MIPS: Use set_cpus_allowed_ptr
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / mips / kernel / traps.c
blob7e5e38c24cdc8308a6ea5f1ec72795215de36eeb
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/notifier.h>
30 #include <asm/bootinfo.h>
31 #include <asm/branch.h>
32 #include <asm/break.h>
33 #include <asm/cop2.h>
34 #include <asm/cpu.h>
35 #include <asm/dsp.h>
36 #include <asm/fpu.h>
37 #include <asm/fpu_emulator.h>
38 #include <asm/mipsregs.h>
39 #include <asm/mipsmtregs.h>
40 #include <asm/module.h>
41 #include <asm/pgtable.h>
42 #include <asm/ptrace.h>
43 #include <asm/sections.h>
44 #include <asm/system.h>
45 #include <asm/tlbdebug.h>
46 #include <asm/traps.h>
47 #include <asm/uaccess.h>
48 #include <asm/watch.h>
49 #include <asm/mmu_context.h>
50 #include <asm/types.h>
51 #include <asm/stacktrace.h>
52 #include <asm/irq.h>
53 #include <asm/uasm.h>
55 extern void check_wait(void);
56 extern asmlinkage void r4k_wait(void);
57 extern asmlinkage void rollback_handle_int(void);
58 extern asmlinkage void handle_int(void);
59 extern asmlinkage void handle_tlbm(void);
60 extern asmlinkage void handle_tlbl(void);
61 extern asmlinkage void handle_tlbs(void);
62 extern asmlinkage void handle_adel(void);
63 extern asmlinkage void handle_ades(void);
64 extern asmlinkage void handle_ibe(void);
65 extern asmlinkage void handle_dbe(void);
66 extern asmlinkage void handle_sys(void);
67 extern asmlinkage void handle_bp(void);
68 extern asmlinkage void handle_ri(void);
69 extern asmlinkage void handle_ri_rdhwr_vivt(void);
70 extern asmlinkage void handle_ri_rdhwr(void);
71 extern asmlinkage void handle_cpu(void);
72 extern asmlinkage void handle_ov(void);
73 extern asmlinkage void handle_tr(void);
74 extern asmlinkage void handle_fpe(void);
75 extern asmlinkage void handle_mdmx(void);
76 extern asmlinkage void handle_watch(void);
77 extern asmlinkage void handle_mt(void);
78 extern asmlinkage void handle_dsp(void);
79 extern asmlinkage void handle_mcheck(void);
80 extern asmlinkage void handle_reserved(void);
82 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
83 struct mips_fpu_struct *ctx, int has_fpu);
85 void (*board_be_init)(void);
86 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
87 void (*board_nmi_handler_setup)(void);
88 void (*board_ejtag_handler_setup)(void);
89 void (*board_bind_eic_interrupt)(int irq, int regset);
92 static void show_raw_backtrace(unsigned long reg29)
94 unsigned long *sp = (unsigned long *)(reg29 & ~3);
95 unsigned long addr;
97 printk("Call Trace:");
98 #ifdef CONFIG_KALLSYMS
99 printk("\n");
100 #endif
101 while (!kstack_end(sp)) {
102 unsigned long __user *p =
103 (unsigned long __user *)(unsigned long)sp++;
104 if (__get_user(addr, p)) {
105 printk(" (Bad stack address)");
106 break;
108 if (__kernel_text_address(addr))
109 print_ip_sym(addr);
111 printk("\n");
114 #ifdef CONFIG_KALLSYMS
115 int raw_show_trace;
116 static int __init set_raw_show_trace(char *str)
118 raw_show_trace = 1;
119 return 1;
121 __setup("raw_show_trace", set_raw_show_trace);
122 #endif
124 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
126 unsigned long sp = regs->regs[29];
127 unsigned long ra = regs->regs[31];
128 unsigned long pc = regs->cp0_epc;
130 if (raw_show_trace || !__kernel_text_address(pc)) {
131 show_raw_backtrace(sp);
132 return;
134 printk("Call Trace:\n");
135 do {
136 print_ip_sym(pc);
137 pc = unwind_stack(task, &sp, pc, &ra);
138 } while (pc);
139 printk("\n");
143 * This routine abuses get_user()/put_user() to reference pointers
144 * with at least a bit of error checking ...
146 static void show_stacktrace(struct task_struct *task,
147 const struct pt_regs *regs)
149 const int field = 2 * sizeof(unsigned long);
150 long stackdata;
151 int i;
152 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
154 printk("Stack :");
155 i = 0;
156 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
157 if (i && ((i % (64 / field)) == 0))
158 printk("\n ");
159 if (i > 39) {
160 printk(" ...");
161 break;
164 if (__get_user(stackdata, sp++)) {
165 printk(" (Bad stack address)");
166 break;
169 printk(" %0*lx", field, stackdata);
170 i++;
172 printk("\n");
173 show_backtrace(task, regs);
176 void show_stack(struct task_struct *task, unsigned long *sp)
178 struct pt_regs regs;
179 if (sp) {
180 regs.regs[29] = (unsigned long)sp;
181 regs.regs[31] = 0;
182 regs.cp0_epc = 0;
183 } else {
184 if (task && task != current) {
185 regs.regs[29] = task->thread.reg29;
186 regs.regs[31] = 0;
187 regs.cp0_epc = task->thread.reg31;
188 } else {
189 prepare_frametrace(&regs);
192 show_stacktrace(task, &regs);
196 * The architecture-independent dump_stack generator
198 void dump_stack(void)
200 struct pt_regs regs;
202 prepare_frametrace(&regs);
203 show_backtrace(current, &regs);
206 EXPORT_SYMBOL(dump_stack);
208 static void show_code(unsigned int __user *pc)
210 long i;
211 unsigned short __user *pc16 = NULL;
213 printk("\nCode:");
215 if ((unsigned long)pc & 1)
216 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
217 for(i = -3 ; i < 6 ; i++) {
218 unsigned int insn;
219 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
220 printk(" (Bad address in epc)\n");
221 break;
223 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
227 static void __show_regs(const struct pt_regs *regs)
229 const int field = 2 * sizeof(unsigned long);
230 unsigned int cause = regs->cp0_cause;
231 int i;
233 printk("Cpu %d\n", smp_processor_id());
236 * Saved main processor registers
238 for (i = 0; i < 32; ) {
239 if ((i % 4) == 0)
240 printk("$%2d :", i);
241 if (i == 0)
242 printk(" %0*lx", field, 0UL);
243 else if (i == 26 || i == 27)
244 printk(" %*s", field, "");
245 else
246 printk(" %0*lx", field, regs->regs[i]);
248 i++;
249 if ((i % 4) == 0)
250 printk("\n");
253 #ifdef CONFIG_CPU_HAS_SMARTMIPS
254 printk("Acx : %0*lx\n", field, regs->acx);
255 #endif
256 printk("Hi : %0*lx\n", field, regs->hi);
257 printk("Lo : %0*lx\n", field, regs->lo);
260 * Saved cp0 registers
262 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
263 (void *) regs->cp0_epc);
264 printk(" %s\n", print_tainted());
265 printk("ra : %0*lx %pS\n", field, regs->regs[31],
266 (void *) regs->regs[31]);
268 printk("Status: %08x ", (uint32_t) regs->cp0_status);
270 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
271 if (regs->cp0_status & ST0_KUO)
272 printk("KUo ");
273 if (regs->cp0_status & ST0_IEO)
274 printk("IEo ");
275 if (regs->cp0_status & ST0_KUP)
276 printk("KUp ");
277 if (regs->cp0_status & ST0_IEP)
278 printk("IEp ");
279 if (regs->cp0_status & ST0_KUC)
280 printk("KUc ");
281 if (regs->cp0_status & ST0_IEC)
282 printk("IEc ");
283 } else {
284 if (regs->cp0_status & ST0_KX)
285 printk("KX ");
286 if (regs->cp0_status & ST0_SX)
287 printk("SX ");
288 if (regs->cp0_status & ST0_UX)
289 printk("UX ");
290 switch (regs->cp0_status & ST0_KSU) {
291 case KSU_USER:
292 printk("USER ");
293 break;
294 case KSU_SUPERVISOR:
295 printk("SUPERVISOR ");
296 break;
297 case KSU_KERNEL:
298 printk("KERNEL ");
299 break;
300 default:
301 printk("BAD_MODE ");
302 break;
304 if (regs->cp0_status & ST0_ERL)
305 printk("ERL ");
306 if (regs->cp0_status & ST0_EXL)
307 printk("EXL ");
308 if (regs->cp0_status & ST0_IE)
309 printk("IE ");
311 printk("\n");
313 printk("Cause : %08x\n", cause);
315 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
316 if (1 <= cause && cause <= 5)
317 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
319 printk("PrId : %08x (%s)\n", read_c0_prid(),
320 cpu_name_string());
324 * FIXME: really the generic show_regs should take a const pointer argument.
326 void show_regs(struct pt_regs *regs)
328 __show_regs((struct pt_regs *)regs);
331 void show_registers(const struct pt_regs *regs)
333 const int field = 2 * sizeof(unsigned long);
335 __show_regs(regs);
336 print_modules();
337 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
338 current->comm, current->pid, current_thread_info(), current,
339 field, current_thread_info()->tp_value);
340 if (cpu_has_userlocal) {
341 unsigned long tls;
343 tls = read_c0_userlocal();
344 if (tls != current_thread_info()->tp_value)
345 printk("*HwTLS: %0*lx\n", field, tls);
348 show_stacktrace(current, regs);
349 show_code((unsigned int __user *) regs->cp0_epc);
350 printk("\n");
353 static DEFINE_SPINLOCK(die_lock);
355 void __noreturn die(const char * str, struct pt_regs * regs)
357 static int die_counter;
358 int sig = SIGSEGV;
359 #ifdef CONFIG_MIPS_MT_SMTC
360 unsigned long dvpret = dvpe();
361 #endif /* CONFIG_MIPS_MT_SMTC */
363 console_verbose();
364 spin_lock_irq(&die_lock);
365 bust_spinlocks(1);
366 #ifdef CONFIG_MIPS_MT_SMTC
367 mips_mt_regdump(dvpret);
368 #endif /* CONFIG_MIPS_MT_SMTC */
370 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
371 sig = 0;
373 printk("%s[#%d]:\n", str, ++die_counter);
374 show_registers(regs);
375 add_taint(TAINT_DIE);
376 spin_unlock_irq(&die_lock);
378 if (in_interrupt())
379 panic("Fatal exception in interrupt");
381 if (panic_on_oops) {
382 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
383 ssleep(5);
384 panic("Fatal exception");
387 do_exit(sig);
390 extern struct exception_table_entry __start___dbe_table[];
391 extern struct exception_table_entry __stop___dbe_table[];
393 __asm__(
394 " .section __dbe_table, \"a\"\n"
395 " .previous \n");
397 /* Given an address, look for it in the exception tables. */
398 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
400 const struct exception_table_entry *e;
402 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
403 if (!e)
404 e = search_module_dbetables(addr);
405 return e;
408 asmlinkage void do_be(struct pt_regs *regs)
410 const int field = 2 * sizeof(unsigned long);
411 const struct exception_table_entry *fixup = NULL;
412 int data = regs->cp0_cause & 4;
413 int action = MIPS_BE_FATAL;
415 /* XXX For now. Fixme, this searches the wrong table ... */
416 if (data && !user_mode(regs))
417 fixup = search_dbe_tables(exception_epc(regs));
419 if (fixup)
420 action = MIPS_BE_FIXUP;
422 if (board_be_handler)
423 action = board_be_handler(regs, fixup != NULL);
425 switch (action) {
426 case MIPS_BE_DISCARD:
427 return;
428 case MIPS_BE_FIXUP:
429 if (fixup) {
430 regs->cp0_epc = fixup->nextinsn;
431 return;
433 break;
434 default:
435 break;
439 * Assume it would be too dangerous to continue ...
441 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
442 data ? "Data" : "Instruction",
443 field, regs->cp0_epc, field, regs->regs[31]);
444 if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
445 == NOTIFY_STOP)
446 return;
448 die_if_kernel("Oops", regs);
449 force_sig(SIGBUS, current);
453 * ll/sc, rdhwr, sync emulation
456 #define OPCODE 0xfc000000
457 #define BASE 0x03e00000
458 #define RT 0x001f0000
459 #define OFFSET 0x0000ffff
460 #define LL 0xc0000000
461 #define SC 0xe0000000
462 #define SPEC0 0x00000000
463 #define SPEC3 0x7c000000
464 #define RD 0x0000f800
465 #define FUNC 0x0000003f
466 #define SYNC 0x0000000f
467 #define RDHWR 0x0000003b
470 * The ll_bit is cleared by r*_switch.S
473 unsigned int ll_bit;
474 struct task_struct *ll_task;
476 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
478 unsigned long value, __user *vaddr;
479 long offset;
482 * analyse the ll instruction that just caused a ri exception
483 * and put the referenced address to addr.
486 /* sign extend offset */
487 offset = opcode & OFFSET;
488 offset <<= 16;
489 offset >>= 16;
491 vaddr = (unsigned long __user *)
492 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
494 if ((unsigned long)vaddr & 3)
495 return SIGBUS;
496 if (get_user(value, vaddr))
497 return SIGSEGV;
499 preempt_disable();
501 if (ll_task == NULL || ll_task == current) {
502 ll_bit = 1;
503 } else {
504 ll_bit = 0;
506 ll_task = current;
508 preempt_enable();
510 regs->regs[(opcode & RT) >> 16] = value;
512 return 0;
515 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
517 unsigned long __user *vaddr;
518 unsigned long reg;
519 long offset;
522 * analyse the sc instruction that just caused a ri exception
523 * and put the referenced address to addr.
526 /* sign extend offset */
527 offset = opcode & OFFSET;
528 offset <<= 16;
529 offset >>= 16;
531 vaddr = (unsigned long __user *)
532 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
533 reg = (opcode & RT) >> 16;
535 if ((unsigned long)vaddr & 3)
536 return SIGBUS;
538 preempt_disable();
540 if (ll_bit == 0 || ll_task != current) {
541 regs->regs[reg] = 0;
542 preempt_enable();
543 return 0;
546 preempt_enable();
548 if (put_user(regs->regs[reg], vaddr))
549 return SIGSEGV;
551 regs->regs[reg] = 1;
553 return 0;
557 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
558 * opcodes are supposed to result in coprocessor unusable exceptions if
559 * executed on ll/sc-less processors. That's the theory. In practice a
560 * few processors such as NEC's VR4100 throw reserved instruction exceptions
561 * instead, so we're doing the emulation thing in both exception handlers.
563 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
565 if ((opcode & OPCODE) == LL)
566 return simulate_ll(regs, opcode);
567 if ((opcode & OPCODE) == SC)
568 return simulate_sc(regs, opcode);
570 return -1; /* Must be something else ... */
574 * Simulate trapping 'rdhwr' instructions to provide user accessible
575 * registers not implemented in hardware.
577 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
579 struct thread_info *ti = task_thread_info(current);
581 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
582 int rd = (opcode & RD) >> 11;
583 int rt = (opcode & RT) >> 16;
584 switch (rd) {
585 case 0: /* CPU number */
586 regs->regs[rt] = smp_processor_id();
587 return 0;
588 case 1: /* SYNCI length */
589 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
590 current_cpu_data.icache.linesz);
591 return 0;
592 case 2: /* Read count register */
593 regs->regs[rt] = read_c0_count();
594 return 0;
595 case 3: /* Count register resolution */
596 switch (current_cpu_data.cputype) {
597 case CPU_20KC:
598 case CPU_25KF:
599 regs->regs[rt] = 1;
600 break;
601 default:
602 regs->regs[rt] = 2;
604 return 0;
605 case 29:
606 regs->regs[rt] = ti->tp_value;
607 return 0;
608 default:
609 return -1;
613 /* Not ours. */
614 return -1;
617 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
619 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
620 return 0;
622 return -1; /* Must be something else ... */
625 asmlinkage void do_ov(struct pt_regs *regs)
627 siginfo_t info;
629 die_if_kernel("Integer overflow", regs);
631 info.si_code = FPE_INTOVF;
632 info.si_signo = SIGFPE;
633 info.si_errno = 0;
634 info.si_addr = (void __user *) regs->cp0_epc;
635 force_sig_info(SIGFPE, &info, current);
639 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
641 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
643 siginfo_t info;
645 if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
646 == NOTIFY_STOP)
647 return;
648 die_if_kernel("FP exception in kernel code", regs);
650 if (fcr31 & FPU_CSR_UNI_X) {
651 int sig;
654 * Unimplemented operation exception. If we've got the full
655 * software emulator on-board, let's use it...
657 * Force FPU to dump state into task/thread context. We're
658 * moving a lot of data here for what is probably a single
659 * instruction, but the alternative is to pre-decode the FP
660 * register operands before invoking the emulator, which seems
661 * a bit extreme for what should be an infrequent event.
663 /* Ensure 'resume' not overwrite saved fp context again. */
664 lose_fpu(1);
666 /* Run the emulator */
667 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
670 * We can't allow the emulated instruction to leave any of
671 * the cause bit set in $fcr31.
673 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
675 /* Restore the hardware register state */
676 own_fpu(1); /* Using the FPU again. */
678 /* If something went wrong, signal */
679 if (sig)
680 force_sig(sig, current);
682 return;
683 } else if (fcr31 & FPU_CSR_INV_X)
684 info.si_code = FPE_FLTINV;
685 else if (fcr31 & FPU_CSR_DIV_X)
686 info.si_code = FPE_FLTDIV;
687 else if (fcr31 & FPU_CSR_OVF_X)
688 info.si_code = FPE_FLTOVF;
689 else if (fcr31 & FPU_CSR_UDF_X)
690 info.si_code = FPE_FLTUND;
691 else if (fcr31 & FPU_CSR_INE_X)
692 info.si_code = FPE_FLTRES;
693 else
694 info.si_code = __SI_FAULT;
695 info.si_signo = SIGFPE;
696 info.si_errno = 0;
697 info.si_addr = (void __user *) regs->cp0_epc;
698 force_sig_info(SIGFPE, &info, current);
701 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
702 const char *str)
704 siginfo_t info;
705 char b[40];
707 if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
708 return;
711 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
712 * insns, even for trap and break codes that indicate arithmetic
713 * failures. Weird ...
714 * But should we continue the brokenness??? --macro
716 switch (code) {
717 case BRK_OVERFLOW:
718 case BRK_DIVZERO:
719 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
720 die_if_kernel(b, regs);
721 if (code == BRK_DIVZERO)
722 info.si_code = FPE_INTDIV;
723 else
724 info.si_code = FPE_INTOVF;
725 info.si_signo = SIGFPE;
726 info.si_errno = 0;
727 info.si_addr = (void __user *) regs->cp0_epc;
728 force_sig_info(SIGFPE, &info, current);
729 break;
730 case BRK_BUG:
731 die_if_kernel("Kernel bug detected", regs);
732 force_sig(SIGTRAP, current);
733 break;
734 case BRK_MEMU:
736 * Address errors may be deliberately induced by the FPU
737 * emulator to retake control of the CPU after executing the
738 * instruction in the delay slot of an emulated branch.
740 * Terminate if exception was recognized as a delay slot return
741 * otherwise handle as normal.
743 if (do_dsemulret(regs))
744 return;
746 die_if_kernel("Math emu break/trap", regs);
747 force_sig(SIGTRAP, current);
748 break;
749 default:
750 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
751 die_if_kernel(b, regs);
752 force_sig(SIGTRAP, current);
756 asmlinkage void do_bp(struct pt_regs *regs)
758 unsigned int opcode, bcode;
760 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
761 goto out_sigsegv;
764 * There is the ancient bug in the MIPS assemblers that the break
765 * code starts left to bit 16 instead to bit 6 in the opcode.
766 * Gas is bug-compatible, but not always, grrr...
767 * We handle both cases with a simple heuristics. --macro
769 bcode = ((opcode >> 6) & ((1 << 20) - 1));
770 if (bcode >= (1 << 10))
771 bcode >>= 10;
773 do_trap_or_bp(regs, bcode, "Break");
774 return;
776 out_sigsegv:
777 force_sig(SIGSEGV, current);
780 asmlinkage void do_tr(struct pt_regs *regs)
782 unsigned int opcode, tcode = 0;
784 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
785 goto out_sigsegv;
787 /* Immediate versions don't provide a code. */
788 if (!(opcode & OPCODE))
789 tcode = ((opcode >> 6) & ((1 << 10) - 1));
791 do_trap_or_bp(regs, tcode, "Trap");
792 return;
794 out_sigsegv:
795 force_sig(SIGSEGV, current);
798 asmlinkage void do_ri(struct pt_regs *regs)
800 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
801 unsigned long old_epc = regs->cp0_epc;
802 unsigned int opcode = 0;
803 int status = -1;
805 if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
806 == NOTIFY_STOP)
807 return;
809 die_if_kernel("Reserved instruction in kernel code", regs);
811 if (unlikely(compute_return_epc(regs) < 0))
812 return;
814 if (unlikely(get_user(opcode, epc) < 0))
815 status = SIGSEGV;
817 if (!cpu_has_llsc && status < 0)
818 status = simulate_llsc(regs, opcode);
820 if (status < 0)
821 status = simulate_rdhwr(regs, opcode);
823 if (status < 0)
824 status = simulate_sync(regs, opcode);
826 if (status < 0)
827 status = SIGILL;
829 if (unlikely(status > 0)) {
830 regs->cp0_epc = old_epc; /* Undo skip-over. */
831 force_sig(status, current);
836 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
837 * emulated more than some threshold number of instructions, force migration to
838 * a "CPU" that has FP support.
840 static void mt_ase_fp_affinity(void)
842 #ifdef CONFIG_MIPS_MT_FPAFF
843 if (mt_fpemul_threshold > 0 &&
844 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
846 * If there's no FPU present, or if the application has already
847 * restricted the allowed set to exclude any CPUs with FPUs,
848 * we'll skip the procedure.
850 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
851 cpumask_t tmask;
853 current->thread.user_cpus_allowed
854 = current->cpus_allowed;
855 cpus_and(tmask, current->cpus_allowed,
856 mt_fpu_cpumask);
857 set_cpus_allowed_ptr(current, &tmask);
858 set_thread_flag(TIF_FPUBOUND);
861 #endif /* CONFIG_MIPS_MT_FPAFF */
865 * No lock; only written during early bootup by CPU 0.
867 static RAW_NOTIFIER_HEAD(cu2_chain);
869 int __ref register_cu2_notifier(struct notifier_block *nb)
871 return raw_notifier_chain_register(&cu2_chain, nb);
874 int cu2_notifier_call_chain(unsigned long val, void *v)
876 return raw_notifier_call_chain(&cu2_chain, val, v);
879 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
880 void *data)
882 struct pt_regs *regs = data;
884 switch (action) {
885 default:
886 die_if_kernel("Unhandled kernel unaligned access or invalid "
887 "instruction", regs);
888 /* Fall through */
890 case CU2_EXCEPTION:
891 force_sig(SIGILL, current);
894 return NOTIFY_OK;
897 static struct notifier_block default_cu2_notifier = {
898 .notifier_call = default_cu2_call,
899 .priority = 0x80000000, /* Run last */
902 asmlinkage void do_cpu(struct pt_regs *regs)
904 unsigned int __user *epc;
905 unsigned long old_epc;
906 unsigned int opcode;
907 unsigned int cpid;
908 int status;
909 unsigned long __maybe_unused flags;
911 die_if_kernel("do_cpu invoked from kernel context!", regs);
913 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
915 switch (cpid) {
916 case 0:
917 epc = (unsigned int __user *)exception_epc(regs);
918 old_epc = regs->cp0_epc;
919 opcode = 0;
920 status = -1;
922 if (unlikely(compute_return_epc(regs) < 0))
923 return;
925 if (unlikely(get_user(opcode, epc) < 0))
926 status = SIGSEGV;
928 if (!cpu_has_llsc && status < 0)
929 status = simulate_llsc(regs, opcode);
931 if (status < 0)
932 status = simulate_rdhwr(regs, opcode);
934 if (status < 0)
935 status = SIGILL;
937 if (unlikely(status > 0)) {
938 regs->cp0_epc = old_epc; /* Undo skip-over. */
939 force_sig(status, current);
942 return;
944 case 1:
945 if (used_math()) /* Using the FPU again. */
946 own_fpu(1);
947 else { /* First time FPU user. */
948 init_fpu();
949 set_used_math();
952 if (!raw_cpu_has_fpu) {
953 int sig;
954 sig = fpu_emulator_cop1Handler(regs,
955 &current->thread.fpu, 0);
956 if (sig)
957 force_sig(sig, current);
958 else
959 mt_ase_fp_affinity();
962 return;
964 case 2:
965 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
966 break;
968 case 3:
969 break;
972 force_sig(SIGILL, current);
975 asmlinkage void do_mdmx(struct pt_regs *regs)
977 force_sig(SIGILL, current);
981 * Called with interrupts disabled.
983 asmlinkage void do_watch(struct pt_regs *regs)
985 u32 cause;
988 * Clear WP (bit 22) bit of cause register so we don't loop
989 * forever.
991 cause = read_c0_cause();
992 cause &= ~(1 << 22);
993 write_c0_cause(cause);
996 * If the current thread has the watch registers loaded, save
997 * their values and send SIGTRAP. Otherwise another thread
998 * left the registers set, clear them and continue.
1000 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1001 mips_read_watch_registers();
1002 local_irq_enable();
1003 force_sig(SIGTRAP, current);
1004 } else {
1005 mips_clear_watch_registers();
1006 local_irq_enable();
1010 asmlinkage void do_mcheck(struct pt_regs *regs)
1012 const int field = 2 * sizeof(unsigned long);
1013 int multi_match = regs->cp0_status & ST0_TS;
1015 show_regs(regs);
1017 if (multi_match) {
1018 printk("Index : %0x\n", read_c0_index());
1019 printk("Pagemask: %0x\n", read_c0_pagemask());
1020 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1021 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1022 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1023 printk("\n");
1024 dump_tlb_all();
1027 show_code((unsigned int __user *) regs->cp0_epc);
1030 * Some chips may have other causes of machine check (e.g. SB1
1031 * graduation timer)
1033 panic("Caught Machine Check exception - %scaused by multiple "
1034 "matching entries in the TLB.",
1035 (multi_match) ? "" : "not ");
1038 asmlinkage void do_mt(struct pt_regs *regs)
1040 int subcode;
1042 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1043 >> VPECONTROL_EXCPT_SHIFT;
1044 switch (subcode) {
1045 case 0:
1046 printk(KERN_DEBUG "Thread Underflow\n");
1047 break;
1048 case 1:
1049 printk(KERN_DEBUG "Thread Overflow\n");
1050 break;
1051 case 2:
1052 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1053 break;
1054 case 3:
1055 printk(KERN_DEBUG "Gating Storage Exception\n");
1056 break;
1057 case 4:
1058 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1059 break;
1060 case 5:
1061 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1062 break;
1063 default:
1064 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1065 subcode);
1066 break;
1068 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1070 force_sig(SIGILL, current);
1074 asmlinkage void do_dsp(struct pt_regs *regs)
1076 if (cpu_has_dsp)
1077 panic("Unexpected DSP exception\n");
1079 force_sig(SIGILL, current);
1082 asmlinkage void do_reserved(struct pt_regs *regs)
1085 * Game over - no way to handle this if it ever occurs. Most probably
1086 * caused by a new unknown cpu type or after another deadly
1087 * hard/software error.
1089 show_regs(regs);
1090 panic("Caught reserved exception %ld - should not happen.",
1091 (regs->cp0_cause & 0x7f) >> 2);
1094 static int __initdata l1parity = 1;
1095 static int __init nol1parity(char *s)
1097 l1parity = 0;
1098 return 1;
1100 __setup("nol1par", nol1parity);
1101 static int __initdata l2parity = 1;
1102 static int __init nol2parity(char *s)
1104 l2parity = 0;
1105 return 1;
1107 __setup("nol2par", nol2parity);
1110 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1111 * it different ways.
1113 static inline void parity_protection_init(void)
1115 switch (current_cpu_type()) {
1116 case CPU_24K:
1117 case CPU_34K:
1118 case CPU_74K:
1119 case CPU_1004K:
1121 #define ERRCTL_PE 0x80000000
1122 #define ERRCTL_L2P 0x00800000
1123 unsigned long errctl;
1124 unsigned int l1parity_present, l2parity_present;
1126 errctl = read_c0_ecc();
1127 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1129 /* probe L1 parity support */
1130 write_c0_ecc(errctl | ERRCTL_PE);
1131 back_to_back_c0_hazard();
1132 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1134 /* probe L2 parity support */
1135 write_c0_ecc(errctl|ERRCTL_L2P);
1136 back_to_back_c0_hazard();
1137 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1139 if (l1parity_present && l2parity_present) {
1140 if (l1parity)
1141 errctl |= ERRCTL_PE;
1142 if (l1parity ^ l2parity)
1143 errctl |= ERRCTL_L2P;
1144 } else if (l1parity_present) {
1145 if (l1parity)
1146 errctl |= ERRCTL_PE;
1147 } else if (l2parity_present) {
1148 if (l2parity)
1149 errctl |= ERRCTL_L2P;
1150 } else {
1151 /* No parity available */
1154 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1156 write_c0_ecc(errctl);
1157 back_to_back_c0_hazard();
1158 errctl = read_c0_ecc();
1159 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1161 if (l1parity_present)
1162 printk(KERN_INFO "Cache parity protection %sabled\n",
1163 (errctl & ERRCTL_PE) ? "en" : "dis");
1165 if (l2parity_present) {
1166 if (l1parity_present && l1parity)
1167 errctl ^= ERRCTL_L2P;
1168 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1169 (errctl & ERRCTL_L2P) ? "en" : "dis");
1172 break;
1174 case CPU_5KC:
1175 write_c0_ecc(0x80000000);
1176 back_to_back_c0_hazard();
1177 /* Set the PE bit (bit 31) in the c0_errctl register. */
1178 printk(KERN_INFO "Cache parity protection %sabled\n",
1179 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1180 break;
1181 case CPU_20KC:
1182 case CPU_25KF:
1183 /* Clear the DE bit (bit 16) in the c0_status register. */
1184 printk(KERN_INFO "Enable cache parity protection for "
1185 "MIPS 20KC/25KF CPUs.\n");
1186 clear_c0_status(ST0_DE);
1187 break;
1188 default:
1189 break;
1193 asmlinkage void cache_parity_error(void)
1195 const int field = 2 * sizeof(unsigned long);
1196 unsigned int reg_val;
1198 /* For the moment, report the problem and hang. */
1199 printk("Cache error exception:\n");
1200 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1201 reg_val = read_c0_cacheerr();
1202 printk("c0_cacheerr == %08x\n", reg_val);
1204 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1205 reg_val & (1<<30) ? "secondary" : "primary",
1206 reg_val & (1<<31) ? "data" : "insn");
1207 printk("Error bits: %s%s%s%s%s%s%s\n",
1208 reg_val & (1<<29) ? "ED " : "",
1209 reg_val & (1<<28) ? "ET " : "",
1210 reg_val & (1<<26) ? "EE " : "",
1211 reg_val & (1<<25) ? "EB " : "",
1212 reg_val & (1<<24) ? "EI " : "",
1213 reg_val & (1<<23) ? "E1 " : "",
1214 reg_val & (1<<22) ? "E0 " : "");
1215 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1217 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1218 if (reg_val & (1<<22))
1219 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1221 if (reg_val & (1<<23))
1222 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1223 #endif
1225 panic("Can't handle the cache error!");
1229 * SDBBP EJTAG debug exception handler.
1230 * We skip the instruction and return to the next instruction.
1232 void ejtag_exception_handler(struct pt_regs *regs)
1234 const int field = 2 * sizeof(unsigned long);
1235 unsigned long depc, old_epc;
1236 unsigned int debug;
1238 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1239 depc = read_c0_depc();
1240 debug = read_c0_debug();
1241 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1242 if (debug & 0x80000000) {
1244 * In branch delay slot.
1245 * We cheat a little bit here and use EPC to calculate the
1246 * debug return address (DEPC). EPC is restored after the
1247 * calculation.
1249 old_epc = regs->cp0_epc;
1250 regs->cp0_epc = depc;
1251 __compute_return_epc(regs);
1252 depc = regs->cp0_epc;
1253 regs->cp0_epc = old_epc;
1254 } else
1255 depc += 4;
1256 write_c0_depc(depc);
1258 #if 0
1259 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1260 write_c0_debug(debug | 0x100);
1261 #endif
1265 * NMI exception handler.
1267 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1269 bust_spinlocks(1);
1270 printk("NMI taken!!!!\n");
1271 die("NMI", regs);
1274 #define VECTORSPACING 0x100 /* for EI/VI mode */
1276 unsigned long ebase;
1277 unsigned long exception_handlers[32];
1278 unsigned long vi_handlers[64];
1280 void __init *set_except_vector(int n, void *addr)
1282 unsigned long handler = (unsigned long) addr;
1283 unsigned long old_handler = exception_handlers[n];
1285 exception_handlers[n] = handler;
1286 if (n == 0 && cpu_has_divec) {
1287 unsigned long jump_mask = ~((1 << 28) - 1);
1288 u32 *buf = (u32 *)(ebase + 0x200);
1289 unsigned int k0 = 26;
1290 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1291 uasm_i_j(&buf, handler & ~jump_mask);
1292 uasm_i_nop(&buf);
1293 } else {
1294 UASM_i_LA(&buf, k0, handler);
1295 uasm_i_jr(&buf, k0);
1296 uasm_i_nop(&buf);
1298 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1300 return (void *)old_handler;
1303 static asmlinkage void do_default_vi(void)
1305 show_regs(get_irq_regs());
1306 panic("Caught unexpected vectored interrupt.");
1309 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1311 unsigned long handler;
1312 unsigned long old_handler = vi_handlers[n];
1313 int srssets = current_cpu_data.srsets;
1314 u32 *w;
1315 unsigned char *b;
1317 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1319 if (addr == NULL) {
1320 handler = (unsigned long) do_default_vi;
1321 srs = 0;
1322 } else
1323 handler = (unsigned long) addr;
1324 vi_handlers[n] = (unsigned long) addr;
1326 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1328 if (srs >= srssets)
1329 panic("Shadow register set %d not supported", srs);
1331 if (cpu_has_veic) {
1332 if (board_bind_eic_interrupt)
1333 board_bind_eic_interrupt(n, srs);
1334 } else if (cpu_has_vint) {
1335 /* SRSMap is only defined if shadow sets are implemented */
1336 if (srssets > 1)
1337 change_c0_srsmap(0xf << n*4, srs << n*4);
1340 if (srs == 0) {
1342 * If no shadow set is selected then use the default handler
1343 * that does normal register saving and a standard interrupt exit
1346 extern char except_vec_vi, except_vec_vi_lui;
1347 extern char except_vec_vi_ori, except_vec_vi_end;
1348 extern char rollback_except_vec_vi;
1349 char *vec_start = (cpu_wait == r4k_wait) ?
1350 &rollback_except_vec_vi : &except_vec_vi;
1351 #ifdef CONFIG_MIPS_MT_SMTC
1353 * We need to provide the SMTC vectored interrupt handler
1354 * not only with the address of the handler, but with the
1355 * Status.IM bit to be masked before going there.
1357 extern char except_vec_vi_mori;
1358 const int mori_offset = &except_vec_vi_mori - vec_start;
1359 #endif /* CONFIG_MIPS_MT_SMTC */
1360 const int handler_len = &except_vec_vi_end - vec_start;
1361 const int lui_offset = &except_vec_vi_lui - vec_start;
1362 const int ori_offset = &except_vec_vi_ori - vec_start;
1364 if (handler_len > VECTORSPACING) {
1366 * Sigh... panicing won't help as the console
1367 * is probably not configured :(
1369 panic("VECTORSPACING too small");
1372 memcpy(b, vec_start, handler_len);
1373 #ifdef CONFIG_MIPS_MT_SMTC
1374 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1376 w = (u32 *)(b + mori_offset);
1377 *w = (*w & 0xffff0000) | (0x100 << n);
1378 #endif /* CONFIG_MIPS_MT_SMTC */
1379 w = (u32 *)(b + lui_offset);
1380 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1381 w = (u32 *)(b + ori_offset);
1382 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1383 local_flush_icache_range((unsigned long)b,
1384 (unsigned long)(b+handler_len));
1386 else {
1388 * In other cases jump directly to the interrupt handler
1390 * It is the handlers responsibility to save registers if required
1391 * (eg hi/lo) and return from the exception using "eret"
1393 w = (u32 *)b;
1394 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1395 *w = 0;
1396 local_flush_icache_range((unsigned long)b,
1397 (unsigned long)(b+8));
1400 return (void *)old_handler;
1403 void *set_vi_handler(int n, vi_handler_t addr)
1405 return set_vi_srs_handler(n, addr, 0);
1408 extern void cpu_cache_init(void);
1409 extern void tlb_init(void);
1410 extern void flush_tlb_handlers(void);
1413 * Timer interrupt
1415 int cp0_compare_irq;
1416 int cp0_compare_irq_shift;
1419 * Performance counter IRQ or -1 if shared with timer
1421 int cp0_perfcount_irq;
1422 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1424 static int __cpuinitdata noulri;
1426 static int __init ulri_disable(char *s)
1428 pr_info("Disabling ulri\n");
1429 noulri = 1;
1431 return 1;
1433 __setup("noulri", ulri_disable);
1435 void __cpuinit per_cpu_trap_init(void)
1437 unsigned int cpu = smp_processor_id();
1438 unsigned int status_set = ST0_CU0;
1439 #ifdef CONFIG_MIPS_MT_SMTC
1440 int secondaryTC = 0;
1441 int bootTC = (cpu == 0);
1444 * Only do per_cpu_trap_init() for first TC of Each VPE.
1445 * Note that this hack assumes that the SMTC init code
1446 * assigns TCs consecutively and in ascending order.
1449 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1450 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1451 secondaryTC = 1;
1452 #endif /* CONFIG_MIPS_MT_SMTC */
1455 * Disable coprocessors and select 32-bit or 64-bit addressing
1456 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1457 * flag that some firmware may have left set and the TS bit (for
1458 * IP27). Set XX for ISA IV code to work.
1460 #ifdef CONFIG_64BIT
1461 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1462 #endif
1463 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1464 status_set |= ST0_XX;
1465 if (cpu_has_dsp)
1466 status_set |= ST0_MX;
1468 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1469 status_set);
1471 if (cpu_has_mips_r2) {
1472 unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits;
1474 if (!noulri && cpu_has_userlocal)
1475 enable |= (1 << 29);
1477 write_c0_hwrena(enable);
1480 #ifdef CONFIG_MIPS_MT_SMTC
1481 if (!secondaryTC) {
1482 #endif /* CONFIG_MIPS_MT_SMTC */
1484 if (cpu_has_veic || cpu_has_vint) {
1485 unsigned long sr = set_c0_status(ST0_BEV);
1486 write_c0_ebase(ebase);
1487 write_c0_status(sr);
1488 /* Setting vector spacing enables EI/VI mode */
1489 change_c0_intctl(0x3e0, VECTORSPACING);
1491 if (cpu_has_divec) {
1492 if (cpu_has_mipsmt) {
1493 unsigned int vpflags = dvpe();
1494 set_c0_cause(CAUSEF_IV);
1495 evpe(vpflags);
1496 } else
1497 set_c0_cause(CAUSEF_IV);
1501 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1503 * o read IntCtl.IPTI to determine the timer interrupt
1504 * o read IntCtl.IPPCI to determine the performance counter interrupt
1506 if (cpu_has_mips_r2) {
1507 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1508 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1509 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1510 if (cp0_perfcount_irq == cp0_compare_irq)
1511 cp0_perfcount_irq = -1;
1512 } else {
1513 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1514 cp0_compare_irq_shift = cp0_compare_irq;
1515 cp0_perfcount_irq = -1;
1518 #ifdef CONFIG_MIPS_MT_SMTC
1520 #endif /* CONFIG_MIPS_MT_SMTC */
1522 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1523 TLBMISS_HANDLER_SETUP();
1525 atomic_inc(&init_mm.mm_count);
1526 current->active_mm = &init_mm;
1527 BUG_ON(current->mm);
1528 enter_lazy_tlb(&init_mm, current);
1530 #ifdef CONFIG_MIPS_MT_SMTC
1531 if (bootTC) {
1532 #endif /* CONFIG_MIPS_MT_SMTC */
1533 cpu_cache_init();
1534 tlb_init();
1535 #ifdef CONFIG_MIPS_MT_SMTC
1536 } else if (!secondaryTC) {
1538 * First TC in non-boot VPE must do subset of tlb_init()
1539 * for MMU countrol registers.
1541 write_c0_pagemask(PM_DEFAULT_MASK);
1542 write_c0_wired(0);
1544 #endif /* CONFIG_MIPS_MT_SMTC */
1547 /* Install CPU exception handler */
1548 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1550 memcpy((void *)(ebase + offset), addr, size);
1551 local_flush_icache_range(ebase + offset, ebase + offset + size);
1554 static char panic_null_cerr[] __cpuinitdata =
1555 "Trying to set NULL cache error exception handler";
1558 * Install uncached CPU exception handler.
1559 * This is suitable only for the cache error exception which is the only
1560 * exception handler that is being run uncached.
1562 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1563 unsigned long size)
1565 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1567 if (!addr)
1568 panic(panic_null_cerr);
1570 memcpy((void *)(uncached_ebase + offset), addr, size);
1573 static int __initdata rdhwr_noopt;
1574 static int __init set_rdhwr_noopt(char *str)
1576 rdhwr_noopt = 1;
1577 return 1;
1580 __setup("rdhwr_noopt", set_rdhwr_noopt);
1582 void __init trap_init(void)
1584 extern char except_vec3_generic, except_vec3_r4000;
1585 extern char except_vec4;
1586 unsigned long i;
1587 int rollback;
1589 check_wait();
1590 rollback = (cpu_wait == r4k_wait);
1592 #if defined(CONFIG_KGDB)
1593 if (kgdb_early_setup)
1594 return; /* Already done */
1595 #endif
1597 if (cpu_has_veic || cpu_has_vint) {
1598 unsigned long size = 0x200 + VECTORSPACING*64;
1599 ebase = (unsigned long)
1600 __alloc_bootmem(size, 1 << fls(size), 0);
1601 } else {
1602 ebase = CKSEG0;
1603 if (cpu_has_mips_r2)
1604 ebase += (read_c0_ebase() & 0x3ffff000);
1607 per_cpu_trap_init();
1610 * Copy the generic exception handlers to their final destination.
1611 * This will be overriden later as suitable for a particular
1612 * configuration.
1614 set_handler(0x180, &except_vec3_generic, 0x80);
1617 * Setup default vectors
1619 for (i = 0; i <= 31; i++)
1620 set_except_vector(i, handle_reserved);
1623 * Copy the EJTAG debug exception vector handler code to it's final
1624 * destination.
1626 if (cpu_has_ejtag && board_ejtag_handler_setup)
1627 board_ejtag_handler_setup();
1630 * Only some CPUs have the watch exceptions.
1632 if (cpu_has_watch)
1633 set_except_vector(23, handle_watch);
1636 * Initialise interrupt handlers
1638 if (cpu_has_veic || cpu_has_vint) {
1639 int nvec = cpu_has_veic ? 64 : 8;
1640 for (i = 0; i < nvec; i++)
1641 set_vi_handler(i, NULL);
1643 else if (cpu_has_divec)
1644 set_handler(0x200, &except_vec4, 0x8);
1647 * Some CPUs can enable/disable for cache parity detection, but does
1648 * it different ways.
1650 parity_protection_init();
1653 * The Data Bus Errors / Instruction Bus Errors are signaled
1654 * by external hardware. Therefore these two exceptions
1655 * may have board specific handlers.
1657 if (board_be_init)
1658 board_be_init();
1660 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1661 set_except_vector(1, handle_tlbm);
1662 set_except_vector(2, handle_tlbl);
1663 set_except_vector(3, handle_tlbs);
1665 set_except_vector(4, handle_adel);
1666 set_except_vector(5, handle_ades);
1668 set_except_vector(6, handle_ibe);
1669 set_except_vector(7, handle_dbe);
1671 set_except_vector(8, handle_sys);
1672 set_except_vector(9, handle_bp);
1673 set_except_vector(10, rdhwr_noopt ? handle_ri :
1674 (cpu_has_vtag_icache ?
1675 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1676 set_except_vector(11, handle_cpu);
1677 set_except_vector(12, handle_ov);
1678 set_except_vector(13, handle_tr);
1680 if (current_cpu_type() == CPU_R6000 ||
1681 current_cpu_type() == CPU_R6000A) {
1683 * The R6000 is the only R-series CPU that features a machine
1684 * check exception (similar to the R4000 cache error) and
1685 * unaligned ldc1/sdc1 exception. The handlers have not been
1686 * written yet. Well, anyway there is no R6000 machine on the
1687 * current list of targets for Linux/MIPS.
1688 * (Duh, crap, there is someone with a triple R6k machine)
1690 //set_except_vector(14, handle_mc);
1691 //set_except_vector(15, handle_ndc);
1695 if (board_nmi_handler_setup)
1696 board_nmi_handler_setup();
1698 if (cpu_has_fpu && !cpu_has_nofpuex)
1699 set_except_vector(15, handle_fpe);
1701 set_except_vector(22, handle_mdmx);
1703 if (cpu_has_mcheck)
1704 set_except_vector(24, handle_mcheck);
1706 if (cpu_has_mipsmt)
1707 set_except_vector(25, handle_mt);
1709 set_except_vector(26, handle_dsp);
1711 if (cpu_has_vce)
1712 /* Special exception: R4[04]00 uses also the divec space. */
1713 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1714 else if (cpu_has_4kex)
1715 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1716 else
1717 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1719 local_flush_icache_range(ebase, ebase + 0x400);
1720 flush_tlb_handlers();
1722 sort_extable(__start___dbe_table, __stop___dbe_table);
1724 register_cu2_notifier(&default_cu2_notifier);