p54usb: Device ID updates
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
bloba0123d75ec9a7624f897bc2984ca4009b61abfbc
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
50 #include <asm/atomic.h>
52 static DEFINE_MUTEX(cgroup_mutex);
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
66 struct cgroupfs_root {
67 struct super_block *sb;
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
73 unsigned long subsys_bits;
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
87 /* A list running through the mounted hierarchies */
88 struct list_head root_list;
90 /* Hierarchy-specific flags */
91 unsigned long flags;
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode;
105 /* The list of hierarchy roots */
107 static LIST_HEAD(roots);
108 static int root_count;
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
118 static int need_forkexit_callback __read_mostly;
119 static int need_mm_owner_callback __read_mostly;
121 /* convenient tests for these bits */
122 inline int cgroup_is_removed(const struct cgroup *cgrp)
124 return test_bit(CGRP_REMOVED, &cgrp->flags);
127 /* bits in struct cgroupfs_root flags field */
128 enum {
129 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
132 static int cgroup_is_releasable(const struct cgroup *cgrp)
134 const int bits =
135 (1 << CGRP_RELEASABLE) |
136 (1 << CGRP_NOTIFY_ON_RELEASE);
137 return (cgrp->flags & bits) == bits;
140 static int notify_on_release(const struct cgroup *cgrp)
142 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
146 * for_each_subsys() allows you to iterate on each subsystem attached to
147 * an active hierarchy
149 #define for_each_subsys(_root, _ss) \
150 list_for_each_entry(_ss, &_root->subsys_list, sibling)
152 /* for_each_root() allows you to iterate across the active hierarchies */
153 #define for_each_root(_root) \
154 list_for_each_entry(_root, &roots, root_list)
156 /* the list of cgroups eligible for automatic release. Protected by
157 * release_list_lock */
158 static LIST_HEAD(release_list);
159 static DEFINE_SPINLOCK(release_list_lock);
160 static void cgroup_release_agent(struct work_struct *work);
161 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
162 static void check_for_release(struct cgroup *cgrp);
164 /* Link structure for associating css_set objects with cgroups */
165 struct cg_cgroup_link {
167 * List running through cg_cgroup_links associated with a
168 * cgroup, anchored on cgroup->css_sets
170 struct list_head cgrp_link_list;
172 * List running through cg_cgroup_links pointing at a
173 * single css_set object, anchored on css_set->cg_links
175 struct list_head cg_link_list;
176 struct css_set *cg;
179 /* The default css_set - used by init and its children prior to any
180 * hierarchies being mounted. It contains a pointer to the root state
181 * for each subsystem. Also used to anchor the list of css_sets. Not
182 * reference-counted, to improve performance when child cgroups
183 * haven't been created.
186 static struct css_set init_css_set;
187 static struct cg_cgroup_link init_css_set_link;
189 /* css_set_lock protects the list of css_set objects, and the
190 * chain of tasks off each css_set. Nests outside task->alloc_lock
191 * due to cgroup_iter_start() */
192 static DEFINE_RWLOCK(css_set_lock);
193 static int css_set_count;
195 /* hash table for cgroup groups. This improves the performance to
196 * find an existing css_set */
197 #define CSS_SET_HASH_BITS 7
198 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
199 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
201 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
203 int i;
204 int index;
205 unsigned long tmp = 0UL;
207 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
208 tmp += (unsigned long)css[i];
209 tmp = (tmp >> 16) ^ tmp;
211 index = hash_long(tmp, CSS_SET_HASH_BITS);
213 return &css_set_table[index];
216 /* We don't maintain the lists running through each css_set to its
217 * task until after the first call to cgroup_iter_start(). This
218 * reduces the fork()/exit() overhead for people who have cgroups
219 * compiled into their kernel but not actually in use */
220 static int use_task_css_set_links __read_mostly;
222 /* When we create or destroy a css_set, the operation simply
223 * takes/releases a reference count on all the cgroups referenced
224 * by subsystems in this css_set. This can end up multiple-counting
225 * some cgroups, but that's OK - the ref-count is just a
226 * busy/not-busy indicator; ensuring that we only count each cgroup
227 * once would require taking a global lock to ensure that no
228 * subsystems moved between hierarchies while we were doing so.
230 * Possible TODO: decide at boot time based on the number of
231 * registered subsystems and the number of CPUs or NUMA nodes whether
232 * it's better for performance to ref-count every subsystem, or to
233 * take a global lock and only add one ref count to each hierarchy.
237 * unlink a css_set from the list and free it
239 static void unlink_css_set(struct css_set *cg)
241 struct cg_cgroup_link *link;
242 struct cg_cgroup_link *saved_link;
244 write_lock(&css_set_lock);
245 hlist_del(&cg->hlist);
246 css_set_count--;
248 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
249 cg_link_list) {
250 list_del(&link->cg_link_list);
251 list_del(&link->cgrp_link_list);
252 kfree(link);
255 write_unlock(&css_set_lock);
258 static void __release_css_set(struct kref *k, int taskexit)
260 int i;
261 struct css_set *cg = container_of(k, struct css_set, ref);
263 unlink_css_set(cg);
265 rcu_read_lock();
266 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
267 struct cgroup *cgrp = cg->subsys[i]->cgroup;
268 if (atomic_dec_and_test(&cgrp->count) &&
269 notify_on_release(cgrp)) {
270 if (taskexit)
271 set_bit(CGRP_RELEASABLE, &cgrp->flags);
272 check_for_release(cgrp);
275 rcu_read_unlock();
276 kfree(cg);
279 static void release_css_set(struct kref *k)
281 __release_css_set(k, 0);
284 static void release_css_set_taskexit(struct kref *k)
286 __release_css_set(k, 1);
290 * refcounted get/put for css_set objects
292 static inline void get_css_set(struct css_set *cg)
294 kref_get(&cg->ref);
297 static inline void put_css_set(struct css_set *cg)
299 kref_put(&cg->ref, release_css_set);
302 static inline void put_css_set_taskexit(struct css_set *cg)
304 kref_put(&cg->ref, release_css_set_taskexit);
308 * find_existing_css_set() is a helper for
309 * find_css_set(), and checks to see whether an existing
310 * css_set is suitable.
312 * oldcg: the cgroup group that we're using before the cgroup
313 * transition
315 * cgrp: the cgroup that we're moving into
317 * template: location in which to build the desired set of subsystem
318 * state objects for the new cgroup group
320 static struct css_set *find_existing_css_set(
321 struct css_set *oldcg,
322 struct cgroup *cgrp,
323 struct cgroup_subsys_state *template[])
325 int i;
326 struct cgroupfs_root *root = cgrp->root;
327 struct hlist_head *hhead;
328 struct hlist_node *node;
329 struct css_set *cg;
331 /* Built the set of subsystem state objects that we want to
332 * see in the new css_set */
333 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
334 if (root->subsys_bits & (1UL << i)) {
335 /* Subsystem is in this hierarchy. So we want
336 * the subsystem state from the new
337 * cgroup */
338 template[i] = cgrp->subsys[i];
339 } else {
340 /* Subsystem is not in this hierarchy, so we
341 * don't want to change the subsystem state */
342 template[i] = oldcg->subsys[i];
346 hhead = css_set_hash(template);
347 hlist_for_each_entry(cg, node, hhead, hlist) {
348 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
349 /* All subsystems matched */
350 return cg;
354 /* No existing cgroup group matched */
355 return NULL;
358 static void free_cg_links(struct list_head *tmp)
360 struct cg_cgroup_link *link;
361 struct cg_cgroup_link *saved_link;
363 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
364 list_del(&link->cgrp_link_list);
365 kfree(link);
370 * allocate_cg_links() allocates "count" cg_cgroup_link structures
371 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
372 * success or a negative error
374 static int allocate_cg_links(int count, struct list_head *tmp)
376 struct cg_cgroup_link *link;
377 int i;
378 INIT_LIST_HEAD(tmp);
379 for (i = 0; i < count; i++) {
380 link = kmalloc(sizeof(*link), GFP_KERNEL);
381 if (!link) {
382 free_cg_links(tmp);
383 return -ENOMEM;
385 list_add(&link->cgrp_link_list, tmp);
387 return 0;
391 * find_css_set() takes an existing cgroup group and a
392 * cgroup object, and returns a css_set object that's
393 * equivalent to the old group, but with the given cgroup
394 * substituted into the appropriate hierarchy. Must be called with
395 * cgroup_mutex held
397 static struct css_set *find_css_set(
398 struct css_set *oldcg, struct cgroup *cgrp)
400 struct css_set *res;
401 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
402 int i;
404 struct list_head tmp_cg_links;
405 struct cg_cgroup_link *link;
407 struct hlist_head *hhead;
409 /* First see if we already have a cgroup group that matches
410 * the desired set */
411 read_lock(&css_set_lock);
412 res = find_existing_css_set(oldcg, cgrp, template);
413 if (res)
414 get_css_set(res);
415 read_unlock(&css_set_lock);
417 if (res)
418 return res;
420 res = kmalloc(sizeof(*res), GFP_KERNEL);
421 if (!res)
422 return NULL;
424 /* Allocate all the cg_cgroup_link objects that we'll need */
425 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
426 kfree(res);
427 return NULL;
430 kref_init(&res->ref);
431 INIT_LIST_HEAD(&res->cg_links);
432 INIT_LIST_HEAD(&res->tasks);
433 INIT_HLIST_NODE(&res->hlist);
435 /* Copy the set of subsystem state objects generated in
436 * find_existing_css_set() */
437 memcpy(res->subsys, template, sizeof(res->subsys));
439 write_lock(&css_set_lock);
440 /* Add reference counts and links from the new css_set. */
441 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
442 struct cgroup *cgrp = res->subsys[i]->cgroup;
443 struct cgroup_subsys *ss = subsys[i];
444 atomic_inc(&cgrp->count);
446 * We want to add a link once per cgroup, so we
447 * only do it for the first subsystem in each
448 * hierarchy
450 if (ss->root->subsys_list.next == &ss->sibling) {
451 BUG_ON(list_empty(&tmp_cg_links));
452 link = list_entry(tmp_cg_links.next,
453 struct cg_cgroup_link,
454 cgrp_link_list);
455 list_del(&link->cgrp_link_list);
456 list_add(&link->cgrp_link_list, &cgrp->css_sets);
457 link->cg = res;
458 list_add(&link->cg_link_list, &res->cg_links);
461 if (list_empty(&rootnode.subsys_list)) {
462 link = list_entry(tmp_cg_links.next,
463 struct cg_cgroup_link,
464 cgrp_link_list);
465 list_del(&link->cgrp_link_list);
466 list_add(&link->cgrp_link_list, &dummytop->css_sets);
467 link->cg = res;
468 list_add(&link->cg_link_list, &res->cg_links);
471 BUG_ON(!list_empty(&tmp_cg_links));
473 css_set_count++;
475 /* Add this cgroup group to the hash table */
476 hhead = css_set_hash(res->subsys);
477 hlist_add_head(&res->hlist, hhead);
479 write_unlock(&css_set_lock);
481 return res;
485 * There is one global cgroup mutex. We also require taking
486 * task_lock() when dereferencing a task's cgroup subsys pointers.
487 * See "The task_lock() exception", at the end of this comment.
489 * A task must hold cgroup_mutex to modify cgroups.
491 * Any task can increment and decrement the count field without lock.
492 * So in general, code holding cgroup_mutex can't rely on the count
493 * field not changing. However, if the count goes to zero, then only
494 * cgroup_attach_task() can increment it again. Because a count of zero
495 * means that no tasks are currently attached, therefore there is no
496 * way a task attached to that cgroup can fork (the other way to
497 * increment the count). So code holding cgroup_mutex can safely
498 * assume that if the count is zero, it will stay zero. Similarly, if
499 * a task holds cgroup_mutex on a cgroup with zero count, it
500 * knows that the cgroup won't be removed, as cgroup_rmdir()
501 * needs that mutex.
503 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
504 * (usually) take cgroup_mutex. These are the two most performance
505 * critical pieces of code here. The exception occurs on cgroup_exit(),
506 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
507 * is taken, and if the cgroup count is zero, a usermode call made
508 * to the release agent with the name of the cgroup (path relative to
509 * the root of cgroup file system) as the argument.
511 * A cgroup can only be deleted if both its 'count' of using tasks
512 * is zero, and its list of 'children' cgroups is empty. Since all
513 * tasks in the system use _some_ cgroup, and since there is always at
514 * least one task in the system (init, pid == 1), therefore, top_cgroup
515 * always has either children cgroups and/or using tasks. So we don't
516 * need a special hack to ensure that top_cgroup cannot be deleted.
518 * The task_lock() exception
520 * The need for this exception arises from the action of
521 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
522 * another. It does so using cgroup_mutex, however there are
523 * several performance critical places that need to reference
524 * task->cgroup without the expense of grabbing a system global
525 * mutex. Therefore except as noted below, when dereferencing or, as
526 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
527 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
528 * the task_struct routinely used for such matters.
530 * P.S. One more locking exception. RCU is used to guard the
531 * update of a tasks cgroup pointer by cgroup_attach_task()
535 * cgroup_lock - lock out any changes to cgroup structures
538 void cgroup_lock(void)
540 mutex_lock(&cgroup_mutex);
544 * cgroup_unlock - release lock on cgroup changes
546 * Undo the lock taken in a previous cgroup_lock() call.
548 void cgroup_unlock(void)
550 mutex_unlock(&cgroup_mutex);
554 * A couple of forward declarations required, due to cyclic reference loop:
555 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
556 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
557 * -> cgroup_mkdir.
560 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
561 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
562 static int cgroup_populate_dir(struct cgroup *cgrp);
563 static struct inode_operations cgroup_dir_inode_operations;
564 static struct file_operations proc_cgroupstats_operations;
566 static struct backing_dev_info cgroup_backing_dev_info = {
567 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
570 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
572 struct inode *inode = new_inode(sb);
574 if (inode) {
575 inode->i_mode = mode;
576 inode->i_uid = current->fsuid;
577 inode->i_gid = current->fsgid;
578 inode->i_blocks = 0;
579 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
580 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
582 return inode;
586 * Call subsys's pre_destroy handler.
587 * This is called before css refcnt check.
589 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
591 struct cgroup_subsys *ss;
592 for_each_subsys(cgrp->root, ss)
593 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
594 ss->pre_destroy(ss, cgrp);
595 return;
598 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
600 /* is dentry a directory ? if so, kfree() associated cgroup */
601 if (S_ISDIR(inode->i_mode)) {
602 struct cgroup *cgrp = dentry->d_fsdata;
603 struct cgroup_subsys *ss;
604 BUG_ON(!(cgroup_is_removed(cgrp)));
605 /* It's possible for external users to be holding css
606 * reference counts on a cgroup; css_put() needs to
607 * be able to access the cgroup after decrementing
608 * the reference count in order to know if it needs to
609 * queue the cgroup to be handled by the release
610 * agent */
611 synchronize_rcu();
613 mutex_lock(&cgroup_mutex);
615 * Release the subsystem state objects.
617 for_each_subsys(cgrp->root, ss) {
618 if (cgrp->subsys[ss->subsys_id])
619 ss->destroy(ss, cgrp);
622 cgrp->root->number_of_cgroups--;
623 mutex_unlock(&cgroup_mutex);
625 /* Drop the active superblock reference that we took when we
626 * created the cgroup */
627 deactivate_super(cgrp->root->sb);
629 kfree(cgrp);
631 iput(inode);
634 static void remove_dir(struct dentry *d)
636 struct dentry *parent = dget(d->d_parent);
638 d_delete(d);
639 simple_rmdir(parent->d_inode, d);
640 dput(parent);
643 static void cgroup_clear_directory(struct dentry *dentry)
645 struct list_head *node;
647 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
648 spin_lock(&dcache_lock);
649 node = dentry->d_subdirs.next;
650 while (node != &dentry->d_subdirs) {
651 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
652 list_del_init(node);
653 if (d->d_inode) {
654 /* This should never be called on a cgroup
655 * directory with child cgroups */
656 BUG_ON(d->d_inode->i_mode & S_IFDIR);
657 d = dget_locked(d);
658 spin_unlock(&dcache_lock);
659 d_delete(d);
660 simple_unlink(dentry->d_inode, d);
661 dput(d);
662 spin_lock(&dcache_lock);
664 node = dentry->d_subdirs.next;
666 spin_unlock(&dcache_lock);
670 * NOTE : the dentry must have been dget()'ed
672 static void cgroup_d_remove_dir(struct dentry *dentry)
674 cgroup_clear_directory(dentry);
676 spin_lock(&dcache_lock);
677 list_del_init(&dentry->d_u.d_child);
678 spin_unlock(&dcache_lock);
679 remove_dir(dentry);
682 static int rebind_subsystems(struct cgroupfs_root *root,
683 unsigned long final_bits)
685 unsigned long added_bits, removed_bits;
686 struct cgroup *cgrp = &root->top_cgroup;
687 int i;
689 removed_bits = root->actual_subsys_bits & ~final_bits;
690 added_bits = final_bits & ~root->actual_subsys_bits;
691 /* Check that any added subsystems are currently free */
692 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
693 unsigned long bit = 1UL << i;
694 struct cgroup_subsys *ss = subsys[i];
695 if (!(bit & added_bits))
696 continue;
697 if (ss->root != &rootnode) {
698 /* Subsystem isn't free */
699 return -EBUSY;
703 /* Currently we don't handle adding/removing subsystems when
704 * any child cgroups exist. This is theoretically supportable
705 * but involves complex error handling, so it's being left until
706 * later */
707 if (!list_empty(&cgrp->children))
708 return -EBUSY;
710 /* Process each subsystem */
711 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
712 struct cgroup_subsys *ss = subsys[i];
713 unsigned long bit = 1UL << i;
714 if (bit & added_bits) {
715 /* We're binding this subsystem to this hierarchy */
716 BUG_ON(cgrp->subsys[i]);
717 BUG_ON(!dummytop->subsys[i]);
718 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
719 cgrp->subsys[i] = dummytop->subsys[i];
720 cgrp->subsys[i]->cgroup = cgrp;
721 list_add(&ss->sibling, &root->subsys_list);
722 rcu_assign_pointer(ss->root, root);
723 if (ss->bind)
724 ss->bind(ss, cgrp);
726 } else if (bit & removed_bits) {
727 /* We're removing this subsystem */
728 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
729 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
730 if (ss->bind)
731 ss->bind(ss, dummytop);
732 dummytop->subsys[i]->cgroup = dummytop;
733 cgrp->subsys[i] = NULL;
734 rcu_assign_pointer(subsys[i]->root, &rootnode);
735 list_del(&ss->sibling);
736 } else if (bit & final_bits) {
737 /* Subsystem state should already exist */
738 BUG_ON(!cgrp->subsys[i]);
739 } else {
740 /* Subsystem state shouldn't exist */
741 BUG_ON(cgrp->subsys[i]);
744 root->subsys_bits = root->actual_subsys_bits = final_bits;
745 synchronize_rcu();
747 return 0;
750 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
752 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
753 struct cgroup_subsys *ss;
755 mutex_lock(&cgroup_mutex);
756 for_each_subsys(root, ss)
757 seq_printf(seq, ",%s", ss->name);
758 if (test_bit(ROOT_NOPREFIX, &root->flags))
759 seq_puts(seq, ",noprefix");
760 if (strlen(root->release_agent_path))
761 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
762 mutex_unlock(&cgroup_mutex);
763 return 0;
766 struct cgroup_sb_opts {
767 unsigned long subsys_bits;
768 unsigned long flags;
769 char *release_agent;
772 /* Convert a hierarchy specifier into a bitmask of subsystems and
773 * flags. */
774 static int parse_cgroupfs_options(char *data,
775 struct cgroup_sb_opts *opts)
777 char *token, *o = data ?: "all";
779 opts->subsys_bits = 0;
780 opts->flags = 0;
781 opts->release_agent = NULL;
783 while ((token = strsep(&o, ",")) != NULL) {
784 if (!*token)
785 return -EINVAL;
786 if (!strcmp(token, "all")) {
787 /* Add all non-disabled subsystems */
788 int i;
789 opts->subsys_bits = 0;
790 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
791 struct cgroup_subsys *ss = subsys[i];
792 if (!ss->disabled)
793 opts->subsys_bits |= 1ul << i;
795 } else if (!strcmp(token, "noprefix")) {
796 set_bit(ROOT_NOPREFIX, &opts->flags);
797 } else if (!strncmp(token, "release_agent=", 14)) {
798 /* Specifying two release agents is forbidden */
799 if (opts->release_agent)
800 return -EINVAL;
801 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
802 if (!opts->release_agent)
803 return -ENOMEM;
804 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
805 opts->release_agent[PATH_MAX - 1] = 0;
806 } else {
807 struct cgroup_subsys *ss;
808 int i;
809 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
810 ss = subsys[i];
811 if (!strcmp(token, ss->name)) {
812 if (!ss->disabled)
813 set_bit(i, &opts->subsys_bits);
814 break;
817 if (i == CGROUP_SUBSYS_COUNT)
818 return -ENOENT;
822 /* We can't have an empty hierarchy */
823 if (!opts->subsys_bits)
824 return -EINVAL;
826 return 0;
829 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
831 int ret = 0;
832 struct cgroupfs_root *root = sb->s_fs_info;
833 struct cgroup *cgrp = &root->top_cgroup;
834 struct cgroup_sb_opts opts;
836 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
837 mutex_lock(&cgroup_mutex);
839 /* See what subsystems are wanted */
840 ret = parse_cgroupfs_options(data, &opts);
841 if (ret)
842 goto out_unlock;
844 /* Don't allow flags to change at remount */
845 if (opts.flags != root->flags) {
846 ret = -EINVAL;
847 goto out_unlock;
850 ret = rebind_subsystems(root, opts.subsys_bits);
852 /* (re)populate subsystem files */
853 if (!ret)
854 cgroup_populate_dir(cgrp);
856 if (opts.release_agent)
857 strcpy(root->release_agent_path, opts.release_agent);
858 out_unlock:
859 if (opts.release_agent)
860 kfree(opts.release_agent);
861 mutex_unlock(&cgroup_mutex);
862 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
863 return ret;
866 static struct super_operations cgroup_ops = {
867 .statfs = simple_statfs,
868 .drop_inode = generic_delete_inode,
869 .show_options = cgroup_show_options,
870 .remount_fs = cgroup_remount,
873 static void init_cgroup_root(struct cgroupfs_root *root)
875 struct cgroup *cgrp = &root->top_cgroup;
876 INIT_LIST_HEAD(&root->subsys_list);
877 INIT_LIST_HEAD(&root->root_list);
878 root->number_of_cgroups = 1;
879 cgrp->root = root;
880 cgrp->top_cgroup = cgrp;
881 INIT_LIST_HEAD(&cgrp->sibling);
882 INIT_LIST_HEAD(&cgrp->children);
883 INIT_LIST_HEAD(&cgrp->css_sets);
884 INIT_LIST_HEAD(&cgrp->release_list);
887 static int cgroup_test_super(struct super_block *sb, void *data)
889 struct cgroupfs_root *new = data;
890 struct cgroupfs_root *root = sb->s_fs_info;
892 /* First check subsystems */
893 if (new->subsys_bits != root->subsys_bits)
894 return 0;
896 /* Next check flags */
897 if (new->flags != root->flags)
898 return 0;
900 return 1;
903 static int cgroup_set_super(struct super_block *sb, void *data)
905 int ret;
906 struct cgroupfs_root *root = data;
908 ret = set_anon_super(sb, NULL);
909 if (ret)
910 return ret;
912 sb->s_fs_info = root;
913 root->sb = sb;
915 sb->s_blocksize = PAGE_CACHE_SIZE;
916 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
917 sb->s_magic = CGROUP_SUPER_MAGIC;
918 sb->s_op = &cgroup_ops;
920 return 0;
923 static int cgroup_get_rootdir(struct super_block *sb)
925 struct inode *inode =
926 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
927 struct dentry *dentry;
929 if (!inode)
930 return -ENOMEM;
932 inode->i_fop = &simple_dir_operations;
933 inode->i_op = &cgroup_dir_inode_operations;
934 /* directories start off with i_nlink == 2 (for "." entry) */
935 inc_nlink(inode);
936 dentry = d_alloc_root(inode);
937 if (!dentry) {
938 iput(inode);
939 return -ENOMEM;
941 sb->s_root = dentry;
942 return 0;
945 static int cgroup_get_sb(struct file_system_type *fs_type,
946 int flags, const char *unused_dev_name,
947 void *data, struct vfsmount *mnt)
949 struct cgroup_sb_opts opts;
950 int ret = 0;
951 struct super_block *sb;
952 struct cgroupfs_root *root;
953 struct list_head tmp_cg_links;
955 /* First find the desired set of subsystems */
956 ret = parse_cgroupfs_options(data, &opts);
957 if (ret) {
958 if (opts.release_agent)
959 kfree(opts.release_agent);
960 return ret;
963 root = kzalloc(sizeof(*root), GFP_KERNEL);
964 if (!root) {
965 if (opts.release_agent)
966 kfree(opts.release_agent);
967 return -ENOMEM;
970 init_cgroup_root(root);
971 root->subsys_bits = opts.subsys_bits;
972 root->flags = opts.flags;
973 if (opts.release_agent) {
974 strcpy(root->release_agent_path, opts.release_agent);
975 kfree(opts.release_agent);
978 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
980 if (IS_ERR(sb)) {
981 kfree(root);
982 return PTR_ERR(sb);
985 if (sb->s_fs_info != root) {
986 /* Reusing an existing superblock */
987 BUG_ON(sb->s_root == NULL);
988 kfree(root);
989 root = NULL;
990 } else {
991 /* New superblock */
992 struct cgroup *cgrp = &root->top_cgroup;
993 struct inode *inode;
994 int i;
996 BUG_ON(sb->s_root != NULL);
998 ret = cgroup_get_rootdir(sb);
999 if (ret)
1000 goto drop_new_super;
1001 inode = sb->s_root->d_inode;
1003 mutex_lock(&inode->i_mutex);
1004 mutex_lock(&cgroup_mutex);
1007 * We're accessing css_set_count without locking
1008 * css_set_lock here, but that's OK - it can only be
1009 * increased by someone holding cgroup_lock, and
1010 * that's us. The worst that can happen is that we
1011 * have some link structures left over
1013 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1014 if (ret) {
1015 mutex_unlock(&cgroup_mutex);
1016 mutex_unlock(&inode->i_mutex);
1017 goto drop_new_super;
1020 ret = rebind_subsystems(root, root->subsys_bits);
1021 if (ret == -EBUSY) {
1022 mutex_unlock(&cgroup_mutex);
1023 mutex_unlock(&inode->i_mutex);
1024 goto drop_new_super;
1027 /* EBUSY should be the only error here */
1028 BUG_ON(ret);
1030 list_add(&root->root_list, &roots);
1031 root_count++;
1033 sb->s_root->d_fsdata = &root->top_cgroup;
1034 root->top_cgroup.dentry = sb->s_root;
1036 /* Link the top cgroup in this hierarchy into all
1037 * the css_set objects */
1038 write_lock(&css_set_lock);
1039 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1040 struct hlist_head *hhead = &css_set_table[i];
1041 struct hlist_node *node;
1042 struct css_set *cg;
1044 hlist_for_each_entry(cg, node, hhead, hlist) {
1045 struct cg_cgroup_link *link;
1047 BUG_ON(list_empty(&tmp_cg_links));
1048 link = list_entry(tmp_cg_links.next,
1049 struct cg_cgroup_link,
1050 cgrp_link_list);
1051 list_del(&link->cgrp_link_list);
1052 link->cg = cg;
1053 list_add(&link->cgrp_link_list,
1054 &root->top_cgroup.css_sets);
1055 list_add(&link->cg_link_list, &cg->cg_links);
1058 write_unlock(&css_set_lock);
1060 free_cg_links(&tmp_cg_links);
1062 BUG_ON(!list_empty(&cgrp->sibling));
1063 BUG_ON(!list_empty(&cgrp->children));
1064 BUG_ON(root->number_of_cgroups != 1);
1066 cgroup_populate_dir(cgrp);
1067 mutex_unlock(&inode->i_mutex);
1068 mutex_unlock(&cgroup_mutex);
1071 return simple_set_mnt(mnt, sb);
1073 drop_new_super:
1074 up_write(&sb->s_umount);
1075 deactivate_super(sb);
1076 free_cg_links(&tmp_cg_links);
1077 return ret;
1080 static void cgroup_kill_sb(struct super_block *sb) {
1081 struct cgroupfs_root *root = sb->s_fs_info;
1082 struct cgroup *cgrp = &root->top_cgroup;
1083 int ret;
1084 struct cg_cgroup_link *link;
1085 struct cg_cgroup_link *saved_link;
1087 BUG_ON(!root);
1089 BUG_ON(root->number_of_cgroups != 1);
1090 BUG_ON(!list_empty(&cgrp->children));
1091 BUG_ON(!list_empty(&cgrp->sibling));
1093 mutex_lock(&cgroup_mutex);
1095 /* Rebind all subsystems back to the default hierarchy */
1096 ret = rebind_subsystems(root, 0);
1097 /* Shouldn't be able to fail ... */
1098 BUG_ON(ret);
1101 * Release all the links from css_sets to this hierarchy's
1102 * root cgroup
1104 write_lock(&css_set_lock);
1106 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1107 cgrp_link_list) {
1108 list_del(&link->cg_link_list);
1109 list_del(&link->cgrp_link_list);
1110 kfree(link);
1112 write_unlock(&css_set_lock);
1114 if (!list_empty(&root->root_list)) {
1115 list_del(&root->root_list);
1116 root_count--;
1118 mutex_unlock(&cgroup_mutex);
1120 kfree(root);
1121 kill_litter_super(sb);
1124 static struct file_system_type cgroup_fs_type = {
1125 .name = "cgroup",
1126 .get_sb = cgroup_get_sb,
1127 .kill_sb = cgroup_kill_sb,
1130 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1132 return dentry->d_fsdata;
1135 static inline struct cftype *__d_cft(struct dentry *dentry)
1137 return dentry->d_fsdata;
1141 * cgroup_path - generate the path of a cgroup
1142 * @cgrp: the cgroup in question
1143 * @buf: the buffer to write the path into
1144 * @buflen: the length of the buffer
1146 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1147 * Returns 0 on success, -errno on error.
1149 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1151 char *start;
1153 if (cgrp == dummytop) {
1155 * Inactive subsystems have no dentry for their root
1156 * cgroup
1158 strcpy(buf, "/");
1159 return 0;
1162 start = buf + buflen;
1164 *--start = '\0';
1165 for (;;) {
1166 int len = cgrp->dentry->d_name.len;
1167 if ((start -= len) < buf)
1168 return -ENAMETOOLONG;
1169 memcpy(start, cgrp->dentry->d_name.name, len);
1170 cgrp = cgrp->parent;
1171 if (!cgrp)
1172 break;
1173 if (!cgrp->parent)
1174 continue;
1175 if (--start < buf)
1176 return -ENAMETOOLONG;
1177 *start = '/';
1179 memmove(buf, start, buf + buflen - start);
1180 return 0;
1184 * Return the first subsystem attached to a cgroup's hierarchy, and
1185 * its subsystem id.
1188 static void get_first_subsys(const struct cgroup *cgrp,
1189 struct cgroup_subsys_state **css, int *subsys_id)
1191 const struct cgroupfs_root *root = cgrp->root;
1192 const struct cgroup_subsys *test_ss;
1193 BUG_ON(list_empty(&root->subsys_list));
1194 test_ss = list_entry(root->subsys_list.next,
1195 struct cgroup_subsys, sibling);
1196 if (css) {
1197 *css = cgrp->subsys[test_ss->subsys_id];
1198 BUG_ON(!*css);
1200 if (subsys_id)
1201 *subsys_id = test_ss->subsys_id;
1205 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1206 * @cgrp: the cgroup the task is attaching to
1207 * @tsk: the task to be attached
1209 * Call holding cgroup_mutex. May take task_lock of
1210 * the task 'tsk' during call.
1212 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1214 int retval = 0;
1215 struct cgroup_subsys *ss;
1216 struct cgroup *oldcgrp;
1217 struct css_set *cg = tsk->cgroups;
1218 struct css_set *newcg;
1219 struct cgroupfs_root *root = cgrp->root;
1220 int subsys_id;
1222 get_first_subsys(cgrp, NULL, &subsys_id);
1224 /* Nothing to do if the task is already in that cgroup */
1225 oldcgrp = task_cgroup(tsk, subsys_id);
1226 if (cgrp == oldcgrp)
1227 return 0;
1229 for_each_subsys(root, ss) {
1230 if (ss->can_attach) {
1231 retval = ss->can_attach(ss, cgrp, tsk);
1232 if (retval)
1233 return retval;
1238 * Locate or allocate a new css_set for this task,
1239 * based on its final set of cgroups
1241 newcg = find_css_set(cg, cgrp);
1242 if (!newcg)
1243 return -ENOMEM;
1245 task_lock(tsk);
1246 if (tsk->flags & PF_EXITING) {
1247 task_unlock(tsk);
1248 put_css_set(newcg);
1249 return -ESRCH;
1251 rcu_assign_pointer(tsk->cgroups, newcg);
1252 task_unlock(tsk);
1254 /* Update the css_set linked lists if we're using them */
1255 write_lock(&css_set_lock);
1256 if (!list_empty(&tsk->cg_list)) {
1257 list_del(&tsk->cg_list);
1258 list_add(&tsk->cg_list, &newcg->tasks);
1260 write_unlock(&css_set_lock);
1262 for_each_subsys(root, ss) {
1263 if (ss->attach)
1264 ss->attach(ss, cgrp, oldcgrp, tsk);
1266 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1267 synchronize_rcu();
1268 put_css_set(cg);
1269 return 0;
1273 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1274 * held. May take task_lock of task
1276 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1278 struct task_struct *tsk;
1279 int ret;
1281 if (pid) {
1282 rcu_read_lock();
1283 tsk = find_task_by_vpid(pid);
1284 if (!tsk || tsk->flags & PF_EXITING) {
1285 rcu_read_unlock();
1286 return -ESRCH;
1288 get_task_struct(tsk);
1289 rcu_read_unlock();
1291 if ((current->euid) && (current->euid != tsk->uid)
1292 && (current->euid != tsk->suid)) {
1293 put_task_struct(tsk);
1294 return -EACCES;
1296 } else {
1297 tsk = current;
1298 get_task_struct(tsk);
1301 ret = cgroup_attach_task(cgrp, tsk);
1302 put_task_struct(tsk);
1303 return ret;
1306 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1308 int ret;
1309 if (!cgroup_lock_live_group(cgrp))
1310 return -ENODEV;
1311 ret = attach_task_by_pid(cgrp, pid);
1312 cgroup_unlock();
1313 return ret;
1316 /* The various types of files and directories in a cgroup file system */
1317 enum cgroup_filetype {
1318 FILE_ROOT,
1319 FILE_DIR,
1320 FILE_TASKLIST,
1321 FILE_NOTIFY_ON_RELEASE,
1322 FILE_RELEASE_AGENT,
1326 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1327 * @cgrp: the cgroup to be checked for liveness
1329 * On success, returns true; the lock should be later released with
1330 * cgroup_unlock(). On failure returns false with no lock held.
1332 bool cgroup_lock_live_group(struct cgroup *cgrp)
1334 mutex_lock(&cgroup_mutex);
1335 if (cgroup_is_removed(cgrp)) {
1336 mutex_unlock(&cgroup_mutex);
1337 return false;
1339 return true;
1342 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1343 const char *buffer)
1345 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1346 if (!cgroup_lock_live_group(cgrp))
1347 return -ENODEV;
1348 strcpy(cgrp->root->release_agent_path, buffer);
1349 cgroup_unlock();
1350 return 0;
1353 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1354 struct seq_file *seq)
1356 if (!cgroup_lock_live_group(cgrp))
1357 return -ENODEV;
1358 seq_puts(seq, cgrp->root->release_agent_path);
1359 seq_putc(seq, '\n');
1360 cgroup_unlock();
1361 return 0;
1364 /* A buffer size big enough for numbers or short strings */
1365 #define CGROUP_LOCAL_BUFFER_SIZE 64
1367 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1368 struct file *file,
1369 const char __user *userbuf,
1370 size_t nbytes, loff_t *unused_ppos)
1372 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1373 int retval = 0;
1374 char *end;
1376 if (!nbytes)
1377 return -EINVAL;
1378 if (nbytes >= sizeof(buffer))
1379 return -E2BIG;
1380 if (copy_from_user(buffer, userbuf, nbytes))
1381 return -EFAULT;
1383 buffer[nbytes] = 0; /* nul-terminate */
1384 strstrip(buffer);
1385 if (cft->write_u64) {
1386 u64 val = simple_strtoull(buffer, &end, 0);
1387 if (*end)
1388 return -EINVAL;
1389 retval = cft->write_u64(cgrp, cft, val);
1390 } else {
1391 s64 val = simple_strtoll(buffer, &end, 0);
1392 if (*end)
1393 return -EINVAL;
1394 retval = cft->write_s64(cgrp, cft, val);
1396 if (!retval)
1397 retval = nbytes;
1398 return retval;
1401 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1402 struct file *file,
1403 const char __user *userbuf,
1404 size_t nbytes, loff_t *unused_ppos)
1406 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1407 int retval = 0;
1408 size_t max_bytes = cft->max_write_len;
1409 char *buffer = local_buffer;
1411 if (!max_bytes)
1412 max_bytes = sizeof(local_buffer) - 1;
1413 if (nbytes >= max_bytes)
1414 return -E2BIG;
1415 /* Allocate a dynamic buffer if we need one */
1416 if (nbytes >= sizeof(local_buffer)) {
1417 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1418 if (buffer == NULL)
1419 return -ENOMEM;
1421 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1422 retval = -EFAULT;
1423 goto out;
1426 buffer[nbytes] = 0; /* nul-terminate */
1427 strstrip(buffer);
1428 retval = cft->write_string(cgrp, cft, buffer);
1429 if (!retval)
1430 retval = nbytes;
1431 out:
1432 if (buffer != local_buffer)
1433 kfree(buffer);
1434 return retval;
1437 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1438 size_t nbytes, loff_t *ppos)
1440 struct cftype *cft = __d_cft(file->f_dentry);
1441 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1443 if (!cft || cgroup_is_removed(cgrp))
1444 return -ENODEV;
1445 if (cft->write)
1446 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1447 if (cft->write_u64 || cft->write_s64)
1448 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1449 if (cft->write_string)
1450 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1451 if (cft->trigger) {
1452 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1453 return ret ? ret : nbytes;
1455 return -EINVAL;
1458 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1459 struct file *file,
1460 char __user *buf, size_t nbytes,
1461 loff_t *ppos)
1463 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1464 u64 val = cft->read_u64(cgrp, cft);
1465 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1467 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1470 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1471 struct file *file,
1472 char __user *buf, size_t nbytes,
1473 loff_t *ppos)
1475 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1476 s64 val = cft->read_s64(cgrp, cft);
1477 int len = sprintf(tmp, "%lld\n", (long long) val);
1479 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1482 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1483 size_t nbytes, loff_t *ppos)
1485 struct cftype *cft = __d_cft(file->f_dentry);
1486 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1488 if (!cft || cgroup_is_removed(cgrp))
1489 return -ENODEV;
1491 if (cft->read)
1492 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1493 if (cft->read_u64)
1494 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1495 if (cft->read_s64)
1496 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1497 return -EINVAL;
1501 * seqfile ops/methods for returning structured data. Currently just
1502 * supports string->u64 maps, but can be extended in future.
1505 struct cgroup_seqfile_state {
1506 struct cftype *cft;
1507 struct cgroup *cgroup;
1510 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1512 struct seq_file *sf = cb->state;
1513 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1516 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1518 struct cgroup_seqfile_state *state = m->private;
1519 struct cftype *cft = state->cft;
1520 if (cft->read_map) {
1521 struct cgroup_map_cb cb = {
1522 .fill = cgroup_map_add,
1523 .state = m,
1525 return cft->read_map(state->cgroup, cft, &cb);
1527 return cft->read_seq_string(state->cgroup, cft, m);
1530 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1532 struct seq_file *seq = file->private_data;
1533 kfree(seq->private);
1534 return single_release(inode, file);
1537 static struct file_operations cgroup_seqfile_operations = {
1538 .read = seq_read,
1539 .write = cgroup_file_write,
1540 .llseek = seq_lseek,
1541 .release = cgroup_seqfile_release,
1544 static int cgroup_file_open(struct inode *inode, struct file *file)
1546 int err;
1547 struct cftype *cft;
1549 err = generic_file_open(inode, file);
1550 if (err)
1551 return err;
1553 cft = __d_cft(file->f_dentry);
1554 if (!cft)
1555 return -ENODEV;
1556 if (cft->read_map || cft->read_seq_string) {
1557 struct cgroup_seqfile_state *state =
1558 kzalloc(sizeof(*state), GFP_USER);
1559 if (!state)
1560 return -ENOMEM;
1561 state->cft = cft;
1562 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1563 file->f_op = &cgroup_seqfile_operations;
1564 err = single_open(file, cgroup_seqfile_show, state);
1565 if (err < 0)
1566 kfree(state);
1567 } else if (cft->open)
1568 err = cft->open(inode, file);
1569 else
1570 err = 0;
1572 return err;
1575 static int cgroup_file_release(struct inode *inode, struct file *file)
1577 struct cftype *cft = __d_cft(file->f_dentry);
1578 if (cft->release)
1579 return cft->release(inode, file);
1580 return 0;
1584 * cgroup_rename - Only allow simple rename of directories in place.
1586 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1587 struct inode *new_dir, struct dentry *new_dentry)
1589 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1590 return -ENOTDIR;
1591 if (new_dentry->d_inode)
1592 return -EEXIST;
1593 if (old_dir != new_dir)
1594 return -EIO;
1595 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1598 static struct file_operations cgroup_file_operations = {
1599 .read = cgroup_file_read,
1600 .write = cgroup_file_write,
1601 .llseek = generic_file_llseek,
1602 .open = cgroup_file_open,
1603 .release = cgroup_file_release,
1606 static struct inode_operations cgroup_dir_inode_operations = {
1607 .lookup = simple_lookup,
1608 .mkdir = cgroup_mkdir,
1609 .rmdir = cgroup_rmdir,
1610 .rename = cgroup_rename,
1613 static int cgroup_create_file(struct dentry *dentry, int mode,
1614 struct super_block *sb)
1616 static struct dentry_operations cgroup_dops = {
1617 .d_iput = cgroup_diput,
1620 struct inode *inode;
1622 if (!dentry)
1623 return -ENOENT;
1624 if (dentry->d_inode)
1625 return -EEXIST;
1627 inode = cgroup_new_inode(mode, sb);
1628 if (!inode)
1629 return -ENOMEM;
1631 if (S_ISDIR(mode)) {
1632 inode->i_op = &cgroup_dir_inode_operations;
1633 inode->i_fop = &simple_dir_operations;
1635 /* start off with i_nlink == 2 (for "." entry) */
1636 inc_nlink(inode);
1638 /* start with the directory inode held, so that we can
1639 * populate it without racing with another mkdir */
1640 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1641 } else if (S_ISREG(mode)) {
1642 inode->i_size = 0;
1643 inode->i_fop = &cgroup_file_operations;
1645 dentry->d_op = &cgroup_dops;
1646 d_instantiate(dentry, inode);
1647 dget(dentry); /* Extra count - pin the dentry in core */
1648 return 0;
1652 * cgroup_create_dir - create a directory for an object.
1653 * @cgrp: the cgroup we create the directory for. It must have a valid
1654 * ->parent field. And we are going to fill its ->dentry field.
1655 * @dentry: dentry of the new cgroup
1656 * @mode: mode to set on new directory.
1658 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1659 int mode)
1661 struct dentry *parent;
1662 int error = 0;
1664 parent = cgrp->parent->dentry;
1665 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1666 if (!error) {
1667 dentry->d_fsdata = cgrp;
1668 inc_nlink(parent->d_inode);
1669 cgrp->dentry = dentry;
1670 dget(dentry);
1672 dput(dentry);
1674 return error;
1677 int cgroup_add_file(struct cgroup *cgrp,
1678 struct cgroup_subsys *subsys,
1679 const struct cftype *cft)
1681 struct dentry *dir = cgrp->dentry;
1682 struct dentry *dentry;
1683 int error;
1685 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1686 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1687 strcpy(name, subsys->name);
1688 strcat(name, ".");
1690 strcat(name, cft->name);
1691 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1692 dentry = lookup_one_len(name, dir, strlen(name));
1693 if (!IS_ERR(dentry)) {
1694 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1695 cgrp->root->sb);
1696 if (!error)
1697 dentry->d_fsdata = (void *)cft;
1698 dput(dentry);
1699 } else
1700 error = PTR_ERR(dentry);
1701 return error;
1704 int cgroup_add_files(struct cgroup *cgrp,
1705 struct cgroup_subsys *subsys,
1706 const struct cftype cft[],
1707 int count)
1709 int i, err;
1710 for (i = 0; i < count; i++) {
1711 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1712 if (err)
1713 return err;
1715 return 0;
1719 * cgroup_task_count - count the number of tasks in a cgroup.
1720 * @cgrp: the cgroup in question
1722 * Return the number of tasks in the cgroup.
1724 int cgroup_task_count(const struct cgroup *cgrp)
1726 int count = 0;
1727 struct cg_cgroup_link *link;
1729 read_lock(&css_set_lock);
1730 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1731 count += atomic_read(&link->cg->ref.refcount);
1733 read_unlock(&css_set_lock);
1734 return count;
1738 * Advance a list_head iterator. The iterator should be positioned at
1739 * the start of a css_set
1741 static void cgroup_advance_iter(struct cgroup *cgrp,
1742 struct cgroup_iter *it)
1744 struct list_head *l = it->cg_link;
1745 struct cg_cgroup_link *link;
1746 struct css_set *cg;
1748 /* Advance to the next non-empty css_set */
1749 do {
1750 l = l->next;
1751 if (l == &cgrp->css_sets) {
1752 it->cg_link = NULL;
1753 return;
1755 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1756 cg = link->cg;
1757 } while (list_empty(&cg->tasks));
1758 it->cg_link = l;
1759 it->task = cg->tasks.next;
1763 * To reduce the fork() overhead for systems that are not actually
1764 * using their cgroups capability, we don't maintain the lists running
1765 * through each css_set to its tasks until we see the list actually
1766 * used - in other words after the first call to cgroup_iter_start().
1768 * The tasklist_lock is not held here, as do_each_thread() and
1769 * while_each_thread() are protected by RCU.
1771 static void cgroup_enable_task_cg_lists(void)
1773 struct task_struct *p, *g;
1774 write_lock(&css_set_lock);
1775 use_task_css_set_links = 1;
1776 do_each_thread(g, p) {
1777 task_lock(p);
1779 * We should check if the process is exiting, otherwise
1780 * it will race with cgroup_exit() in that the list
1781 * entry won't be deleted though the process has exited.
1783 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1784 list_add(&p->cg_list, &p->cgroups->tasks);
1785 task_unlock(p);
1786 } while_each_thread(g, p);
1787 write_unlock(&css_set_lock);
1790 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1793 * The first time anyone tries to iterate across a cgroup,
1794 * we need to enable the list linking each css_set to its
1795 * tasks, and fix up all existing tasks.
1797 if (!use_task_css_set_links)
1798 cgroup_enable_task_cg_lists();
1800 read_lock(&css_set_lock);
1801 it->cg_link = &cgrp->css_sets;
1802 cgroup_advance_iter(cgrp, it);
1805 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1806 struct cgroup_iter *it)
1808 struct task_struct *res;
1809 struct list_head *l = it->task;
1811 /* If the iterator cg is NULL, we have no tasks */
1812 if (!it->cg_link)
1813 return NULL;
1814 res = list_entry(l, struct task_struct, cg_list);
1815 /* Advance iterator to find next entry */
1816 l = l->next;
1817 if (l == &res->cgroups->tasks) {
1818 /* We reached the end of this task list - move on to
1819 * the next cg_cgroup_link */
1820 cgroup_advance_iter(cgrp, it);
1821 } else {
1822 it->task = l;
1824 return res;
1827 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1829 read_unlock(&css_set_lock);
1832 static inline int started_after_time(struct task_struct *t1,
1833 struct timespec *time,
1834 struct task_struct *t2)
1836 int start_diff = timespec_compare(&t1->start_time, time);
1837 if (start_diff > 0) {
1838 return 1;
1839 } else if (start_diff < 0) {
1840 return 0;
1841 } else {
1843 * Arbitrarily, if two processes started at the same
1844 * time, we'll say that the lower pointer value
1845 * started first. Note that t2 may have exited by now
1846 * so this may not be a valid pointer any longer, but
1847 * that's fine - it still serves to distinguish
1848 * between two tasks started (effectively) simultaneously.
1850 return t1 > t2;
1855 * This function is a callback from heap_insert() and is used to order
1856 * the heap.
1857 * In this case we order the heap in descending task start time.
1859 static inline int started_after(void *p1, void *p2)
1861 struct task_struct *t1 = p1;
1862 struct task_struct *t2 = p2;
1863 return started_after_time(t1, &t2->start_time, t2);
1867 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1868 * @scan: struct cgroup_scanner containing arguments for the scan
1870 * Arguments include pointers to callback functions test_task() and
1871 * process_task().
1872 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1873 * and if it returns true, call process_task() for it also.
1874 * The test_task pointer may be NULL, meaning always true (select all tasks).
1875 * Effectively duplicates cgroup_iter_{start,next,end}()
1876 * but does not lock css_set_lock for the call to process_task().
1877 * The struct cgroup_scanner may be embedded in any structure of the caller's
1878 * creation.
1879 * It is guaranteed that process_task() will act on every task that
1880 * is a member of the cgroup for the duration of this call. This
1881 * function may or may not call process_task() for tasks that exit
1882 * or move to a different cgroup during the call, or are forked or
1883 * move into the cgroup during the call.
1885 * Note that test_task() may be called with locks held, and may in some
1886 * situations be called multiple times for the same task, so it should
1887 * be cheap.
1888 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1889 * pre-allocated and will be used for heap operations (and its "gt" member will
1890 * be overwritten), else a temporary heap will be used (allocation of which
1891 * may cause this function to fail).
1893 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1895 int retval, i;
1896 struct cgroup_iter it;
1897 struct task_struct *p, *dropped;
1898 /* Never dereference latest_task, since it's not refcounted */
1899 struct task_struct *latest_task = NULL;
1900 struct ptr_heap tmp_heap;
1901 struct ptr_heap *heap;
1902 struct timespec latest_time = { 0, 0 };
1904 if (scan->heap) {
1905 /* The caller supplied our heap and pre-allocated its memory */
1906 heap = scan->heap;
1907 heap->gt = &started_after;
1908 } else {
1909 /* We need to allocate our own heap memory */
1910 heap = &tmp_heap;
1911 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1912 if (retval)
1913 /* cannot allocate the heap */
1914 return retval;
1917 again:
1919 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1920 * to determine which are of interest, and using the scanner's
1921 * "process_task" callback to process any of them that need an update.
1922 * Since we don't want to hold any locks during the task updates,
1923 * gather tasks to be processed in a heap structure.
1924 * The heap is sorted by descending task start time.
1925 * If the statically-sized heap fills up, we overflow tasks that
1926 * started later, and in future iterations only consider tasks that
1927 * started after the latest task in the previous pass. This
1928 * guarantees forward progress and that we don't miss any tasks.
1930 heap->size = 0;
1931 cgroup_iter_start(scan->cg, &it);
1932 while ((p = cgroup_iter_next(scan->cg, &it))) {
1934 * Only affect tasks that qualify per the caller's callback,
1935 * if he provided one
1937 if (scan->test_task && !scan->test_task(p, scan))
1938 continue;
1940 * Only process tasks that started after the last task
1941 * we processed
1943 if (!started_after_time(p, &latest_time, latest_task))
1944 continue;
1945 dropped = heap_insert(heap, p);
1946 if (dropped == NULL) {
1948 * The new task was inserted; the heap wasn't
1949 * previously full
1951 get_task_struct(p);
1952 } else if (dropped != p) {
1954 * The new task was inserted, and pushed out a
1955 * different task
1957 get_task_struct(p);
1958 put_task_struct(dropped);
1961 * Else the new task was newer than anything already in
1962 * the heap and wasn't inserted
1965 cgroup_iter_end(scan->cg, &it);
1967 if (heap->size) {
1968 for (i = 0; i < heap->size; i++) {
1969 struct task_struct *q = heap->ptrs[i];
1970 if (i == 0) {
1971 latest_time = q->start_time;
1972 latest_task = q;
1974 /* Process the task per the caller's callback */
1975 scan->process_task(q, scan);
1976 put_task_struct(q);
1979 * If we had to process any tasks at all, scan again
1980 * in case some of them were in the middle of forking
1981 * children that didn't get processed.
1982 * Not the most efficient way to do it, but it avoids
1983 * having to take callback_mutex in the fork path
1985 goto again;
1987 if (heap == &tmp_heap)
1988 heap_free(&tmp_heap);
1989 return 0;
1993 * Stuff for reading the 'tasks' file.
1995 * Reading this file can return large amounts of data if a cgroup has
1996 * *lots* of attached tasks. So it may need several calls to read(),
1997 * but we cannot guarantee that the information we produce is correct
1998 * unless we produce it entirely atomically.
2000 * Upon tasks file open(), a struct ctr_struct is allocated, that
2001 * will have a pointer to an array (also allocated here). The struct
2002 * ctr_struct * is stored in file->private_data. Its resources will
2003 * be freed by release() when the file is closed. The array is used
2004 * to sprintf the PIDs and then used by read().
2006 struct ctr_struct {
2007 char *buf;
2008 int bufsz;
2012 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2013 * 'cgrp'. Return actual number of pids loaded. No need to
2014 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2015 * read section, so the css_set can't go away, and is
2016 * immutable after creation.
2018 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2020 int n = 0;
2021 struct cgroup_iter it;
2022 struct task_struct *tsk;
2023 cgroup_iter_start(cgrp, &it);
2024 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2025 if (unlikely(n == npids))
2026 break;
2027 pidarray[n++] = task_pid_vnr(tsk);
2029 cgroup_iter_end(cgrp, &it);
2030 return n;
2034 * cgroupstats_build - build and fill cgroupstats
2035 * @stats: cgroupstats to fill information into
2036 * @dentry: A dentry entry belonging to the cgroup for which stats have
2037 * been requested.
2039 * Build and fill cgroupstats so that taskstats can export it to user
2040 * space.
2042 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2044 int ret = -EINVAL;
2045 struct cgroup *cgrp;
2046 struct cgroup_iter it;
2047 struct task_struct *tsk;
2049 * Validate dentry by checking the superblock operations
2051 if (dentry->d_sb->s_op != &cgroup_ops)
2052 goto err;
2054 ret = 0;
2055 cgrp = dentry->d_fsdata;
2056 rcu_read_lock();
2058 cgroup_iter_start(cgrp, &it);
2059 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2060 switch (tsk->state) {
2061 case TASK_RUNNING:
2062 stats->nr_running++;
2063 break;
2064 case TASK_INTERRUPTIBLE:
2065 stats->nr_sleeping++;
2066 break;
2067 case TASK_UNINTERRUPTIBLE:
2068 stats->nr_uninterruptible++;
2069 break;
2070 case TASK_STOPPED:
2071 stats->nr_stopped++;
2072 break;
2073 default:
2074 if (delayacct_is_task_waiting_on_io(tsk))
2075 stats->nr_io_wait++;
2076 break;
2079 cgroup_iter_end(cgrp, &it);
2081 rcu_read_unlock();
2082 err:
2083 return ret;
2086 static int cmppid(const void *a, const void *b)
2088 return *(pid_t *)a - *(pid_t *)b;
2092 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2093 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2094 * count 'cnt' of how many chars would be written if buf were large enough.
2096 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2098 int cnt = 0;
2099 int i;
2101 for (i = 0; i < npids; i++)
2102 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2103 return cnt;
2107 * Handle an open on 'tasks' file. Prepare a buffer listing the
2108 * process id's of tasks currently attached to the cgroup being opened.
2110 * Does not require any specific cgroup mutexes, and does not take any.
2112 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2114 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2115 struct ctr_struct *ctr;
2116 pid_t *pidarray;
2117 int npids;
2118 char c;
2120 if (!(file->f_mode & FMODE_READ))
2121 return 0;
2123 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2124 if (!ctr)
2125 goto err0;
2128 * If cgroup gets more users after we read count, we won't have
2129 * enough space - tough. This race is indistinguishable to the
2130 * caller from the case that the additional cgroup users didn't
2131 * show up until sometime later on.
2133 npids = cgroup_task_count(cgrp);
2134 if (npids) {
2135 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2136 if (!pidarray)
2137 goto err1;
2139 npids = pid_array_load(pidarray, npids, cgrp);
2140 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2142 /* Call pid_array_to_buf() twice, first just to get bufsz */
2143 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2144 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2145 if (!ctr->buf)
2146 goto err2;
2147 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2149 kfree(pidarray);
2150 } else {
2151 ctr->buf = NULL;
2152 ctr->bufsz = 0;
2154 file->private_data = ctr;
2155 return 0;
2157 err2:
2158 kfree(pidarray);
2159 err1:
2160 kfree(ctr);
2161 err0:
2162 return -ENOMEM;
2165 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2166 struct cftype *cft,
2167 struct file *file, char __user *buf,
2168 size_t nbytes, loff_t *ppos)
2170 struct ctr_struct *ctr = file->private_data;
2172 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2175 static int cgroup_tasks_release(struct inode *unused_inode,
2176 struct file *file)
2178 struct ctr_struct *ctr;
2180 if (file->f_mode & FMODE_READ) {
2181 ctr = file->private_data;
2182 kfree(ctr->buf);
2183 kfree(ctr);
2185 return 0;
2188 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2189 struct cftype *cft)
2191 return notify_on_release(cgrp);
2194 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2195 struct cftype *cft,
2196 u64 val)
2198 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2199 if (val)
2200 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2201 else
2202 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2203 return 0;
2207 * for the common functions, 'private' gives the type of file
2209 static struct cftype files[] = {
2211 .name = "tasks",
2212 .open = cgroup_tasks_open,
2213 .read = cgroup_tasks_read,
2214 .write_u64 = cgroup_tasks_write,
2215 .release = cgroup_tasks_release,
2216 .private = FILE_TASKLIST,
2220 .name = "notify_on_release",
2221 .read_u64 = cgroup_read_notify_on_release,
2222 .write_u64 = cgroup_write_notify_on_release,
2223 .private = FILE_NOTIFY_ON_RELEASE,
2227 static struct cftype cft_release_agent = {
2228 .name = "release_agent",
2229 .read_seq_string = cgroup_release_agent_show,
2230 .write_string = cgroup_release_agent_write,
2231 .max_write_len = PATH_MAX,
2232 .private = FILE_RELEASE_AGENT,
2235 static int cgroup_populate_dir(struct cgroup *cgrp)
2237 int err;
2238 struct cgroup_subsys *ss;
2240 /* First clear out any existing files */
2241 cgroup_clear_directory(cgrp->dentry);
2243 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2244 if (err < 0)
2245 return err;
2247 if (cgrp == cgrp->top_cgroup) {
2248 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2249 return err;
2252 for_each_subsys(cgrp->root, ss) {
2253 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2254 return err;
2257 return 0;
2260 static void init_cgroup_css(struct cgroup_subsys_state *css,
2261 struct cgroup_subsys *ss,
2262 struct cgroup *cgrp)
2264 css->cgroup = cgrp;
2265 atomic_set(&css->refcnt, 0);
2266 css->flags = 0;
2267 if (cgrp == dummytop)
2268 set_bit(CSS_ROOT, &css->flags);
2269 BUG_ON(cgrp->subsys[ss->subsys_id]);
2270 cgrp->subsys[ss->subsys_id] = css;
2274 * cgroup_create - create a cgroup
2275 * @parent: cgroup that will be parent of the new cgroup
2276 * @dentry: dentry of the new cgroup
2277 * @mode: mode to set on new inode
2279 * Must be called with the mutex on the parent inode held
2281 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2282 int mode)
2284 struct cgroup *cgrp;
2285 struct cgroupfs_root *root = parent->root;
2286 int err = 0;
2287 struct cgroup_subsys *ss;
2288 struct super_block *sb = root->sb;
2290 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2291 if (!cgrp)
2292 return -ENOMEM;
2294 /* Grab a reference on the superblock so the hierarchy doesn't
2295 * get deleted on unmount if there are child cgroups. This
2296 * can be done outside cgroup_mutex, since the sb can't
2297 * disappear while someone has an open control file on the
2298 * fs */
2299 atomic_inc(&sb->s_active);
2301 mutex_lock(&cgroup_mutex);
2303 INIT_LIST_HEAD(&cgrp->sibling);
2304 INIT_LIST_HEAD(&cgrp->children);
2305 INIT_LIST_HEAD(&cgrp->css_sets);
2306 INIT_LIST_HEAD(&cgrp->release_list);
2308 cgrp->parent = parent;
2309 cgrp->root = parent->root;
2310 cgrp->top_cgroup = parent->top_cgroup;
2312 if (notify_on_release(parent))
2313 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2315 for_each_subsys(root, ss) {
2316 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2317 if (IS_ERR(css)) {
2318 err = PTR_ERR(css);
2319 goto err_destroy;
2321 init_cgroup_css(css, ss, cgrp);
2324 list_add(&cgrp->sibling, &cgrp->parent->children);
2325 root->number_of_cgroups++;
2327 err = cgroup_create_dir(cgrp, dentry, mode);
2328 if (err < 0)
2329 goto err_remove;
2331 /* The cgroup directory was pre-locked for us */
2332 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2334 err = cgroup_populate_dir(cgrp);
2335 /* If err < 0, we have a half-filled directory - oh well ;) */
2337 mutex_unlock(&cgroup_mutex);
2338 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2340 return 0;
2342 err_remove:
2344 list_del(&cgrp->sibling);
2345 root->number_of_cgroups--;
2347 err_destroy:
2349 for_each_subsys(root, ss) {
2350 if (cgrp->subsys[ss->subsys_id])
2351 ss->destroy(ss, cgrp);
2354 mutex_unlock(&cgroup_mutex);
2356 /* Release the reference count that we took on the superblock */
2357 deactivate_super(sb);
2359 kfree(cgrp);
2360 return err;
2363 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2365 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2367 /* the vfs holds inode->i_mutex already */
2368 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2371 static int cgroup_has_css_refs(struct cgroup *cgrp)
2373 /* Check the reference count on each subsystem. Since we
2374 * already established that there are no tasks in the
2375 * cgroup, if the css refcount is also 0, then there should
2376 * be no outstanding references, so the subsystem is safe to
2377 * destroy. We scan across all subsystems rather than using
2378 * the per-hierarchy linked list of mounted subsystems since
2379 * we can be called via check_for_release() with no
2380 * synchronization other than RCU, and the subsystem linked
2381 * list isn't RCU-safe */
2382 int i;
2383 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2384 struct cgroup_subsys *ss = subsys[i];
2385 struct cgroup_subsys_state *css;
2386 /* Skip subsystems not in this hierarchy */
2387 if (ss->root != cgrp->root)
2388 continue;
2389 css = cgrp->subsys[ss->subsys_id];
2390 /* When called from check_for_release() it's possible
2391 * that by this point the cgroup has been removed
2392 * and the css deleted. But a false-positive doesn't
2393 * matter, since it can only happen if the cgroup
2394 * has been deleted and hence no longer needs the
2395 * release agent to be called anyway. */
2396 if (css && atomic_read(&css->refcnt))
2397 return 1;
2399 return 0;
2402 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2404 struct cgroup *cgrp = dentry->d_fsdata;
2405 struct dentry *d;
2406 struct cgroup *parent;
2407 struct super_block *sb;
2408 struct cgroupfs_root *root;
2410 /* the vfs holds both inode->i_mutex already */
2412 mutex_lock(&cgroup_mutex);
2413 if (atomic_read(&cgrp->count) != 0) {
2414 mutex_unlock(&cgroup_mutex);
2415 return -EBUSY;
2417 if (!list_empty(&cgrp->children)) {
2418 mutex_unlock(&cgroup_mutex);
2419 return -EBUSY;
2422 parent = cgrp->parent;
2423 root = cgrp->root;
2424 sb = root->sb;
2427 * Call pre_destroy handlers of subsys. Notify subsystems
2428 * that rmdir() request comes.
2430 cgroup_call_pre_destroy(cgrp);
2432 if (cgroup_has_css_refs(cgrp)) {
2433 mutex_unlock(&cgroup_mutex);
2434 return -EBUSY;
2437 spin_lock(&release_list_lock);
2438 set_bit(CGRP_REMOVED, &cgrp->flags);
2439 if (!list_empty(&cgrp->release_list))
2440 list_del(&cgrp->release_list);
2441 spin_unlock(&release_list_lock);
2442 /* delete my sibling from parent->children */
2443 list_del(&cgrp->sibling);
2444 spin_lock(&cgrp->dentry->d_lock);
2445 d = dget(cgrp->dentry);
2446 cgrp->dentry = NULL;
2447 spin_unlock(&d->d_lock);
2449 cgroup_d_remove_dir(d);
2450 dput(d);
2452 set_bit(CGRP_RELEASABLE, &parent->flags);
2453 check_for_release(parent);
2455 mutex_unlock(&cgroup_mutex);
2456 return 0;
2459 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2461 struct cgroup_subsys_state *css;
2463 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2465 /* Create the top cgroup state for this subsystem */
2466 ss->root = &rootnode;
2467 css = ss->create(ss, dummytop);
2468 /* We don't handle early failures gracefully */
2469 BUG_ON(IS_ERR(css));
2470 init_cgroup_css(css, ss, dummytop);
2472 /* Update the init_css_set to contain a subsys
2473 * pointer to this state - since the subsystem is
2474 * newly registered, all tasks and hence the
2475 * init_css_set is in the subsystem's top cgroup. */
2476 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2478 need_forkexit_callback |= ss->fork || ss->exit;
2479 need_mm_owner_callback |= !!ss->mm_owner_changed;
2481 /* At system boot, before all subsystems have been
2482 * registered, no tasks have been forked, so we don't
2483 * need to invoke fork callbacks here. */
2484 BUG_ON(!list_empty(&init_task.tasks));
2486 ss->active = 1;
2490 * cgroup_init_early - cgroup initialization at system boot
2492 * Initialize cgroups at system boot, and initialize any
2493 * subsystems that request early init.
2495 int __init cgroup_init_early(void)
2497 int i;
2498 kref_init(&init_css_set.ref);
2499 kref_get(&init_css_set.ref);
2500 INIT_LIST_HEAD(&init_css_set.cg_links);
2501 INIT_LIST_HEAD(&init_css_set.tasks);
2502 INIT_HLIST_NODE(&init_css_set.hlist);
2503 css_set_count = 1;
2504 init_cgroup_root(&rootnode);
2505 list_add(&rootnode.root_list, &roots);
2506 root_count = 1;
2507 init_task.cgroups = &init_css_set;
2509 init_css_set_link.cg = &init_css_set;
2510 list_add(&init_css_set_link.cgrp_link_list,
2511 &rootnode.top_cgroup.css_sets);
2512 list_add(&init_css_set_link.cg_link_list,
2513 &init_css_set.cg_links);
2515 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2516 INIT_HLIST_HEAD(&css_set_table[i]);
2518 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2519 struct cgroup_subsys *ss = subsys[i];
2521 BUG_ON(!ss->name);
2522 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2523 BUG_ON(!ss->create);
2524 BUG_ON(!ss->destroy);
2525 if (ss->subsys_id != i) {
2526 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2527 ss->name, ss->subsys_id);
2528 BUG();
2531 if (ss->early_init)
2532 cgroup_init_subsys(ss);
2534 return 0;
2538 * cgroup_init - cgroup initialization
2540 * Register cgroup filesystem and /proc file, and initialize
2541 * any subsystems that didn't request early init.
2543 int __init cgroup_init(void)
2545 int err;
2546 int i;
2547 struct hlist_head *hhead;
2549 err = bdi_init(&cgroup_backing_dev_info);
2550 if (err)
2551 return err;
2553 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2554 struct cgroup_subsys *ss = subsys[i];
2555 if (!ss->early_init)
2556 cgroup_init_subsys(ss);
2559 /* Add init_css_set to the hash table */
2560 hhead = css_set_hash(init_css_set.subsys);
2561 hlist_add_head(&init_css_set.hlist, hhead);
2563 err = register_filesystem(&cgroup_fs_type);
2564 if (err < 0)
2565 goto out;
2567 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2569 out:
2570 if (err)
2571 bdi_destroy(&cgroup_backing_dev_info);
2573 return err;
2577 * proc_cgroup_show()
2578 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2579 * - Used for /proc/<pid>/cgroup.
2580 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2581 * doesn't really matter if tsk->cgroup changes after we read it,
2582 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2583 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2584 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2585 * cgroup to top_cgroup.
2588 /* TODO: Use a proper seq_file iterator */
2589 static int proc_cgroup_show(struct seq_file *m, void *v)
2591 struct pid *pid;
2592 struct task_struct *tsk;
2593 char *buf;
2594 int retval;
2595 struct cgroupfs_root *root;
2597 retval = -ENOMEM;
2598 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2599 if (!buf)
2600 goto out;
2602 retval = -ESRCH;
2603 pid = m->private;
2604 tsk = get_pid_task(pid, PIDTYPE_PID);
2605 if (!tsk)
2606 goto out_free;
2608 retval = 0;
2610 mutex_lock(&cgroup_mutex);
2612 for_each_root(root) {
2613 struct cgroup_subsys *ss;
2614 struct cgroup *cgrp;
2615 int subsys_id;
2616 int count = 0;
2618 /* Skip this hierarchy if it has no active subsystems */
2619 if (!root->actual_subsys_bits)
2620 continue;
2621 seq_printf(m, "%lu:", root->subsys_bits);
2622 for_each_subsys(root, ss)
2623 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2624 seq_putc(m, ':');
2625 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2626 cgrp = task_cgroup(tsk, subsys_id);
2627 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2628 if (retval < 0)
2629 goto out_unlock;
2630 seq_puts(m, buf);
2631 seq_putc(m, '\n');
2634 out_unlock:
2635 mutex_unlock(&cgroup_mutex);
2636 put_task_struct(tsk);
2637 out_free:
2638 kfree(buf);
2639 out:
2640 return retval;
2643 static int cgroup_open(struct inode *inode, struct file *file)
2645 struct pid *pid = PROC_I(inode)->pid;
2646 return single_open(file, proc_cgroup_show, pid);
2649 struct file_operations proc_cgroup_operations = {
2650 .open = cgroup_open,
2651 .read = seq_read,
2652 .llseek = seq_lseek,
2653 .release = single_release,
2656 /* Display information about each subsystem and each hierarchy */
2657 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2659 int i;
2661 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2662 mutex_lock(&cgroup_mutex);
2663 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2664 struct cgroup_subsys *ss = subsys[i];
2665 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2666 ss->name, ss->root->subsys_bits,
2667 ss->root->number_of_cgroups, !ss->disabled);
2669 mutex_unlock(&cgroup_mutex);
2670 return 0;
2673 static int cgroupstats_open(struct inode *inode, struct file *file)
2675 return single_open(file, proc_cgroupstats_show, NULL);
2678 static struct file_operations proc_cgroupstats_operations = {
2679 .open = cgroupstats_open,
2680 .read = seq_read,
2681 .llseek = seq_lseek,
2682 .release = single_release,
2686 * cgroup_fork - attach newly forked task to its parents cgroup.
2687 * @child: pointer to task_struct of forking parent process.
2689 * Description: A task inherits its parent's cgroup at fork().
2691 * A pointer to the shared css_set was automatically copied in
2692 * fork.c by dup_task_struct(). However, we ignore that copy, since
2693 * it was not made under the protection of RCU or cgroup_mutex, so
2694 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2695 * have already changed current->cgroups, allowing the previously
2696 * referenced cgroup group to be removed and freed.
2698 * At the point that cgroup_fork() is called, 'current' is the parent
2699 * task, and the passed argument 'child' points to the child task.
2701 void cgroup_fork(struct task_struct *child)
2703 task_lock(current);
2704 child->cgroups = current->cgroups;
2705 get_css_set(child->cgroups);
2706 task_unlock(current);
2707 INIT_LIST_HEAD(&child->cg_list);
2711 * cgroup_fork_callbacks - run fork callbacks
2712 * @child: the new task
2714 * Called on a new task very soon before adding it to the
2715 * tasklist. No need to take any locks since no-one can
2716 * be operating on this task.
2718 void cgroup_fork_callbacks(struct task_struct *child)
2720 if (need_forkexit_callback) {
2721 int i;
2722 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2723 struct cgroup_subsys *ss = subsys[i];
2724 if (ss->fork)
2725 ss->fork(ss, child);
2730 #ifdef CONFIG_MM_OWNER
2732 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2733 * @p: the new owner
2735 * Called on every change to mm->owner. mm_init_owner() does not
2736 * invoke this routine, since it assigns the mm->owner the first time
2737 * and does not change it.
2739 void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2741 struct cgroup *oldcgrp, *newcgrp = NULL;
2743 if (need_mm_owner_callback) {
2744 int i;
2745 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2746 struct cgroup_subsys *ss = subsys[i];
2747 oldcgrp = task_cgroup(old, ss->subsys_id);
2748 if (new)
2749 newcgrp = task_cgroup(new, ss->subsys_id);
2750 if (oldcgrp == newcgrp)
2751 continue;
2752 if (ss->mm_owner_changed)
2753 ss->mm_owner_changed(ss, oldcgrp, newcgrp);
2757 #endif /* CONFIG_MM_OWNER */
2760 * cgroup_post_fork - called on a new task after adding it to the task list
2761 * @child: the task in question
2763 * Adds the task to the list running through its css_set if necessary.
2764 * Has to be after the task is visible on the task list in case we race
2765 * with the first call to cgroup_iter_start() - to guarantee that the
2766 * new task ends up on its list.
2768 void cgroup_post_fork(struct task_struct *child)
2770 if (use_task_css_set_links) {
2771 write_lock(&css_set_lock);
2772 if (list_empty(&child->cg_list))
2773 list_add(&child->cg_list, &child->cgroups->tasks);
2774 write_unlock(&css_set_lock);
2778 * cgroup_exit - detach cgroup from exiting task
2779 * @tsk: pointer to task_struct of exiting process
2780 * @run_callback: run exit callbacks?
2782 * Description: Detach cgroup from @tsk and release it.
2784 * Note that cgroups marked notify_on_release force every task in
2785 * them to take the global cgroup_mutex mutex when exiting.
2786 * This could impact scaling on very large systems. Be reluctant to
2787 * use notify_on_release cgroups where very high task exit scaling
2788 * is required on large systems.
2790 * the_top_cgroup_hack:
2792 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2794 * We call cgroup_exit() while the task is still competent to
2795 * handle notify_on_release(), then leave the task attached to the
2796 * root cgroup in each hierarchy for the remainder of its exit.
2798 * To do this properly, we would increment the reference count on
2799 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2800 * code we would add a second cgroup function call, to drop that
2801 * reference. This would just create an unnecessary hot spot on
2802 * the top_cgroup reference count, to no avail.
2804 * Normally, holding a reference to a cgroup without bumping its
2805 * count is unsafe. The cgroup could go away, or someone could
2806 * attach us to a different cgroup, decrementing the count on
2807 * the first cgroup that we never incremented. But in this case,
2808 * top_cgroup isn't going away, and either task has PF_EXITING set,
2809 * which wards off any cgroup_attach_task() attempts, or task is a failed
2810 * fork, never visible to cgroup_attach_task.
2812 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2814 int i;
2815 struct css_set *cg;
2817 if (run_callbacks && need_forkexit_callback) {
2818 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2819 struct cgroup_subsys *ss = subsys[i];
2820 if (ss->exit)
2821 ss->exit(ss, tsk);
2826 * Unlink from the css_set task list if necessary.
2827 * Optimistically check cg_list before taking
2828 * css_set_lock
2830 if (!list_empty(&tsk->cg_list)) {
2831 write_lock(&css_set_lock);
2832 if (!list_empty(&tsk->cg_list))
2833 list_del(&tsk->cg_list);
2834 write_unlock(&css_set_lock);
2837 /* Reassign the task to the init_css_set. */
2838 task_lock(tsk);
2839 cg = tsk->cgroups;
2840 tsk->cgroups = &init_css_set;
2841 task_unlock(tsk);
2842 if (cg)
2843 put_css_set_taskexit(cg);
2847 * cgroup_clone - clone the cgroup the given subsystem is attached to
2848 * @tsk: the task to be moved
2849 * @subsys: the given subsystem
2850 * @nodename: the name for the new cgroup
2852 * Duplicate the current cgroup in the hierarchy that the given
2853 * subsystem is attached to, and move this task into the new
2854 * child.
2856 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2857 char *nodename)
2859 struct dentry *dentry;
2860 int ret = 0;
2861 struct cgroup *parent, *child;
2862 struct inode *inode;
2863 struct css_set *cg;
2864 struct cgroupfs_root *root;
2865 struct cgroup_subsys *ss;
2867 /* We shouldn't be called by an unregistered subsystem */
2868 BUG_ON(!subsys->active);
2870 /* First figure out what hierarchy and cgroup we're dealing
2871 * with, and pin them so we can drop cgroup_mutex */
2872 mutex_lock(&cgroup_mutex);
2873 again:
2874 root = subsys->root;
2875 if (root == &rootnode) {
2876 printk(KERN_INFO
2877 "Not cloning cgroup for unused subsystem %s\n",
2878 subsys->name);
2879 mutex_unlock(&cgroup_mutex);
2880 return 0;
2882 cg = tsk->cgroups;
2883 parent = task_cgroup(tsk, subsys->subsys_id);
2885 /* Pin the hierarchy */
2886 atomic_inc(&parent->root->sb->s_active);
2888 /* Keep the cgroup alive */
2889 get_css_set(cg);
2890 mutex_unlock(&cgroup_mutex);
2892 /* Now do the VFS work to create a cgroup */
2893 inode = parent->dentry->d_inode;
2895 /* Hold the parent directory mutex across this operation to
2896 * stop anyone else deleting the new cgroup */
2897 mutex_lock(&inode->i_mutex);
2898 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2899 if (IS_ERR(dentry)) {
2900 printk(KERN_INFO
2901 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2902 PTR_ERR(dentry));
2903 ret = PTR_ERR(dentry);
2904 goto out_release;
2907 /* Create the cgroup directory, which also creates the cgroup */
2908 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2909 child = __d_cgrp(dentry);
2910 dput(dentry);
2911 if (ret) {
2912 printk(KERN_INFO
2913 "Failed to create cgroup %s: %d\n", nodename,
2914 ret);
2915 goto out_release;
2918 if (!child) {
2919 printk(KERN_INFO
2920 "Couldn't find new cgroup %s\n", nodename);
2921 ret = -ENOMEM;
2922 goto out_release;
2925 /* The cgroup now exists. Retake cgroup_mutex and check
2926 * that we're still in the same state that we thought we
2927 * were. */
2928 mutex_lock(&cgroup_mutex);
2929 if ((root != subsys->root) ||
2930 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2931 /* Aargh, we raced ... */
2932 mutex_unlock(&inode->i_mutex);
2933 put_css_set(cg);
2935 deactivate_super(parent->root->sb);
2936 /* The cgroup is still accessible in the VFS, but
2937 * we're not going to try to rmdir() it at this
2938 * point. */
2939 printk(KERN_INFO
2940 "Race in cgroup_clone() - leaking cgroup %s\n",
2941 nodename);
2942 goto again;
2945 /* do any required auto-setup */
2946 for_each_subsys(root, ss) {
2947 if (ss->post_clone)
2948 ss->post_clone(ss, child);
2951 /* All seems fine. Finish by moving the task into the new cgroup */
2952 ret = cgroup_attach_task(child, tsk);
2953 mutex_unlock(&cgroup_mutex);
2955 out_release:
2956 mutex_unlock(&inode->i_mutex);
2958 mutex_lock(&cgroup_mutex);
2959 put_css_set(cg);
2960 mutex_unlock(&cgroup_mutex);
2961 deactivate_super(parent->root->sb);
2962 return ret;
2966 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2967 * @cgrp: the cgroup in question
2969 * See if @cgrp is a descendant of the current task's cgroup in
2970 * the appropriate hierarchy.
2972 * If we are sending in dummytop, then presumably we are creating
2973 * the top cgroup in the subsystem.
2975 * Called only by the ns (nsproxy) cgroup.
2977 int cgroup_is_descendant(const struct cgroup *cgrp)
2979 int ret;
2980 struct cgroup *target;
2981 int subsys_id;
2983 if (cgrp == dummytop)
2984 return 1;
2986 get_first_subsys(cgrp, NULL, &subsys_id);
2987 target = task_cgroup(current, subsys_id);
2988 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2989 cgrp = cgrp->parent;
2990 ret = (cgrp == target);
2991 return ret;
2994 static void check_for_release(struct cgroup *cgrp)
2996 /* All of these checks rely on RCU to keep the cgroup
2997 * structure alive */
2998 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2999 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3000 /* Control Group is currently removeable. If it's not
3001 * already queued for a userspace notification, queue
3002 * it now */
3003 int need_schedule_work = 0;
3004 spin_lock(&release_list_lock);
3005 if (!cgroup_is_removed(cgrp) &&
3006 list_empty(&cgrp->release_list)) {
3007 list_add(&cgrp->release_list, &release_list);
3008 need_schedule_work = 1;
3010 spin_unlock(&release_list_lock);
3011 if (need_schedule_work)
3012 schedule_work(&release_agent_work);
3016 void __css_put(struct cgroup_subsys_state *css)
3018 struct cgroup *cgrp = css->cgroup;
3019 rcu_read_lock();
3020 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3021 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3022 check_for_release(cgrp);
3024 rcu_read_unlock();
3028 * Notify userspace when a cgroup is released, by running the
3029 * configured release agent with the name of the cgroup (path
3030 * relative to the root of cgroup file system) as the argument.
3032 * Most likely, this user command will try to rmdir this cgroup.
3034 * This races with the possibility that some other task will be
3035 * attached to this cgroup before it is removed, or that some other
3036 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3037 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3038 * unused, and this cgroup will be reprieved from its death sentence,
3039 * to continue to serve a useful existence. Next time it's released,
3040 * we will get notified again, if it still has 'notify_on_release' set.
3042 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3043 * means only wait until the task is successfully execve()'d. The
3044 * separate release agent task is forked by call_usermodehelper(),
3045 * then control in this thread returns here, without waiting for the
3046 * release agent task. We don't bother to wait because the caller of
3047 * this routine has no use for the exit status of the release agent
3048 * task, so no sense holding our caller up for that.
3050 static void cgroup_release_agent(struct work_struct *work)
3052 BUG_ON(work != &release_agent_work);
3053 mutex_lock(&cgroup_mutex);
3054 spin_lock(&release_list_lock);
3055 while (!list_empty(&release_list)) {
3056 char *argv[3], *envp[3];
3057 int i;
3058 char *pathbuf = NULL, *agentbuf = NULL;
3059 struct cgroup *cgrp = list_entry(release_list.next,
3060 struct cgroup,
3061 release_list);
3062 list_del_init(&cgrp->release_list);
3063 spin_unlock(&release_list_lock);
3064 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3065 if (!pathbuf)
3066 goto continue_free;
3067 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3068 goto continue_free;
3069 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3070 if (!agentbuf)
3071 goto continue_free;
3073 i = 0;
3074 argv[i++] = agentbuf;
3075 argv[i++] = pathbuf;
3076 argv[i] = NULL;
3078 i = 0;
3079 /* minimal command environment */
3080 envp[i++] = "HOME=/";
3081 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3082 envp[i] = NULL;
3084 /* Drop the lock while we invoke the usermode helper,
3085 * since the exec could involve hitting disk and hence
3086 * be a slow process */
3087 mutex_unlock(&cgroup_mutex);
3088 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3089 mutex_lock(&cgroup_mutex);
3090 continue_free:
3091 kfree(pathbuf);
3092 kfree(agentbuf);
3093 spin_lock(&release_list_lock);
3095 spin_unlock(&release_list_lock);
3096 mutex_unlock(&cgroup_mutex);
3099 static int __init cgroup_disable(char *str)
3101 int i;
3102 char *token;
3104 while ((token = strsep(&str, ",")) != NULL) {
3105 if (!*token)
3106 continue;
3108 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3109 struct cgroup_subsys *ss = subsys[i];
3111 if (!strcmp(token, ss->name)) {
3112 ss->disabled = 1;
3113 printk(KERN_INFO "Disabling %s control group"
3114 " subsystem\n", ss->name);
3115 break;
3119 return 1;
3121 __setup("cgroup_disable=", cgroup_disable);