ARM: add a vma entry for the user accessible vector page
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / watchdog / octeon-wdt-main.c
blob2a410170eca67c93b5472fdfa4c419c3bba2f58e
1 /*
2 * Octeon Watchdog driver
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
6 * Some parts derived from wdt.c
8 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9 * All Rights Reserved.
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
16 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17 * warranty for any of this software. This material is provided
18 * "AS-IS" and at no charge.
20 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License. See the file "COPYING" in the main directory of this archive
24 * for more details.
27 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28 * For most systems this is less than 10 seconds, so to allow for
29 * software to request longer watchdog heartbeats, we maintain software
30 * counters to count multiples of the base rate. If the system locks
31 * up in such a manner that we can not run the software counters, the
32 * only result is a watchdog reset sooner than was requested. But
33 * that is OK, because in this case userspace would likely not be able
34 * to do anything anyhow.
36 * The hardware watchdog interval we call the period. The OCTEON
37 * watchdog goes through several stages, after the first period an
38 * irq is asserted, then if it is not reset, after the next period NMI
39 * is asserted, then after an additional period a chip wide soft reset.
40 * So for the software counters, we reset watchdog after each period
41 * and decrement the counter. But for the last two periods we need to
42 * let the watchdog progress to the NMI stage so we disable the irq
43 * and let it proceed. Once in the NMI, we print the register state
44 * to the serial port and then wait for the reset.
46 * A watchdog is maintained for each CPU in the system, that way if
47 * one CPU suffers a lockup, we also get a register dump and reset.
48 * The userspace ping resets the watchdog on all CPUs.
50 * Before userspace opens the watchdog device, we still run the
51 * watchdogs to catch any lockups that may be kernel related.
55 #include <linux/miscdevice.h>
56 #include <linux/interrupt.h>
57 #include <linux/watchdog.h>
58 #include <linux/cpumask.h>
59 #include <linux/bitops.h>
60 #include <linux/kernel.h>
61 #include <linux/module.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/cpu.h>
65 #include <linux/smp.h>
66 #include <linux/fs.h>
68 #include <asm/mipsregs.h>
69 #include <asm/uasm.h>
71 #include <asm/octeon/octeon.h>
73 /* The count needed to achieve timeout_sec. */
74 static unsigned int timeout_cnt;
76 /* The maximum period supported. */
77 static unsigned int max_timeout_sec;
79 /* The current period. */
80 static unsigned int timeout_sec;
82 /* Set to non-zero when userspace countdown mode active */
83 static int do_coundown;
84 static unsigned int countdown_reset;
85 static unsigned int per_cpu_countdown[NR_CPUS];
87 static cpumask_t irq_enabled_cpus;
89 #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
91 static int heartbeat = WD_TIMO;
92 module_param(heartbeat, int, S_IRUGO);
93 MODULE_PARM_DESC(heartbeat,
94 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
95 __MODULE_STRING(WD_TIMO) ")");
97 static int nowayout = WATCHDOG_NOWAYOUT;
98 module_param(nowayout, int, S_IRUGO);
99 MODULE_PARM_DESC(nowayout,
100 "Watchdog cannot be stopped once started (default="
101 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103 static unsigned long octeon_wdt_is_open;
104 static char expect_close;
106 static u32 __initdata nmi_stage1_insns[64];
107 /* We need one branch and therefore one relocation per target label. */
108 static struct uasm_label __initdata labels[5];
109 static struct uasm_reloc __initdata relocs[5];
111 enum lable_id {
112 label_enter_bootloader = 1
115 /* Some CP0 registers */
116 #define K0 26
117 #define C0_CVMMEMCTL 11, 7
118 #define C0_STATUS 12, 0
119 #define C0_EBASE 15, 1
120 #define C0_DESAVE 31, 0
122 void octeon_wdt_nmi_stage2(void);
124 static void __init octeon_wdt_build_stage1(void)
126 int i;
127 int len;
128 u32 *p = nmi_stage1_insns;
129 #ifdef CONFIG_HOTPLUG_CPU
130 struct uasm_label *l = labels;
131 struct uasm_reloc *r = relocs;
132 #endif
135 * For the next few instructions running the debugger may
136 * cause corruption of k0 in the saved registers. Since we're
137 * about to crash, nobody probably cares.
139 * Save K0 into the debug scratch register
141 uasm_i_dmtc0(&p, K0, C0_DESAVE);
143 uasm_i_mfc0(&p, K0, C0_STATUS);
144 #ifdef CONFIG_HOTPLUG_CPU
145 uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
146 #endif
147 /* Force 64-bit addressing enabled */
148 uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
149 uasm_i_mtc0(&p, K0, C0_STATUS);
151 #ifdef CONFIG_HOTPLUG_CPU
152 uasm_i_mfc0(&p, K0, C0_EBASE);
153 /* Coreid number in K0 */
154 uasm_i_andi(&p, K0, K0, 0xf);
155 /* 8 * coreid in bits 16-31 */
156 uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
157 uasm_i_ori(&p, K0, K0, 0x8001);
158 uasm_i_dsll_safe(&p, K0, K0, 16);
159 uasm_i_ori(&p, K0, K0, 0x0700);
160 uasm_i_drotr_safe(&p, K0, K0, 32);
162 * Should result in: 0x8001,0700,0000,8*coreid which is
163 * CVMX_CIU_WDOGX(coreid) - 0x0500
165 * Now ld K0, CVMX_CIU_WDOGX(coreid)
167 uasm_i_ld(&p, K0, 0x500, K0);
169 * If bit one set handle the NMI as a watchdog event.
170 * otherwise transfer control to bootloader.
172 uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
173 uasm_i_nop(&p);
174 #endif
176 /* Clear Dcache so cvmseg works right. */
177 uasm_i_cache(&p, 1, 0, 0);
179 /* Use K0 to do a read/modify/write of CVMMEMCTL */
180 uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
181 /* Clear out the size of CVMSEG */
182 uasm_i_dins(&p, K0, 0, 0, 6);
183 /* Set CVMSEG to its largest value */
184 uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
185 /* Store the CVMMEMCTL value */
186 uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
188 /* Load the address of the second stage handler */
189 UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
190 uasm_i_jr(&p, K0);
191 uasm_i_dmfc0(&p, K0, C0_DESAVE);
193 #ifdef CONFIG_HOTPLUG_CPU
194 uasm_build_label(&l, p, label_enter_bootloader);
195 /* Jump to the bootloader and restore K0 */
196 UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
197 uasm_i_jr(&p, K0);
198 uasm_i_dmfc0(&p, K0, C0_DESAVE);
199 #endif
200 uasm_resolve_relocs(relocs, labels);
202 len = (int)(p - nmi_stage1_insns);
203 pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);
205 pr_debug("\t.set push\n");
206 pr_debug("\t.set noreorder\n");
207 for (i = 0; i < len; i++)
208 pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
209 pr_debug("\t.set pop\n");
211 if (len > 32)
212 panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
215 static int cpu2core(int cpu)
217 #ifdef CONFIG_SMP
218 return cpu_logical_map(cpu);
219 #else
220 return cvmx_get_core_num();
221 #endif
224 static int core2cpu(int coreid)
226 #ifdef CONFIG_SMP
227 return cpu_number_map(coreid);
228 #else
229 return 0;
230 #endif
234 * Poke the watchdog when an interrupt is received
236 * @cpl:
237 * @dev_id:
239 * Returns
241 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
243 unsigned int core = cvmx_get_core_num();
244 int cpu = core2cpu(core);
246 if (do_coundown) {
247 if (per_cpu_countdown[cpu] > 0) {
248 /* We're alive, poke the watchdog */
249 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
250 per_cpu_countdown[cpu]--;
251 } else {
252 /* Bad news, you are about to reboot. */
253 disable_irq_nosync(cpl);
254 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
256 } else {
257 /* Not open, just ping away... */
258 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
260 return IRQ_HANDLED;
263 /* From setup.c */
264 extern int prom_putchar(char c);
267 * Write a string to the uart
269 * @str: String to write
271 static void octeon_wdt_write_string(const char *str)
273 /* Just loop writing one byte at a time */
274 while (*str)
275 prom_putchar(*str++);
279 * Write a hex number out of the uart
281 * @value: Number to display
282 * @digits: Number of digits to print (1 to 16)
284 static void octeon_wdt_write_hex(u64 value, int digits)
286 int d;
287 int v;
288 for (d = 0; d < digits; d++) {
289 v = (value >> ((digits - d - 1) * 4)) & 0xf;
290 if (v >= 10)
291 prom_putchar('a' + v - 10);
292 else
293 prom_putchar('0' + v);
297 const char *reg_name[] = {
298 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
299 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
300 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
301 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
305 * NMI stage 3 handler. NMIs are handled in the following manner:
306 * 1) The first NMI handler enables CVMSEG and transfers from
307 * the bootbus region into normal memory. It is careful to not
308 * destroy any registers.
309 * 2) The second stage handler uses CVMSEG to save the registers
310 * and create a stack for C code. It then calls the third level
311 * handler with one argument, a pointer to the register values.
312 * 3) The third, and final, level handler is the following C
313 * function that prints out some useful infomration.
315 * @reg: Pointer to register state before the NMI
317 void octeon_wdt_nmi_stage3(u64 reg[32])
319 u64 i;
321 unsigned int coreid = cvmx_get_core_num();
323 * Save status and cause early to get them before any changes
324 * might happen.
326 u64 cp0_cause = read_c0_cause();
327 u64 cp0_status = read_c0_status();
328 u64 cp0_error_epc = read_c0_errorepc();
329 u64 cp0_epc = read_c0_epc();
331 /* Delay so output from all cores output is not jumbled together. */
332 __delay(100000000ull * coreid);
334 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
335 octeon_wdt_write_hex(coreid, 1);
336 octeon_wdt_write_string(" ***\r\n");
337 for (i = 0; i < 32; i++) {
338 octeon_wdt_write_string("\t");
339 octeon_wdt_write_string(reg_name[i]);
340 octeon_wdt_write_string("\t0x");
341 octeon_wdt_write_hex(reg[i], 16);
342 if (i & 1)
343 octeon_wdt_write_string("\r\n");
345 octeon_wdt_write_string("\terr_epc\t0x");
346 octeon_wdt_write_hex(cp0_error_epc, 16);
348 octeon_wdt_write_string("\tepc\t0x");
349 octeon_wdt_write_hex(cp0_epc, 16);
350 octeon_wdt_write_string("\r\n");
352 octeon_wdt_write_string("\tstatus\t0x");
353 octeon_wdt_write_hex(cp0_status, 16);
354 octeon_wdt_write_string("\tcause\t0x");
355 octeon_wdt_write_hex(cp0_cause, 16);
356 octeon_wdt_write_string("\r\n");
358 octeon_wdt_write_string("\tsum0\t0x");
359 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
360 octeon_wdt_write_string("\ten0\t0x");
361 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
362 octeon_wdt_write_string("\r\n");
364 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
367 static void octeon_wdt_disable_interrupt(int cpu)
369 unsigned int core;
370 unsigned int irq;
371 union cvmx_ciu_wdogx ciu_wdog;
373 core = cpu2core(cpu);
375 irq = OCTEON_IRQ_WDOG0 + core;
377 /* Poke the watchdog to clear out its state */
378 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
380 /* Disable the hardware. */
381 ciu_wdog.u64 = 0;
382 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
384 free_irq(irq, octeon_wdt_poke_irq);
387 static void octeon_wdt_setup_interrupt(int cpu)
389 unsigned int core;
390 unsigned int irq;
391 union cvmx_ciu_wdogx ciu_wdog;
393 core = cpu2core(cpu);
395 /* Disable it before doing anything with the interrupts. */
396 ciu_wdog.u64 = 0;
397 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
399 per_cpu_countdown[cpu] = countdown_reset;
401 irq = OCTEON_IRQ_WDOG0 + core;
403 if (request_irq(irq, octeon_wdt_poke_irq,
404 IRQF_DISABLED, "octeon_wdt", octeon_wdt_poke_irq))
405 panic("octeon_wdt: Couldn't obtain irq %d", irq);
407 cpumask_set_cpu(cpu, &irq_enabled_cpus);
409 /* Poke the watchdog to clear out its state */
410 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
412 /* Finally enable the watchdog now that all handlers are installed */
413 ciu_wdog.u64 = 0;
414 ciu_wdog.s.len = timeout_cnt;
415 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
416 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
419 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
420 unsigned long action, void *hcpu)
422 unsigned int cpu = (unsigned long)hcpu;
424 switch (action) {
425 case CPU_DOWN_PREPARE:
426 octeon_wdt_disable_interrupt(cpu);
427 break;
428 case CPU_ONLINE:
429 case CPU_DOWN_FAILED:
430 octeon_wdt_setup_interrupt(cpu);
431 break;
432 default:
433 break;
435 return NOTIFY_OK;
438 static void octeon_wdt_ping(void)
440 int cpu;
441 int coreid;
443 for_each_online_cpu(cpu) {
444 coreid = cpu2core(cpu);
445 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
446 per_cpu_countdown[cpu] = countdown_reset;
447 if ((countdown_reset || !do_coundown) &&
448 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
449 /* We have to enable the irq */
450 int irq = OCTEON_IRQ_WDOG0 + coreid;
451 enable_irq(irq);
452 cpumask_set_cpu(cpu, &irq_enabled_cpus);
457 static void octeon_wdt_calc_parameters(int t)
459 unsigned int periods;
461 timeout_sec = max_timeout_sec;
465 * Find the largest interrupt period, that can evenly divide
466 * the requested heartbeat time.
468 while ((t % timeout_sec) != 0)
469 timeout_sec--;
471 periods = t / timeout_sec;
474 * The last two periods are after the irq is disabled, and
475 * then to the nmi, so we subtract them off.
478 countdown_reset = periods > 2 ? periods - 2 : 0;
479 heartbeat = t;
480 timeout_cnt = ((octeon_get_clock_rate() >> 8) * timeout_sec) >> 8;
483 static int octeon_wdt_set_heartbeat(int t)
485 int cpu;
486 int coreid;
487 union cvmx_ciu_wdogx ciu_wdog;
489 if (t <= 0)
490 return -1;
492 octeon_wdt_calc_parameters(t);
494 for_each_online_cpu(cpu) {
495 coreid = cpu2core(cpu);
496 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
497 ciu_wdog.u64 = 0;
498 ciu_wdog.s.len = timeout_cnt;
499 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
500 cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
501 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
503 octeon_wdt_ping(); /* Get the irqs back on. */
504 return 0;
508 * octeon_wdt_write:
509 * @file: file handle to the watchdog
510 * @buf: buffer to write (unused as data does not matter here
511 * @count: count of bytes
512 * @ppos: pointer to the position to write. No seeks allowed
514 * A write to a watchdog device is defined as a keepalive signal. Any
515 * write of data will do, as we we don't define content meaning.
518 static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
519 size_t count, loff_t *ppos)
521 if (count) {
522 if (!nowayout) {
523 size_t i;
525 /* In case it was set long ago */
526 expect_close = 0;
528 for (i = 0; i != count; i++) {
529 char c;
530 if (get_user(c, buf + i))
531 return -EFAULT;
532 if (c == 'V')
533 expect_close = 1;
536 octeon_wdt_ping();
538 return count;
542 * octeon_wdt_ioctl:
543 * @file: file handle to the device
544 * @cmd: watchdog command
545 * @arg: argument pointer
547 * The watchdog API defines a common set of functions for all
548 * watchdogs according to their available features. We only
549 * actually usefully support querying capabilities and setting
550 * the timeout.
553 static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
554 unsigned long arg)
556 void __user *argp = (void __user *)arg;
557 int __user *p = argp;
558 int new_heartbeat;
560 static struct watchdog_info ident = {
561 .options = WDIOF_SETTIMEOUT|
562 WDIOF_MAGICCLOSE|
563 WDIOF_KEEPALIVEPING,
564 .firmware_version = 1,
565 .identity = "OCTEON",
568 switch (cmd) {
569 case WDIOC_GETSUPPORT:
570 return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
571 case WDIOC_GETSTATUS:
572 case WDIOC_GETBOOTSTATUS:
573 return put_user(0, p);
574 case WDIOC_KEEPALIVE:
575 octeon_wdt_ping();
576 return 0;
577 case WDIOC_SETTIMEOUT:
578 if (get_user(new_heartbeat, p))
579 return -EFAULT;
580 if (octeon_wdt_set_heartbeat(new_heartbeat))
581 return -EINVAL;
582 /* Fall through. */
583 case WDIOC_GETTIMEOUT:
584 return put_user(heartbeat, p);
585 default:
586 return -ENOTTY;
591 * octeon_wdt_open:
592 * @inode: inode of device
593 * @file: file handle to device
595 * The watchdog device has been opened. The watchdog device is single
596 * open and on opening we do a ping to reset the counters.
599 static int octeon_wdt_open(struct inode *inode, struct file *file)
601 if (test_and_set_bit(0, &octeon_wdt_is_open))
602 return -EBUSY;
604 * Activate
606 octeon_wdt_ping();
607 do_coundown = 1;
608 return nonseekable_open(inode, file);
612 * octeon_wdt_release:
613 * @inode: inode to board
614 * @file: file handle to board
616 * The watchdog has a configurable API. There is a religious dispute
617 * between people who want their watchdog to be able to shut down and
618 * those who want to be sure if the watchdog manager dies the machine
619 * reboots. In the former case we disable the counters, in the latter
620 * case you have to open it again very soon.
623 static int octeon_wdt_release(struct inode *inode, struct file *file)
625 if (expect_close) {
626 do_coundown = 0;
627 octeon_wdt_ping();
628 } else {
629 pr_crit("octeon_wdt: WDT device closed unexpectedly. WDT will not stop!\n");
631 clear_bit(0, &octeon_wdt_is_open);
632 expect_close = 0;
633 return 0;
636 static const struct file_operations octeon_wdt_fops = {
637 .owner = THIS_MODULE,
638 .llseek = no_llseek,
639 .write = octeon_wdt_write,
640 .unlocked_ioctl = octeon_wdt_ioctl,
641 .open = octeon_wdt_open,
642 .release = octeon_wdt_release,
645 static struct miscdevice octeon_wdt_miscdev = {
646 .minor = WATCHDOG_MINOR,
647 .name = "watchdog",
648 .fops = &octeon_wdt_fops,
651 static struct notifier_block octeon_wdt_cpu_notifier = {
652 .notifier_call = octeon_wdt_cpu_callback,
657 * Module/ driver initialization.
659 * Returns Zero on success
661 static int __init octeon_wdt_init(void)
663 int i;
664 int ret;
665 int cpu;
666 u64 *ptr;
669 * Watchdog time expiration length = The 16 bits of LEN
670 * represent the most significant bits of a 24 bit decrementer
671 * that decrements every 256 cycles.
673 * Try for a timeout of 5 sec, if that fails a smaller number
674 * of even seconds,
676 max_timeout_sec = 6;
677 do {
678 max_timeout_sec--;
679 timeout_cnt = ((octeon_get_clock_rate() >> 8) * max_timeout_sec) >> 8;
680 } while (timeout_cnt > 65535);
682 BUG_ON(timeout_cnt == 0);
684 octeon_wdt_calc_parameters(heartbeat);
686 pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);
688 ret = misc_register(&octeon_wdt_miscdev);
689 if (ret) {
690 pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
691 WATCHDOG_MINOR, ret);
692 goto out;
695 /* Build the NMI handler ... */
696 octeon_wdt_build_stage1();
698 /* ... and install it. */
699 ptr = (u64 *) nmi_stage1_insns;
700 for (i = 0; i < 16; i++) {
701 cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
702 cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
704 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
706 cpumask_clear(&irq_enabled_cpus);
708 for_each_online_cpu(cpu)
709 octeon_wdt_setup_interrupt(cpu);
711 register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
712 out:
713 return ret;
717 * Module / driver shutdown
719 static void __exit octeon_wdt_cleanup(void)
721 int cpu;
723 misc_deregister(&octeon_wdt_miscdev);
725 unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
727 for_each_online_cpu(cpu) {
728 int core = cpu2core(cpu);
729 /* Disable the watchdog */
730 cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
731 /* Free the interrupt handler */
732 free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
735 * Disable the boot-bus memory, the code it points to is soon
736 * to go missing.
738 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
741 MODULE_LICENSE("GPL");
742 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
743 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
744 module_init(octeon_wdt_init);
745 module_exit(octeon_wdt_cleanup);