5 * National Semiconductor LM90
7 Addresses scanned: I2C 0x4c
8 Datasheet: Publicly available at the National Semiconductor website
9 http://www.national.com/pf/LM/LM90.html
10 * National Semiconductor LM89
11 Prefix: 'lm89' (no auto-detection)
12 Addresses scanned: I2C 0x4c and 0x4d
13 Datasheet: Publicly available at the National Semiconductor website
14 http://www.national.com/mpf/LM/LM89.html
15 * National Semiconductor LM99
17 Addresses scanned: I2C 0x4c and 0x4d
18 Datasheet: Publicly available at the National Semiconductor website
19 http://www.national.com/pf/LM/LM99.html
20 * National Semiconductor LM86
22 Addresses scanned: I2C 0x4c
23 Datasheet: Publicly available at the National Semiconductor website
24 http://www.national.com/mpf/LM/LM86.html
25 * Analog Devices ADM1032
27 Addresses scanned: I2C 0x4c and 0x4d
28 Datasheet: Publicly available at the ON Semiconductor website
29 http://www.onsemi.com/PowerSolutions/product.do?id=ADM1032
30 * Analog Devices ADT7461
32 Addresses scanned: I2C 0x4c and 0x4d
33 Datasheet: Publicly available at the ON Semiconductor website
34 http://www.onsemi.com/PowerSolutions/product.do?id=ADT7461
37 Addresses scanned: I2C 0x4d
38 Datasheet: Publicly available at the Maxim website
39 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
42 Addresses scanned: I2C 0x4e
43 Datasheet: Publicly available at the Maxim website
44 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
47 Addresses scanned: I2C 0x4c
48 Datasheet: Publicly available at the Maxim website
49 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500
52 Addresses scanned: I2C 0x4c
53 Datasheet: Publicly available at the Maxim website
54 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
57 Addresses scanned: I2C 0x4c
58 Datasheet: Publicly available at the Maxim website
59 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
62 Addresses scanned: I2C 0x4c
63 Datasheet: Publicly available at the Maxim website
64 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
67 Addresses scanned: I2C 0x4c, 0x4d (unsupported 0x4e)
68 Datasheet: Publicly available at the Maxim website
69 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
72 Addresses scanned: I2C 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
74 Datasheet: Publicly available at the Maxim website
75 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3370
78 Addresses scanned: I2C 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
80 Datasheet: Publicly available at the Maxim website
81 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3370
84 Addresses scanned: I2C 0x4c
85 Datasheet: Publicly available at the Maxim website
86 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500
89 Author: Jean Delvare <khali@linux-fr.org>
95 The LM90 is a digital temperature sensor. It senses its own temperature as
96 well as the temperature of up to one external diode. It is compatible
97 with many other devices, many of which are supported by this driver.
99 Note that there is no easy way to differentiate between the MAX6657,
100 MAX6658 and MAX6659 variants. The extra address and features of the
101 MAX6659 are not supported by this driver. The MAX6680 and MAX6681 only
102 differ in their pinout, therefore they obviously can't (and don't need to)
105 The specificity of this family of chipsets over the ADM1021/LM84
106 family is that it features critical limits with hysteresis, and an
107 increased resolution of the remote temperature measurement.
109 The different chipsets of the family are not strictly identical, although
110 very similar. For reference, here comes a non-exhaustive list of specific
114 * Filter and alert configuration register at 0xBF.
115 * ALERT is triggered by temperatures over critical limits.
119 * Better external channel accuracy
123 * External temperature shifted by 16 degrees down
126 * Consecutive alert register at 0x22.
127 * Conversion averaging.
128 * Up to 64 conversions/s.
129 * ALERT is triggered by open remote sensor.
130 * SMBus PEC support for Write Byte and Receive Byte transactions.
133 * Extended temperature range (breaks compatibility)
134 * Lower resolution for remote temperature
137 * Better local resolution
138 * Remote sensor type selection
141 * Better local resolution
143 * Second critical temperature limit
144 * Remote sensor type selection
148 * Remote sensor type selection
150 All temperature values are given in degrees Celsius. Resolution
151 is 1.0 degree for the local temperature, 0.125 degree for the remote
152 temperature, except for the MAX6657, MAX6658 and MAX6659 which have a
153 resolution of 0.125 degree for both temperatures.
155 Each sensor has its own high and low limits, plus a critical limit.
156 Additionally, there is a relative hysteresis value common to both critical
157 values. To make life easier to user-space applications, two absolute values
158 are exported, one for each channel, but these values are of course linked.
159 Only the local hysteresis can be set from user-space, and the same delta
160 applies to the remote hysteresis.
162 The lm90 driver will not update its values more frequently than every
163 other second; reading them more often will do no harm, but will return
169 The ADM1032 is the only chip of the family which supports PEC. It does
170 not support PEC on all transactions though, so some care must be taken.
172 When reading a register value, the PEC byte is computed and sent by the
173 ADM1032 chip. However, in the case of a combined transaction (SMBus Read
174 Byte), the ADM1032 computes the CRC value over only the second half of
175 the message rather than its entirety, because it thinks the first half
176 of the message belongs to a different transaction. As a result, the CRC
177 value differs from what the SMBus master expects, and all reads fail.
179 For this reason, the lm90 driver will enable PEC for the ADM1032 only if
180 the bus supports the SMBus Send Byte and Receive Byte transaction types.
181 These transactions will be used to read register values, instead of
182 SMBus Read Byte, and PEC will work properly.
184 Additionally, the ADM1032 doesn't support SMBus Send Byte with PEC.
185 Instead, it will try to write the PEC value to the register (because the
186 SMBus Send Byte transaction with PEC is similar to a Write Byte transaction
187 without PEC), which is not what we want. Thus, PEC is explicitly disabled
188 on SMBus Send Byte transactions in the lm90 driver.
190 PEC on byte data transactions represents a significant increase in bandwidth
191 usage (+33% for writes, +25% for reads) in normal conditions. With the need
192 to use two SMBus transaction for reads, this overhead jumps to +50%. Worse,
193 two transactions will typically mean twice as much delay waiting for
194 transaction completion, effectively doubling the register cache refresh time.
195 I guess reliability comes at a price, but it's quite expensive this time.
197 So, as not everyone might enjoy the slowdown, PEC can be disabled through
198 sysfs. Just write 0 to the "pec" file and PEC will be disabled. Write 1
199 to that file to enable PEC again.