[PATCH] md: Raid-6 did not create sysfs entries for stripe cache
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slab.c
blob4cbf8bb135571f620ee76b9e76cdf1186ba24889
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
155 #ifndef ARCH_SLAB_MINALIGN
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
186 * kmem_bufctl_t:
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210 /* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
213 static unsigned long offslab_limit;
216 * struct slab
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct slab {
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
232 * struct slab_rcu
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
245 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct slab_rcu {
248 struct rcu_head head;
249 struct kmem_cache *cachep;
250 void *addr;
254 * struct array_cache
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
265 struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
270 spinlock_t lock;
271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init {
285 struct array_cache cache;
286 void *entries[BOOT_CPUCACHE_ENTRIES];
290 * The slab lists for all objects.
292 struct kmem_list3 {
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
307 * Need this for bootstrapping a per node allocator.
309 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311 #define CACHE_CACHE 0
312 #define SIZE_AC 1
313 #define SIZE_L3 (1 + MAX_NUMNODES)
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
319 static __always_inline int index_of(const size_t size)
321 extern void __bad_size(void);
323 if (__builtin_constant_p(size)) {
324 int i = 0;
326 #define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331 #include "linux/kmalloc_sizes.h"
332 #undef CACHE
333 __bad_size();
334 } else
335 __bad_size();
336 return 0;
339 #define INDEX_AC index_of(sizeof(struct arraycache_init))
340 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
342 static void kmem_list3_init(struct kmem_list3 *parent)
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
349 parent->colour_next = 0;
350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
355 #define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
359 } while (0)
361 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
369 * struct kmem_cache
371 * manages a cache.
374 struct kmem_cache {
375 /* 1) per-cpu data, touched during every alloc/free */
376 struct array_cache *array[NR_CPUS];
377 /* 2) Cache tunables. Protected by cache_chain_mutex */
378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
382 unsigned int buffer_size;
383 /* 3) touched by every alloc & free from the backend */
384 struct kmem_list3 *nodelists[MAX_NUMNODES];
386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
389 /* 4) cache_grow/shrink */
390 /* order of pgs per slab (2^n) */
391 unsigned int gfporder;
393 /* force GFP flags, e.g. GFP_DMA */
394 gfp_t gfpflags;
396 size_t colour; /* cache colouring range */
397 unsigned int colour_off; /* colour offset */
398 struct kmem_cache *slabp_cache;
399 unsigned int slab_size;
400 unsigned int dflags; /* dynamic flags */
402 /* constructor func */
403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
405 /* de-constructor func */
406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
408 /* 5) cache creation/removal */
409 const char *name;
410 struct list_head next;
412 /* 6) statistics */
413 #if STATS
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
423 atomic_t allochit;
424 atomic_t allocmiss;
425 atomic_t freehit;
426 atomic_t freemiss;
427 #endif
428 #if DEBUG
430 * If debugging is enabled, then the allocator can add additional
431 * fields and/or padding to every object. buffer_size contains the total
432 * object size including these internal fields, the following two
433 * variables contain the offset to the user object and its size.
435 int obj_offset;
436 int obj_size;
437 #endif
440 #define CFLGS_OFF_SLAB (0x80000000UL)
441 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
443 #define BATCHREFILL_LIMIT 16
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
448 * OTOH the cpuarrays can contain lots of objects,
449 * which could lock up otherwise freeable slabs.
451 #define REAPTIMEOUT_CPUC (2*HZ)
452 #define REAPTIMEOUT_LIST3 (4*HZ)
454 #if STATS
455 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
456 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
457 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
458 #define STATS_INC_GROWN(x) ((x)->grown++)
459 #define STATS_INC_REAPED(x) ((x)->reaped++)
460 #define STATS_SET_HIGH(x) \
461 do { \
462 if ((x)->num_active > (x)->high_mark) \
463 (x)->high_mark = (x)->num_active; \
464 } while (0)
465 #define STATS_INC_ERR(x) ((x)->errors++)
466 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
467 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
468 #define STATS_SET_FREEABLE(x, i) \
469 do { \
470 if ((x)->max_freeable < i) \
471 (x)->max_freeable = i; \
472 } while (0)
473 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
474 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
475 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
476 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
477 #else
478 #define STATS_INC_ACTIVE(x) do { } while (0)
479 #define STATS_DEC_ACTIVE(x) do { } while (0)
480 #define STATS_INC_ALLOCED(x) do { } while (0)
481 #define STATS_INC_GROWN(x) do { } while (0)
482 #define STATS_INC_REAPED(x) do { } while (0)
483 #define STATS_SET_HIGH(x) do { } while (0)
484 #define STATS_INC_ERR(x) do { } while (0)
485 #define STATS_INC_NODEALLOCS(x) do { } while (0)
486 #define STATS_INC_NODEFREES(x) do { } while (0)
487 #define STATS_SET_FREEABLE(x, i) do { } while (0)
488 #define STATS_INC_ALLOCHIT(x) do { } while (0)
489 #define STATS_INC_ALLOCMISS(x) do { } while (0)
490 #define STATS_INC_FREEHIT(x) do { } while (0)
491 #define STATS_INC_FREEMISS(x) do { } while (0)
492 #endif
494 #if DEBUG
496 * Magic nums for obj red zoning.
497 * Placed in the first word before and the first word after an obj.
499 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
500 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
502 /* ...and for poisoning */
503 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
504 #define POISON_FREE 0x6b /* for use-after-free poisoning */
505 #define POISON_END 0xa5 /* end-byte of poisoning */
508 * memory layout of objects:
509 * 0 : objp
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
514 * redzone word.
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
520 static int obj_offset(struct kmem_cache *cachep)
522 return cachep->obj_offset;
525 static int obj_size(struct kmem_cache *cachep)
527 return cachep->obj_size;
530 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
536 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
540 return (unsigned long *)(objp + cachep->buffer_size -
541 2 * BYTES_PER_WORD);
542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
545 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
551 #else
553 #define obj_offset(x) 0
554 #define obj_size(cachep) (cachep->buffer_size)
555 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
559 #endif
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
565 #if defined(CONFIG_LARGE_ALLOCS)
566 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
567 #define MAX_GFP_ORDER 13 /* up to 32Mb */
568 #elif defined(CONFIG_MMU)
569 #define MAX_OBJ_ORDER 5 /* 32 pages */
570 #define MAX_GFP_ORDER 5 /* 32 pages */
571 #else
572 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
573 #define MAX_GFP_ORDER 8 /* up to 1Mb */
574 #endif
577 * Do not go above this order unless 0 objects fit into the slab.
579 #define BREAK_GFP_ORDER_HI 1
580 #define BREAK_GFP_ORDER_LO 0
581 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
588 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
590 page->lru.next = (struct list_head *)cache;
593 static inline struct kmem_cache *page_get_cache(struct page *page)
595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
597 return (struct kmem_cache *)page->lru.next;
600 static inline void page_set_slab(struct page *page, struct slab *slab)
602 page->lru.prev = (struct list_head *)slab;
605 static inline struct slab *page_get_slab(struct page *page)
607 if (unlikely(PageCompound(page)))
608 page = (struct page *)page_private(page);
609 return (struct slab *)page->lru.prev;
612 static inline struct kmem_cache *virt_to_cache(const void *obj)
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
618 static inline struct slab *virt_to_slab(const void *obj)
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
624 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
627 return slab->s_mem + cache->buffer_size * idx;
630 static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 struct cache_sizes malloc_sizes[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643 #undef CACHE
645 EXPORT_SYMBOL(malloc_sizes);
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
648 struct cache_names {
649 char *name;
650 char *name_dma;
653 static struct cache_names __initdata cache_names[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
656 {NULL,}
657 #undef CACHE
660 static struct arraycache_init initarray_cache __initdata =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662 static struct arraycache_init initarray_generic =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache = {
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
670 .buffer_size = sizeof(struct kmem_cache),
671 .name = "kmem_cache",
672 #if DEBUG
673 .obj_size = sizeof(struct kmem_cache),
674 #endif
677 /* Guard access to the cache-chain. */
678 static DEFINE_MUTEX(cache_chain_mutex);
679 static struct list_head cache_chain;
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
687 atomic_t slab_reclaim_pages;
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
693 static enum {
694 NONE,
695 PARTIAL_AC,
696 PARTIAL_L3,
697 FULL
698 } g_cpucache_up;
700 static DEFINE_PER_CPU(struct work_struct, reap_work);
702 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703 int node);
704 static void enable_cpucache(struct kmem_cache *cachep);
705 static void cache_reap(void *unused);
706 static int __node_shrink(struct kmem_cache *cachep, int node);
708 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
710 return cachep->array[smp_processor_id()];
713 static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
716 struct cache_sizes *csizep = malloc_sizes;
718 #if DEBUG
719 /* This happens if someone tries to call
720 * kmem_cache_create(), or __kmalloc(), before
721 * the generic caches are initialized.
723 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
724 #endif
725 while (size > csizep->cs_size)
726 csizep++;
729 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
730 * has cs_{dma,}cachep==NULL. Thus no special case
731 * for large kmalloc calls required.
733 if (unlikely(gfpflags & GFP_DMA))
734 return csizep->cs_dmacachep;
735 return csizep->cs_cachep;
738 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
740 return __find_general_cachep(size, gfpflags);
742 EXPORT_SYMBOL(kmem_find_general_cachep);
744 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
746 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
750 * Calculate the number of objects and left-over bytes for a given buffer size.
752 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
753 size_t align, int flags, size_t *left_over,
754 unsigned int *num)
756 int nr_objs;
757 size_t mgmt_size;
758 size_t slab_size = PAGE_SIZE << gfporder;
761 * The slab management structure can be either off the slab or
762 * on it. For the latter case, the memory allocated for a
763 * slab is used for:
765 * - The struct slab
766 * - One kmem_bufctl_t for each object
767 * - Padding to respect alignment of @align
768 * - @buffer_size bytes for each object
770 * If the slab management structure is off the slab, then the
771 * alignment will already be calculated into the size. Because
772 * the slabs are all pages aligned, the objects will be at the
773 * correct alignment when allocated.
775 if (flags & CFLGS_OFF_SLAB) {
776 mgmt_size = 0;
777 nr_objs = slab_size / buffer_size;
779 if (nr_objs > SLAB_LIMIT)
780 nr_objs = SLAB_LIMIT;
781 } else {
783 * Ignore padding for the initial guess. The padding
784 * is at most @align-1 bytes, and @buffer_size is at
785 * least @align. In the worst case, this result will
786 * be one greater than the number of objects that fit
787 * into the memory allocation when taking the padding
788 * into account.
790 nr_objs = (slab_size - sizeof(struct slab)) /
791 (buffer_size + sizeof(kmem_bufctl_t));
794 * This calculated number will be either the right
795 * amount, or one greater than what we want.
797 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
798 > slab_size)
799 nr_objs--;
801 if (nr_objs > SLAB_LIMIT)
802 nr_objs = SLAB_LIMIT;
804 mgmt_size = slab_mgmt_size(nr_objs, align);
806 *num = nr_objs;
807 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
810 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
812 static void __slab_error(const char *function, struct kmem_cache *cachep,
813 char *msg)
815 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
816 function, cachep->name, msg);
817 dump_stack();
820 #ifdef CONFIG_NUMA
822 * Special reaping functions for NUMA systems called from cache_reap().
823 * These take care of doing round robin flushing of alien caches (containing
824 * objects freed on different nodes from which they were allocated) and the
825 * flushing of remote pcps by calling drain_node_pages.
827 static DEFINE_PER_CPU(unsigned long, reap_node);
829 static void init_reap_node(int cpu)
831 int node;
833 node = next_node(cpu_to_node(cpu), node_online_map);
834 if (node == MAX_NUMNODES)
835 node = first_node(node_online_map);
837 __get_cpu_var(reap_node) = node;
840 static void next_reap_node(void)
842 int node = __get_cpu_var(reap_node);
845 * Also drain per cpu pages on remote zones
847 if (node != numa_node_id())
848 drain_node_pages(node);
850 node = next_node(node, node_online_map);
851 if (unlikely(node >= MAX_NUMNODES))
852 node = first_node(node_online_map);
853 __get_cpu_var(reap_node) = node;
856 #else
857 #define init_reap_node(cpu) do { } while (0)
858 #define next_reap_node(void) do { } while (0)
859 #endif
862 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
863 * via the workqueue/eventd.
864 * Add the CPU number into the expiration time to minimize the possibility of
865 * the CPUs getting into lockstep and contending for the global cache chain
866 * lock.
868 static void __devinit start_cpu_timer(int cpu)
870 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
873 * When this gets called from do_initcalls via cpucache_init(),
874 * init_workqueues() has already run, so keventd will be setup
875 * at that time.
877 if (keventd_up() && reap_work->func == NULL) {
878 init_reap_node(cpu);
879 INIT_WORK(reap_work, cache_reap, NULL);
880 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
884 static struct array_cache *alloc_arraycache(int node, int entries,
885 int batchcount)
887 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
888 struct array_cache *nc = NULL;
890 nc = kmalloc_node(memsize, GFP_KERNEL, node);
891 if (nc) {
892 nc->avail = 0;
893 nc->limit = entries;
894 nc->batchcount = batchcount;
895 nc->touched = 0;
896 spin_lock_init(&nc->lock);
898 return nc;
902 * Transfer objects in one arraycache to another.
903 * Locking must be handled by the caller.
905 * Return the number of entries transferred.
907 static int transfer_objects(struct array_cache *to,
908 struct array_cache *from, unsigned int max)
910 /* Figure out how many entries to transfer */
911 int nr = min(min(from->avail, max), to->limit - to->avail);
913 if (!nr)
914 return 0;
916 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
917 sizeof(void *) *nr);
919 from->avail -= nr;
920 to->avail += nr;
921 to->touched = 1;
922 return nr;
925 #ifdef CONFIG_NUMA
926 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
927 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
929 static struct array_cache **alloc_alien_cache(int node, int limit)
931 struct array_cache **ac_ptr;
932 int memsize = sizeof(void *) * MAX_NUMNODES;
933 int i;
935 if (limit > 1)
936 limit = 12;
937 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
938 if (ac_ptr) {
939 for_each_node(i) {
940 if (i == node || !node_online(i)) {
941 ac_ptr[i] = NULL;
942 continue;
944 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
945 if (!ac_ptr[i]) {
946 for (i--; i <= 0; i--)
947 kfree(ac_ptr[i]);
948 kfree(ac_ptr);
949 return NULL;
953 return ac_ptr;
956 static void free_alien_cache(struct array_cache **ac_ptr)
958 int i;
960 if (!ac_ptr)
961 return;
962 for_each_node(i)
963 kfree(ac_ptr[i]);
964 kfree(ac_ptr);
967 static void __drain_alien_cache(struct kmem_cache *cachep,
968 struct array_cache *ac, int node)
970 struct kmem_list3 *rl3 = cachep->nodelists[node];
972 if (ac->avail) {
973 spin_lock(&rl3->list_lock);
975 * Stuff objects into the remote nodes shared array first.
976 * That way we could avoid the overhead of putting the objects
977 * into the free lists and getting them back later.
979 transfer_objects(rl3->shared, ac, ac->limit);
981 free_block(cachep, ac->entry, ac->avail, node);
982 ac->avail = 0;
983 spin_unlock(&rl3->list_lock);
988 * Called from cache_reap() to regularly drain alien caches round robin.
990 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
992 int node = __get_cpu_var(reap_node);
994 if (l3->alien) {
995 struct array_cache *ac = l3->alien[node];
997 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
998 __drain_alien_cache(cachep, ac, node);
999 spin_unlock_irq(&ac->lock);
1004 static void drain_alien_cache(struct kmem_cache *cachep,
1005 struct array_cache **alien)
1007 int i = 0;
1008 struct array_cache *ac;
1009 unsigned long flags;
1011 for_each_online_node(i) {
1012 ac = alien[i];
1013 if (ac) {
1014 spin_lock_irqsave(&ac->lock, flags);
1015 __drain_alien_cache(cachep, ac, i);
1016 spin_unlock_irqrestore(&ac->lock, flags);
1020 #else
1022 #define drain_alien_cache(cachep, alien) do { } while (0)
1023 #define reap_alien(cachep, l3) do { } while (0)
1025 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1027 return (struct array_cache **) 0x01020304ul;
1030 static inline void free_alien_cache(struct array_cache **ac_ptr)
1034 #endif
1036 static int __devinit cpuup_callback(struct notifier_block *nfb,
1037 unsigned long action, void *hcpu)
1039 long cpu = (long)hcpu;
1040 struct kmem_cache *cachep;
1041 struct kmem_list3 *l3 = NULL;
1042 int node = cpu_to_node(cpu);
1043 int memsize = sizeof(struct kmem_list3);
1045 switch (action) {
1046 case CPU_UP_PREPARE:
1047 mutex_lock(&cache_chain_mutex);
1049 * We need to do this right in the beginning since
1050 * alloc_arraycache's are going to use this list.
1051 * kmalloc_node allows us to add the slab to the right
1052 * kmem_list3 and not this cpu's kmem_list3
1055 list_for_each_entry(cachep, &cache_chain, next) {
1057 * Set up the size64 kmemlist for cpu before we can
1058 * begin anything. Make sure some other cpu on this
1059 * node has not already allocated this
1061 if (!cachep->nodelists[node]) {
1062 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1063 if (!l3)
1064 goto bad;
1065 kmem_list3_init(l3);
1066 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1067 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1070 * The l3s don't come and go as CPUs come and
1071 * go. cache_chain_mutex is sufficient
1072 * protection here.
1074 cachep->nodelists[node] = l3;
1077 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1078 cachep->nodelists[node]->free_limit =
1079 (1 + nr_cpus_node(node)) *
1080 cachep->batchcount + cachep->num;
1081 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1085 * Now we can go ahead with allocating the shared arrays and
1086 * array caches
1088 list_for_each_entry(cachep, &cache_chain, next) {
1089 struct array_cache *nc;
1090 struct array_cache *shared;
1091 struct array_cache **alien;
1093 nc = alloc_arraycache(node, cachep->limit,
1094 cachep->batchcount);
1095 if (!nc)
1096 goto bad;
1097 shared = alloc_arraycache(node,
1098 cachep->shared * cachep->batchcount,
1099 0xbaadf00d);
1100 if (!shared)
1101 goto bad;
1103 alien = alloc_alien_cache(node, cachep->limit);
1104 if (!alien)
1105 goto bad;
1106 cachep->array[cpu] = nc;
1107 l3 = cachep->nodelists[node];
1108 BUG_ON(!l3);
1110 spin_lock_irq(&l3->list_lock);
1111 if (!l3->shared) {
1113 * We are serialised from CPU_DEAD or
1114 * CPU_UP_CANCELLED by the cpucontrol lock
1116 l3->shared = shared;
1117 shared = NULL;
1119 #ifdef CONFIG_NUMA
1120 if (!l3->alien) {
1121 l3->alien = alien;
1122 alien = NULL;
1124 #endif
1125 spin_unlock_irq(&l3->list_lock);
1126 kfree(shared);
1127 free_alien_cache(alien);
1129 mutex_unlock(&cache_chain_mutex);
1130 break;
1131 case CPU_ONLINE:
1132 start_cpu_timer(cpu);
1133 break;
1134 #ifdef CONFIG_HOTPLUG_CPU
1135 case CPU_DEAD:
1137 * Even if all the cpus of a node are down, we don't free the
1138 * kmem_list3 of any cache. This to avoid a race between
1139 * cpu_down, and a kmalloc allocation from another cpu for
1140 * memory from the node of the cpu going down. The list3
1141 * structure is usually allocated from kmem_cache_create() and
1142 * gets destroyed at kmem_cache_destroy().
1144 /* fall thru */
1145 case CPU_UP_CANCELED:
1146 mutex_lock(&cache_chain_mutex);
1147 list_for_each_entry(cachep, &cache_chain, next) {
1148 struct array_cache *nc;
1149 struct array_cache *shared;
1150 struct array_cache **alien;
1151 cpumask_t mask;
1153 mask = node_to_cpumask(node);
1154 /* cpu is dead; no one can alloc from it. */
1155 nc = cachep->array[cpu];
1156 cachep->array[cpu] = NULL;
1157 l3 = cachep->nodelists[node];
1159 if (!l3)
1160 goto free_array_cache;
1162 spin_lock_irq(&l3->list_lock);
1164 /* Free limit for this kmem_list3 */
1165 l3->free_limit -= cachep->batchcount;
1166 if (nc)
1167 free_block(cachep, nc->entry, nc->avail, node);
1169 if (!cpus_empty(mask)) {
1170 spin_unlock_irq(&l3->list_lock);
1171 goto free_array_cache;
1174 shared = l3->shared;
1175 if (shared) {
1176 free_block(cachep, l3->shared->entry,
1177 l3->shared->avail, node);
1178 l3->shared = NULL;
1181 alien = l3->alien;
1182 l3->alien = NULL;
1184 spin_unlock_irq(&l3->list_lock);
1186 kfree(shared);
1187 if (alien) {
1188 drain_alien_cache(cachep, alien);
1189 free_alien_cache(alien);
1191 free_array_cache:
1192 kfree(nc);
1195 * In the previous loop, all the objects were freed to
1196 * the respective cache's slabs, now we can go ahead and
1197 * shrink each nodelist to its limit.
1199 list_for_each_entry(cachep, &cache_chain, next) {
1200 l3 = cachep->nodelists[node];
1201 if (!l3)
1202 continue;
1203 spin_lock_irq(&l3->list_lock);
1204 /* free slabs belonging to this node */
1205 __node_shrink(cachep, node);
1206 spin_unlock_irq(&l3->list_lock);
1208 mutex_unlock(&cache_chain_mutex);
1209 break;
1210 #endif
1212 return NOTIFY_OK;
1213 bad:
1214 mutex_unlock(&cache_chain_mutex);
1215 return NOTIFY_BAD;
1218 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1221 * swap the static kmem_list3 with kmalloced memory
1223 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1224 int nodeid)
1226 struct kmem_list3 *ptr;
1228 BUG_ON(cachep->nodelists[nodeid] != list);
1229 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1230 BUG_ON(!ptr);
1232 local_irq_disable();
1233 memcpy(ptr, list, sizeof(struct kmem_list3));
1234 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1235 cachep->nodelists[nodeid] = ptr;
1236 local_irq_enable();
1240 * Initialisation. Called after the page allocator have been initialised and
1241 * before smp_init().
1243 void __init kmem_cache_init(void)
1245 size_t left_over;
1246 struct cache_sizes *sizes;
1247 struct cache_names *names;
1248 int i;
1249 int order;
1251 for (i = 0; i < NUM_INIT_LISTS; i++) {
1252 kmem_list3_init(&initkmem_list3[i]);
1253 if (i < MAX_NUMNODES)
1254 cache_cache.nodelists[i] = NULL;
1258 * Fragmentation resistance on low memory - only use bigger
1259 * page orders on machines with more than 32MB of memory.
1261 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1262 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1264 /* Bootstrap is tricky, because several objects are allocated
1265 * from caches that do not exist yet:
1266 * 1) initialize the cache_cache cache: it contains the struct
1267 * kmem_cache structures of all caches, except cache_cache itself:
1268 * cache_cache is statically allocated.
1269 * Initially an __init data area is used for the head array and the
1270 * kmem_list3 structures, it's replaced with a kmalloc allocated
1271 * array at the end of the bootstrap.
1272 * 2) Create the first kmalloc cache.
1273 * The struct kmem_cache for the new cache is allocated normally.
1274 * An __init data area is used for the head array.
1275 * 3) Create the remaining kmalloc caches, with minimally sized
1276 * head arrays.
1277 * 4) Replace the __init data head arrays for cache_cache and the first
1278 * kmalloc cache with kmalloc allocated arrays.
1279 * 5) Replace the __init data for kmem_list3 for cache_cache and
1280 * the other cache's with kmalloc allocated memory.
1281 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1284 /* 1) create the cache_cache */
1285 INIT_LIST_HEAD(&cache_chain);
1286 list_add(&cache_cache.next, &cache_chain);
1287 cache_cache.colour_off = cache_line_size();
1288 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1289 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1291 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1292 cache_line_size());
1294 for (order = 0; order < MAX_ORDER; order++) {
1295 cache_estimate(order, cache_cache.buffer_size,
1296 cache_line_size(), 0, &left_over, &cache_cache.num);
1297 if (cache_cache.num)
1298 break;
1300 if (!cache_cache.num)
1301 BUG();
1302 cache_cache.gfporder = order;
1303 cache_cache.colour = left_over / cache_cache.colour_off;
1304 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1305 sizeof(struct slab), cache_line_size());
1307 /* 2+3) create the kmalloc caches */
1308 sizes = malloc_sizes;
1309 names = cache_names;
1312 * Initialize the caches that provide memory for the array cache and the
1313 * kmem_list3 structures first. Without this, further allocations will
1314 * bug.
1317 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1318 sizes[INDEX_AC].cs_size,
1319 ARCH_KMALLOC_MINALIGN,
1320 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1321 NULL, NULL);
1323 if (INDEX_AC != INDEX_L3) {
1324 sizes[INDEX_L3].cs_cachep =
1325 kmem_cache_create(names[INDEX_L3].name,
1326 sizes[INDEX_L3].cs_size,
1327 ARCH_KMALLOC_MINALIGN,
1328 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1329 NULL, NULL);
1332 while (sizes->cs_size != ULONG_MAX) {
1334 * For performance, all the general caches are L1 aligned.
1335 * This should be particularly beneficial on SMP boxes, as it
1336 * eliminates "false sharing".
1337 * Note for systems short on memory removing the alignment will
1338 * allow tighter packing of the smaller caches.
1340 if (!sizes->cs_cachep) {
1341 sizes->cs_cachep = kmem_cache_create(names->name,
1342 sizes->cs_size,
1343 ARCH_KMALLOC_MINALIGN,
1344 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1345 NULL, NULL);
1348 /* Inc off-slab bufctl limit until the ceiling is hit. */
1349 if (!(OFF_SLAB(sizes->cs_cachep))) {
1350 offslab_limit = sizes->cs_size - sizeof(struct slab);
1351 offslab_limit /= sizeof(kmem_bufctl_t);
1354 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1355 sizes->cs_size,
1356 ARCH_KMALLOC_MINALIGN,
1357 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1358 SLAB_PANIC,
1359 NULL, NULL);
1360 sizes++;
1361 names++;
1363 /* 4) Replace the bootstrap head arrays */
1365 void *ptr;
1367 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1369 local_irq_disable();
1370 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1371 memcpy(ptr, cpu_cache_get(&cache_cache),
1372 sizeof(struct arraycache_init));
1373 cache_cache.array[smp_processor_id()] = ptr;
1374 local_irq_enable();
1376 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1378 local_irq_disable();
1379 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1380 != &initarray_generic.cache);
1381 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1382 sizeof(struct arraycache_init));
1383 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1384 ptr;
1385 local_irq_enable();
1387 /* 5) Replace the bootstrap kmem_list3's */
1389 int node;
1390 /* Replace the static kmem_list3 structures for the boot cpu */
1391 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1392 numa_node_id());
1394 for_each_online_node(node) {
1395 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1396 &initkmem_list3[SIZE_AC + node], node);
1398 if (INDEX_AC != INDEX_L3) {
1399 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1400 &initkmem_list3[SIZE_L3 + node],
1401 node);
1406 /* 6) resize the head arrays to their final sizes */
1408 struct kmem_cache *cachep;
1409 mutex_lock(&cache_chain_mutex);
1410 list_for_each_entry(cachep, &cache_chain, next)
1411 enable_cpucache(cachep);
1412 mutex_unlock(&cache_chain_mutex);
1415 /* Done! */
1416 g_cpucache_up = FULL;
1419 * Register a cpu startup notifier callback that initializes
1420 * cpu_cache_get for all new cpus
1422 register_cpu_notifier(&cpucache_notifier);
1425 * The reap timers are started later, with a module init call: That part
1426 * of the kernel is not yet operational.
1430 static int __init cpucache_init(void)
1432 int cpu;
1435 * Register the timers that return unneeded pages to the page allocator
1437 for_each_online_cpu(cpu)
1438 start_cpu_timer(cpu);
1439 return 0;
1441 __initcall(cpucache_init);
1444 * Interface to system's page allocator. No need to hold the cache-lock.
1446 * If we requested dmaable memory, we will get it. Even if we
1447 * did not request dmaable memory, we might get it, but that
1448 * would be relatively rare and ignorable.
1450 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1452 struct page *page;
1453 void *addr;
1454 int i;
1456 flags |= cachep->gfpflags;
1457 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1458 if (!page)
1459 return NULL;
1460 addr = page_address(page);
1462 i = (1 << cachep->gfporder);
1463 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1464 atomic_add(i, &slab_reclaim_pages);
1465 add_page_state(nr_slab, i);
1466 while (i--) {
1467 __SetPageSlab(page);
1468 page++;
1470 return addr;
1474 * Interface to system's page release.
1476 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1478 unsigned long i = (1 << cachep->gfporder);
1479 struct page *page = virt_to_page(addr);
1480 const unsigned long nr_freed = i;
1482 while (i--) {
1483 BUG_ON(!PageSlab(page));
1484 __ClearPageSlab(page);
1485 page++;
1487 sub_page_state(nr_slab, nr_freed);
1488 if (current->reclaim_state)
1489 current->reclaim_state->reclaimed_slab += nr_freed;
1490 free_pages((unsigned long)addr, cachep->gfporder);
1491 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1492 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1495 static void kmem_rcu_free(struct rcu_head *head)
1497 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1498 struct kmem_cache *cachep = slab_rcu->cachep;
1500 kmem_freepages(cachep, slab_rcu->addr);
1501 if (OFF_SLAB(cachep))
1502 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1505 #if DEBUG
1507 #ifdef CONFIG_DEBUG_PAGEALLOC
1508 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1509 unsigned long caller)
1511 int size = obj_size(cachep);
1513 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1515 if (size < 5 * sizeof(unsigned long))
1516 return;
1518 *addr++ = 0x12345678;
1519 *addr++ = caller;
1520 *addr++ = smp_processor_id();
1521 size -= 3 * sizeof(unsigned long);
1523 unsigned long *sptr = &caller;
1524 unsigned long svalue;
1526 while (!kstack_end(sptr)) {
1527 svalue = *sptr++;
1528 if (kernel_text_address(svalue)) {
1529 *addr++ = svalue;
1530 size -= sizeof(unsigned long);
1531 if (size <= sizeof(unsigned long))
1532 break;
1537 *addr++ = 0x87654321;
1539 #endif
1541 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1543 int size = obj_size(cachep);
1544 addr = &((char *)addr)[obj_offset(cachep)];
1546 memset(addr, val, size);
1547 *(unsigned char *)(addr + size - 1) = POISON_END;
1550 static void dump_line(char *data, int offset, int limit)
1552 int i;
1553 printk(KERN_ERR "%03x:", offset);
1554 for (i = 0; i < limit; i++)
1555 printk(" %02x", (unsigned char)data[offset + i]);
1556 printk("\n");
1558 #endif
1560 #if DEBUG
1562 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1564 int i, size;
1565 char *realobj;
1567 if (cachep->flags & SLAB_RED_ZONE) {
1568 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1569 *dbg_redzone1(cachep, objp),
1570 *dbg_redzone2(cachep, objp));
1573 if (cachep->flags & SLAB_STORE_USER) {
1574 printk(KERN_ERR "Last user: [<%p>]",
1575 *dbg_userword(cachep, objp));
1576 print_symbol("(%s)",
1577 (unsigned long)*dbg_userword(cachep, objp));
1578 printk("\n");
1580 realobj = (char *)objp + obj_offset(cachep);
1581 size = obj_size(cachep);
1582 for (i = 0; i < size && lines; i += 16, lines--) {
1583 int limit;
1584 limit = 16;
1585 if (i + limit > size)
1586 limit = size - i;
1587 dump_line(realobj, i, limit);
1591 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1593 char *realobj;
1594 int size, i;
1595 int lines = 0;
1597 realobj = (char *)objp + obj_offset(cachep);
1598 size = obj_size(cachep);
1600 for (i = 0; i < size; i++) {
1601 char exp = POISON_FREE;
1602 if (i == size - 1)
1603 exp = POISON_END;
1604 if (realobj[i] != exp) {
1605 int limit;
1606 /* Mismatch ! */
1607 /* Print header */
1608 if (lines == 0) {
1609 printk(KERN_ERR
1610 "Slab corruption: start=%p, len=%d\n",
1611 realobj, size);
1612 print_objinfo(cachep, objp, 0);
1614 /* Hexdump the affected line */
1615 i = (i / 16) * 16;
1616 limit = 16;
1617 if (i + limit > size)
1618 limit = size - i;
1619 dump_line(realobj, i, limit);
1620 i += 16;
1621 lines++;
1622 /* Limit to 5 lines */
1623 if (lines > 5)
1624 break;
1627 if (lines != 0) {
1628 /* Print some data about the neighboring objects, if they
1629 * exist:
1631 struct slab *slabp = virt_to_slab(objp);
1632 unsigned int objnr;
1634 objnr = obj_to_index(cachep, slabp, objp);
1635 if (objnr) {
1636 objp = index_to_obj(cachep, slabp, objnr - 1);
1637 realobj = (char *)objp + obj_offset(cachep);
1638 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1639 realobj, size);
1640 print_objinfo(cachep, objp, 2);
1642 if (objnr + 1 < cachep->num) {
1643 objp = index_to_obj(cachep, slabp, objnr + 1);
1644 realobj = (char *)objp + obj_offset(cachep);
1645 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1646 realobj, size);
1647 print_objinfo(cachep, objp, 2);
1651 #endif
1653 #if DEBUG
1655 * slab_destroy_objs - destroy a slab and its objects
1656 * @cachep: cache pointer being destroyed
1657 * @slabp: slab pointer being destroyed
1659 * Call the registered destructor for each object in a slab that is being
1660 * destroyed.
1662 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1664 int i;
1665 for (i = 0; i < cachep->num; i++) {
1666 void *objp = index_to_obj(cachep, slabp, i);
1668 if (cachep->flags & SLAB_POISON) {
1669 #ifdef CONFIG_DEBUG_PAGEALLOC
1670 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1671 OFF_SLAB(cachep))
1672 kernel_map_pages(virt_to_page(objp),
1673 cachep->buffer_size / PAGE_SIZE, 1);
1674 else
1675 check_poison_obj(cachep, objp);
1676 #else
1677 check_poison_obj(cachep, objp);
1678 #endif
1680 if (cachep->flags & SLAB_RED_ZONE) {
1681 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1682 slab_error(cachep, "start of a freed object "
1683 "was overwritten");
1684 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1685 slab_error(cachep, "end of a freed object "
1686 "was overwritten");
1688 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1689 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1692 #else
1693 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1695 if (cachep->dtor) {
1696 int i;
1697 for (i = 0; i < cachep->num; i++) {
1698 void *objp = index_to_obj(cachep, slabp, i);
1699 (cachep->dtor) (objp, cachep, 0);
1703 #endif
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
1708 * @slabp: slab pointer being destroyed
1710 * Destroy all the objs in a slab, and release the mem back to the system.
1711 * Before calling the slab must have been unlinked from the cache. The
1712 * cache-lock is not held/needed.
1714 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1716 void *addr = slabp->s_mem - slabp->colouroff;
1718 slab_destroy_objs(cachep, slabp);
1719 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1720 struct slab_rcu *slab_rcu;
1722 slab_rcu = (struct slab_rcu *)slabp;
1723 slab_rcu->cachep = cachep;
1724 slab_rcu->addr = addr;
1725 call_rcu(&slab_rcu->head, kmem_rcu_free);
1726 } else {
1727 kmem_freepages(cachep, addr);
1728 if (OFF_SLAB(cachep))
1729 kmem_cache_free(cachep->slabp_cache, slabp);
1734 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1735 * size of kmem_list3.
1737 static void set_up_list3s(struct kmem_cache *cachep, int index)
1739 int node;
1741 for_each_online_node(node) {
1742 cachep->nodelists[node] = &initkmem_list3[index + node];
1743 cachep->nodelists[node]->next_reap = jiffies +
1744 REAPTIMEOUT_LIST3 +
1745 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1750 * calculate_slab_order - calculate size (page order) of slabs
1751 * @cachep: pointer to the cache that is being created
1752 * @size: size of objects to be created in this cache.
1753 * @align: required alignment for the objects.
1754 * @flags: slab allocation flags
1756 * Also calculates the number of objects per slab.
1758 * This could be made much more intelligent. For now, try to avoid using
1759 * high order pages for slabs. When the gfp() functions are more friendly
1760 * towards high-order requests, this should be changed.
1762 static size_t calculate_slab_order(struct kmem_cache *cachep,
1763 size_t size, size_t align, unsigned long flags)
1765 size_t left_over = 0;
1766 int gfporder;
1768 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1769 unsigned int num;
1770 size_t remainder;
1772 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1773 if (!num)
1774 continue;
1776 /* More than offslab_limit objects will cause problems */
1777 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1778 break;
1780 /* Found something acceptable - save it away */
1781 cachep->num = num;
1782 cachep->gfporder = gfporder;
1783 left_over = remainder;
1786 * A VFS-reclaimable slab tends to have most allocations
1787 * as GFP_NOFS and we really don't want to have to be allocating
1788 * higher-order pages when we are unable to shrink dcache.
1790 if (flags & SLAB_RECLAIM_ACCOUNT)
1791 break;
1794 * Large number of objects is good, but very large slabs are
1795 * currently bad for the gfp()s.
1797 if (gfporder >= slab_break_gfp_order)
1798 break;
1801 * Acceptable internal fragmentation?
1803 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1804 break;
1806 return left_over;
1809 static void setup_cpu_cache(struct kmem_cache *cachep)
1811 if (g_cpucache_up == FULL) {
1812 enable_cpucache(cachep);
1813 return;
1815 if (g_cpucache_up == NONE) {
1817 * Note: the first kmem_cache_create must create the cache
1818 * that's used by kmalloc(24), otherwise the creation of
1819 * further caches will BUG().
1821 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1824 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1825 * the first cache, then we need to set up all its list3s,
1826 * otherwise the creation of further caches will BUG().
1828 set_up_list3s(cachep, SIZE_AC);
1829 if (INDEX_AC == INDEX_L3)
1830 g_cpucache_up = PARTIAL_L3;
1831 else
1832 g_cpucache_up = PARTIAL_AC;
1833 } else {
1834 cachep->array[smp_processor_id()] =
1835 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1837 if (g_cpucache_up == PARTIAL_AC) {
1838 set_up_list3s(cachep, SIZE_L3);
1839 g_cpucache_up = PARTIAL_L3;
1840 } else {
1841 int node;
1842 for_each_online_node(node) {
1843 cachep->nodelists[node] =
1844 kmalloc_node(sizeof(struct kmem_list3),
1845 GFP_KERNEL, node);
1846 BUG_ON(!cachep->nodelists[node]);
1847 kmem_list3_init(cachep->nodelists[node]);
1851 cachep->nodelists[numa_node_id()]->next_reap =
1852 jiffies + REAPTIMEOUT_LIST3 +
1853 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1855 cpu_cache_get(cachep)->avail = 0;
1856 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1857 cpu_cache_get(cachep)->batchcount = 1;
1858 cpu_cache_get(cachep)->touched = 0;
1859 cachep->batchcount = 1;
1860 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1864 * kmem_cache_create - Create a cache.
1865 * @name: A string which is used in /proc/slabinfo to identify this cache.
1866 * @size: The size of objects to be created in this cache.
1867 * @align: The required alignment for the objects.
1868 * @flags: SLAB flags
1869 * @ctor: A constructor for the objects.
1870 * @dtor: A destructor for the objects.
1872 * Returns a ptr to the cache on success, NULL on failure.
1873 * Cannot be called within a int, but can be interrupted.
1874 * The @ctor is run when new pages are allocated by the cache
1875 * and the @dtor is run before the pages are handed back.
1877 * @name must be valid until the cache is destroyed. This implies that
1878 * the module calling this has to destroy the cache before getting unloaded.
1880 * The flags are
1882 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1883 * to catch references to uninitialised memory.
1885 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1886 * for buffer overruns.
1888 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1889 * cacheline. This can be beneficial if you're counting cycles as closely
1890 * as davem.
1892 struct kmem_cache *
1893 kmem_cache_create (const char *name, size_t size, size_t align,
1894 unsigned long flags,
1895 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1896 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1898 size_t left_over, slab_size, ralign;
1899 struct kmem_cache *cachep = NULL;
1900 struct list_head *p;
1903 * Sanity checks... these are all serious usage bugs.
1905 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1906 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1907 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1908 name);
1909 BUG();
1913 * Prevent CPUs from coming and going.
1914 * lock_cpu_hotplug() nests outside cache_chain_mutex
1916 lock_cpu_hotplug();
1918 mutex_lock(&cache_chain_mutex);
1920 list_for_each(p, &cache_chain) {
1921 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1922 mm_segment_t old_fs = get_fs();
1923 char tmp;
1924 int res;
1927 * This happens when the module gets unloaded and doesn't
1928 * destroy its slab cache and no-one else reuses the vmalloc
1929 * area of the module. Print a warning.
1931 set_fs(KERNEL_DS);
1932 res = __get_user(tmp, pc->name);
1933 set_fs(old_fs);
1934 if (res) {
1935 printk("SLAB: cache with size %d has lost its name\n",
1936 pc->buffer_size);
1937 continue;
1940 if (!strcmp(pc->name, name)) {
1941 printk("kmem_cache_create: duplicate cache %s\n", name);
1942 dump_stack();
1943 goto oops;
1947 #if DEBUG
1948 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1949 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1950 /* No constructor, but inital state check requested */
1951 printk(KERN_ERR "%s: No con, but init state check "
1952 "requested - %s\n", __FUNCTION__, name);
1953 flags &= ~SLAB_DEBUG_INITIAL;
1955 #if FORCED_DEBUG
1957 * Enable redzoning and last user accounting, except for caches with
1958 * large objects, if the increased size would increase the object size
1959 * above the next power of two: caches with object sizes just above a
1960 * power of two have a significant amount of internal fragmentation.
1962 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1963 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1964 if (!(flags & SLAB_DESTROY_BY_RCU))
1965 flags |= SLAB_POISON;
1966 #endif
1967 if (flags & SLAB_DESTROY_BY_RCU)
1968 BUG_ON(flags & SLAB_POISON);
1969 #endif
1970 if (flags & SLAB_DESTROY_BY_RCU)
1971 BUG_ON(dtor);
1974 * Always checks flags, a caller might be expecting debug support which
1975 * isn't available.
1977 if (flags & ~CREATE_MASK)
1978 BUG();
1981 * Check that size is in terms of words. This is needed to avoid
1982 * unaligned accesses for some archs when redzoning is used, and makes
1983 * sure any on-slab bufctl's are also correctly aligned.
1985 if (size & (BYTES_PER_WORD - 1)) {
1986 size += (BYTES_PER_WORD - 1);
1987 size &= ~(BYTES_PER_WORD - 1);
1990 /* calculate the final buffer alignment: */
1992 /* 1) arch recommendation: can be overridden for debug */
1993 if (flags & SLAB_HWCACHE_ALIGN) {
1995 * Default alignment: as specified by the arch code. Except if
1996 * an object is really small, then squeeze multiple objects into
1997 * one cacheline.
1999 ralign = cache_line_size();
2000 while (size <= ralign / 2)
2001 ralign /= 2;
2002 } else {
2003 ralign = BYTES_PER_WORD;
2005 /* 2) arch mandated alignment: disables debug if necessary */
2006 if (ralign < ARCH_SLAB_MINALIGN) {
2007 ralign = ARCH_SLAB_MINALIGN;
2008 if (ralign > BYTES_PER_WORD)
2009 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2011 /* 3) caller mandated alignment: disables debug if necessary */
2012 if (ralign < align) {
2013 ralign = align;
2014 if (ralign > BYTES_PER_WORD)
2015 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2018 * 4) Store it. Note that the debug code below can reduce
2019 * the alignment to BYTES_PER_WORD.
2021 align = ralign;
2023 /* Get cache's description obj. */
2024 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2025 if (!cachep)
2026 goto oops;
2028 #if DEBUG
2029 cachep->obj_size = size;
2031 if (flags & SLAB_RED_ZONE) {
2032 /* redzoning only works with word aligned caches */
2033 align = BYTES_PER_WORD;
2035 /* add space for red zone words */
2036 cachep->obj_offset += BYTES_PER_WORD;
2037 size += 2 * BYTES_PER_WORD;
2039 if (flags & SLAB_STORE_USER) {
2040 /* user store requires word alignment and
2041 * one word storage behind the end of the real
2042 * object.
2044 align = BYTES_PER_WORD;
2045 size += BYTES_PER_WORD;
2047 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2048 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2049 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2050 cachep->obj_offset += PAGE_SIZE - size;
2051 size = PAGE_SIZE;
2053 #endif
2054 #endif
2056 /* Determine if the slab management is 'on' or 'off' slab. */
2057 if (size >= (PAGE_SIZE >> 3))
2059 * Size is large, assume best to place the slab management obj
2060 * off-slab (should allow better packing of objs).
2062 flags |= CFLGS_OFF_SLAB;
2064 size = ALIGN(size, align);
2066 left_over = calculate_slab_order(cachep, size, align, flags);
2068 if (!cachep->num) {
2069 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2070 kmem_cache_free(&cache_cache, cachep);
2071 cachep = NULL;
2072 goto oops;
2074 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2075 + sizeof(struct slab), align);
2078 * If the slab has been placed off-slab, and we have enough space then
2079 * move it on-slab. This is at the expense of any extra colouring.
2081 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2082 flags &= ~CFLGS_OFF_SLAB;
2083 left_over -= slab_size;
2086 if (flags & CFLGS_OFF_SLAB) {
2087 /* really off slab. No need for manual alignment */
2088 slab_size =
2089 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2092 cachep->colour_off = cache_line_size();
2093 /* Offset must be a multiple of the alignment. */
2094 if (cachep->colour_off < align)
2095 cachep->colour_off = align;
2096 cachep->colour = left_over / cachep->colour_off;
2097 cachep->slab_size = slab_size;
2098 cachep->flags = flags;
2099 cachep->gfpflags = 0;
2100 if (flags & SLAB_CACHE_DMA)
2101 cachep->gfpflags |= GFP_DMA;
2102 cachep->buffer_size = size;
2104 if (flags & CFLGS_OFF_SLAB)
2105 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2106 cachep->ctor = ctor;
2107 cachep->dtor = dtor;
2108 cachep->name = name;
2111 setup_cpu_cache(cachep);
2113 /* cache setup completed, link it into the list */
2114 list_add(&cachep->next, &cache_chain);
2115 oops:
2116 if (!cachep && (flags & SLAB_PANIC))
2117 panic("kmem_cache_create(): failed to create slab `%s'\n",
2118 name);
2119 mutex_unlock(&cache_chain_mutex);
2120 unlock_cpu_hotplug();
2121 return cachep;
2123 EXPORT_SYMBOL(kmem_cache_create);
2125 #if DEBUG
2126 static void check_irq_off(void)
2128 BUG_ON(!irqs_disabled());
2131 static void check_irq_on(void)
2133 BUG_ON(irqs_disabled());
2136 static void check_spinlock_acquired(struct kmem_cache *cachep)
2138 #ifdef CONFIG_SMP
2139 check_irq_off();
2140 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2141 #endif
2144 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2146 #ifdef CONFIG_SMP
2147 check_irq_off();
2148 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2149 #endif
2152 #else
2153 #define check_irq_off() do { } while(0)
2154 #define check_irq_on() do { } while(0)
2155 #define check_spinlock_acquired(x) do { } while(0)
2156 #define check_spinlock_acquired_node(x, y) do { } while(0)
2157 #endif
2159 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2160 struct array_cache *ac,
2161 int force, int node);
2163 static void do_drain(void *arg)
2165 struct kmem_cache *cachep = arg;
2166 struct array_cache *ac;
2167 int node = numa_node_id();
2169 check_irq_off();
2170 ac = cpu_cache_get(cachep);
2171 spin_lock(&cachep->nodelists[node]->list_lock);
2172 free_block(cachep, ac->entry, ac->avail, node);
2173 spin_unlock(&cachep->nodelists[node]->list_lock);
2174 ac->avail = 0;
2177 static void drain_cpu_caches(struct kmem_cache *cachep)
2179 struct kmem_list3 *l3;
2180 int node;
2182 on_each_cpu(do_drain, cachep, 1, 1);
2183 check_irq_on();
2184 for_each_online_node(node) {
2185 l3 = cachep->nodelists[node];
2186 if (l3) {
2187 drain_array(cachep, l3, l3->shared, 1, node);
2188 if (l3->alien)
2189 drain_alien_cache(cachep, l3->alien);
2194 static int __node_shrink(struct kmem_cache *cachep, int node)
2196 struct slab *slabp;
2197 struct kmem_list3 *l3 = cachep->nodelists[node];
2198 int ret;
2200 for (;;) {
2201 struct list_head *p;
2203 p = l3->slabs_free.prev;
2204 if (p == &l3->slabs_free)
2205 break;
2207 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2208 #if DEBUG
2209 if (slabp->inuse)
2210 BUG();
2211 #endif
2212 list_del(&slabp->list);
2214 l3->free_objects -= cachep->num;
2215 spin_unlock_irq(&l3->list_lock);
2216 slab_destroy(cachep, slabp);
2217 spin_lock_irq(&l3->list_lock);
2219 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2220 return ret;
2223 static int __cache_shrink(struct kmem_cache *cachep)
2225 int ret = 0, i = 0;
2226 struct kmem_list3 *l3;
2228 drain_cpu_caches(cachep);
2230 check_irq_on();
2231 for_each_online_node(i) {
2232 l3 = cachep->nodelists[i];
2233 if (l3) {
2234 spin_lock_irq(&l3->list_lock);
2235 ret += __node_shrink(cachep, i);
2236 spin_unlock_irq(&l3->list_lock);
2239 return (ret ? 1 : 0);
2243 * kmem_cache_shrink - Shrink a cache.
2244 * @cachep: The cache to shrink.
2246 * Releases as many slabs as possible for a cache.
2247 * To help debugging, a zero exit status indicates all slabs were released.
2249 int kmem_cache_shrink(struct kmem_cache *cachep)
2251 if (!cachep || in_interrupt())
2252 BUG();
2254 return __cache_shrink(cachep);
2256 EXPORT_SYMBOL(kmem_cache_shrink);
2259 * kmem_cache_destroy - delete a cache
2260 * @cachep: the cache to destroy
2262 * Remove a struct kmem_cache object from the slab cache.
2263 * Returns 0 on success.
2265 * It is expected this function will be called by a module when it is
2266 * unloaded. This will remove the cache completely, and avoid a duplicate
2267 * cache being allocated each time a module is loaded and unloaded, if the
2268 * module doesn't have persistent in-kernel storage across loads and unloads.
2270 * The cache must be empty before calling this function.
2272 * The caller must guarantee that noone will allocate memory from the cache
2273 * during the kmem_cache_destroy().
2275 int kmem_cache_destroy(struct kmem_cache *cachep)
2277 int i;
2278 struct kmem_list3 *l3;
2280 if (!cachep || in_interrupt())
2281 BUG();
2283 /* Don't let CPUs to come and go */
2284 lock_cpu_hotplug();
2286 /* Find the cache in the chain of caches. */
2287 mutex_lock(&cache_chain_mutex);
2289 * the chain is never empty, cache_cache is never destroyed
2291 list_del(&cachep->next);
2292 mutex_unlock(&cache_chain_mutex);
2294 if (__cache_shrink(cachep)) {
2295 slab_error(cachep, "Can't free all objects");
2296 mutex_lock(&cache_chain_mutex);
2297 list_add(&cachep->next, &cache_chain);
2298 mutex_unlock(&cache_chain_mutex);
2299 unlock_cpu_hotplug();
2300 return 1;
2303 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2304 synchronize_rcu();
2306 for_each_online_cpu(i)
2307 kfree(cachep->array[i]);
2309 /* NUMA: free the list3 structures */
2310 for_each_online_node(i) {
2311 l3 = cachep->nodelists[i];
2312 if (l3) {
2313 kfree(l3->shared);
2314 free_alien_cache(l3->alien);
2315 kfree(l3);
2318 kmem_cache_free(&cache_cache, cachep);
2319 unlock_cpu_hotplug();
2320 return 0;
2322 EXPORT_SYMBOL(kmem_cache_destroy);
2324 /* Get the memory for a slab management obj. */
2325 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2326 int colour_off, gfp_t local_flags)
2328 struct slab *slabp;
2330 if (OFF_SLAB(cachep)) {
2331 /* Slab management obj is off-slab. */
2332 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2333 if (!slabp)
2334 return NULL;
2335 } else {
2336 slabp = objp + colour_off;
2337 colour_off += cachep->slab_size;
2339 slabp->inuse = 0;
2340 slabp->colouroff = colour_off;
2341 slabp->s_mem = objp + colour_off;
2342 return slabp;
2345 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2347 return (kmem_bufctl_t *) (slabp + 1);
2350 static void cache_init_objs(struct kmem_cache *cachep,
2351 struct slab *slabp, unsigned long ctor_flags)
2353 int i;
2355 for (i = 0; i < cachep->num; i++) {
2356 void *objp = index_to_obj(cachep, slabp, i);
2357 #if DEBUG
2358 /* need to poison the objs? */
2359 if (cachep->flags & SLAB_POISON)
2360 poison_obj(cachep, objp, POISON_FREE);
2361 if (cachep->flags & SLAB_STORE_USER)
2362 *dbg_userword(cachep, objp) = NULL;
2364 if (cachep->flags & SLAB_RED_ZONE) {
2365 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2366 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2369 * Constructors are not allowed to allocate memory from the same
2370 * cache which they are a constructor for. Otherwise, deadlock.
2371 * They must also be threaded.
2373 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2374 cachep->ctor(objp + obj_offset(cachep), cachep,
2375 ctor_flags);
2377 if (cachep->flags & SLAB_RED_ZONE) {
2378 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2379 slab_error(cachep, "constructor overwrote the"
2380 " end of an object");
2381 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2382 slab_error(cachep, "constructor overwrote the"
2383 " start of an object");
2385 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2386 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2387 kernel_map_pages(virt_to_page(objp),
2388 cachep->buffer_size / PAGE_SIZE, 0);
2389 #else
2390 if (cachep->ctor)
2391 cachep->ctor(objp, cachep, ctor_flags);
2392 #endif
2393 slab_bufctl(slabp)[i] = i + 1;
2395 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2396 slabp->free = 0;
2399 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2401 if (flags & SLAB_DMA)
2402 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2403 else
2404 BUG_ON(cachep->gfpflags & GFP_DMA);
2407 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2408 int nodeid)
2410 void *objp = index_to_obj(cachep, slabp, slabp->free);
2411 kmem_bufctl_t next;
2413 slabp->inuse++;
2414 next = slab_bufctl(slabp)[slabp->free];
2415 #if DEBUG
2416 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2417 WARN_ON(slabp->nodeid != nodeid);
2418 #endif
2419 slabp->free = next;
2421 return objp;
2424 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2425 void *objp, int nodeid)
2427 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2429 #if DEBUG
2430 /* Verify that the slab belongs to the intended node */
2431 WARN_ON(slabp->nodeid != nodeid);
2433 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2434 printk(KERN_ERR "slab: double free detected in cache "
2435 "'%s', objp %p\n", cachep->name, objp);
2436 BUG();
2438 #endif
2439 slab_bufctl(slabp)[objnr] = slabp->free;
2440 slabp->free = objnr;
2441 slabp->inuse--;
2444 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2445 void *objp)
2447 int i;
2448 struct page *page;
2450 /* Nasty!!!!!! I hope this is OK. */
2451 page = virt_to_page(objp);
2453 i = 1;
2454 if (likely(!PageCompound(page)))
2455 i <<= cachep->gfporder;
2456 do {
2457 page_set_cache(page, cachep);
2458 page_set_slab(page, slabp);
2459 page++;
2460 } while (--i);
2464 * Grow (by 1) the number of slabs within a cache. This is called by
2465 * kmem_cache_alloc() when there are no active objs left in a cache.
2467 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2469 struct slab *slabp;
2470 void *objp;
2471 size_t offset;
2472 gfp_t local_flags;
2473 unsigned long ctor_flags;
2474 struct kmem_list3 *l3;
2477 * Be lazy and only check for valid flags here, keeping it out of the
2478 * critical path in kmem_cache_alloc().
2480 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2481 BUG();
2482 if (flags & SLAB_NO_GROW)
2483 return 0;
2485 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2486 local_flags = (flags & SLAB_LEVEL_MASK);
2487 if (!(local_flags & __GFP_WAIT))
2489 * Not allowed to sleep. Need to tell a constructor about
2490 * this - it might need to know...
2492 ctor_flags |= SLAB_CTOR_ATOMIC;
2494 /* Take the l3 list lock to change the colour_next on this node */
2495 check_irq_off();
2496 l3 = cachep->nodelists[nodeid];
2497 spin_lock(&l3->list_lock);
2499 /* Get colour for the slab, and cal the next value. */
2500 offset = l3->colour_next;
2501 l3->colour_next++;
2502 if (l3->colour_next >= cachep->colour)
2503 l3->colour_next = 0;
2504 spin_unlock(&l3->list_lock);
2506 offset *= cachep->colour_off;
2508 if (local_flags & __GFP_WAIT)
2509 local_irq_enable();
2512 * The test for missing atomic flag is performed here, rather than
2513 * the more obvious place, simply to reduce the critical path length
2514 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2515 * will eventually be caught here (where it matters).
2517 kmem_flagcheck(cachep, flags);
2520 * Get mem for the objs. Attempt to allocate a physical page from
2521 * 'nodeid'.
2523 objp = kmem_getpages(cachep, flags, nodeid);
2524 if (!objp)
2525 goto failed;
2527 /* Get slab management. */
2528 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2529 if (!slabp)
2530 goto opps1;
2532 slabp->nodeid = nodeid;
2533 set_slab_attr(cachep, slabp, objp);
2535 cache_init_objs(cachep, slabp, ctor_flags);
2537 if (local_flags & __GFP_WAIT)
2538 local_irq_disable();
2539 check_irq_off();
2540 spin_lock(&l3->list_lock);
2542 /* Make slab active. */
2543 list_add_tail(&slabp->list, &(l3->slabs_free));
2544 STATS_INC_GROWN(cachep);
2545 l3->free_objects += cachep->num;
2546 spin_unlock(&l3->list_lock);
2547 return 1;
2548 opps1:
2549 kmem_freepages(cachep, objp);
2550 failed:
2551 if (local_flags & __GFP_WAIT)
2552 local_irq_disable();
2553 return 0;
2556 #if DEBUG
2559 * Perform extra freeing checks:
2560 * - detect bad pointers.
2561 * - POISON/RED_ZONE checking
2562 * - destructor calls, for caches with POISON+dtor
2564 static void kfree_debugcheck(const void *objp)
2566 struct page *page;
2568 if (!virt_addr_valid(objp)) {
2569 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2570 (unsigned long)objp);
2571 BUG();
2573 page = virt_to_page(objp);
2574 if (!PageSlab(page)) {
2575 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2576 (unsigned long)objp);
2577 BUG();
2581 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2582 void *caller)
2584 struct page *page;
2585 unsigned int objnr;
2586 struct slab *slabp;
2588 objp -= obj_offset(cachep);
2589 kfree_debugcheck(objp);
2590 page = virt_to_page(objp);
2592 if (page_get_cache(page) != cachep) {
2593 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2594 "cache %p, got %p\n",
2595 page_get_cache(page), cachep);
2596 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2597 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2598 page_get_cache(page)->name);
2599 WARN_ON(1);
2601 slabp = page_get_slab(page);
2603 if (cachep->flags & SLAB_RED_ZONE) {
2604 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2605 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2606 slab_error(cachep, "double free, or memory outside"
2607 " object was overwritten");
2608 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2609 "redzone 2:0x%lx.\n",
2610 objp, *dbg_redzone1(cachep, objp),
2611 *dbg_redzone2(cachep, objp));
2613 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2614 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2616 if (cachep->flags & SLAB_STORE_USER)
2617 *dbg_userword(cachep, objp) = caller;
2619 objnr = obj_to_index(cachep, slabp, objp);
2621 BUG_ON(objnr >= cachep->num);
2622 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2624 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2626 * Need to call the slab's constructor so the caller can
2627 * perform a verify of its state (debugging). Called without
2628 * the cache-lock held.
2630 cachep->ctor(objp + obj_offset(cachep),
2631 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2633 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2634 /* we want to cache poison the object,
2635 * call the destruction callback
2637 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2639 #ifdef CONFIG_DEBUG_SLAB_LEAK
2640 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2641 #endif
2642 if (cachep->flags & SLAB_POISON) {
2643 #ifdef CONFIG_DEBUG_PAGEALLOC
2644 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2645 store_stackinfo(cachep, objp, (unsigned long)caller);
2646 kernel_map_pages(virt_to_page(objp),
2647 cachep->buffer_size / PAGE_SIZE, 0);
2648 } else {
2649 poison_obj(cachep, objp, POISON_FREE);
2651 #else
2652 poison_obj(cachep, objp, POISON_FREE);
2653 #endif
2655 return objp;
2658 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2660 kmem_bufctl_t i;
2661 int entries = 0;
2663 /* Check slab's freelist to see if this obj is there. */
2664 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2665 entries++;
2666 if (entries > cachep->num || i >= cachep->num)
2667 goto bad;
2669 if (entries != cachep->num - slabp->inuse) {
2670 bad:
2671 printk(KERN_ERR "slab: Internal list corruption detected in "
2672 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2673 cachep->name, cachep->num, slabp, slabp->inuse);
2674 for (i = 0;
2675 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2676 i++) {
2677 if (i % 16 == 0)
2678 printk("\n%03x:", i);
2679 printk(" %02x", ((unsigned char *)slabp)[i]);
2681 printk("\n");
2682 BUG();
2685 #else
2686 #define kfree_debugcheck(x) do { } while(0)
2687 #define cache_free_debugcheck(x,objp,z) (objp)
2688 #define check_slabp(x,y) do { } while(0)
2689 #endif
2691 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2693 int batchcount;
2694 struct kmem_list3 *l3;
2695 struct array_cache *ac;
2697 check_irq_off();
2698 ac = cpu_cache_get(cachep);
2699 retry:
2700 batchcount = ac->batchcount;
2701 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2703 * If there was little recent activity on this cache, then
2704 * perform only a partial refill. Otherwise we could generate
2705 * refill bouncing.
2707 batchcount = BATCHREFILL_LIMIT;
2709 l3 = cachep->nodelists[numa_node_id()];
2711 BUG_ON(ac->avail > 0 || !l3);
2712 spin_lock(&l3->list_lock);
2714 /* See if we can refill from the shared array */
2715 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2716 goto alloc_done;
2718 while (batchcount > 0) {
2719 struct list_head *entry;
2720 struct slab *slabp;
2721 /* Get slab alloc is to come from. */
2722 entry = l3->slabs_partial.next;
2723 if (entry == &l3->slabs_partial) {
2724 l3->free_touched = 1;
2725 entry = l3->slabs_free.next;
2726 if (entry == &l3->slabs_free)
2727 goto must_grow;
2730 slabp = list_entry(entry, struct slab, list);
2731 check_slabp(cachep, slabp);
2732 check_spinlock_acquired(cachep);
2733 while (slabp->inuse < cachep->num && batchcount--) {
2734 STATS_INC_ALLOCED(cachep);
2735 STATS_INC_ACTIVE(cachep);
2736 STATS_SET_HIGH(cachep);
2738 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2739 numa_node_id());
2741 check_slabp(cachep, slabp);
2743 /* move slabp to correct slabp list: */
2744 list_del(&slabp->list);
2745 if (slabp->free == BUFCTL_END)
2746 list_add(&slabp->list, &l3->slabs_full);
2747 else
2748 list_add(&slabp->list, &l3->slabs_partial);
2751 must_grow:
2752 l3->free_objects -= ac->avail;
2753 alloc_done:
2754 spin_unlock(&l3->list_lock);
2756 if (unlikely(!ac->avail)) {
2757 int x;
2758 x = cache_grow(cachep, flags, numa_node_id());
2760 /* cache_grow can reenable interrupts, then ac could change. */
2761 ac = cpu_cache_get(cachep);
2762 if (!x && ac->avail == 0) /* no objects in sight? abort */
2763 return NULL;
2765 if (!ac->avail) /* objects refilled by interrupt? */
2766 goto retry;
2768 ac->touched = 1;
2769 return ac->entry[--ac->avail];
2772 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2773 gfp_t flags)
2775 might_sleep_if(flags & __GFP_WAIT);
2776 #if DEBUG
2777 kmem_flagcheck(cachep, flags);
2778 #endif
2781 #if DEBUG
2782 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2783 gfp_t flags, void *objp, void *caller)
2785 if (!objp)
2786 return objp;
2787 if (cachep->flags & SLAB_POISON) {
2788 #ifdef CONFIG_DEBUG_PAGEALLOC
2789 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2790 kernel_map_pages(virt_to_page(objp),
2791 cachep->buffer_size / PAGE_SIZE, 1);
2792 else
2793 check_poison_obj(cachep, objp);
2794 #else
2795 check_poison_obj(cachep, objp);
2796 #endif
2797 poison_obj(cachep, objp, POISON_INUSE);
2799 if (cachep->flags & SLAB_STORE_USER)
2800 *dbg_userword(cachep, objp) = caller;
2802 if (cachep->flags & SLAB_RED_ZONE) {
2803 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2804 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2805 slab_error(cachep, "double free, or memory outside"
2806 " object was overwritten");
2807 printk(KERN_ERR
2808 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2809 objp, *dbg_redzone1(cachep, objp),
2810 *dbg_redzone2(cachep, objp));
2812 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2813 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2815 #ifdef CONFIG_DEBUG_SLAB_LEAK
2817 struct slab *slabp;
2818 unsigned objnr;
2820 slabp = page_get_slab(virt_to_page(objp));
2821 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2822 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2824 #endif
2825 objp += obj_offset(cachep);
2826 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2827 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2829 if (!(flags & __GFP_WAIT))
2830 ctor_flags |= SLAB_CTOR_ATOMIC;
2832 cachep->ctor(objp, cachep, ctor_flags);
2834 return objp;
2836 #else
2837 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2838 #endif
2840 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2842 void *objp;
2843 struct array_cache *ac;
2845 #ifdef CONFIG_NUMA
2846 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2847 objp = alternate_node_alloc(cachep, flags);
2848 if (objp != NULL)
2849 return objp;
2851 #endif
2853 check_irq_off();
2854 ac = cpu_cache_get(cachep);
2855 if (likely(ac->avail)) {
2856 STATS_INC_ALLOCHIT(cachep);
2857 ac->touched = 1;
2858 objp = ac->entry[--ac->avail];
2859 } else {
2860 STATS_INC_ALLOCMISS(cachep);
2861 objp = cache_alloc_refill(cachep, flags);
2863 return objp;
2866 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2867 gfp_t flags, void *caller)
2869 unsigned long save_flags;
2870 void *objp;
2872 cache_alloc_debugcheck_before(cachep, flags);
2874 local_irq_save(save_flags);
2875 objp = ____cache_alloc(cachep, flags);
2876 local_irq_restore(save_flags);
2877 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2878 caller);
2879 prefetchw(objp);
2880 return objp;
2883 #ifdef CONFIG_NUMA
2885 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2887 * If we are in_interrupt, then process context, including cpusets and
2888 * mempolicy, may not apply and should not be used for allocation policy.
2890 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2892 int nid_alloc, nid_here;
2894 if (in_interrupt())
2895 return NULL;
2896 nid_alloc = nid_here = numa_node_id();
2897 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2898 nid_alloc = cpuset_mem_spread_node();
2899 else if (current->mempolicy)
2900 nid_alloc = slab_node(current->mempolicy);
2901 if (nid_alloc != nid_here)
2902 return __cache_alloc_node(cachep, flags, nid_alloc);
2903 return NULL;
2907 * A interface to enable slab creation on nodeid
2909 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2910 int nodeid)
2912 struct list_head *entry;
2913 struct slab *slabp;
2914 struct kmem_list3 *l3;
2915 void *obj;
2916 int x;
2918 l3 = cachep->nodelists[nodeid];
2919 BUG_ON(!l3);
2921 retry:
2922 check_irq_off();
2923 spin_lock(&l3->list_lock);
2924 entry = l3->slabs_partial.next;
2925 if (entry == &l3->slabs_partial) {
2926 l3->free_touched = 1;
2927 entry = l3->slabs_free.next;
2928 if (entry == &l3->slabs_free)
2929 goto must_grow;
2932 slabp = list_entry(entry, struct slab, list);
2933 check_spinlock_acquired_node(cachep, nodeid);
2934 check_slabp(cachep, slabp);
2936 STATS_INC_NODEALLOCS(cachep);
2937 STATS_INC_ACTIVE(cachep);
2938 STATS_SET_HIGH(cachep);
2940 BUG_ON(slabp->inuse == cachep->num);
2942 obj = slab_get_obj(cachep, slabp, nodeid);
2943 check_slabp(cachep, slabp);
2944 l3->free_objects--;
2945 /* move slabp to correct slabp list: */
2946 list_del(&slabp->list);
2948 if (slabp->free == BUFCTL_END)
2949 list_add(&slabp->list, &l3->slabs_full);
2950 else
2951 list_add(&slabp->list, &l3->slabs_partial);
2953 spin_unlock(&l3->list_lock);
2954 goto done;
2956 must_grow:
2957 spin_unlock(&l3->list_lock);
2958 x = cache_grow(cachep, flags, nodeid);
2960 if (!x)
2961 return NULL;
2963 goto retry;
2964 done:
2965 return obj;
2967 #endif
2970 * Caller needs to acquire correct kmem_list's list_lock
2972 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2973 int node)
2975 int i;
2976 struct kmem_list3 *l3;
2978 for (i = 0; i < nr_objects; i++) {
2979 void *objp = objpp[i];
2980 struct slab *slabp;
2982 slabp = virt_to_slab(objp);
2983 l3 = cachep->nodelists[node];
2984 list_del(&slabp->list);
2985 check_spinlock_acquired_node(cachep, node);
2986 check_slabp(cachep, slabp);
2987 slab_put_obj(cachep, slabp, objp, node);
2988 STATS_DEC_ACTIVE(cachep);
2989 l3->free_objects++;
2990 check_slabp(cachep, slabp);
2992 /* fixup slab chains */
2993 if (slabp->inuse == 0) {
2994 if (l3->free_objects > l3->free_limit) {
2995 l3->free_objects -= cachep->num;
2996 slab_destroy(cachep, slabp);
2997 } else {
2998 list_add(&slabp->list, &l3->slabs_free);
3000 } else {
3001 /* Unconditionally move a slab to the end of the
3002 * partial list on free - maximum time for the
3003 * other objects to be freed, too.
3005 list_add_tail(&slabp->list, &l3->slabs_partial);
3010 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3012 int batchcount;
3013 struct kmem_list3 *l3;
3014 int node = numa_node_id();
3016 batchcount = ac->batchcount;
3017 #if DEBUG
3018 BUG_ON(!batchcount || batchcount > ac->avail);
3019 #endif
3020 check_irq_off();
3021 l3 = cachep->nodelists[node];
3022 spin_lock(&l3->list_lock);
3023 if (l3->shared) {
3024 struct array_cache *shared_array = l3->shared;
3025 int max = shared_array->limit - shared_array->avail;
3026 if (max) {
3027 if (batchcount > max)
3028 batchcount = max;
3029 memcpy(&(shared_array->entry[shared_array->avail]),
3030 ac->entry, sizeof(void *) * batchcount);
3031 shared_array->avail += batchcount;
3032 goto free_done;
3036 free_block(cachep, ac->entry, batchcount, node);
3037 free_done:
3038 #if STATS
3040 int i = 0;
3041 struct list_head *p;
3043 p = l3->slabs_free.next;
3044 while (p != &(l3->slabs_free)) {
3045 struct slab *slabp;
3047 slabp = list_entry(p, struct slab, list);
3048 BUG_ON(slabp->inuse);
3050 i++;
3051 p = p->next;
3053 STATS_SET_FREEABLE(cachep, i);
3055 #endif
3056 spin_unlock(&l3->list_lock);
3057 ac->avail -= batchcount;
3058 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3062 * Release an obj back to its cache. If the obj has a constructed state, it must
3063 * be in this state _before_ it is released. Called with disabled ints.
3065 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3067 struct array_cache *ac = cpu_cache_get(cachep);
3069 check_irq_off();
3070 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3072 /* Make sure we are not freeing a object from another
3073 * node to the array cache on this cpu.
3075 #ifdef CONFIG_NUMA
3077 struct slab *slabp;
3078 slabp = virt_to_slab(objp);
3079 if (unlikely(slabp->nodeid != numa_node_id())) {
3080 struct array_cache *alien = NULL;
3081 int nodeid = slabp->nodeid;
3082 struct kmem_list3 *l3;
3084 l3 = cachep->nodelists[numa_node_id()];
3085 STATS_INC_NODEFREES(cachep);
3086 if (l3->alien && l3->alien[nodeid]) {
3087 alien = l3->alien[nodeid];
3088 spin_lock(&alien->lock);
3089 if (unlikely(alien->avail == alien->limit))
3090 __drain_alien_cache(cachep,
3091 alien, nodeid);
3092 alien->entry[alien->avail++] = objp;
3093 spin_unlock(&alien->lock);
3094 } else {
3095 spin_lock(&(cachep->nodelists[nodeid])->
3096 list_lock);
3097 free_block(cachep, &objp, 1, nodeid);
3098 spin_unlock(&(cachep->nodelists[nodeid])->
3099 list_lock);
3101 return;
3104 #endif
3105 if (likely(ac->avail < ac->limit)) {
3106 STATS_INC_FREEHIT(cachep);
3107 ac->entry[ac->avail++] = objp;
3108 return;
3109 } else {
3110 STATS_INC_FREEMISS(cachep);
3111 cache_flusharray(cachep, ac);
3112 ac->entry[ac->avail++] = objp;
3117 * kmem_cache_alloc - Allocate an object
3118 * @cachep: The cache to allocate from.
3119 * @flags: See kmalloc().
3121 * Allocate an object from this cache. The flags are only relevant
3122 * if the cache has no available objects.
3124 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3126 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3128 EXPORT_SYMBOL(kmem_cache_alloc);
3131 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3132 * @cache: The cache to allocate from.
3133 * @flags: See kmalloc().
3135 * Allocate an object from this cache and set the allocated memory to zero.
3136 * The flags are only relevant if the cache has no available objects.
3138 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3140 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3141 if (ret)
3142 memset(ret, 0, obj_size(cache));
3143 return ret;
3145 EXPORT_SYMBOL(kmem_cache_zalloc);
3148 * kmem_ptr_validate - check if an untrusted pointer might
3149 * be a slab entry.
3150 * @cachep: the cache we're checking against
3151 * @ptr: pointer to validate
3153 * This verifies that the untrusted pointer looks sane:
3154 * it is _not_ a guarantee that the pointer is actually
3155 * part of the slab cache in question, but it at least
3156 * validates that the pointer can be dereferenced and
3157 * looks half-way sane.
3159 * Currently only used for dentry validation.
3161 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3163 unsigned long addr = (unsigned long)ptr;
3164 unsigned long min_addr = PAGE_OFFSET;
3165 unsigned long align_mask = BYTES_PER_WORD - 1;
3166 unsigned long size = cachep->buffer_size;
3167 struct page *page;
3169 if (unlikely(addr < min_addr))
3170 goto out;
3171 if (unlikely(addr > (unsigned long)high_memory - size))
3172 goto out;
3173 if (unlikely(addr & align_mask))
3174 goto out;
3175 if (unlikely(!kern_addr_valid(addr)))
3176 goto out;
3177 if (unlikely(!kern_addr_valid(addr + size - 1)))
3178 goto out;
3179 page = virt_to_page(ptr);
3180 if (unlikely(!PageSlab(page)))
3181 goto out;
3182 if (unlikely(page_get_cache(page) != cachep))
3183 goto out;
3184 return 1;
3185 out:
3186 return 0;
3189 #ifdef CONFIG_NUMA
3191 * kmem_cache_alloc_node - Allocate an object on the specified node
3192 * @cachep: The cache to allocate from.
3193 * @flags: See kmalloc().
3194 * @nodeid: node number of the target node.
3196 * Identical to kmem_cache_alloc, except that this function is slow
3197 * and can sleep. And it will allocate memory on the given node, which
3198 * can improve the performance for cpu bound structures.
3199 * New and improved: it will now make sure that the object gets
3200 * put on the correct node list so that there is no false sharing.
3202 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3204 unsigned long save_flags;
3205 void *ptr;
3207 cache_alloc_debugcheck_before(cachep, flags);
3208 local_irq_save(save_flags);
3210 if (nodeid == -1 || nodeid == numa_node_id() ||
3211 !cachep->nodelists[nodeid])
3212 ptr = ____cache_alloc(cachep, flags);
3213 else
3214 ptr = __cache_alloc_node(cachep, flags, nodeid);
3215 local_irq_restore(save_flags);
3217 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3218 __builtin_return_address(0));
3220 return ptr;
3222 EXPORT_SYMBOL(kmem_cache_alloc_node);
3224 void *kmalloc_node(size_t size, gfp_t flags, int node)
3226 struct kmem_cache *cachep;
3228 cachep = kmem_find_general_cachep(size, flags);
3229 if (unlikely(cachep == NULL))
3230 return NULL;
3231 return kmem_cache_alloc_node(cachep, flags, node);
3233 EXPORT_SYMBOL(kmalloc_node);
3234 #endif
3237 * kmalloc - allocate memory
3238 * @size: how many bytes of memory are required.
3239 * @flags: the type of memory to allocate.
3240 * @caller: function caller for debug tracking of the caller
3242 * kmalloc is the normal method of allocating memory
3243 * in the kernel.
3245 * The @flags argument may be one of:
3247 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3249 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3251 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3253 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3254 * must be suitable for DMA. This can mean different things on different
3255 * platforms. For example, on i386, it means that the memory must come
3256 * from the first 16MB.
3258 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3259 void *caller)
3261 struct kmem_cache *cachep;
3263 /* If you want to save a few bytes .text space: replace
3264 * __ with kmem_.
3265 * Then kmalloc uses the uninlined functions instead of the inline
3266 * functions.
3268 cachep = __find_general_cachep(size, flags);
3269 if (unlikely(cachep == NULL))
3270 return NULL;
3271 return __cache_alloc(cachep, flags, caller);
3275 void *__kmalloc(size_t size, gfp_t flags)
3277 #ifndef CONFIG_DEBUG_SLAB
3278 return __do_kmalloc(size, flags, NULL);
3279 #else
3280 return __do_kmalloc(size, flags, __builtin_return_address(0));
3281 #endif
3283 EXPORT_SYMBOL(__kmalloc);
3285 #ifdef CONFIG_DEBUG_SLAB
3286 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3288 return __do_kmalloc(size, flags, caller);
3290 EXPORT_SYMBOL(__kmalloc_track_caller);
3291 #endif
3293 #ifdef CONFIG_SMP
3295 * __alloc_percpu - allocate one copy of the object for every present
3296 * cpu in the system, zeroing them.
3297 * Objects should be dereferenced using the per_cpu_ptr macro only.
3299 * @size: how many bytes of memory are required.
3301 void *__alloc_percpu(size_t size)
3303 int i;
3304 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3306 if (!pdata)
3307 return NULL;
3310 * Cannot use for_each_online_cpu since a cpu may come online
3311 * and we have no way of figuring out how to fix the array
3312 * that we have allocated then....
3314 for_each_possible_cpu(i) {
3315 int node = cpu_to_node(i);
3317 if (node_online(node))
3318 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3319 else
3320 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3322 if (!pdata->ptrs[i])
3323 goto unwind_oom;
3324 memset(pdata->ptrs[i], 0, size);
3327 /* Catch derefs w/o wrappers */
3328 return (void *)(~(unsigned long)pdata);
3330 unwind_oom:
3331 while (--i >= 0) {
3332 if (!cpu_possible(i))
3333 continue;
3334 kfree(pdata->ptrs[i]);
3336 kfree(pdata);
3337 return NULL;
3339 EXPORT_SYMBOL(__alloc_percpu);
3340 #endif
3343 * kmem_cache_free - Deallocate an object
3344 * @cachep: The cache the allocation was from.
3345 * @objp: The previously allocated object.
3347 * Free an object which was previously allocated from this
3348 * cache.
3350 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3352 unsigned long flags;
3354 local_irq_save(flags);
3355 __cache_free(cachep, objp);
3356 local_irq_restore(flags);
3358 EXPORT_SYMBOL(kmem_cache_free);
3361 * kfree - free previously allocated memory
3362 * @objp: pointer returned by kmalloc.
3364 * If @objp is NULL, no operation is performed.
3366 * Don't free memory not originally allocated by kmalloc()
3367 * or you will run into trouble.
3369 void kfree(const void *objp)
3371 struct kmem_cache *c;
3372 unsigned long flags;
3374 if (unlikely(!objp))
3375 return;
3376 local_irq_save(flags);
3377 kfree_debugcheck(objp);
3378 c = virt_to_cache(objp);
3379 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3380 __cache_free(c, (void *)objp);
3381 local_irq_restore(flags);
3383 EXPORT_SYMBOL(kfree);
3385 #ifdef CONFIG_SMP
3387 * free_percpu - free previously allocated percpu memory
3388 * @objp: pointer returned by alloc_percpu.
3390 * Don't free memory not originally allocated by alloc_percpu()
3391 * The complemented objp is to check for that.
3393 void free_percpu(const void *objp)
3395 int i;
3396 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3399 * We allocate for all cpus so we cannot use for online cpu here.
3401 for_each_possible_cpu(i)
3402 kfree(p->ptrs[i]);
3403 kfree(p);
3405 EXPORT_SYMBOL(free_percpu);
3406 #endif
3408 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3410 return obj_size(cachep);
3412 EXPORT_SYMBOL(kmem_cache_size);
3414 const char *kmem_cache_name(struct kmem_cache *cachep)
3416 return cachep->name;
3418 EXPORT_SYMBOL_GPL(kmem_cache_name);
3421 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3423 static int alloc_kmemlist(struct kmem_cache *cachep)
3425 int node;
3426 struct kmem_list3 *l3;
3427 struct array_cache *new_shared;
3428 struct array_cache **new_alien;
3430 for_each_online_node(node) {
3432 new_alien = alloc_alien_cache(node, cachep->limit);
3433 if (!new_alien)
3434 goto fail;
3436 new_shared = alloc_arraycache(node,
3437 cachep->shared*cachep->batchcount,
3438 0xbaadf00d);
3439 if (!new_shared) {
3440 free_alien_cache(new_alien);
3441 goto fail;
3444 l3 = cachep->nodelists[node];
3445 if (l3) {
3446 struct array_cache *shared = l3->shared;
3448 spin_lock_irq(&l3->list_lock);
3450 if (shared)
3451 free_block(cachep, shared->entry,
3452 shared->avail, node);
3454 l3->shared = new_shared;
3455 if (!l3->alien) {
3456 l3->alien = new_alien;
3457 new_alien = NULL;
3459 l3->free_limit = (1 + nr_cpus_node(node)) *
3460 cachep->batchcount + cachep->num;
3461 spin_unlock_irq(&l3->list_lock);
3462 kfree(shared);
3463 free_alien_cache(new_alien);
3464 continue;
3466 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3467 if (!l3) {
3468 free_alien_cache(new_alien);
3469 kfree(new_shared);
3470 goto fail;
3473 kmem_list3_init(l3);
3474 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3475 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3476 l3->shared = new_shared;
3477 l3->alien = new_alien;
3478 l3->free_limit = (1 + nr_cpus_node(node)) *
3479 cachep->batchcount + cachep->num;
3480 cachep->nodelists[node] = l3;
3482 return 0;
3484 fail:
3485 if (!cachep->next.next) {
3486 /* Cache is not active yet. Roll back what we did */
3487 node--;
3488 while (node >= 0) {
3489 if (cachep->nodelists[node]) {
3490 l3 = cachep->nodelists[node];
3492 kfree(l3->shared);
3493 free_alien_cache(l3->alien);
3494 kfree(l3);
3495 cachep->nodelists[node] = NULL;
3497 node--;
3500 return -ENOMEM;
3503 struct ccupdate_struct {
3504 struct kmem_cache *cachep;
3505 struct array_cache *new[NR_CPUS];
3508 static void do_ccupdate_local(void *info)
3510 struct ccupdate_struct *new = info;
3511 struct array_cache *old;
3513 check_irq_off();
3514 old = cpu_cache_get(new->cachep);
3516 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3517 new->new[smp_processor_id()] = old;
3520 /* Always called with the cache_chain_mutex held */
3521 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3522 int batchcount, int shared)
3524 struct ccupdate_struct new;
3525 int i, err;
3527 memset(&new.new, 0, sizeof(new.new));
3528 for_each_online_cpu(i) {
3529 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3530 batchcount);
3531 if (!new.new[i]) {
3532 for (i--; i >= 0; i--)
3533 kfree(new.new[i]);
3534 return -ENOMEM;
3537 new.cachep = cachep;
3539 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3541 check_irq_on();
3542 cachep->batchcount = batchcount;
3543 cachep->limit = limit;
3544 cachep->shared = shared;
3546 for_each_online_cpu(i) {
3547 struct array_cache *ccold = new.new[i];
3548 if (!ccold)
3549 continue;
3550 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3551 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3552 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3553 kfree(ccold);
3556 err = alloc_kmemlist(cachep);
3557 if (err) {
3558 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3559 cachep->name, -err);
3560 BUG();
3562 return 0;
3565 /* Called with cache_chain_mutex held always */
3566 static void enable_cpucache(struct kmem_cache *cachep)
3568 int err;
3569 int limit, shared;
3572 * The head array serves three purposes:
3573 * - create a LIFO ordering, i.e. return objects that are cache-warm
3574 * - reduce the number of spinlock operations.
3575 * - reduce the number of linked list operations on the slab and
3576 * bufctl chains: array operations are cheaper.
3577 * The numbers are guessed, we should auto-tune as described by
3578 * Bonwick.
3580 if (cachep->buffer_size > 131072)
3581 limit = 1;
3582 else if (cachep->buffer_size > PAGE_SIZE)
3583 limit = 8;
3584 else if (cachep->buffer_size > 1024)
3585 limit = 24;
3586 else if (cachep->buffer_size > 256)
3587 limit = 54;
3588 else
3589 limit = 120;
3592 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3593 * allocation behaviour: Most allocs on one cpu, most free operations
3594 * on another cpu. For these cases, an efficient object passing between
3595 * cpus is necessary. This is provided by a shared array. The array
3596 * replaces Bonwick's magazine layer.
3597 * On uniprocessor, it's functionally equivalent (but less efficient)
3598 * to a larger limit. Thus disabled by default.
3600 shared = 0;
3601 #ifdef CONFIG_SMP
3602 if (cachep->buffer_size <= PAGE_SIZE)
3603 shared = 8;
3604 #endif
3606 #if DEBUG
3608 * With debugging enabled, large batchcount lead to excessively long
3609 * periods with disabled local interrupts. Limit the batchcount
3611 if (limit > 32)
3612 limit = 32;
3613 #endif
3614 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3615 if (err)
3616 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3617 cachep->name, -err);
3621 * Drain an array if it contains any elements taking the l3 lock only if
3622 * necessary. Note that the l3 listlock also protects the array_cache
3623 * if drain_array() is used on the shared array.
3625 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3626 struct array_cache *ac, int force, int node)
3628 int tofree;
3630 if (!ac || !ac->avail)
3631 return;
3632 if (ac->touched && !force) {
3633 ac->touched = 0;
3634 } else {
3635 spin_lock_irq(&l3->list_lock);
3636 if (ac->avail) {
3637 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3638 if (tofree > ac->avail)
3639 tofree = (ac->avail + 1) / 2;
3640 free_block(cachep, ac->entry, tofree, node);
3641 ac->avail -= tofree;
3642 memmove(ac->entry, &(ac->entry[tofree]),
3643 sizeof(void *) * ac->avail);
3645 spin_unlock_irq(&l3->list_lock);
3650 * cache_reap - Reclaim memory from caches.
3651 * @unused: unused parameter
3653 * Called from workqueue/eventd every few seconds.
3654 * Purpose:
3655 * - clear the per-cpu caches for this CPU.
3656 * - return freeable pages to the main free memory pool.
3658 * If we cannot acquire the cache chain mutex then just give up - we'll try
3659 * again on the next iteration.
3661 static void cache_reap(void *unused)
3663 struct list_head *walk;
3664 struct kmem_list3 *l3;
3665 int node = numa_node_id();
3667 if (!mutex_trylock(&cache_chain_mutex)) {
3668 /* Give up. Setup the next iteration. */
3669 schedule_delayed_work(&__get_cpu_var(reap_work),
3670 REAPTIMEOUT_CPUC);
3671 return;
3674 list_for_each(walk, &cache_chain) {
3675 struct kmem_cache *searchp;
3676 struct list_head *p;
3677 int tofree;
3678 struct slab *slabp;
3680 searchp = list_entry(walk, struct kmem_cache, next);
3681 check_irq_on();
3684 * We only take the l3 lock if absolutely necessary and we
3685 * have established with reasonable certainty that
3686 * we can do some work if the lock was obtained.
3688 l3 = searchp->nodelists[node];
3690 reap_alien(searchp, l3);
3692 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3695 * These are racy checks but it does not matter
3696 * if we skip one check or scan twice.
3698 if (time_after(l3->next_reap, jiffies))
3699 goto next;
3701 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3703 drain_array(searchp, l3, l3->shared, 0, node);
3705 if (l3->free_touched) {
3706 l3->free_touched = 0;
3707 goto next;
3710 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3711 (5 * searchp->num);
3712 do {
3714 * Do not lock if there are no free blocks.
3716 if (list_empty(&l3->slabs_free))
3717 break;
3719 spin_lock_irq(&l3->list_lock);
3720 p = l3->slabs_free.next;
3721 if (p == &(l3->slabs_free)) {
3722 spin_unlock_irq(&l3->list_lock);
3723 break;
3726 slabp = list_entry(p, struct slab, list);
3727 BUG_ON(slabp->inuse);
3728 list_del(&slabp->list);
3729 STATS_INC_REAPED(searchp);
3732 * Safe to drop the lock. The slab is no longer linked
3733 * to the cache. searchp cannot disappear, we hold
3734 * cache_chain_lock
3736 l3->free_objects -= searchp->num;
3737 spin_unlock_irq(&l3->list_lock);
3738 slab_destroy(searchp, slabp);
3739 } while (--tofree > 0);
3740 next:
3741 cond_resched();
3743 check_irq_on();
3744 mutex_unlock(&cache_chain_mutex);
3745 next_reap_node();
3746 /* Set up the next iteration */
3747 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3750 #ifdef CONFIG_PROC_FS
3752 static void print_slabinfo_header(struct seq_file *m)
3755 * Output format version, so at least we can change it
3756 * without _too_ many complaints.
3758 #if STATS
3759 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3760 #else
3761 seq_puts(m, "slabinfo - version: 2.1\n");
3762 #endif
3763 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3764 "<objperslab> <pagesperslab>");
3765 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3766 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3767 #if STATS
3768 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3769 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3770 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3771 #endif
3772 seq_putc(m, '\n');
3775 static void *s_start(struct seq_file *m, loff_t *pos)
3777 loff_t n = *pos;
3778 struct list_head *p;
3780 mutex_lock(&cache_chain_mutex);
3781 if (!n)
3782 print_slabinfo_header(m);
3783 p = cache_chain.next;
3784 while (n--) {
3785 p = p->next;
3786 if (p == &cache_chain)
3787 return NULL;
3789 return list_entry(p, struct kmem_cache, next);
3792 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3794 struct kmem_cache *cachep = p;
3795 ++*pos;
3796 return cachep->next.next == &cache_chain ?
3797 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3800 static void s_stop(struct seq_file *m, void *p)
3802 mutex_unlock(&cache_chain_mutex);
3805 static int s_show(struct seq_file *m, void *p)
3807 struct kmem_cache *cachep = p;
3808 struct list_head *q;
3809 struct slab *slabp;
3810 unsigned long active_objs;
3811 unsigned long num_objs;
3812 unsigned long active_slabs = 0;
3813 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3814 const char *name;
3815 char *error = NULL;
3816 int node;
3817 struct kmem_list3 *l3;
3819 active_objs = 0;
3820 num_slabs = 0;
3821 for_each_online_node(node) {
3822 l3 = cachep->nodelists[node];
3823 if (!l3)
3824 continue;
3826 check_irq_on();
3827 spin_lock_irq(&l3->list_lock);
3829 list_for_each(q, &l3->slabs_full) {
3830 slabp = list_entry(q, struct slab, list);
3831 if (slabp->inuse != cachep->num && !error)
3832 error = "slabs_full accounting error";
3833 active_objs += cachep->num;
3834 active_slabs++;
3836 list_for_each(q, &l3->slabs_partial) {
3837 slabp = list_entry(q, struct slab, list);
3838 if (slabp->inuse == cachep->num && !error)
3839 error = "slabs_partial inuse accounting error";
3840 if (!slabp->inuse && !error)
3841 error = "slabs_partial/inuse accounting error";
3842 active_objs += slabp->inuse;
3843 active_slabs++;
3845 list_for_each(q, &l3->slabs_free) {
3846 slabp = list_entry(q, struct slab, list);
3847 if (slabp->inuse && !error)
3848 error = "slabs_free/inuse accounting error";
3849 num_slabs++;
3851 free_objects += l3->free_objects;
3852 if (l3->shared)
3853 shared_avail += l3->shared->avail;
3855 spin_unlock_irq(&l3->list_lock);
3857 num_slabs += active_slabs;
3858 num_objs = num_slabs * cachep->num;
3859 if (num_objs - active_objs != free_objects && !error)
3860 error = "free_objects accounting error";
3862 name = cachep->name;
3863 if (error)
3864 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3866 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3867 name, active_objs, num_objs, cachep->buffer_size,
3868 cachep->num, (1 << cachep->gfporder));
3869 seq_printf(m, " : tunables %4u %4u %4u",
3870 cachep->limit, cachep->batchcount, cachep->shared);
3871 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3872 active_slabs, num_slabs, shared_avail);
3873 #if STATS
3874 { /* list3 stats */
3875 unsigned long high = cachep->high_mark;
3876 unsigned long allocs = cachep->num_allocations;
3877 unsigned long grown = cachep->grown;
3878 unsigned long reaped = cachep->reaped;
3879 unsigned long errors = cachep->errors;
3880 unsigned long max_freeable = cachep->max_freeable;
3881 unsigned long node_allocs = cachep->node_allocs;
3882 unsigned long node_frees = cachep->node_frees;
3884 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3885 %4lu %4lu %4lu %4lu", allocs, high, grown,
3886 reaped, errors, max_freeable, node_allocs,
3887 node_frees);
3889 /* cpu stats */
3891 unsigned long allochit = atomic_read(&cachep->allochit);
3892 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3893 unsigned long freehit = atomic_read(&cachep->freehit);
3894 unsigned long freemiss = atomic_read(&cachep->freemiss);
3896 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3897 allochit, allocmiss, freehit, freemiss);
3899 #endif
3900 seq_putc(m, '\n');
3901 return 0;
3905 * slabinfo_op - iterator that generates /proc/slabinfo
3907 * Output layout:
3908 * cache-name
3909 * num-active-objs
3910 * total-objs
3911 * object size
3912 * num-active-slabs
3913 * total-slabs
3914 * num-pages-per-slab
3915 * + further values on SMP and with statistics enabled
3918 struct seq_operations slabinfo_op = {
3919 .start = s_start,
3920 .next = s_next,
3921 .stop = s_stop,
3922 .show = s_show,
3925 #define MAX_SLABINFO_WRITE 128
3927 * slabinfo_write - Tuning for the slab allocator
3928 * @file: unused
3929 * @buffer: user buffer
3930 * @count: data length
3931 * @ppos: unused
3933 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3934 size_t count, loff_t *ppos)
3936 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3937 int limit, batchcount, shared, res;
3938 struct list_head *p;
3940 if (count > MAX_SLABINFO_WRITE)
3941 return -EINVAL;
3942 if (copy_from_user(&kbuf, buffer, count))
3943 return -EFAULT;
3944 kbuf[MAX_SLABINFO_WRITE] = '\0';
3946 tmp = strchr(kbuf, ' ');
3947 if (!tmp)
3948 return -EINVAL;
3949 *tmp = '\0';
3950 tmp++;
3951 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3952 return -EINVAL;
3954 /* Find the cache in the chain of caches. */
3955 mutex_lock(&cache_chain_mutex);
3956 res = -EINVAL;
3957 list_for_each(p, &cache_chain) {
3958 struct kmem_cache *cachep;
3960 cachep = list_entry(p, struct kmem_cache, next);
3961 if (!strcmp(cachep->name, kbuf)) {
3962 if (limit < 1 || batchcount < 1 ||
3963 batchcount > limit || shared < 0) {
3964 res = 0;
3965 } else {
3966 res = do_tune_cpucache(cachep, limit,
3967 batchcount, shared);
3969 break;
3972 mutex_unlock(&cache_chain_mutex);
3973 if (res >= 0)
3974 res = count;
3975 return res;
3978 #ifdef CONFIG_DEBUG_SLAB_LEAK
3980 static void *leaks_start(struct seq_file *m, loff_t *pos)
3982 loff_t n = *pos;
3983 struct list_head *p;
3985 mutex_lock(&cache_chain_mutex);
3986 p = cache_chain.next;
3987 while (n--) {
3988 p = p->next;
3989 if (p == &cache_chain)
3990 return NULL;
3992 return list_entry(p, struct kmem_cache, next);
3995 static inline int add_caller(unsigned long *n, unsigned long v)
3997 unsigned long *p;
3998 int l;
3999 if (!v)
4000 return 1;
4001 l = n[1];
4002 p = n + 2;
4003 while (l) {
4004 int i = l/2;
4005 unsigned long *q = p + 2 * i;
4006 if (*q == v) {
4007 q[1]++;
4008 return 1;
4010 if (*q > v) {
4011 l = i;
4012 } else {
4013 p = q + 2;
4014 l -= i + 1;
4017 if (++n[1] == n[0])
4018 return 0;
4019 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4020 p[0] = v;
4021 p[1] = 1;
4022 return 1;
4025 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4027 void *p;
4028 int i;
4029 if (n[0] == n[1])
4030 return;
4031 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4032 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4033 continue;
4034 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4035 return;
4039 static void show_symbol(struct seq_file *m, unsigned long address)
4041 #ifdef CONFIG_KALLSYMS
4042 char *modname;
4043 const char *name;
4044 unsigned long offset, size;
4045 char namebuf[KSYM_NAME_LEN+1];
4047 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4049 if (name) {
4050 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4051 if (modname)
4052 seq_printf(m, " [%s]", modname);
4053 return;
4055 #endif
4056 seq_printf(m, "%p", (void *)address);
4059 static int leaks_show(struct seq_file *m, void *p)
4061 struct kmem_cache *cachep = p;
4062 struct list_head *q;
4063 struct slab *slabp;
4064 struct kmem_list3 *l3;
4065 const char *name;
4066 unsigned long *n = m->private;
4067 int node;
4068 int i;
4070 if (!(cachep->flags & SLAB_STORE_USER))
4071 return 0;
4072 if (!(cachep->flags & SLAB_RED_ZONE))
4073 return 0;
4075 /* OK, we can do it */
4077 n[1] = 0;
4079 for_each_online_node(node) {
4080 l3 = cachep->nodelists[node];
4081 if (!l3)
4082 continue;
4084 check_irq_on();
4085 spin_lock_irq(&l3->list_lock);
4087 list_for_each(q, &l3->slabs_full) {
4088 slabp = list_entry(q, struct slab, list);
4089 handle_slab(n, cachep, slabp);
4091 list_for_each(q, &l3->slabs_partial) {
4092 slabp = list_entry(q, struct slab, list);
4093 handle_slab(n, cachep, slabp);
4095 spin_unlock_irq(&l3->list_lock);
4097 name = cachep->name;
4098 if (n[0] == n[1]) {
4099 /* Increase the buffer size */
4100 mutex_unlock(&cache_chain_mutex);
4101 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4102 if (!m->private) {
4103 /* Too bad, we are really out */
4104 m->private = n;
4105 mutex_lock(&cache_chain_mutex);
4106 return -ENOMEM;
4108 *(unsigned long *)m->private = n[0] * 2;
4109 kfree(n);
4110 mutex_lock(&cache_chain_mutex);
4111 /* Now make sure this entry will be retried */
4112 m->count = m->size;
4113 return 0;
4115 for (i = 0; i < n[1]; i++) {
4116 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4117 show_symbol(m, n[2*i+2]);
4118 seq_putc(m, '\n');
4120 return 0;
4123 struct seq_operations slabstats_op = {
4124 .start = leaks_start,
4125 .next = s_next,
4126 .stop = s_stop,
4127 .show = leaks_show,
4129 #endif
4130 #endif
4133 * ksize - get the actual amount of memory allocated for a given object
4134 * @objp: Pointer to the object
4136 * kmalloc may internally round up allocations and return more memory
4137 * than requested. ksize() can be used to determine the actual amount of
4138 * memory allocated. The caller may use this additional memory, even though
4139 * a smaller amount of memory was initially specified with the kmalloc call.
4140 * The caller must guarantee that objp points to a valid object previously
4141 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4142 * must not be freed during the duration of the call.
4144 unsigned int ksize(const void *objp)
4146 if (unlikely(objp == NULL))
4147 return 0;
4149 return obj_size(virt_to_cache(objp));