ALSA: hda - Use auto-parser for HP laptops with cx20459 codec
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / shrinker.c
blob9e1d05666fed5d1ad03589995f8ecb3f78ec7b82
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS shrinker which evicts clean znodes from the TNC
25 * tree when Linux VM needs more RAM.
27 * We do not implement any LRU lists to find oldest znodes to free because it
28 * would add additional overhead to the file system fast paths. So the shrinker
29 * just walks the TNC tree when searching for znodes to free.
31 * If the root of a TNC sub-tree is clean and old enough, then the children are
32 * also clean and old enough. So the shrinker walks the TNC in level order and
33 * dumps entire sub-trees.
35 * The age of znodes is just the time-stamp when they were last looked at.
36 * The current shrinker first tries to evict old znodes, then young ones.
38 * Since the shrinker is global, it has to protect against races with FS
39 * un-mounts, which is done by the 'ubifs_infos_lock' and 'c->umount_mutex'.
42 #include "ubifs.h"
44 /* List of all UBIFS file-system instances */
45 LIST_HEAD(ubifs_infos);
48 * We number each shrinker run and record the number on the ubifs_info structure
49 * so that we can easily work out which ubifs_info structures have already been
50 * done by the current run.
52 static unsigned int shrinker_run_no;
54 /* Protects 'ubifs_infos' list */
55 DEFINE_SPINLOCK(ubifs_infos_lock);
57 /* Global clean znode counter (for all mounted UBIFS instances) */
58 atomic_long_t ubifs_clean_zn_cnt;
60 /**
61 * shrink_tnc - shrink TNC tree.
62 * @c: UBIFS file-system description object
63 * @nr: number of znodes to free
64 * @age: the age of znodes to free
65 * @contention: if any contention, this is set to %1
67 * This function traverses TNC tree and frees clean znodes. It does not free
68 * clean znodes which younger then @age. Returns number of freed znodes.
70 static int shrink_tnc(struct ubifs_info *c, int nr, int age, int *contention)
72 int total_freed = 0;
73 struct ubifs_znode *znode, *zprev;
74 int time = get_seconds();
76 ubifs_assert(mutex_is_locked(&c->umount_mutex));
77 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
79 if (!c->zroot.znode || atomic_long_read(&c->clean_zn_cnt) == 0)
80 return 0;
83 * Traverse the TNC tree in levelorder manner, so that it is possible
84 * to destroy large sub-trees. Indeed, if a znode is old, then all its
85 * children are older or of the same age.
87 * Note, we are holding 'c->tnc_mutex', so we do not have to lock the
88 * 'c->space_lock' when _reading_ 'c->clean_zn_cnt', because it is
89 * changed only when the 'c->tnc_mutex' is held.
91 zprev = NULL;
92 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
93 while (znode && total_freed < nr &&
94 atomic_long_read(&c->clean_zn_cnt) > 0) {
95 int freed;
98 * If the znode is clean, but it is in the 'c->cnext' list, this
99 * means that this znode has just been written to flash as a
100 * part of commit and was marked clean. They will be removed
101 * from the list at end commit. We cannot change the list,
102 * because it is not protected by any mutex (design decision to
103 * make commit really independent and parallel to main I/O). So
104 * we just skip these znodes.
106 * Note, the 'clean_zn_cnt' counters are not updated until
107 * after the commit, so the UBIFS shrinker does not report
108 * the znodes which are in the 'c->cnext' list as freeable.
110 * Also note, if the root of a sub-tree is not in 'c->cnext',
111 * then the whole sub-tree is not in 'c->cnext' as well, so it
112 * is safe to dump whole sub-tree.
115 if (znode->cnext) {
117 * Very soon these znodes will be removed from the list
118 * and become freeable.
120 *contention = 1;
121 } else if (!ubifs_zn_dirty(znode) &&
122 abs(time - znode->time) >= age) {
123 if (znode->parent)
124 znode->parent->zbranch[znode->iip].znode = NULL;
125 else
126 c->zroot.znode = NULL;
128 freed = ubifs_destroy_tnc_subtree(znode);
129 atomic_long_sub(freed, &ubifs_clean_zn_cnt);
130 atomic_long_sub(freed, &c->clean_zn_cnt);
131 ubifs_assert(atomic_long_read(&c->clean_zn_cnt) >= 0);
132 total_freed += freed;
133 znode = zprev;
136 if (unlikely(!c->zroot.znode))
137 break;
139 zprev = znode;
140 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
141 cond_resched();
144 return total_freed;
148 * shrink_tnc_trees - shrink UBIFS TNC trees.
149 * @nr: number of znodes to free
150 * @age: the age of znodes to free
151 * @contention: if any contention, this is set to %1
153 * This function walks the list of mounted UBIFS file-systems and frees clean
154 * znodes which are older than @age, until at least @nr znodes are freed.
155 * Returns the number of freed znodes.
157 static int shrink_tnc_trees(int nr, int age, int *contention)
159 struct ubifs_info *c;
160 struct list_head *p;
161 unsigned int run_no;
162 int freed = 0;
164 spin_lock(&ubifs_infos_lock);
165 do {
166 run_no = ++shrinker_run_no;
167 } while (run_no == 0);
168 /* Iterate over all mounted UBIFS file-systems and try to shrink them */
169 p = ubifs_infos.next;
170 while (p != &ubifs_infos) {
171 c = list_entry(p, struct ubifs_info, infos_list);
173 * We move the ones we do to the end of the list, so we stop
174 * when we see one we have already done.
176 if (c->shrinker_run_no == run_no)
177 break;
178 if (!mutex_trylock(&c->umount_mutex)) {
179 /* Some un-mount is in progress, try next FS */
180 *contention = 1;
181 p = p->next;
182 continue;
185 * We're holding 'c->umount_mutex', so the file-system won't go
186 * away.
188 if (!mutex_trylock(&c->tnc_mutex)) {
189 mutex_unlock(&c->umount_mutex);
190 *contention = 1;
191 p = p->next;
192 continue;
194 spin_unlock(&ubifs_infos_lock);
196 * OK, now we have TNC locked, the file-system cannot go away -
197 * it is safe to reap the cache.
199 c->shrinker_run_no = run_no;
200 freed += shrink_tnc(c, nr, age, contention);
201 mutex_unlock(&c->tnc_mutex);
202 spin_lock(&ubifs_infos_lock);
203 /* Get the next list element before we move this one */
204 p = p->next;
206 * Move this one to the end of the list to provide some
207 * fairness.
209 list_move_tail(&c->infos_list, &ubifs_infos);
210 mutex_unlock(&c->umount_mutex);
211 if (freed >= nr)
212 break;
214 spin_unlock(&ubifs_infos_lock);
215 return freed;
219 * kick_a_thread - kick a background thread to start commit.
221 * This function kicks a background thread to start background commit. Returns
222 * %-1 if a thread was kicked or there is another reason to assume the memory
223 * will soon be freed or become freeable. If there are no dirty znodes, returns
224 * %0.
226 static int kick_a_thread(void)
228 int i;
229 struct ubifs_info *c;
232 * Iterate over all mounted UBIFS file-systems and find out if there is
233 * already an ongoing commit operation there. If no, then iterate for
234 * the second time and initiate background commit.
236 spin_lock(&ubifs_infos_lock);
237 for (i = 0; i < 2; i++) {
238 list_for_each_entry(c, &ubifs_infos, infos_list) {
239 long dirty_zn_cnt;
241 if (!mutex_trylock(&c->umount_mutex)) {
243 * Some un-mount is in progress, it will
244 * certainly free memory, so just return.
246 spin_unlock(&ubifs_infos_lock);
247 return -1;
250 dirty_zn_cnt = atomic_long_read(&c->dirty_zn_cnt);
252 if (!dirty_zn_cnt || c->cmt_state == COMMIT_BROKEN ||
253 c->ro_mount || c->ro_error) {
254 mutex_unlock(&c->umount_mutex);
255 continue;
258 if (c->cmt_state != COMMIT_RESTING) {
259 spin_unlock(&ubifs_infos_lock);
260 mutex_unlock(&c->umount_mutex);
261 return -1;
264 if (i == 1) {
265 list_move_tail(&c->infos_list, &ubifs_infos);
266 spin_unlock(&ubifs_infos_lock);
268 ubifs_request_bg_commit(c);
269 mutex_unlock(&c->umount_mutex);
270 return -1;
272 mutex_unlock(&c->umount_mutex);
275 spin_unlock(&ubifs_infos_lock);
277 return 0;
280 int ubifs_shrinker(struct shrinker *shrink, struct shrink_control *sc)
282 int nr = sc->nr_to_scan;
283 int freed, contention = 0;
284 long clean_zn_cnt = atomic_long_read(&ubifs_clean_zn_cnt);
286 if (nr == 0)
288 * Due to the way UBIFS updates the clean znode counter it may
289 * temporarily be negative.
291 return clean_zn_cnt >= 0 ? clean_zn_cnt : 1;
293 if (!clean_zn_cnt) {
295 * No clean znodes, nothing to reap. All we can do in this case
296 * is to kick background threads to start commit, which will
297 * probably make clean znodes which, in turn, will be freeable.
298 * And we return -1 which means will make VM call us again
299 * later.
301 dbg_tnc("no clean znodes, kick a thread");
302 return kick_a_thread();
305 freed = shrink_tnc_trees(nr, OLD_ZNODE_AGE, &contention);
306 if (freed >= nr)
307 goto out;
309 dbg_tnc("not enough old znodes, try to free young ones");
310 freed += shrink_tnc_trees(nr - freed, YOUNG_ZNODE_AGE, &contention);
311 if (freed >= nr)
312 goto out;
314 dbg_tnc("not enough young znodes, free all");
315 freed += shrink_tnc_trees(nr - freed, 0, &contention);
317 if (!freed && contention) {
318 dbg_tnc("freed nothing, but contention");
319 return -1;
322 out:
323 dbg_tnc("%d znodes were freed, requested %d", freed, nr);
324 return freed;