skb->data[0];
1296 ret = irda_param_extract_all(self, skb->data+1,
1297 IRDA_MIN(skb->len-1, plen),
1298 &param_info);
1300 /* Any errors in the parameter list? */
1301 if (ret < 0) {
1302 IRDA_WARNING("%s: error extracting parameters\n",
1303 __FUNCTION__);
1304 dev_kfree_skb(skb);
1306 /* Do not accept this connection attempt */
1307 return;
1310 /* Remove parameters */
1311 skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1314 if (self->notify.connect_indication) {
1315 self->notify.connect_indication(self->notify.instance, self,
1316 qos, self->tx_max_sdu_size,
1317 self->max_header_size, skb);
1318 } else
1319 dev_kfree_skb(skb);
1323 * Function irttp_connect_response (handle, userdata)
1325 * Service user is accepting the connection, just pass it down to
1326 * IrLMP!
1329 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1330 struct sk_buff *userdata)
1332 struct sk_buff *tx_skb;
1333 __u8 *frame;
1334 int ret;
1335 __u8 n;
1337 IRDA_ASSERT(self != NULL, return -1;);
1338 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1340 IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__,
1341 self->stsap_sel);
1343 /* Any userdata supplied? */
1344 if (userdata == NULL) {
1345 tx_skb = dev_alloc_skb(64);
1346 if (!tx_skb)
1347 return -ENOMEM;
1349 /* Reserve space for MUX_CONTROL and LAP header */
1350 skb_reserve(tx_skb, TTP_MAX_HEADER);
1351 } else {
1352 tx_skb = userdata;
1354 * Check that the client has reserved enough space for
1355 * headers
1357 IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1358 { dev_kfree_skb(userdata); return -1; } );
1361 self->avail_credit = 0;
1362 self->remote_credit = 0;
1363 self->rx_max_sdu_size = max_sdu_size;
1364 self->rx_sdu_size = 0;
1365 self->rx_sdu_busy = FALSE;
1367 n = self->initial_credit;
1369 /* Frame has only space for max 127 credits (7 bits) */
1370 if (n > 127) {
1371 self->avail_credit = n - 127;
1372 n = 127;
1375 self->remote_credit = n;
1376 self->connected = TRUE;
1378 /* SAR enabled? */
1379 if (max_sdu_size > 0) {
1380 IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1381 { dev_kfree_skb(tx_skb); return -1; } );
1383 /* Insert TTP header with SAR parameters */
1384 frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1386 frame[0] = TTP_PARAMETERS | n;
1387 frame[1] = 0x04; /* Length */
1389 /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1390 /* TTP_SAR_HEADER, &param_info) */
1392 frame[2] = 0x01; /* MaxSduSize */
1393 frame[3] = 0x02; /* Value length */
1395 put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1396 (__u16 *)(frame+4));
1397 } else {
1398 /* Insert TTP header */
1399 frame = skb_push(tx_skb, TTP_HEADER);
1401 frame[0] = n & 0x7f;
1404 ret = irlmp_connect_response(self->lsap, tx_skb);
1406 return ret;
1408 EXPORT_SYMBOL(irttp_connect_response);
1411 * Function irttp_dup (self, instance)
1413 * Duplicate TSAP, can be used by servers to confirm a connection on a
1414 * new TSAP so it can keep listening on the old one.
1416 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1418 struct tsap_cb *new;
1419 unsigned long flags;
1421 IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1423 /* Protect our access to the old tsap instance */
1424 spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1426 /* Find the old instance */
1427 if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1428 IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__);
1429 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1430 return NULL;
1433 /* Allocate a new instance */
1434 new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1435 if (!new) {
1436 IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__);
1437 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1438 return NULL;
1440 /* Dup */
1441 memcpy(new, orig, sizeof(struct tsap_cb));
1443 /* We don't need the old instance any more */
1444 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1446 /* Try to dup the LSAP (may fail if we were too slow) */
1447 new->lsap = irlmp_dup(orig->lsap, new);
1448 if (!new->lsap) {
1449 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
1450 kfree(new);
1451 return NULL;
1454 /* Not everything should be copied */
1455 new->notify.instance = instance;
1456 init_timer(&new->todo_timer);
1458 skb_queue_head_init(&new->rx_queue);
1459 skb_queue_head_init(&new->tx_queue);
1460 skb_queue_head_init(&new->rx_fragments);
1462 /* This is locked */
1463 hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1465 return new;
1467 EXPORT_SYMBOL(irttp_dup);
1470 * Function irttp_disconnect_request (self)
1472 * Close this connection please! If priority is high, the queued data
1473 * segments, if any, will be deallocated first
1476 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1477 int priority)
1479 int ret;
1481 IRDA_ASSERT(self != NULL, return -1;);
1482 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1484 /* Already disconnected? */
1485 if (!self->connected) {
1486 IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__);
1487 if (userdata)
1488 dev_kfree_skb(userdata);
1489 return -1;
1492 /* Disconnect already pending ?
1493 * We need to use an atomic operation to prevent reentry. This
1494 * function may be called from various context, like user, timer
1495 * for following a disconnect_indication() (i.e. net_bh).
1496 * Jean II */
1497 if(test_and_set_bit(0, &self->disconnect_pend)) {
1498 IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1499 __FUNCTION__);
1500 if (userdata)
1501 dev_kfree_skb(userdata);
1503 /* Try to make some progress */
1504 irttp_run_tx_queue(self);
1505 return -1;
1509 * Check if there is still data segments in the transmit queue
1511 if (!skb_queue_empty(&self->tx_queue)) {
1512 if (priority == P_HIGH) {
1514 * No need to send the queued data, if we are
1515 * disconnecting right now since the data will
1516 * not have any usable connection to be sent on
1518 IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__);
1519 irttp_flush_queues(self);
1520 } else if (priority == P_NORMAL) {
1522 * Must delay disconnect until after all data segments
1523 * have been sent and the tx_queue is empty
1525 /* We'll reuse this one later for the disconnect */
1526 self->disconnect_skb = userdata; /* May be NULL */
1528 irttp_run_tx_queue(self);
1530 irttp_start_todo_timer(self, HZ/10);
1531 return -1;
1534 /* Note : we don't need to check if self->rx_queue is full and the
1535 * state of self->rx_sdu_busy because the disconnect response will
1536 * be sent at the LMP level (so even if the peer has its Tx queue
1537 * full of data). - Jean II */
1539 IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__);
1540 self->connected = FALSE;
1542 if (!userdata) {
1543 struct sk_buff *tx_skb;
1544 tx_skb = dev_alloc_skb(64);
1545 if (!tx_skb)
1546 return -ENOMEM;
1549 * Reserve space for MUX and LAP header
1551 skb_reserve(tx_skb, TTP_MAX_HEADER);
1553 userdata = tx_skb;
1555 ret = irlmp_disconnect_request(self->lsap, userdata);
1557 /* The disconnect is no longer pending */
1558 clear_bit(0, &self->disconnect_pend); /* FALSE */
1560 return ret;
1562 EXPORT_SYMBOL(irttp_disconnect_request);
1565 * Function irttp_disconnect_indication (self, reason)
1567 * Disconnect indication, TSAP disconnected by peer?
1570 void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason,
1571 struct sk_buff *skb)
1573 struct tsap_cb *self;
1575 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1577 self = (struct tsap_cb *) instance;
1579 IRDA_ASSERT(self != NULL, return;);
1580 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1582 /* Prevent higher layer to send more data */
1583 self->connected = FALSE;
1585 /* Check if client has already tried to close the TSAP */
1586 if (self->close_pend) {
1587 /* In this case, the higher layer is probably gone. Don't
1588 * bother it and clean up the remains - Jean II */
1589 if (skb)
1590 dev_kfree_skb(skb);
1591 irttp_close_tsap(self);
1592 return;
1595 /* If we are here, we assume that is the higher layer is still
1596 * waiting for the disconnect notification and able to process it,
1597 * even if he tried to disconnect. Otherwise, it would have already
1598 * attempted to close the tsap and self->close_pend would be TRUE.
1599 * Jean II */
1601 /* No need to notify the client if has already tried to disconnect */
1602 if(self->notify.disconnect_indication)
1603 self->notify.disconnect_indication(self->notify.instance, self,
1604 reason, skb);
1605 else
1606 if (skb)
1607 dev_kfree_skb(skb);
1611 * Function irttp_do_data_indication (self, skb)
1613 * Try to deliver reassembled skb to layer above, and requeue it if that
1614 * for some reason should fail. We mark rx sdu as busy to apply back
1615 * pressure is necessary.
1617 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1619 int err;
1621 /* Check if client has already closed the TSAP and gone away */
1622 if (self->close_pend) {
1623 dev_kfree_skb(skb);
1624 return;
1627 err = self->notify.data_indication(self->notify.instance, self, skb);
1629 /* Usually the layer above will notify that it's input queue is
1630 * starting to get filled by using the flow request, but this may
1631 * be difficult, so it can instead just refuse to eat it and just
1632 * give an error back
1634 if (err) {
1635 IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__);
1637 /* Make sure we take a break */
1638 self->rx_sdu_busy = TRUE;
1640 /* Need to push the header in again */
1641 skb_push(skb, TTP_HEADER);
1642 skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1644 /* Put skb back on queue */
1645 skb_queue_head(&self->rx_queue, skb);
1650 * Function irttp_run_rx_queue (self)
1652 * Check if we have any frames to be transmitted, or if we have any
1653 * available credit to give away.
1655 void irttp_run_rx_queue(struct tsap_cb *self)
1657 struct sk_buff *skb;
1658 int more = 0;
1660 IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1661 self->send_credit, self->avail_credit, self->remote_credit);
1663 /* Get exclusive access to the rx queue, otherwise don't touch it */
1664 if (irda_lock(&self->rx_queue_lock) == FALSE)
1665 return;
1668 * Reassemble all frames in receive queue and deliver them
1670 while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1671 /* This bit will tell us if it's the last fragment or not */
1672 more = skb->data[0] & 0x80;
1674 /* Remove TTP header */
1675 skb_pull(skb, TTP_HEADER);
1677 /* Add the length of the remaining data */
1678 self->rx_sdu_size += skb->len;
1681 * If SAR is disabled, or user has requested no reassembly
1682 * of received fragments then we just deliver them
1683 * immediately. This can be requested by clients that
1684 * implements byte streams without any message boundaries
1686 if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1687 irttp_do_data_indication(self, skb);
1688 self->rx_sdu_size = 0;
1690 continue;
1693 /* Check if this is a fragment, and not the last fragment */
1694 if (more) {
1696 * Queue the fragment if we still are within the
1697 * limits of the maximum size of the rx_sdu
1699 if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1700 IRDA_DEBUG(4, "%s(), queueing frag\n",
1701 __FUNCTION__);
1702 skb_queue_tail(&self->rx_fragments, skb);
1703 } else {
1704 /* Free the part of the SDU that is too big */
1705 dev_kfree_skb(skb);
1707 continue;
1710 * This is the last fragment, so time to reassemble!
1712 if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1713 (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1716 * A little optimizing. Only queue the fragment if
1717 * there are other fragments. Since if this is the
1718 * last and only fragment, there is no need to
1719 * reassemble :-)
1721 if (!skb_queue_empty(&self->rx_fragments)) {
1722 skb_queue_tail(&self->rx_fragments,
1723 skb);
1725 skb = irttp_reassemble_skb(self);
1728 /* Now we can deliver the reassembled skb */
1729 irttp_do_data_indication(self, skb);
1730 } else {
1731 IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__);
1733 /* Free the part of the SDU that is too big */
1734 dev_kfree_skb(skb);
1736 /* Deliver only the valid but truncated part of SDU */
1737 skb = irttp_reassemble_skb(self);
1739 irttp_do_data_indication(self, skb);
1741 self->rx_sdu_size = 0;
1745 * It's not trivial to keep track of how many credits are available
1746 * by incrementing at each packet, because delivery may fail
1747 * (irttp_do_data_indication() may requeue the frame) and because
1748 * we need to take care of fragmentation.
1749 * We want the other side to send up to initial_credit packets.
1750 * We have some frames in our queues, and we have already allowed it
1751 * to send remote_credit.
1752 * No need to spinlock, write is atomic and self correcting...
1753 * Jean II
1755 self->avail_credit = (self->initial_credit -
1756 (self->remote_credit +
1757 skb_queue_len(&self->rx_queue) +
1758 skb_queue_len(&self->rx_fragments)));
1760 /* Do we have too much credits to send to peer ? */
1761 if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1762 (self->avail_credit > 0)) {
1763 /* Send explicit credit frame */
1764 irttp_give_credit(self);
1765 /* Note : do *NOT* check if tx_queue is non-empty, that
1766 * will produce deadlocks. I repeat : send a credit frame
1767 * even if we have something to send in our Tx queue.
1768 * If we have credits, it means that our Tx queue is blocked.
1770 * Let's suppose the peer can't keep up with our Tx. He will
1771 * flow control us by not sending us any credits, and we
1772 * will stop Tx and start accumulating credits here.
1773 * Up to the point where the peer will stop its Tx queue,
1774 * for lack of credits.
1775 * Let's assume the peer application is single threaded.
1776 * It will block on Tx and never consume any Rx buffer.
1777 * Deadlock. Guaranteed. - Jean II
1781 /* Reset lock */
1782 self->rx_queue_lock = 0;
1785 #ifdef CONFIG_PROC_FS
1786 struct irttp_iter_state {
1787 int id;
1790 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1792 struct irttp_iter_state *iter = seq->private;
1793 struct tsap_cb *self;
1795 /* Protect our access to the tsap list */
1796 spin_lock_irq(&irttp->tsaps->hb_spinlock);
1797 iter->id = 0;
1799 for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1800 self != NULL;
1801 self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1802 if (iter->id == *pos)
1803 break;
1804 ++iter->id;
1807 return self;
1810 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1812 struct irttp_iter_state *iter = seq->private;
1814 ++*pos;
1815 ++iter->id;
1816 return (void *) hashbin_get_next(irttp->tsaps);
1819 static void irttp_seq_stop(struct seq_file *seq, void *v)
1821 spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1824 static int irttp_seq_show(struct seq_file *seq, void *v)
1826 const struct irttp_iter_state *iter = seq->private;
1827 const struct tsap_cb *self = v;
1829 seq_printf(seq, "TSAP %d, ", iter->id);
1830 seq_printf(seq, "stsap_sel: %02x, ",
1831 self->stsap_sel);
1832 seq_printf(seq, "dtsap_sel: %02x\n",
1833 self->dtsap_sel);
1834 seq_printf(seq, " connected: %s, ",
1835 self->connected? "TRUE":"FALSE");
1836 seq_printf(seq, "avail credit: %d, ",
1837 self->avail_credit);
1838 seq_printf(seq, "remote credit: %d, ",
1839 self->remote_credit);
1840 seq_printf(seq, "send credit: %d\n",
1841 self->send_credit);
1842 seq_printf(seq, " tx packets: %ld, ",
1843 self->stats.tx_packets);
1844 seq_printf(seq, "rx packets: %ld, ",
1845 self->stats.rx_packets);
1846 seq_printf(seq, "tx_queue len: %d ",
1847 skb_queue_len(&self->tx_queue));
1848 seq_printf(seq, "rx_queue len: %d\n",
1849 skb_queue_len(&self->rx_queue));
1850 seq_printf(seq, " tx_sdu_busy: %s, ",
1851 self->tx_sdu_busy? "TRUE":"FALSE");
1852 seq_printf(seq, "rx_sdu_busy: %s\n",
1853 self->rx_sdu_busy? "TRUE":"FALSE");
1854 seq_printf(seq, " max_seg_size: %d, ",
1855 self->max_seg_size);
1856 seq_printf(seq, "tx_max_sdu_size: %d, ",
1857 self->tx_max_sdu_size);
1858 seq_printf(seq, "rx_max_sdu_size: %d\n",
1859 self->rx_max_sdu_size);
1861 seq_printf(seq, " Used by (%s)\n\n",
1862 self->notify.name);
1863 return 0;
1866 static struct seq_operations irttp_seq_ops = {
1867 .start = irttp_seq_start,
1868 .next = irttp_seq_next,
1869 .stop = irttp_seq_stop,
1870 .show = irttp_seq_show,
1873 static int irttp_seq_open(struct inode *inode, struct file *file)
1875 struct seq_file *seq;
1876 int rc = -ENOMEM;
1877 struct irttp_iter_state *s;
1879 s = kmalloc(sizeof(*s), GFP_KERNEL);
1880 if (!s)
1881 goto out;
1883 rc = seq_open(file, &irttp_seq_ops);
1884 if (rc)
1885 goto out_kfree;
1887 seq = file->private_data;
1888 seq->private = s;
1889 memset(s, 0, sizeof(*s));
1890 out:
1891 return rc;
1892 out_kfree:
1893 kfree(s);
1894 goto out;
1897 struct file_operations irttp_seq_fops = {
1898 .owner = THIS_MODULE,
1899 .open = irttp_seq_open,
1900 .read = seq_read,
1901 .llseek = seq_lseek,
1902 .release = seq_release_private,
1905 #endif /* PROC_FS */