1 /*********************************************************************
5 * Description: Tiny Transport Protocol (TTP) implementation
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Aug 31 20:14:31 1997
9 * Modified at: Wed Jan 5 11:31:27 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
12 * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 * All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * Neither Dag Brattli nor University of Tromsø admit liability nor
22 * provide warranty for any of this software. This material is
23 * provided "AS-IS" and at no charge.
25 ********************************************************************/
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/seq_file.h>
31 #include <asm/byteorder.h>
32 #include <asm/unaligned.h>
34 #include <net/irda/irda.h>
35 #include <net/irda/irlap.h>
36 #include <net/irda/irlmp.h>
37 #include <net/irda/parameters.h>
38 #include <net/irda/irttp.h>
40 static struct irttp_cb
*irttp
;
42 static void __irttp_close_tsap(struct tsap_cb
*self
);
44 static int irttp_data_indication(void *instance
, void *sap
,
46 static int irttp_udata_indication(void *instance
, void *sap
,
48 static void irttp_disconnect_indication(void *instance
, void *sap
,
49 LM_REASON reason
, struct sk_buff
*);
50 static void irttp_connect_indication(void *instance
, void *sap
,
51 struct qos_info
*qos
, __u32 max_sdu_size
,
52 __u8 header_size
, struct sk_buff
*skb
);
53 static void irttp_connect_confirm(void *instance
, void *sap
,
54 struct qos_info
*qos
, __u32 max_sdu_size
,
55 __u8 header_size
, struct sk_buff
*skb
);
56 static void irttp_run_tx_queue(struct tsap_cb
*self
);
57 static void irttp_run_rx_queue(struct tsap_cb
*self
);
59 static void irttp_flush_queues(struct tsap_cb
*self
);
60 static void irttp_fragment_skb(struct tsap_cb
*self
, struct sk_buff
*skb
);
61 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
);
62 static void irttp_todo_expired(unsigned long data
);
63 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
66 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
);
67 static void irttp_status_indication(void *instance
,
68 LINK_STATUS link
, LOCK_STATUS lock
);
70 /* Information for parsing parameters in IrTTP */
71 static pi_minor_info_t pi_minor_call_table
[] = {
72 { NULL
, 0 }, /* 0x00 */
73 { irttp_param_max_sdu_size
, PV_INTEGER
| PV_BIG_ENDIAN
} /* 0x01 */
75 static pi_major_info_t pi_major_call_table
[] = {{ pi_minor_call_table
, 2 }};
76 static pi_param_info_t param_info
= { pi_major_call_table
, 1, 0x0f, 4 };
78 /************************ GLOBAL PROCEDURES ************************/
81 * Function irttp_init (void)
83 * Initialize the IrTTP layer. Called by module initialization code
86 int __init
irttp_init(void)
88 irttp
= kmalloc(sizeof(struct irttp_cb
), GFP_KERNEL
);
91 memset(irttp
, 0, sizeof(struct irttp_cb
));
93 irttp
->magic
= TTP_MAGIC
;
95 irttp
->tsaps
= hashbin_new(HB_LOCK
);
97 IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
107 * Function irttp_cleanup (void)
109 * Called by module destruction/cleanup code
112 void __exit
irttp_cleanup(void)
114 /* Check for main structure */
115 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return;);
118 * Delete hashbin and close all TSAP instances in it
120 hashbin_delete(irttp
->tsaps
, (FREE_FUNC
) __irttp_close_tsap
);
124 /* De-allocate main structure */
130 /*************************** SUBROUTINES ***************************/
133 * Function irttp_start_todo_timer (self, timeout)
137 * Made it more effient and unsensitive to race conditions - Jean II
139 static inline void irttp_start_todo_timer(struct tsap_cb
*self
, int timeout
)
141 /* Set new value for timer */
142 mod_timer(&self
->todo_timer
, jiffies
+ timeout
);
146 * Function irttp_todo_expired (data)
148 * Todo timer has expired!
150 * One of the restriction of the timer is that it is run only on the timer
151 * interrupt which run every 10ms. This mean that even if you set the timer
152 * with a delay of 0, it may take up to 10ms before it's run.
153 * So, to minimise latency and keep cache fresh, we try to avoid using
154 * it as much as possible.
155 * Note : we can't use tasklets, because they can't be asynchronously
156 * killed (need user context), and we can't guarantee that here...
159 static void irttp_todo_expired(unsigned long data
)
161 struct tsap_cb
*self
= (struct tsap_cb
*) data
;
163 /* Check that we still exist */
164 if (!self
|| self
->magic
!= TTP_TSAP_MAGIC
)
167 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__
, self
);
169 /* Try to make some progress, especially on Tx side - Jean II */
170 irttp_run_rx_queue(self
);
171 irttp_run_tx_queue(self
);
173 /* Check if time for disconnect */
174 if (test_bit(0, &self
->disconnect_pend
)) {
175 /* Check if it's possible to disconnect yet */
176 if (skb_queue_empty(&self
->tx_queue
)) {
177 /* Make sure disconnect is not pending anymore */
178 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
180 /* Note : self->disconnect_skb may be NULL */
181 irttp_disconnect_request(self
, self
->disconnect_skb
,
183 self
->disconnect_skb
= NULL
;
185 /* Try again later */
186 irttp_start_todo_timer(self
, HZ
/10);
188 /* No reason to try and close now */
193 /* Check if it's closing time */
194 if (self
->close_pend
)
196 irttp_close_tsap(self
);
200 * Function irttp_flush_queues (self)
202 * Flushes (removes all frames) in transitt-buffer (tx_list)
204 void irttp_flush_queues(struct tsap_cb
*self
)
208 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
210 IRDA_ASSERT(self
!= NULL
, return;);
211 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
213 /* Deallocate frames waiting to be sent */
214 while ((skb
= skb_dequeue(&self
->tx_queue
)) != NULL
)
217 /* Deallocate received frames */
218 while ((skb
= skb_dequeue(&self
->rx_queue
)) != NULL
)
221 /* Deallocate received fragments */
222 while ((skb
= skb_dequeue(&self
->rx_fragments
)) != NULL
)
227 * Function irttp_reassemble (self)
229 * Makes a new (continuous) skb of all the fragments in the fragment
233 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
)
235 struct sk_buff
*skb
, *frag
;
236 int n
= 0; /* Fragment index */
238 IRDA_ASSERT(self
!= NULL
, return NULL
;);
239 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return NULL
;);
241 IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__
,
244 skb
= dev_alloc_skb(TTP_HEADER
+ self
->rx_sdu_size
);
249 * Need to reserve space for TTP header in case this skb needs to
250 * be requeued in case delivery failes
252 skb_reserve(skb
, TTP_HEADER
);
253 skb_put(skb
, self
->rx_sdu_size
);
256 * Copy all fragments to a new buffer
258 while ((frag
= skb_dequeue(&self
->rx_fragments
)) != NULL
) {
259 memcpy(skb
->data
+n
, frag
->data
, frag
->len
);
266 "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
267 __FUNCTION__
, n
, self
->rx_sdu_size
, self
->rx_max_sdu_size
);
268 /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
269 * by summing the size of all fragments, so we should always
270 * have n == self->rx_sdu_size, except in cases where we
271 * droped the last fragment (when self->rx_sdu_size exceed
272 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
274 IRDA_ASSERT(n
<= self
->rx_sdu_size
, n
= self
->rx_sdu_size
;);
276 /* Set the new length */
279 self
->rx_sdu_size
= 0;
285 * Function irttp_fragment_skb (skb)
287 * Fragments a frame and queues all the fragments for transmission
290 static inline void irttp_fragment_skb(struct tsap_cb
*self
,
293 struct sk_buff
*frag
;
296 IRDA_DEBUG(2, "%s()\n", __FUNCTION__
);
298 IRDA_ASSERT(self
!= NULL
, return;);
299 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
300 IRDA_ASSERT(skb
!= NULL
, return;);
303 * Split frame into a number of segments
305 while (skb
->len
> self
->max_seg_size
) {
306 IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__
);
308 /* Make new segment */
309 frag
= dev_alloc_skb(self
->max_seg_size
+self
->max_header_size
);
313 skb_reserve(frag
, self
->max_header_size
);
315 /* Copy data from the original skb into this fragment. */
316 memcpy(skb_put(frag
, self
->max_seg_size
), skb
->data
,
319 /* Insert TTP header, with the more bit set */
320 frame
= skb_push(frag
, TTP_HEADER
);
323 /* Hide the copied data from the original skb */
324 skb_pull(skb
, self
->max_seg_size
);
327 skb_queue_tail(&self
->tx_queue
, frag
);
329 /* Queue what is left of the original skb */
330 IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__
);
332 frame
= skb_push(skb
, TTP_HEADER
);
333 frame
[0] = 0x00; /* Clear more bit */
336 skb_queue_tail(&self
->tx_queue
, skb
);
340 * Function irttp_param_max_sdu_size (self, param)
342 * Handle the MaxSduSize parameter in the connect frames, this function
343 * will be called both when this parameter needs to be inserted into, and
344 * extracted from the connect frames
346 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
349 struct tsap_cb
*self
;
351 self
= (struct tsap_cb
*) instance
;
353 IRDA_ASSERT(self
!= NULL
, return -1;);
354 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
357 param
->pv
.i
= self
->tx_max_sdu_size
;
359 self
->tx_max_sdu_size
= param
->pv
.i
;
361 IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__
, param
->pv
.i
);
366 /*************************** CLIENT CALLS ***************************/
367 /************************** LMP CALLBACKS **************************/
368 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
371 * Function irttp_open_tsap (stsap, notify)
373 * Create TSAP connection endpoint,
375 struct tsap_cb
*irttp_open_tsap(__u8 stsap_sel
, int credit
, notify_t
*notify
)
377 struct tsap_cb
*self
;
378 struct lsap_cb
*lsap
;
381 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return NULL
;);
383 /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
384 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
386 if((stsap_sel
!= LSAP_ANY
) &&
387 ((stsap_sel
< 0x01) || (stsap_sel
>= 0x70))) {
388 IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__
);
392 self
= kmalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
394 IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__
);
397 memset(self
, 0, sizeof(struct tsap_cb
));
398 spin_lock_init(&self
->lock
);
400 /* Initialise todo timer */
401 init_timer(&self
->todo_timer
);
402 self
->todo_timer
.data
= (unsigned long) self
;
403 self
->todo_timer
.function
= &irttp_todo_expired
;
405 /* Initialize callbacks for IrLMP to use */
406 irda_notify_init(&ttp_notify
);
407 ttp_notify
.connect_confirm
= irttp_connect_confirm
;
408 ttp_notify
.connect_indication
= irttp_connect_indication
;
409 ttp_notify
.disconnect_indication
= irttp_disconnect_indication
;
410 ttp_notify
.data_indication
= irttp_data_indication
;
411 ttp_notify
.udata_indication
= irttp_udata_indication
;
412 ttp_notify
.flow_indication
= irttp_flow_indication
;
413 if(notify
->status_indication
!= NULL
)
414 ttp_notify
.status_indication
= irttp_status_indication
;
415 ttp_notify
.instance
= self
;
416 strncpy(ttp_notify
.name
, notify
->name
, NOTIFY_MAX_NAME
);
418 self
->magic
= TTP_TSAP_MAGIC
;
419 self
->connected
= FALSE
;
421 skb_queue_head_init(&self
->rx_queue
);
422 skb_queue_head_init(&self
->tx_queue
);
423 skb_queue_head_init(&self
->rx_fragments
);
425 * Create LSAP at IrLMP layer
427 lsap
= irlmp_open_lsap(stsap_sel
, &ttp_notify
, 0);
429 IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__
);
434 * If user specified LSAP_ANY as source TSAP selector, then IrLMP
435 * will replace it with whatever source selector which is free, so
436 * the stsap_sel we have might not be valid anymore
438 self
->stsap_sel
= lsap
->slsap_sel
;
439 IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__
, self
->stsap_sel
);
441 self
->notify
= *notify
;
444 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) self
, (long) self
, NULL
);
446 if (credit
> TTP_RX_MAX_CREDIT
)
447 self
->initial_credit
= TTP_RX_MAX_CREDIT
;
449 self
->initial_credit
= credit
;
453 EXPORT_SYMBOL(irttp_open_tsap
);
456 * Function irttp_close (handle)
458 * Remove an instance of a TSAP. This function should only deal with the
459 * deallocation of the TSAP, and resetting of the TSAPs values;
462 static void __irttp_close_tsap(struct tsap_cb
*self
)
464 /* First make sure we're connected. */
465 IRDA_ASSERT(self
!= NULL
, return;);
466 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
468 irttp_flush_queues(self
);
470 del_timer(&self
->todo_timer
);
472 /* This one won't be cleaned up if we are disconnect_pend + close_pend
473 * and we receive a disconnect_indication */
474 if (self
->disconnect_skb
)
475 dev_kfree_skb(self
->disconnect_skb
);
477 self
->connected
= FALSE
;
478 self
->magic
= ~TTP_TSAP_MAGIC
;
484 * Function irttp_close (self)
486 * Remove TSAP from list of all TSAPs and then deallocate all resources
487 * associated with this TSAP
489 * Note : because we *free* the tsap structure, it is the responsibility
490 * of the caller to make sure we are called only once and to deal with
491 * possible race conditions. - Jean II
493 int irttp_close_tsap(struct tsap_cb
*self
)
495 struct tsap_cb
*tsap
;
497 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
499 IRDA_ASSERT(self
!= NULL
, return -1;);
500 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
502 /* Make sure tsap has been disconnected */
503 if (self
->connected
) {
504 /* Check if disconnect is not pending */
505 if (!test_bit(0, &self
->disconnect_pend
)) {
506 IRDA_WARNING("%s: TSAP still connected!\n",
508 irttp_disconnect_request(self
, NULL
, P_NORMAL
);
510 self
->close_pend
= TRUE
;
511 irttp_start_todo_timer(self
, HZ
/10);
513 return 0; /* Will be back! */
516 tsap
= hashbin_remove(irttp
->tsaps
, (long) self
, NULL
);
518 IRDA_ASSERT(tsap
== self
, return -1;);
520 /* Close corresponding LSAP */
522 irlmp_close_lsap(self
->lsap
);
526 __irttp_close_tsap(self
);
530 EXPORT_SYMBOL(irttp_close_tsap
);
533 * Function irttp_udata_request (self, skb)
535 * Send unreliable data on this TSAP
538 int irttp_udata_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
540 IRDA_ASSERT(self
!= NULL
, return -1;);
541 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
542 IRDA_ASSERT(skb
!= NULL
, return -1;);
544 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
546 /* Check that nothing bad happens */
547 if ((skb
->len
== 0) || (!self
->connected
)) {
548 IRDA_DEBUG(1, "%s(), No data, or not connected\n",
553 if (skb
->len
> self
->max_seg_size
) {
554 IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n",
559 irlmp_udata_request(self
->lsap
, skb
);
560 self
->stats
.tx_packets
++;
568 EXPORT_SYMBOL(irttp_udata_request
);
572 * Function irttp_data_request (handle, skb)
574 * Queue frame for transmission. If SAR is enabled, fragement the frame
575 * and queue the fragments for transmission
577 int irttp_data_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
582 IRDA_ASSERT(self
!= NULL
, return -1;);
583 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
584 IRDA_ASSERT(skb
!= NULL
, return -1;);
586 IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__
,
587 skb_queue_len(&self
->tx_queue
));
589 /* Check that nothing bad happens */
590 if ((skb
->len
== 0) || (!self
->connected
)) {
591 IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__
);
597 * Check if SAR is disabled, and the frame is larger than what fits
598 * inside an IrLAP frame
600 if ((self
->tx_max_sdu_size
== 0) && (skb
->len
> self
->max_seg_size
)) {
601 IRDA_ERROR("%s: SAR disabled, and data is to large for IrLAP!\n",
608 * Check if SAR is enabled, and the frame is larger than the
611 if ((self
->tx_max_sdu_size
!= 0) &&
612 (self
->tx_max_sdu_size
!= TTP_SAR_UNBOUND
) &&
613 (skb
->len
> self
->tx_max_sdu_size
))
615 IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
621 * Check if transmit queue is full
623 if (skb_queue_len(&self
->tx_queue
) >= TTP_TX_MAX_QUEUE
) {
625 * Give it a chance to empty itself
627 irttp_run_tx_queue(self
);
629 /* Drop packet. This error code should trigger the caller
630 * to resend the data in the client code - Jean II */
635 /* Queue frame, or queue frame segments */
636 if ((self
->tx_max_sdu_size
== 0) || (skb
->len
< self
->max_seg_size
)) {
638 IRDA_ASSERT(skb_headroom(skb
) >= TTP_HEADER
, return -1;);
639 frame
= skb_push(skb
, TTP_HEADER
);
640 frame
[0] = 0x00; /* Clear more bit */
642 skb_queue_tail(&self
->tx_queue
, skb
);
645 * Fragment the frame, this function will also queue the
646 * fragments, we don't care about the fact the transmit
647 * queue may be overfilled by all the segments for a little
650 irttp_fragment_skb(self
, skb
);
653 /* Check if we can accept more data from client */
654 if ((!self
->tx_sdu_busy
) &&
655 (skb_queue_len(&self
->tx_queue
) > TTP_TX_HIGH_THRESHOLD
)) {
656 /* Tx queue filling up, so stop client. */
657 if (self
->notify
.flow_indication
) {
658 self
->notify
.flow_indication(self
->notify
.instance
,
661 /* self->tx_sdu_busy is the state of the client.
662 * Update state after notifying client to avoid
663 * race condition with irttp_flow_indication().
664 * If the queue empty itself after our test but before
665 * we set the flag, we will fix ourselves below in
666 * irttp_run_tx_queue().
668 self
->tx_sdu_busy
= TRUE
;
671 /* Try to make some progress */
672 irttp_run_tx_queue(self
);
680 EXPORT_SYMBOL(irttp_data_request
);
683 * Function irttp_run_tx_queue (self)
685 * Transmit packets queued for transmission (if possible)
688 static void irttp_run_tx_queue(struct tsap_cb
*self
)
694 IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
696 self
->send_credit
, skb_queue_len(&self
->tx_queue
));
698 /* Get exclusive access to the tx queue, otherwise don't touch it */
699 if (irda_lock(&self
->tx_queue_lock
) == FALSE
)
702 /* Try to send out frames as long as we have credits
703 * and as long as LAP is not full. If LAP is full, it will
704 * poll us through irttp_flow_indication() - Jean II */
705 while ((self
->send_credit
> 0) &&
706 (!irlmp_lap_tx_queue_full(self
->lsap
)) &&
707 (skb
= skb_dequeue(&self
->tx_queue
)))
710 * Since we can transmit and receive frames concurrently,
711 * the code below is a critical region and we must assure that
712 * nobody messes with the credits while we update them.
714 spin_lock_irqsave(&self
->lock
, flags
);
716 n
= self
->avail_credit
;
717 self
->avail_credit
= 0;
719 /* Only room for 127 credits in frame */
721 self
->avail_credit
= n
-127;
724 self
->remote_credit
+= n
;
727 spin_unlock_irqrestore(&self
->lock
, flags
);
730 * More bit must be set by the data_request() or fragment()
733 skb
->data
[0] |= (n
& 0x7f);
735 /* Detach from socket.
736 * The current skb has a reference to the socket that sent
737 * it (skb->sk). When we pass it to IrLMP, the skb will be
738 * stored in in IrLAP (self->wx_list). When we are within
739 * IrLAP, we lose the notion of socket, so we should not
740 * have a reference to a socket. So, we drop it here.
742 * Why does it matter ?
743 * When the skb is freed (kfree_skb), if it is associated
744 * with a socket, it release buffer space on the socket
745 * (through sock_wfree() and sock_def_write_space()).
746 * If the socket no longer exist, we may crash. Hard.
747 * When we close a socket, we make sure that associated packets
748 * in IrTTP are freed. However, we have no way to cancel
749 * the packet that we have passed to IrLAP. So, if a packet
750 * remains in IrLAP (retry on the link or else) after we
751 * close the socket, we are dead !
753 if (skb
->sk
!= NULL
) {
754 /* IrSOCK application, IrOBEX, ... */
757 /* IrCOMM over IrTTP, IrLAN, ... */
759 /* Pass the skb to IrLMP - done */
760 irlmp_data_request(self
->lsap
, skb
);
761 self
->stats
.tx_packets
++;
764 /* Check if we can accept more frames from client.
765 * We don't want to wait until the todo timer to do that, and we
766 * can't use tasklets (grr...), so we are obliged to give control
767 * to client. That's ok, this test will be true not too often
768 * (max once per LAP window) and we are called from places
769 * where we can spend a bit of time doing stuff. - Jean II */
770 if ((self
->tx_sdu_busy
) &&
771 (skb_queue_len(&self
->tx_queue
) < TTP_TX_LOW_THRESHOLD
) &&
774 if (self
->notify
.flow_indication
)
775 self
->notify
.flow_indication(self
->notify
.instance
,
778 /* self->tx_sdu_busy is the state of the client.
779 * We don't really have a race here, but it's always safer
780 * to update our state after the client - Jean II */
781 self
->tx_sdu_busy
= FALSE
;
785 self
->tx_queue_lock
= 0;
789 * Function irttp_give_credit (self)
791 * Send a dataless flowdata TTP-PDU and give available credit to peer
794 static inline void irttp_give_credit(struct tsap_cb
*self
)
796 struct sk_buff
*tx_skb
= NULL
;
800 IRDA_ASSERT(self
!= NULL
, return;);
801 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
803 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
805 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
807 /* Give credit to peer */
808 tx_skb
= dev_alloc_skb(64);
812 /* Reserve space for LMP, and LAP header */
813 skb_reserve(tx_skb
, self
->max_header_size
);
816 * Since we can transmit and receive frames concurrently,
817 * the code below is a critical region and we must assure that
818 * nobody messes with the credits while we update them.
820 spin_lock_irqsave(&self
->lock
, flags
);
822 n
= self
->avail_credit
;
823 self
->avail_credit
= 0;
825 /* Only space for 127 credits in frame */
827 self
->avail_credit
= n
- 127;
830 self
->remote_credit
+= n
;
832 spin_unlock_irqrestore(&self
->lock
, flags
);
835 tx_skb
->data
[0] = (__u8
) (n
& 0x7f);
837 irlmp_data_request(self
->lsap
, tx_skb
);
838 self
->stats
.tx_packets
++;
842 * Function irttp_udata_indication (instance, sap, skb)
844 * Received some unit-data (unreliable)
847 static int irttp_udata_indication(void *instance
, void *sap
,
850 struct tsap_cb
*self
;
853 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
855 self
= (struct tsap_cb
*) instance
;
857 IRDA_ASSERT(self
!= NULL
, return -1;);
858 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
859 IRDA_ASSERT(skb
!= NULL
, return -1;);
861 self
->stats
.rx_packets
++;
863 /* Just pass data to layer above */
864 if (self
->notify
.udata_indication
) {
865 err
= self
->notify
.udata_indication(self
->notify
.instance
,
867 /* Same comment as in irttp_do_data_indication() */
871 /* Either no handler, or handler returns an error */
878 * Function irttp_data_indication (instance, sap, skb)
880 * Receive segment from IrLMP.
883 static int irttp_data_indication(void *instance
, void *sap
,
886 struct tsap_cb
*self
;
890 self
= (struct tsap_cb
*) instance
;
892 n
= skb
->data
[0] & 0x7f; /* Extract the credits */
894 self
->stats
.rx_packets
++;
896 /* Deal with inbound credit
897 * Since we can transmit and receive frames concurrently,
898 * the code below is a critical region and we must assure that
899 * nobody messes with the credits while we update them.
901 spin_lock_irqsave(&self
->lock
, flags
);
902 self
->send_credit
+= n
;
904 self
->remote_credit
--;
905 spin_unlock_irqrestore(&self
->lock
, flags
);
908 * Data or dataless packet? Dataless frames contains only the
913 * We don't remove the TTP header, since we must preserve the
914 * more bit, so the defragment routing knows what to do
916 skb_queue_tail(&self
->rx_queue
, skb
);
918 /* Dataless flowdata TTP-PDU */
923 /* Push data to the higher layer.
924 * We do it synchronously because running the todo timer for each
925 * receive packet would be too much overhead and latency.
926 * By passing control to the higher layer, we run the risk that
927 * it may take time or grab a lock. Most often, the higher layer
928 * will only put packet in a queue.
929 * Anyway, packets are only dripping through the IrDA, so we can
930 * have time before the next packet.
931 * Further, we are run from NET_BH, so the worse that can happen is
932 * us missing the optimal time to send back the PF bit in LAP.
934 irttp_run_rx_queue(self
);
936 /* We now give credits to peer in irttp_run_rx_queue().
937 * We need to send credit *NOW*, otherwise we are going
938 * to miss the next Tx window. The todo timer may take
939 * a while before it's run... - Jean II */
942 * If the peer device has given us some credits and we didn't have
943 * anyone from before, then we need to shedule the tx queue.
944 * We need to do that because our Tx have stopped (so we may not
945 * get any LAP flow indication) and the user may be stopped as
948 if (self
->send_credit
== n
) {
949 /* Restart pushing stuff to LAP */
950 irttp_run_tx_queue(self
);
951 /* Note : we don't want to schedule the todo timer
952 * because it has horrible latency. No tasklets
953 * because the tasklet API is broken. - Jean II */
960 * Function irttp_status_indication (self, reason)
962 * Status_indication, just pass to the higher layer...
965 static void irttp_status_indication(void *instance
,
966 LINK_STATUS link
, LOCK_STATUS lock
)
968 struct tsap_cb
*self
;
970 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
972 self
= (struct tsap_cb
*) instance
;
974 IRDA_ASSERT(self
!= NULL
, return;);
975 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
977 /* Check if client has already closed the TSAP and gone away */
978 if (self
->close_pend
)
982 * Inform service user if he has requested it
984 if (self
->notify
.status_indication
!= NULL
)
985 self
->notify
.status_indication(self
->notify
.instance
,
988 IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__
);
992 * Function irttp_flow_indication (self, reason)
994 * Flow_indication : IrLAP tells us to send more data.
997 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
)
999 struct tsap_cb
*self
;
1001 self
= (struct tsap_cb
*) instance
;
1003 IRDA_ASSERT(self
!= NULL
, return;);
1004 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1006 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__
, self
);
1008 /* We are "polled" directly from LAP, and the LAP want to fill
1009 * its Tx window. We want to do our best to send it data, so that
1010 * we maximise the window. On the other hand, we want to limit the
1011 * amount of work here so that LAP doesn't hang forever waiting
1012 * for packets. - Jean II */
1014 /* Try to send some packets. Currently, LAP calls us every time
1015 * there is one free slot, so we will send only one packet.
1016 * This allow the scheduler to do its round robin - Jean II */
1017 irttp_run_tx_queue(self
);
1019 /* Note regarding the interraction with higher layer.
1020 * irttp_run_tx_queue() may call the client when its queue
1021 * start to empty, via notify.flow_indication(). Initially.
1022 * I wanted this to happen in a tasklet, to avoid client
1023 * grabbing the CPU, but we can't use tasklets safely. And timer
1024 * is definitely too slow.
1025 * This will happen only once per LAP window, and usually at
1026 * the third packet (unless window is smaller). LAP is still
1027 * doing mtt and sending first packet so it's sort of OK
1028 * to do that. Jean II */
1030 /* If we need to send disconnect. try to do it now */
1031 if(self
->disconnect_pend
)
1032 irttp_start_todo_timer(self
, 0);
1036 * Function irttp_flow_request (self, command)
1038 * This function could be used by the upper layers to tell IrTTP to stop
1039 * delivering frames if the receive queues are starting to get full, or
1040 * to tell IrTTP to start delivering frames again.
1042 void irttp_flow_request(struct tsap_cb
*self
, LOCAL_FLOW flow
)
1044 IRDA_DEBUG(1, "%s()\n", __FUNCTION__
);
1046 IRDA_ASSERT(self
!= NULL
, return;);
1047 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1051 IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__
);
1052 self
->rx_sdu_busy
= TRUE
;
1055 IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__
);
1056 self
->rx_sdu_busy
= FALSE
;
1058 /* Client say he can accept more data, try to free our
1059 * queues ASAP - Jean II */
1060 irttp_run_rx_queue(self
);
1064 IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__
);
1067 EXPORT_SYMBOL(irttp_flow_request
);
1070 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1072 * Try to connect to remote destination TSAP selector
1075 int irttp_connect_request(struct tsap_cb
*self
, __u8 dtsap_sel
,
1076 __u32 saddr
, __u32 daddr
,
1077 struct qos_info
*qos
, __u32 max_sdu_size
,
1078 struct sk_buff
*userdata
)
1080 struct sk_buff
*tx_skb
;
1084 IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__
, max_sdu_size
);
1086 IRDA_ASSERT(self
!= NULL
, return -EBADR
;);
1087 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -EBADR
;);
1089 if (self
->connected
) {
1091 dev_kfree_skb(userdata
);
1095 /* Any userdata supplied? */
1096 if (userdata
== NULL
) {
1097 tx_skb
= dev_alloc_skb(64);
1101 /* Reserve space for MUX_CONTROL and LAP header */
1102 skb_reserve(tx_skb
, TTP_MAX_HEADER
);
1106 * Check that the client has reserved enough space for
1109 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1110 { dev_kfree_skb(userdata
); return -1; } );
1113 /* Initialize connection parameters */
1114 self
->connected
= FALSE
;
1115 self
->avail_credit
= 0;
1116 self
->rx_max_sdu_size
= max_sdu_size
;
1117 self
->rx_sdu_size
= 0;
1118 self
->rx_sdu_busy
= FALSE
;
1119 self
->dtsap_sel
= dtsap_sel
;
1121 n
= self
->initial_credit
;
1123 self
->remote_credit
= 0;
1124 self
->send_credit
= 0;
1127 * Give away max 127 credits for now
1130 self
->avail_credit
=n
-127;
1134 self
->remote_credit
= n
;
1137 if (max_sdu_size
> 0) {
1138 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1139 { dev_kfree_skb(tx_skb
); return -1; } );
1141 /* Insert SAR parameters */
1142 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1144 frame
[0] = TTP_PARAMETERS
| n
;
1145 frame
[1] = 0x04; /* Length */
1146 frame
[2] = 0x01; /* MaxSduSize */
1147 frame
[3] = 0x02; /* Value length */
1149 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1150 (__u16
*)(frame
+4));
1152 /* Insert plain TTP header */
1153 frame
= skb_push(tx_skb
, TTP_HEADER
);
1155 /* Insert initial credit in frame */
1156 frame
[0] = n
& 0x7f;
1159 /* Connect with IrLMP. No QoS parameters for now */
1160 return irlmp_connect_request(self
->lsap
, dtsap_sel
, saddr
, daddr
, qos
,
1163 EXPORT_SYMBOL(irttp_connect_request
);
1166 * Function irttp_connect_confirm (handle, qos, skb)
1168 * Sevice user confirms TSAP connection with peer.
1171 static void irttp_connect_confirm(void *instance
, void *sap
,
1172 struct qos_info
*qos
, __u32 max_seg_size
,
1173 __u8 max_header_size
, struct sk_buff
*skb
)
1175 struct tsap_cb
*self
;
1181 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
1183 self
= (struct tsap_cb
*) instance
;
1185 IRDA_ASSERT(self
!= NULL
, return;);
1186 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1187 IRDA_ASSERT(skb
!= NULL
, return;);
1189 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1190 self
->max_header_size
= max_header_size
+ TTP_HEADER
;
1193 * Check if we have got some QoS parameters back! This should be the
1194 * negotiated QoS for the link.
1197 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1198 qos
->baud_rate
.bits
);
1199 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1200 qos
->baud_rate
.value
);
1203 n
= skb
->data
[0] & 0x7f;
1205 IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__
, n
);
1207 self
->send_credit
= n
;
1208 self
->tx_max_sdu_size
= 0;
1209 self
->connected
= TRUE
;
1211 parameters
= skb
->data
[0] & 0x80;
1213 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1214 skb_pull(skb
, TTP_HEADER
);
1217 plen
= skb
->data
[0];
1219 ret
= irda_param_extract_all(self
, skb
->data
+1,
1220 IRDA_MIN(skb
->len
-1, plen
),
1223 /* Any errors in the parameter list? */
1225 IRDA_WARNING("%s: error extracting parameters\n",
1229 /* Do not accept this connection attempt */
1232 /* Remove parameters */
1233 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1236 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__
,
1237 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1239 IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__
,
1240 self
->tx_max_sdu_size
);
1242 if (self
->notify
.connect_confirm
) {
1243 self
->notify
.connect_confirm(self
->notify
.instance
, self
, qos
,
1244 self
->tx_max_sdu_size
,
1245 self
->max_header_size
, skb
);
1251 * Function irttp_connect_indication (handle, skb)
1253 * Some other device is connecting to this TSAP
1256 void irttp_connect_indication(void *instance
, void *sap
, struct qos_info
*qos
,
1257 __u32 max_seg_size
, __u8 max_header_size
,
1258 struct sk_buff
*skb
)
1260 struct tsap_cb
*self
;
1261 struct lsap_cb
*lsap
;
1267 self
= (struct tsap_cb
*) instance
;
1269 IRDA_ASSERT(self
!= NULL
, return;);
1270 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1271 IRDA_ASSERT(skb
!= NULL
, return;);
1273 lsap
= (struct lsap_cb
*) sap
;
1275 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1276 self
->max_header_size
= max_header_size
+TTP_HEADER
;
1278 IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__
, self
->stsap_sel
);
1280 /* Need to update dtsap_sel if its equal to LSAP_ANY */
1281 self
->dtsap_sel
= lsap
->dlsap_sel
;
1283 n
= skb
->data
[0] & 0x7f;
1285 self
->send_credit
= n
;
1286 self
->tx_max_sdu_size
= 0;
1288 parameters
= skb
->data
[0] & 0x80;
1290 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1291 skb_pull(skb
, TTP_HEADER
);
1294 plen
= skb
->data
[0];
1296 ret
= irda_param_extract_all(self
, skb
->data
+1,
1297 IRDA_MIN(skb
->len
-1, plen
),
1300 /* Any errors in the parameter list? */
1302 IRDA_WARNING("%s: error extracting parameters\n",
1306 /* Do not accept this connection attempt */
1310 /* Remove parameters */
1311 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1314 if (self
->notify
.connect_indication
) {
1315 self
->notify
.connect_indication(self
->notify
.instance
, self
,
1316 qos
, self
->tx_max_sdu_size
,
1317 self
->max_header_size
, skb
);
1323 * Function irttp_connect_response (handle, userdata)
1325 * Service user is accepting the connection, just pass it down to
1329 int irttp_connect_response(struct tsap_cb
*self
, __u32 max_sdu_size
,
1330 struct sk_buff
*userdata
)
1332 struct sk_buff
*tx_skb
;
1337 IRDA_ASSERT(self
!= NULL
, return -1;);
1338 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1340 IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__
,
1343 /* Any userdata supplied? */
1344 if (userdata
== NULL
) {
1345 tx_skb
= dev_alloc_skb(64);
1349 /* Reserve space for MUX_CONTROL and LAP header */
1350 skb_reserve(tx_skb
, TTP_MAX_HEADER
);
1354 * Check that the client has reserved enough space for
1357 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1358 { dev_kfree_skb(userdata
); return -1; } );
1361 self
->avail_credit
= 0;
1362 self
->remote_credit
= 0;
1363 self
->rx_max_sdu_size
= max_sdu_size
;
1364 self
->rx_sdu_size
= 0;
1365 self
->rx_sdu_busy
= FALSE
;
1367 n
= self
->initial_credit
;
1369 /* Frame has only space for max 127 credits (7 bits) */
1371 self
->avail_credit
= n
- 127;
1375 self
->remote_credit
= n
;
1376 self
->connected
= TRUE
;
1379 if (max_sdu_size
> 0) {
1380 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1381 { dev_kfree_skb(tx_skb
); return -1; } );
1383 /* Insert TTP header with SAR parameters */
1384 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1386 frame
[0] = TTP_PARAMETERS
| n
;
1387 frame
[1] = 0x04; /* Length */
1389 /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1390 /* TTP_SAR_HEADER, ¶m_info) */
1392 frame
[2] = 0x01; /* MaxSduSize */
1393 frame
[3] = 0x02; /* Value length */
1395 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1396 (__u16
*)(frame
+4));
1398 /* Insert TTP header */
1399 frame
= skb_push(tx_skb
, TTP_HEADER
);
1401 frame
[0] = n
& 0x7f;
1404 ret
= irlmp_connect_response(self
->lsap
, tx_skb
);
1408 EXPORT_SYMBOL(irttp_connect_response
);
1411 * Function irttp_dup (self, instance)
1413 * Duplicate TSAP, can be used by servers to confirm a connection on a
1414 * new TSAP so it can keep listening on the old one.
1416 struct tsap_cb
*irttp_dup(struct tsap_cb
*orig
, void *instance
)
1418 struct tsap_cb
*new;
1419 unsigned long flags
;
1421 IRDA_DEBUG(1, "%s()\n", __FUNCTION__
);
1423 /* Protect our access to the old tsap instance */
1424 spin_lock_irqsave(&irttp
->tsaps
->hb_spinlock
, flags
);
1426 /* Find the old instance */
1427 if (!hashbin_find(irttp
->tsaps
, (long) orig
, NULL
)) {
1428 IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__
);
1429 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1433 /* Allocate a new instance */
1434 new = kmalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
1436 IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__
);
1437 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1441 memcpy(new, orig
, sizeof(struct tsap_cb
));
1443 /* We don't need the old instance any more */
1444 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1446 /* Try to dup the LSAP (may fail if we were too slow) */
1447 new->lsap
= irlmp_dup(orig
->lsap
, new);
1449 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__
);
1454 /* Not everything should be copied */
1455 new->notify
.instance
= instance
;
1456 init_timer(&new->todo_timer
);
1458 skb_queue_head_init(&new->rx_queue
);
1459 skb_queue_head_init(&new->tx_queue
);
1460 skb_queue_head_init(&new->rx_fragments
);
1462 /* This is locked */
1463 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) new, (long) new, NULL
);
1467 EXPORT_SYMBOL(irttp_dup
);
1470 * Function irttp_disconnect_request (self)
1472 * Close this connection please! If priority is high, the queued data
1473 * segments, if any, will be deallocated first
1476 int irttp_disconnect_request(struct tsap_cb
*self
, struct sk_buff
*userdata
,
1481 IRDA_ASSERT(self
!= NULL
, return -1;);
1482 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1484 /* Already disconnected? */
1485 if (!self
->connected
) {
1486 IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__
);
1488 dev_kfree_skb(userdata
);
1492 /* Disconnect already pending ?
1493 * We need to use an atomic operation to prevent reentry. This
1494 * function may be called from various context, like user, timer
1495 * for following a disconnect_indication() (i.e. net_bh).
1497 if(test_and_set_bit(0, &self
->disconnect_pend
)) {
1498 IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1501 dev_kfree_skb(userdata
);
1503 /* Try to make some progress */
1504 irttp_run_tx_queue(self
);
1509 * Check if there is still data segments in the transmit queue
1511 if (!skb_queue_empty(&self
->tx_queue
)) {
1512 if (priority
== P_HIGH
) {
1514 * No need to send the queued data, if we are
1515 * disconnecting right now since the data will
1516 * not have any usable connection to be sent on
1518 IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__
);
1519 irttp_flush_queues(self
);
1520 } else if (priority
== P_NORMAL
) {
1522 * Must delay disconnect until after all data segments
1523 * have been sent and the tx_queue is empty
1525 /* We'll reuse this one later for the disconnect */
1526 self
->disconnect_skb
= userdata
; /* May be NULL */
1528 irttp_run_tx_queue(self
);
1530 irttp_start_todo_timer(self
, HZ
/10);
1534 /* Note : we don't need to check if self->rx_queue is full and the
1535 * state of self->rx_sdu_busy because the disconnect response will
1536 * be sent at the LMP level (so even if the peer has its Tx queue
1537 * full of data). - Jean II */
1539 IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__
);
1540 self
->connected
= FALSE
;
1543 struct sk_buff
*tx_skb
;
1544 tx_skb
= dev_alloc_skb(64);
1549 * Reserve space for MUX and LAP header
1551 skb_reserve(tx_skb
, TTP_MAX_HEADER
);
1555 ret
= irlmp_disconnect_request(self
->lsap
, userdata
);
1557 /* The disconnect is no longer pending */
1558 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
1562 EXPORT_SYMBOL(irttp_disconnect_request
);
1565 * Function irttp_disconnect_indication (self, reason)
1567 * Disconnect indication, TSAP disconnected by peer?
1570 void irttp_disconnect_indication(void *instance
, void *sap
, LM_REASON reason
,
1571 struct sk_buff
*skb
)
1573 struct tsap_cb
*self
;
1575 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
1577 self
= (struct tsap_cb
*) instance
;
1579 IRDA_ASSERT(self
!= NULL
, return;);
1580 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1582 /* Prevent higher layer to send more data */
1583 self
->connected
= FALSE
;
1585 /* Check if client has already tried to close the TSAP */
1586 if (self
->close_pend
) {
1587 /* In this case, the higher layer is probably gone. Don't
1588 * bother it and clean up the remains - Jean II */
1591 irttp_close_tsap(self
);
1595 /* If we are here, we assume that is the higher layer is still
1596 * waiting for the disconnect notification and able to process it,
1597 * even if he tried to disconnect. Otherwise, it would have already
1598 * attempted to close the tsap and self->close_pend would be TRUE.
1601 /* No need to notify the client if has already tried to disconnect */
1602 if(self
->notify
.disconnect_indication
)
1603 self
->notify
.disconnect_indication(self
->notify
.instance
, self
,
1611 * Function irttp_do_data_indication (self, skb)
1613 * Try to deliver reassembled skb to layer above, and requeue it if that
1614 * for some reason should fail. We mark rx sdu as busy to apply back
1615 * pressure is necessary.
1617 static void irttp_do_data_indication(struct tsap_cb
*self
, struct sk_buff
*skb
)
1621 /* Check if client has already closed the TSAP and gone away */
1622 if (self
->close_pend
) {
1627 err
= self
->notify
.data_indication(self
->notify
.instance
, self
, skb
);
1629 /* Usually the layer above will notify that it's input queue is
1630 * starting to get filled by using the flow request, but this may
1631 * be difficult, so it can instead just refuse to eat it and just
1632 * give an error back
1635 IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__
);
1637 /* Make sure we take a break */
1638 self
->rx_sdu_busy
= TRUE
;
1640 /* Need to push the header in again */
1641 skb_push(skb
, TTP_HEADER
);
1642 skb
->data
[0] = 0x00; /* Make sure MORE bit is cleared */
1644 /* Put skb back on queue */
1645 skb_queue_head(&self
->rx_queue
, skb
);
1650 * Function irttp_run_rx_queue (self)
1652 * Check if we have any frames to be transmitted, or if we have any
1653 * available credit to give away.
1655 void irttp_run_rx_queue(struct tsap_cb
*self
)
1657 struct sk_buff
*skb
;
1660 IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__
,
1661 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1663 /* Get exclusive access to the rx queue, otherwise don't touch it */
1664 if (irda_lock(&self
->rx_queue_lock
) == FALSE
)
1668 * Reassemble all frames in receive queue and deliver them
1670 while (!self
->rx_sdu_busy
&& (skb
= skb_dequeue(&self
->rx_queue
))) {
1671 /* This bit will tell us if it's the last fragment or not */
1672 more
= skb
->data
[0] & 0x80;
1674 /* Remove TTP header */
1675 skb_pull(skb
, TTP_HEADER
);
1677 /* Add the length of the remaining data */
1678 self
->rx_sdu_size
+= skb
->len
;
1681 * If SAR is disabled, or user has requested no reassembly
1682 * of received fragments then we just deliver them
1683 * immediately. This can be requested by clients that
1684 * implements byte streams without any message boundaries
1686 if (self
->rx_max_sdu_size
== TTP_SAR_DISABLE
) {
1687 irttp_do_data_indication(self
, skb
);
1688 self
->rx_sdu_size
= 0;
1693 /* Check if this is a fragment, and not the last fragment */
1696 * Queue the fragment if we still are within the
1697 * limits of the maximum size of the rx_sdu
1699 if (self
->rx_sdu_size
<= self
->rx_max_sdu_size
) {
1700 IRDA_DEBUG(4, "%s(), queueing frag\n",
1702 skb_queue_tail(&self
->rx_fragments
, skb
);
1704 /* Free the part of the SDU that is too big */
1710 * This is the last fragment, so time to reassemble!
1712 if ((self
->rx_sdu_size
<= self
->rx_max_sdu_size
) ||
1713 (self
->rx_max_sdu_size
== TTP_SAR_UNBOUND
))
1716 * A little optimizing. Only queue the fragment if
1717 * there are other fragments. Since if this is the
1718 * last and only fragment, there is no need to
1721 if (!skb_queue_empty(&self
->rx_fragments
)) {
1722 skb_queue_tail(&self
->rx_fragments
,
1725 skb
= irttp_reassemble_skb(self
);
1728 /* Now we can deliver the reassembled skb */
1729 irttp_do_data_indication(self
, skb
);
1731 IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__
);
1733 /* Free the part of the SDU that is too big */
1736 /* Deliver only the valid but truncated part of SDU */
1737 skb
= irttp_reassemble_skb(self
);
1739 irttp_do_data_indication(self
, skb
);
1741 self
->rx_sdu_size
= 0;
1745 * It's not trivial to keep track of how many credits are available
1746 * by incrementing at each packet, because delivery may fail
1747 * (irttp_do_data_indication() may requeue the frame) and because
1748 * we need to take care of fragmentation.
1749 * We want the other side to send up to initial_credit packets.
1750 * We have some frames in our queues, and we have already allowed it
1751 * to send remote_credit.
1752 * No need to spinlock, write is atomic and self correcting...
1755 self
->avail_credit
= (self
->initial_credit
-
1756 (self
->remote_credit
+
1757 skb_queue_len(&self
->rx_queue
) +
1758 skb_queue_len(&self
->rx_fragments
)));
1760 /* Do we have too much credits to send to peer ? */
1761 if ((self
->remote_credit
<= TTP_RX_MIN_CREDIT
) &&
1762 (self
->avail_credit
> 0)) {
1763 /* Send explicit credit frame */
1764 irttp_give_credit(self
);
1765 /* Note : do *NOT* check if tx_queue is non-empty, that
1766 * will produce deadlocks. I repeat : send a credit frame
1767 * even if we have something to send in our Tx queue.
1768 * If we have credits, it means that our Tx queue is blocked.
1770 * Let's suppose the peer can't keep up with our Tx. He will
1771 * flow control us by not sending us any credits, and we
1772 * will stop Tx and start accumulating credits here.
1773 * Up to the point where the peer will stop its Tx queue,
1774 * for lack of credits.
1775 * Let's assume the peer application is single threaded.
1776 * It will block on Tx and never consume any Rx buffer.
1777 * Deadlock. Guaranteed. - Jean II
1782 self
->rx_queue_lock
= 0;
1785 #ifdef CONFIG_PROC_FS
1786 struct irttp_iter_state
{
1790 static void *irttp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1792 struct irttp_iter_state
*iter
= seq
->private;
1793 struct tsap_cb
*self
;
1795 /* Protect our access to the tsap list */
1796 spin_lock_irq(&irttp
->tsaps
->hb_spinlock
);
1799 for (self
= (struct tsap_cb
*) hashbin_get_first(irttp
->tsaps
);
1801 self
= (struct tsap_cb
*) hashbin_get_next(irttp
->tsaps
)) {
1802 if (iter
->id
== *pos
)
1810 static void *irttp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1812 struct irttp_iter_state
*iter
= seq
->private;
1816 return (void *) hashbin_get_next(irttp
->tsaps
);
1819 static void irttp_seq_stop(struct seq_file
*seq
, void *v
)
1821 spin_unlock_irq(&irttp
->tsaps
->hb_spinlock
);
1824 static int irttp_seq_show(struct seq_file
*seq
, void *v
)
1826 const struct irttp_iter_state
*iter
= seq
->private;
1827 const struct tsap_cb
*self
= v
;
1829 seq_printf(seq
, "TSAP %d, ", iter
->id
);
1830 seq_printf(seq
, "stsap_sel: %02x, ",
1832 seq_printf(seq
, "dtsap_sel: %02x\n",
1834 seq_printf(seq
, " connected: %s, ",
1835 self
->connected
? "TRUE":"FALSE");
1836 seq_printf(seq
, "avail credit: %d, ",
1837 self
->avail_credit
);
1838 seq_printf(seq
, "remote credit: %d, ",
1839 self
->remote_credit
);
1840 seq_printf(seq
, "send credit: %d\n",
1842 seq_printf(seq
, " tx packets: %ld, ",
1843 self
->stats
.tx_packets
);
1844 seq_printf(seq
, "rx packets: %ld, ",
1845 self
->stats
.rx_packets
);
1846 seq_printf(seq
, "tx_queue len: %d ",
1847 skb_queue_len(&self
->tx_queue
));
1848 seq_printf(seq
, "rx_queue len: %d\n",
1849 skb_queue_len(&self
->rx_queue
));
1850 seq_printf(seq
, " tx_sdu_busy: %s, ",
1851 self
->tx_sdu_busy
? "TRUE":"FALSE");
1852 seq_printf(seq
, "rx_sdu_busy: %s\n",
1853 self
->rx_sdu_busy
? "TRUE":"FALSE");
1854 seq_printf(seq
, " max_seg_size: %d, ",
1855 self
->max_seg_size
);
1856 seq_printf(seq
, "tx_max_sdu_size: %d, ",
1857 self
->tx_max_sdu_size
);
1858 seq_printf(seq
, "rx_max_sdu_size: %d\n",
1859 self
->rx_max_sdu_size
);
1861 seq_printf(seq
, " Used by (%s)\n\n",
1866 static struct seq_operations irttp_seq_ops
= {
1867 .start
= irttp_seq_start
,
1868 .next
= irttp_seq_next
,
1869 .stop
= irttp_seq_stop
,
1870 .show
= irttp_seq_show
,
1873 static int irttp_seq_open(struct inode
*inode
, struct file
*file
)
1875 struct seq_file
*seq
;
1877 struct irttp_iter_state
*s
;
1879 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1883 rc
= seq_open(file
, &irttp_seq_ops
);
1887 seq
= file
->private_data
;
1889 memset(s
, 0, sizeof(*s
));
1897 struct file_operations irttp_seq_fops
= {
1898 .owner
= THIS_MODULE
,
1899 .open
= irttp_seq_open
,
1901 .llseek
= seq_lseek
,
1902 .release
= seq_release_private
,
1905 #endif /* PROC_FS */