dm9000: Use resource_size instead of private macro
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / hrtimer.c
blob05071bf6a37b7848561d9a386141d4cefd1a4de9
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 /**
52 * ktime_get - get the monotonic time in ktime_t format
54 * returns the time in ktime_t format
56 ktime_t ktime_get(void)
58 struct timespec now;
60 ktime_get_ts(&now);
62 return timespec_to_ktime(now);
64 EXPORT_SYMBOL_GPL(ktime_get);
66 /**
67 * ktime_get_real - get the real (wall-) time in ktime_t format
69 * returns the time in ktime_t format
71 ktime_t ktime_get_real(void)
73 struct timespec now;
75 getnstimeofday(&now);
77 return timespec_to_ktime(now);
80 EXPORT_SYMBOL_GPL(ktime_get_real);
83 * The timer bases:
85 * Note: If we want to add new timer bases, we have to skip the two
86 * clock ids captured by the cpu-timers. We do this by holding empty
87 * entries rather than doing math adjustment of the clock ids.
88 * This ensures that we capture erroneous accesses to these clock ids
89 * rather than moving them into the range of valid clock id's.
91 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
94 .clock_base =
97 .index = CLOCK_REALTIME,
98 .get_time = &ktime_get_real,
99 .resolution = KTIME_LOW_RES,
102 .index = CLOCK_MONOTONIC,
103 .get_time = &ktime_get,
104 .resolution = KTIME_LOW_RES,
110 * ktime_get_ts - get the monotonic clock in timespec format
111 * @ts: pointer to timespec variable
113 * The function calculates the monotonic clock from the realtime
114 * clock and the wall_to_monotonic offset and stores the result
115 * in normalized timespec format in the variable pointed to by @ts.
117 void ktime_get_ts(struct timespec *ts)
119 struct timespec tomono;
120 unsigned long seq;
122 do {
123 seq = read_seqbegin(&xtime_lock);
124 getnstimeofday(ts);
125 tomono = wall_to_monotonic;
127 } while (read_seqretry(&xtime_lock, seq));
129 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
130 ts->tv_nsec + tomono.tv_nsec);
132 EXPORT_SYMBOL_GPL(ktime_get_ts);
135 * Get the coarse grained time at the softirq based on xtime and
136 * wall_to_monotonic.
138 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
140 ktime_t xtim, tomono;
141 struct timespec xts, tom;
142 unsigned long seq;
144 do {
145 seq = read_seqbegin(&xtime_lock);
146 xts = current_kernel_time();
147 tom = wall_to_monotonic;
148 } while (read_seqretry(&xtime_lock, seq));
150 xtim = timespec_to_ktime(xts);
151 tomono = timespec_to_ktime(tom);
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
158 * Functions and macros which are different for UP/SMP systems are kept in a
159 * single place
161 #ifdef CONFIG_SMP
164 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
165 * means that all timers which are tied to this base via timer->base are
166 * locked, and the base itself is locked too.
168 * So __run_timers/migrate_timers can safely modify all timers which could
169 * be found on the lists/queues.
171 * When the timer's base is locked, and the timer removed from list, it is
172 * possible to set timer->base = NULL and drop the lock: the timer remains
173 * locked.
175 static
176 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
177 unsigned long *flags)
179 struct hrtimer_clock_base *base;
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
184 spin_lock_irqsave(&base->cpu_base->lock, *flags);
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU: */
188 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
190 cpu_relax();
196 * Get the preferred target CPU for NOHZ
198 static int hrtimer_get_target(int this_cpu, int pinned)
200 #ifdef CONFIG_NO_HZ
201 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
202 int preferred_cpu = get_nohz_load_balancer();
204 if (preferred_cpu >= 0)
205 return preferred_cpu;
207 #endif
208 return this_cpu;
212 * With HIGHRES=y we do not migrate the timer when it is expiring
213 * before the next event on the target cpu because we cannot reprogram
214 * the target cpu hardware and we would cause it to fire late.
216 * Called with cpu_base->lock of target cpu held.
218 static int
219 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
221 #ifdef CONFIG_HIGH_RES_TIMERS
222 ktime_t expires;
224 if (!new_base->cpu_base->hres_active)
225 return 0;
227 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
228 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
229 #else
230 return 0;
231 #endif
235 * Switch the timer base to the current CPU when possible.
237 static inline struct hrtimer_clock_base *
238 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
239 int pinned)
241 struct hrtimer_clock_base *new_base;
242 struct hrtimer_cpu_base *new_cpu_base;
243 int this_cpu = smp_processor_id();
244 int cpu = hrtimer_get_target(this_cpu, pinned);
246 again:
247 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
248 new_base = &new_cpu_base->clock_base[base->index];
250 if (base != new_base) {
252 * We are trying to move timer to new_base.
253 * However we can't change timer's base while it is running,
254 * so we keep it on the same CPU. No hassle vs. reprogramming
255 * the event source in the high resolution case. The softirq
256 * code will take care of this when the timer function has
257 * completed. There is no conflict as we hold the lock until
258 * the timer is enqueued.
260 if (unlikely(hrtimer_callback_running(timer)))
261 return base;
263 /* See the comment in lock_timer_base() */
264 timer->base = NULL;
265 spin_unlock(&base->cpu_base->lock);
266 spin_lock(&new_base->cpu_base->lock);
268 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
269 cpu = this_cpu;
270 spin_unlock(&new_base->cpu_base->lock);
271 spin_lock(&base->cpu_base->lock);
272 timer->base = base;
273 goto again;
275 timer->base = new_base;
277 return new_base;
280 #else /* CONFIG_SMP */
282 static inline struct hrtimer_clock_base *
283 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
285 struct hrtimer_clock_base *base = timer->base;
287 spin_lock_irqsave(&base->cpu_base->lock, *flags);
289 return base;
292 # define switch_hrtimer_base(t, b, p) (b)
294 #endif /* !CONFIG_SMP */
297 * Functions for the union type storage format of ktime_t which are
298 * too large for inlining:
300 #if BITS_PER_LONG < 64
301 # ifndef CONFIG_KTIME_SCALAR
303 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
304 * @kt: addend
305 * @nsec: the scalar nsec value to add
307 * Returns the sum of kt and nsec in ktime_t format
309 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
311 ktime_t tmp;
313 if (likely(nsec < NSEC_PER_SEC)) {
314 tmp.tv64 = nsec;
315 } else {
316 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
318 tmp = ktime_set((long)nsec, rem);
321 return ktime_add(kt, tmp);
324 EXPORT_SYMBOL_GPL(ktime_add_ns);
327 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
328 * @kt: minuend
329 * @nsec: the scalar nsec value to subtract
331 * Returns the subtraction of @nsec from @kt in ktime_t format
333 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
335 ktime_t tmp;
337 if (likely(nsec < NSEC_PER_SEC)) {
338 tmp.tv64 = nsec;
339 } else {
340 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
342 tmp = ktime_set((long)nsec, rem);
345 return ktime_sub(kt, tmp);
348 EXPORT_SYMBOL_GPL(ktime_sub_ns);
349 # endif /* !CONFIG_KTIME_SCALAR */
352 * Divide a ktime value by a nanosecond value
354 u64 ktime_divns(const ktime_t kt, s64 div)
356 u64 dclc;
357 int sft = 0;
359 dclc = ktime_to_ns(kt);
360 /* Make sure the divisor is less than 2^32: */
361 while (div >> 32) {
362 sft++;
363 div >>= 1;
365 dclc >>= sft;
366 do_div(dclc, (unsigned long) div);
368 return dclc;
370 #endif /* BITS_PER_LONG >= 64 */
373 * Add two ktime values and do a safety check for overflow:
375 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
377 ktime_t res = ktime_add(lhs, rhs);
380 * We use KTIME_SEC_MAX here, the maximum timeout which we can
381 * return to user space in a timespec:
383 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
384 res = ktime_set(KTIME_SEC_MAX, 0);
386 return res;
389 EXPORT_SYMBOL_GPL(ktime_add_safe);
391 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393 static struct debug_obj_descr hrtimer_debug_descr;
396 * fixup_init is called when:
397 * - an active object is initialized
399 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
401 struct hrtimer *timer = addr;
403 switch (state) {
404 case ODEBUG_STATE_ACTIVE:
405 hrtimer_cancel(timer);
406 debug_object_init(timer, &hrtimer_debug_descr);
407 return 1;
408 default:
409 return 0;
414 * fixup_activate is called when:
415 * - an active object is activated
416 * - an unknown object is activated (might be a statically initialized object)
418 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
420 switch (state) {
422 case ODEBUG_STATE_NOTAVAILABLE:
423 WARN_ON_ONCE(1);
424 return 0;
426 case ODEBUG_STATE_ACTIVE:
427 WARN_ON(1);
429 default:
430 return 0;
435 * fixup_free is called when:
436 * - an active object is freed
438 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
440 struct hrtimer *timer = addr;
442 switch (state) {
443 case ODEBUG_STATE_ACTIVE:
444 hrtimer_cancel(timer);
445 debug_object_free(timer, &hrtimer_debug_descr);
446 return 1;
447 default:
448 return 0;
452 static struct debug_obj_descr hrtimer_debug_descr = {
453 .name = "hrtimer",
454 .fixup_init = hrtimer_fixup_init,
455 .fixup_activate = hrtimer_fixup_activate,
456 .fixup_free = hrtimer_fixup_free,
459 static inline void debug_hrtimer_init(struct hrtimer *timer)
461 debug_object_init(timer, &hrtimer_debug_descr);
464 static inline void debug_hrtimer_activate(struct hrtimer *timer)
466 debug_object_activate(timer, &hrtimer_debug_descr);
469 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
471 debug_object_deactivate(timer, &hrtimer_debug_descr);
474 static inline void debug_hrtimer_free(struct hrtimer *timer)
476 debug_object_free(timer, &hrtimer_debug_descr);
479 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
480 enum hrtimer_mode mode);
482 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
483 enum hrtimer_mode mode)
485 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
486 __hrtimer_init(timer, clock_id, mode);
488 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
490 void destroy_hrtimer_on_stack(struct hrtimer *timer)
492 debug_object_free(timer, &hrtimer_debug_descr);
495 #else
496 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
497 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
498 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
499 #endif
501 /* High resolution timer related functions */
502 #ifdef CONFIG_HIGH_RES_TIMERS
505 * High resolution timer enabled ?
507 static int hrtimer_hres_enabled __read_mostly = 1;
510 * Enable / Disable high resolution mode
512 static int __init setup_hrtimer_hres(char *str)
514 if (!strcmp(str, "off"))
515 hrtimer_hres_enabled = 0;
516 else if (!strcmp(str, "on"))
517 hrtimer_hres_enabled = 1;
518 else
519 return 0;
520 return 1;
523 __setup("highres=", setup_hrtimer_hres);
526 * hrtimer_high_res_enabled - query, if the highres mode is enabled
528 static inline int hrtimer_is_hres_enabled(void)
530 return hrtimer_hres_enabled;
534 * Is the high resolution mode active ?
536 static inline int hrtimer_hres_active(void)
538 return __get_cpu_var(hrtimer_bases).hres_active;
542 * Reprogram the event source with checking both queues for the
543 * next event
544 * Called with interrupts disabled and base->lock held
546 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
548 int i;
549 struct hrtimer_clock_base *base = cpu_base->clock_base;
550 ktime_t expires;
552 cpu_base->expires_next.tv64 = KTIME_MAX;
554 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
555 struct hrtimer *timer;
557 if (!base->first)
558 continue;
559 timer = rb_entry(base->first, struct hrtimer, node);
560 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
562 * clock_was_set() has changed base->offset so the
563 * result might be negative. Fix it up to prevent a
564 * false positive in clockevents_program_event()
566 if (expires.tv64 < 0)
567 expires.tv64 = 0;
568 if (expires.tv64 < cpu_base->expires_next.tv64)
569 cpu_base->expires_next = expires;
572 if (cpu_base->expires_next.tv64 != KTIME_MAX)
573 tick_program_event(cpu_base->expires_next, 1);
577 * Shared reprogramming for clock_realtime and clock_monotonic
579 * When a timer is enqueued and expires earlier than the already enqueued
580 * timers, we have to check, whether it expires earlier than the timer for
581 * which the clock event device was armed.
583 * Called with interrupts disabled and base->cpu_base.lock held
585 static int hrtimer_reprogram(struct hrtimer *timer,
586 struct hrtimer_clock_base *base)
588 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
589 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
590 int res;
592 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
595 * When the callback is running, we do not reprogram the clock event
596 * device. The timer callback is either running on a different CPU or
597 * the callback is executed in the hrtimer_interrupt context. The
598 * reprogramming is handled either by the softirq, which called the
599 * callback or at the end of the hrtimer_interrupt.
601 if (hrtimer_callback_running(timer))
602 return 0;
605 * CLOCK_REALTIME timer might be requested with an absolute
606 * expiry time which is less than base->offset. Nothing wrong
607 * about that, just avoid to call into the tick code, which
608 * has now objections against negative expiry values.
610 if (expires.tv64 < 0)
611 return -ETIME;
613 if (expires.tv64 >= expires_next->tv64)
614 return 0;
617 * Clockevents returns -ETIME, when the event was in the past.
619 res = tick_program_event(expires, 0);
620 if (!IS_ERR_VALUE(res))
621 *expires_next = expires;
622 return res;
627 * Retrigger next event is called after clock was set
629 * Called with interrupts disabled via on_each_cpu()
631 static void retrigger_next_event(void *arg)
633 struct hrtimer_cpu_base *base;
634 struct timespec realtime_offset;
635 unsigned long seq;
637 if (!hrtimer_hres_active())
638 return;
640 do {
641 seq = read_seqbegin(&xtime_lock);
642 set_normalized_timespec(&realtime_offset,
643 -wall_to_monotonic.tv_sec,
644 -wall_to_monotonic.tv_nsec);
645 } while (read_seqretry(&xtime_lock, seq));
647 base = &__get_cpu_var(hrtimer_bases);
649 /* Adjust CLOCK_REALTIME offset */
650 spin_lock(&base->lock);
651 base->clock_base[CLOCK_REALTIME].offset =
652 timespec_to_ktime(realtime_offset);
654 hrtimer_force_reprogram(base);
655 spin_unlock(&base->lock);
659 * Clock realtime was set
661 * Change the offset of the realtime clock vs. the monotonic
662 * clock.
664 * We might have to reprogram the high resolution timer interrupt. On
665 * SMP we call the architecture specific code to retrigger _all_ high
666 * resolution timer interrupts. On UP we just disable interrupts and
667 * call the high resolution interrupt code.
669 void clock_was_set(void)
671 /* Retrigger the CPU local events everywhere */
672 on_each_cpu(retrigger_next_event, NULL, 1);
676 * During resume we might have to reprogram the high resolution timer
677 * interrupt (on the local CPU):
679 void hres_timers_resume(void)
681 WARN_ONCE(!irqs_disabled(),
682 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
684 retrigger_next_event(NULL);
688 * Initialize the high resolution related parts of cpu_base
690 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
692 base->expires_next.tv64 = KTIME_MAX;
693 base->hres_active = 0;
697 * Initialize the high resolution related parts of a hrtimer
699 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
705 * When High resolution timers are active, try to reprogram. Note, that in case
706 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
707 * check happens. The timer gets enqueued into the rbtree. The reprogramming
708 * and expiry check is done in the hrtimer_interrupt or in the softirq.
710 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
711 struct hrtimer_clock_base *base,
712 int wakeup)
714 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
715 if (wakeup) {
716 spin_unlock(&base->cpu_base->lock);
717 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
718 spin_lock(&base->cpu_base->lock);
719 } else
720 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
722 return 1;
725 return 0;
729 * Switch to high resolution mode
731 static int hrtimer_switch_to_hres(void)
733 int cpu = smp_processor_id();
734 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
735 unsigned long flags;
737 if (base->hres_active)
738 return 1;
740 local_irq_save(flags);
742 if (tick_init_highres()) {
743 local_irq_restore(flags);
744 printk(KERN_WARNING "Could not switch to high resolution "
745 "mode on CPU %d\n", cpu);
746 return 0;
748 base->hres_active = 1;
749 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
750 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
752 tick_setup_sched_timer();
754 /* "Retrigger" the interrupt to get things going */
755 retrigger_next_event(NULL);
756 local_irq_restore(flags);
757 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
758 smp_processor_id());
759 return 1;
762 #else
764 static inline int hrtimer_hres_active(void) { return 0; }
765 static inline int hrtimer_is_hres_enabled(void) { return 0; }
766 static inline int hrtimer_switch_to_hres(void) { return 0; }
767 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
768 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
769 struct hrtimer_clock_base *base,
770 int wakeup)
772 return 0;
774 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
775 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
777 #endif /* CONFIG_HIGH_RES_TIMERS */
779 #ifdef CONFIG_TIMER_STATS
780 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
782 if (timer->start_site)
783 return;
785 timer->start_site = addr;
786 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
787 timer->start_pid = current->pid;
789 #endif
792 * Counterpart to lock_hrtimer_base above:
794 static inline
795 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
797 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
801 * hrtimer_forward - forward the timer expiry
802 * @timer: hrtimer to forward
803 * @now: forward past this time
804 * @interval: the interval to forward
806 * Forward the timer expiry so it will expire in the future.
807 * Returns the number of overruns.
809 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
811 u64 orun = 1;
812 ktime_t delta;
814 delta = ktime_sub(now, hrtimer_get_expires(timer));
816 if (delta.tv64 < 0)
817 return 0;
819 if (interval.tv64 < timer->base->resolution.tv64)
820 interval.tv64 = timer->base->resolution.tv64;
822 if (unlikely(delta.tv64 >= interval.tv64)) {
823 s64 incr = ktime_to_ns(interval);
825 orun = ktime_divns(delta, incr);
826 hrtimer_add_expires_ns(timer, incr * orun);
827 if (hrtimer_get_expires_tv64(timer) > now.tv64)
828 return orun;
830 * This (and the ktime_add() below) is the
831 * correction for exact:
833 orun++;
835 hrtimer_add_expires(timer, interval);
837 return orun;
839 EXPORT_SYMBOL_GPL(hrtimer_forward);
842 * enqueue_hrtimer - internal function to (re)start a timer
844 * The timer is inserted in expiry order. Insertion into the
845 * red black tree is O(log(n)). Must hold the base lock.
847 * Returns 1 when the new timer is the leftmost timer in the tree.
849 static int enqueue_hrtimer(struct hrtimer *timer,
850 struct hrtimer_clock_base *base)
852 struct rb_node **link = &base->active.rb_node;
853 struct rb_node *parent = NULL;
854 struct hrtimer *entry;
855 int leftmost = 1;
857 debug_hrtimer_activate(timer);
860 * Find the right place in the rbtree:
862 while (*link) {
863 parent = *link;
864 entry = rb_entry(parent, struct hrtimer, node);
866 * We dont care about collisions. Nodes with
867 * the same expiry time stay together.
869 if (hrtimer_get_expires_tv64(timer) <
870 hrtimer_get_expires_tv64(entry)) {
871 link = &(*link)->rb_left;
872 } else {
873 link = &(*link)->rb_right;
874 leftmost = 0;
879 * Insert the timer to the rbtree and check whether it
880 * replaces the first pending timer
882 if (leftmost)
883 base->first = &timer->node;
885 rb_link_node(&timer->node, parent, link);
886 rb_insert_color(&timer->node, &base->active);
888 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
889 * state of a possibly running callback.
891 timer->state |= HRTIMER_STATE_ENQUEUED;
893 return leftmost;
897 * __remove_hrtimer - internal function to remove a timer
899 * Caller must hold the base lock.
901 * High resolution timer mode reprograms the clock event device when the
902 * timer is the one which expires next. The caller can disable this by setting
903 * reprogram to zero. This is useful, when the context does a reprogramming
904 * anyway (e.g. timer interrupt)
906 static void __remove_hrtimer(struct hrtimer *timer,
907 struct hrtimer_clock_base *base,
908 unsigned long newstate, int reprogram)
910 if (timer->state & HRTIMER_STATE_ENQUEUED) {
912 * Remove the timer from the rbtree and replace the
913 * first entry pointer if necessary.
915 if (base->first == &timer->node) {
916 base->first = rb_next(&timer->node);
917 /* Reprogram the clock event device. if enabled */
918 if (reprogram && hrtimer_hres_active())
919 hrtimer_force_reprogram(base->cpu_base);
921 rb_erase(&timer->node, &base->active);
923 timer->state = newstate;
927 * remove hrtimer, called with base lock held
929 static inline int
930 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
932 if (hrtimer_is_queued(timer)) {
933 int reprogram;
936 * Remove the timer and force reprogramming when high
937 * resolution mode is active and the timer is on the current
938 * CPU. If we remove a timer on another CPU, reprogramming is
939 * skipped. The interrupt event on this CPU is fired and
940 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call.
943 debug_hrtimer_deactivate(timer);
944 timer_stats_hrtimer_clear_start_info(timer);
945 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
946 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
947 reprogram);
948 return 1;
950 return 0;
953 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
954 unsigned long delta_ns, const enum hrtimer_mode mode,
955 int wakeup)
957 struct hrtimer_clock_base *base, *new_base;
958 unsigned long flags;
959 int ret, leftmost;
961 base = lock_hrtimer_base(timer, &flags);
963 /* Remove an active timer from the queue: */
964 ret = remove_hrtimer(timer, base);
966 /* Switch the timer base, if necessary: */
967 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
969 if (mode & HRTIMER_MODE_REL) {
970 tim = ktime_add_safe(tim, new_base->get_time());
972 * CONFIG_TIME_LOW_RES is a temporary way for architectures
973 * to signal that they simply return xtime in
974 * do_gettimeoffset(). In this case we want to round up by
975 * resolution when starting a relative timer, to avoid short
976 * timeouts. This will go away with the GTOD framework.
978 #ifdef CONFIG_TIME_LOW_RES
979 tim = ktime_add_safe(tim, base->resolution);
980 #endif
983 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
985 timer_stats_hrtimer_set_start_info(timer);
987 leftmost = enqueue_hrtimer(timer, new_base);
990 * Only allow reprogramming if the new base is on this CPU.
991 * (it might still be on another CPU if the timer was pending)
993 * XXX send_remote_softirq() ?
995 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
996 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
998 unlock_hrtimer_base(timer, &flags);
1000 return ret;
1004 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1005 * @timer: the timer to be added
1006 * @tim: expiry time
1007 * @delta_ns: "slack" range for the timer
1008 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1010 * Returns:
1011 * 0 on success
1012 * 1 when the timer was active
1014 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1015 unsigned long delta_ns, const enum hrtimer_mode mode)
1017 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1019 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1022 * hrtimer_start - (re)start an hrtimer on the current CPU
1023 * @timer: the timer to be added
1024 * @tim: expiry time
1025 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1027 * Returns:
1028 * 0 on success
1029 * 1 when the timer was active
1032 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1034 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1036 EXPORT_SYMBOL_GPL(hrtimer_start);
1040 * hrtimer_try_to_cancel - try to deactivate a timer
1041 * @timer: hrtimer to stop
1043 * Returns:
1044 * 0 when the timer was not active
1045 * 1 when the timer was active
1046 * -1 when the timer is currently excuting the callback function and
1047 * cannot be stopped
1049 int hrtimer_try_to_cancel(struct hrtimer *timer)
1051 struct hrtimer_clock_base *base;
1052 unsigned long flags;
1053 int ret = -1;
1055 base = lock_hrtimer_base(timer, &flags);
1057 if (!hrtimer_callback_running(timer))
1058 ret = remove_hrtimer(timer, base);
1060 unlock_hrtimer_base(timer, &flags);
1062 return ret;
1065 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1068 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1069 * @timer: the timer to be cancelled
1071 * Returns:
1072 * 0 when the timer was not active
1073 * 1 when the timer was active
1075 int hrtimer_cancel(struct hrtimer *timer)
1077 for (;;) {
1078 int ret = hrtimer_try_to_cancel(timer);
1080 if (ret >= 0)
1081 return ret;
1082 cpu_relax();
1085 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1088 * hrtimer_get_remaining - get remaining time for the timer
1089 * @timer: the timer to read
1091 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1093 struct hrtimer_clock_base *base;
1094 unsigned long flags;
1095 ktime_t rem;
1097 base = lock_hrtimer_base(timer, &flags);
1098 rem = hrtimer_expires_remaining(timer);
1099 unlock_hrtimer_base(timer, &flags);
1101 return rem;
1103 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1105 #ifdef CONFIG_NO_HZ
1107 * hrtimer_get_next_event - get the time until next expiry event
1109 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1110 * is pending.
1112 ktime_t hrtimer_get_next_event(void)
1114 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1115 struct hrtimer_clock_base *base = cpu_base->clock_base;
1116 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1117 unsigned long flags;
1118 int i;
1120 spin_lock_irqsave(&cpu_base->lock, flags);
1122 if (!hrtimer_hres_active()) {
1123 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1124 struct hrtimer *timer;
1126 if (!base->first)
1127 continue;
1129 timer = rb_entry(base->first, struct hrtimer, node);
1130 delta.tv64 = hrtimer_get_expires_tv64(timer);
1131 delta = ktime_sub(delta, base->get_time());
1132 if (delta.tv64 < mindelta.tv64)
1133 mindelta.tv64 = delta.tv64;
1137 spin_unlock_irqrestore(&cpu_base->lock, flags);
1139 if (mindelta.tv64 < 0)
1140 mindelta.tv64 = 0;
1141 return mindelta;
1143 #endif
1145 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1146 enum hrtimer_mode mode)
1148 struct hrtimer_cpu_base *cpu_base;
1150 memset(timer, 0, sizeof(struct hrtimer));
1152 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1154 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1155 clock_id = CLOCK_MONOTONIC;
1157 timer->base = &cpu_base->clock_base[clock_id];
1158 INIT_LIST_HEAD(&timer->cb_entry);
1159 hrtimer_init_timer_hres(timer);
1161 #ifdef CONFIG_TIMER_STATS
1162 timer->start_site = NULL;
1163 timer->start_pid = -1;
1164 memset(timer->start_comm, 0, TASK_COMM_LEN);
1165 #endif
1169 * hrtimer_init - initialize a timer to the given clock
1170 * @timer: the timer to be initialized
1171 * @clock_id: the clock to be used
1172 * @mode: timer mode abs/rel
1174 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1175 enum hrtimer_mode mode)
1177 debug_hrtimer_init(timer);
1178 __hrtimer_init(timer, clock_id, mode);
1180 EXPORT_SYMBOL_GPL(hrtimer_init);
1183 * hrtimer_get_res - get the timer resolution for a clock
1184 * @which_clock: which clock to query
1185 * @tp: pointer to timespec variable to store the resolution
1187 * Store the resolution of the clock selected by @which_clock in the
1188 * variable pointed to by @tp.
1190 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1192 struct hrtimer_cpu_base *cpu_base;
1194 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1195 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1197 return 0;
1199 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1201 static void __run_hrtimer(struct hrtimer *timer)
1203 struct hrtimer_clock_base *base = timer->base;
1204 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1205 enum hrtimer_restart (*fn)(struct hrtimer *);
1206 int restart;
1208 WARN_ON(!irqs_disabled());
1210 debug_hrtimer_deactivate(timer);
1211 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1212 timer_stats_account_hrtimer(timer);
1213 fn = timer->function;
1216 * Because we run timers from hardirq context, there is no chance
1217 * they get migrated to another cpu, therefore its safe to unlock
1218 * the timer base.
1220 spin_unlock(&cpu_base->lock);
1221 restart = fn(timer);
1222 spin_lock(&cpu_base->lock);
1225 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1226 * we do not reprogramm the event hardware. Happens either in
1227 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1229 if (restart != HRTIMER_NORESTART) {
1230 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1231 enqueue_hrtimer(timer, base);
1233 timer->state &= ~HRTIMER_STATE_CALLBACK;
1236 #ifdef CONFIG_HIGH_RES_TIMERS
1238 static int force_clock_reprogram;
1241 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1242 * is hanging, which could happen with something that slows the interrupt
1243 * such as the tracing. Then we force the clock reprogramming for each future
1244 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1245 * threshold that we will overwrite.
1246 * The next tick event will be scheduled to 3 times we currently spend on
1247 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1248 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1249 * let it running without serious starvation.
1252 static inline void
1253 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1254 ktime_t try_time)
1256 force_clock_reprogram = 1;
1257 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1258 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1259 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1262 * High resolution timer interrupt
1263 * Called with interrupts disabled
1265 void hrtimer_interrupt(struct clock_event_device *dev)
1267 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1268 struct hrtimer_clock_base *base;
1269 ktime_t expires_next, now;
1270 int nr_retries = 0;
1271 int i;
1273 BUG_ON(!cpu_base->hres_active);
1274 cpu_base->nr_events++;
1275 dev->next_event.tv64 = KTIME_MAX;
1277 retry:
1278 /* 5 retries is enough to notice a hang */
1279 if (!(++nr_retries % 5))
1280 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1282 now = ktime_get();
1284 expires_next.tv64 = KTIME_MAX;
1286 spin_lock(&cpu_base->lock);
1288 * We set expires_next to KTIME_MAX here with cpu_base->lock
1289 * held to prevent that a timer is enqueued in our queue via
1290 * the migration code. This does not affect enqueueing of
1291 * timers which run their callback and need to be requeued on
1292 * this CPU.
1294 cpu_base->expires_next.tv64 = KTIME_MAX;
1296 base = cpu_base->clock_base;
1298 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1299 ktime_t basenow;
1300 struct rb_node *node;
1302 basenow = ktime_add(now, base->offset);
1304 while ((node = base->first)) {
1305 struct hrtimer *timer;
1307 timer = rb_entry(node, struct hrtimer, node);
1310 * The immediate goal for using the softexpires is
1311 * minimizing wakeups, not running timers at the
1312 * earliest interrupt after their soft expiration.
1313 * This allows us to avoid using a Priority Search
1314 * Tree, which can answer a stabbing querry for
1315 * overlapping intervals and instead use the simple
1316 * BST we already have.
1317 * We don't add extra wakeups by delaying timers that
1318 * are right-of a not yet expired timer, because that
1319 * timer will have to trigger a wakeup anyway.
1322 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1323 ktime_t expires;
1325 expires = ktime_sub(hrtimer_get_expires(timer),
1326 base->offset);
1327 if (expires.tv64 < expires_next.tv64)
1328 expires_next = expires;
1329 break;
1332 __run_hrtimer(timer);
1334 base++;
1338 * Store the new expiry value so the migration code can verify
1339 * against it.
1341 cpu_base->expires_next = expires_next;
1342 spin_unlock(&cpu_base->lock);
1344 /* Reprogramming necessary ? */
1345 if (expires_next.tv64 != KTIME_MAX) {
1346 if (tick_program_event(expires_next, force_clock_reprogram))
1347 goto retry;
1352 * local version of hrtimer_peek_ahead_timers() called with interrupts
1353 * disabled.
1355 static void __hrtimer_peek_ahead_timers(void)
1357 struct tick_device *td;
1359 if (!hrtimer_hres_active())
1360 return;
1362 td = &__get_cpu_var(tick_cpu_device);
1363 if (td && td->evtdev)
1364 hrtimer_interrupt(td->evtdev);
1368 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1370 * hrtimer_peek_ahead_timers will peek at the timer queue of
1371 * the current cpu and check if there are any timers for which
1372 * the soft expires time has passed. If any such timers exist,
1373 * they are run immediately and then removed from the timer queue.
1376 void hrtimer_peek_ahead_timers(void)
1378 unsigned long flags;
1380 local_irq_save(flags);
1381 __hrtimer_peek_ahead_timers();
1382 local_irq_restore(flags);
1385 static void run_hrtimer_softirq(struct softirq_action *h)
1387 hrtimer_peek_ahead_timers();
1390 #else /* CONFIG_HIGH_RES_TIMERS */
1392 static inline void __hrtimer_peek_ahead_timers(void) { }
1394 #endif /* !CONFIG_HIGH_RES_TIMERS */
1397 * Called from timer softirq every jiffy, expire hrtimers:
1399 * For HRT its the fall back code to run the softirq in the timer
1400 * softirq context in case the hrtimer initialization failed or has
1401 * not been done yet.
1403 void hrtimer_run_pending(void)
1405 if (hrtimer_hres_active())
1406 return;
1409 * This _is_ ugly: We have to check in the softirq context,
1410 * whether we can switch to highres and / or nohz mode. The
1411 * clocksource switch happens in the timer interrupt with
1412 * xtime_lock held. Notification from there only sets the
1413 * check bit in the tick_oneshot code, otherwise we might
1414 * deadlock vs. xtime_lock.
1416 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1417 hrtimer_switch_to_hres();
1421 * Called from hardirq context every jiffy
1423 void hrtimer_run_queues(void)
1425 struct rb_node *node;
1426 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1427 struct hrtimer_clock_base *base;
1428 int index, gettime = 1;
1430 if (hrtimer_hres_active())
1431 return;
1433 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1434 base = &cpu_base->clock_base[index];
1436 if (!base->first)
1437 continue;
1439 if (gettime) {
1440 hrtimer_get_softirq_time(cpu_base);
1441 gettime = 0;
1444 spin_lock(&cpu_base->lock);
1446 while ((node = base->first)) {
1447 struct hrtimer *timer;
1449 timer = rb_entry(node, struct hrtimer, node);
1450 if (base->softirq_time.tv64 <=
1451 hrtimer_get_expires_tv64(timer))
1452 break;
1454 __run_hrtimer(timer);
1456 spin_unlock(&cpu_base->lock);
1461 * Sleep related functions:
1463 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1465 struct hrtimer_sleeper *t =
1466 container_of(timer, struct hrtimer_sleeper, timer);
1467 struct task_struct *task = t->task;
1469 t->task = NULL;
1470 if (task)
1471 wake_up_process(task);
1473 return HRTIMER_NORESTART;
1476 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1478 sl->timer.function = hrtimer_wakeup;
1479 sl->task = task;
1481 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1483 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1485 hrtimer_init_sleeper(t, current);
1487 do {
1488 set_current_state(TASK_INTERRUPTIBLE);
1489 hrtimer_start_expires(&t->timer, mode);
1490 if (!hrtimer_active(&t->timer))
1491 t->task = NULL;
1493 if (likely(t->task))
1494 schedule();
1496 hrtimer_cancel(&t->timer);
1497 mode = HRTIMER_MODE_ABS;
1499 } while (t->task && !signal_pending(current));
1501 __set_current_state(TASK_RUNNING);
1503 return t->task == NULL;
1506 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1508 struct timespec rmt;
1509 ktime_t rem;
1511 rem = hrtimer_expires_remaining(timer);
1512 if (rem.tv64 <= 0)
1513 return 0;
1514 rmt = ktime_to_timespec(rem);
1516 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1517 return -EFAULT;
1519 return 1;
1522 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1524 struct hrtimer_sleeper t;
1525 struct timespec __user *rmtp;
1526 int ret = 0;
1528 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1529 HRTIMER_MODE_ABS);
1530 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1532 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1533 goto out;
1535 rmtp = restart->nanosleep.rmtp;
1536 if (rmtp) {
1537 ret = update_rmtp(&t.timer, rmtp);
1538 if (ret <= 0)
1539 goto out;
1542 /* The other values in restart are already filled in */
1543 ret = -ERESTART_RESTARTBLOCK;
1544 out:
1545 destroy_hrtimer_on_stack(&t.timer);
1546 return ret;
1549 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1550 const enum hrtimer_mode mode, const clockid_t clockid)
1552 struct restart_block *restart;
1553 struct hrtimer_sleeper t;
1554 int ret = 0;
1555 unsigned long slack;
1557 slack = current->timer_slack_ns;
1558 if (rt_task(current))
1559 slack = 0;
1561 hrtimer_init_on_stack(&t.timer, clockid, mode);
1562 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1563 if (do_nanosleep(&t, mode))
1564 goto out;
1566 /* Absolute timers do not update the rmtp value and restart: */
1567 if (mode == HRTIMER_MODE_ABS) {
1568 ret = -ERESTARTNOHAND;
1569 goto out;
1572 if (rmtp) {
1573 ret = update_rmtp(&t.timer, rmtp);
1574 if (ret <= 0)
1575 goto out;
1578 restart = &current_thread_info()->restart_block;
1579 restart->fn = hrtimer_nanosleep_restart;
1580 restart->nanosleep.index = t.timer.base->index;
1581 restart->nanosleep.rmtp = rmtp;
1582 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1584 ret = -ERESTART_RESTARTBLOCK;
1585 out:
1586 destroy_hrtimer_on_stack(&t.timer);
1587 return ret;
1590 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1591 struct timespec __user *, rmtp)
1593 struct timespec tu;
1595 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1596 return -EFAULT;
1598 if (!timespec_valid(&tu))
1599 return -EINVAL;
1601 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1605 * Functions related to boot-time initialization:
1607 static void __cpuinit init_hrtimers_cpu(int cpu)
1609 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1610 int i;
1612 spin_lock_init(&cpu_base->lock);
1614 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1615 cpu_base->clock_base[i].cpu_base = cpu_base;
1617 hrtimer_init_hres(cpu_base);
1620 #ifdef CONFIG_HOTPLUG_CPU
1622 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1623 struct hrtimer_clock_base *new_base)
1625 struct hrtimer *timer;
1626 struct rb_node *node;
1628 while ((node = rb_first(&old_base->active))) {
1629 timer = rb_entry(node, struct hrtimer, node);
1630 BUG_ON(hrtimer_callback_running(timer));
1631 debug_hrtimer_deactivate(timer);
1634 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1635 * timer could be seen as !active and just vanish away
1636 * under us on another CPU
1638 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1639 timer->base = new_base;
1641 * Enqueue the timers on the new cpu. This does not
1642 * reprogram the event device in case the timer
1643 * expires before the earliest on this CPU, but we run
1644 * hrtimer_interrupt after we migrated everything to
1645 * sort out already expired timers and reprogram the
1646 * event device.
1648 enqueue_hrtimer(timer, new_base);
1650 /* Clear the migration state bit */
1651 timer->state &= ~HRTIMER_STATE_MIGRATE;
1655 static void migrate_hrtimers(int scpu)
1657 struct hrtimer_cpu_base *old_base, *new_base;
1658 int i;
1660 BUG_ON(cpu_online(scpu));
1661 tick_cancel_sched_timer(scpu);
1663 local_irq_disable();
1664 old_base = &per_cpu(hrtimer_bases, scpu);
1665 new_base = &__get_cpu_var(hrtimer_bases);
1667 * The caller is globally serialized and nobody else
1668 * takes two locks at once, deadlock is not possible.
1670 spin_lock(&new_base->lock);
1671 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1673 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1674 migrate_hrtimer_list(&old_base->clock_base[i],
1675 &new_base->clock_base[i]);
1678 spin_unlock(&old_base->lock);
1679 spin_unlock(&new_base->lock);
1681 /* Check, if we got expired work to do */
1682 __hrtimer_peek_ahead_timers();
1683 local_irq_enable();
1686 #endif /* CONFIG_HOTPLUG_CPU */
1688 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1689 unsigned long action, void *hcpu)
1691 int scpu = (long)hcpu;
1693 switch (action) {
1695 case CPU_UP_PREPARE:
1696 case CPU_UP_PREPARE_FROZEN:
1697 init_hrtimers_cpu(scpu);
1698 break;
1700 #ifdef CONFIG_HOTPLUG_CPU
1701 case CPU_DYING:
1702 case CPU_DYING_FROZEN:
1703 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1704 break;
1705 case CPU_DEAD:
1706 case CPU_DEAD_FROZEN:
1708 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1709 migrate_hrtimers(scpu);
1710 break;
1712 #endif
1714 default:
1715 break;
1718 return NOTIFY_OK;
1721 static struct notifier_block __cpuinitdata hrtimers_nb = {
1722 .notifier_call = hrtimer_cpu_notify,
1725 void __init hrtimers_init(void)
1727 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1728 (void *)(long)smp_processor_id());
1729 register_cpu_notifier(&hrtimers_nb);
1730 #ifdef CONFIG_HIGH_RES_TIMERS
1731 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1732 #endif
1736 * schedule_hrtimeout_range - sleep until timeout
1737 * @expires: timeout value (ktime_t)
1738 * @delta: slack in expires timeout (ktime_t)
1739 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1741 * Make the current task sleep until the given expiry time has
1742 * elapsed. The routine will return immediately unless
1743 * the current task state has been set (see set_current_state()).
1745 * The @delta argument gives the kernel the freedom to schedule the
1746 * actual wakeup to a time that is both power and performance friendly.
1747 * The kernel give the normal best effort behavior for "@expires+@delta",
1748 * but may decide to fire the timer earlier, but no earlier than @expires.
1750 * You can set the task state as follows -
1752 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1753 * pass before the routine returns.
1755 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1756 * delivered to the current task.
1758 * The current task state is guaranteed to be TASK_RUNNING when this
1759 * routine returns.
1761 * Returns 0 when the timer has expired otherwise -EINTR
1763 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1764 const enum hrtimer_mode mode)
1766 struct hrtimer_sleeper t;
1769 * Optimize when a zero timeout value is given. It does not
1770 * matter whether this is an absolute or a relative time.
1772 if (expires && !expires->tv64) {
1773 __set_current_state(TASK_RUNNING);
1774 return 0;
1778 * A NULL parameter means "inifinte"
1780 if (!expires) {
1781 schedule();
1782 __set_current_state(TASK_RUNNING);
1783 return -EINTR;
1786 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1787 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1789 hrtimer_init_sleeper(&t, current);
1791 hrtimer_start_expires(&t.timer, mode);
1792 if (!hrtimer_active(&t.timer))
1793 t.task = NULL;
1795 if (likely(t.task))
1796 schedule();
1798 hrtimer_cancel(&t.timer);
1799 destroy_hrtimer_on_stack(&t.timer);
1801 __set_current_state(TASK_RUNNING);
1803 return !t.task ? 0 : -EINTR;
1805 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1808 * schedule_hrtimeout - sleep until timeout
1809 * @expires: timeout value (ktime_t)
1810 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1812 * Make the current task sleep until the given expiry time has
1813 * elapsed. The routine will return immediately unless
1814 * the current task state has been set (see set_current_state()).
1816 * You can set the task state as follows -
1818 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1819 * pass before the routine returns.
1821 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1822 * delivered to the current task.
1824 * The current task state is guaranteed to be TASK_RUNNING when this
1825 * routine returns.
1827 * Returns 0 when the timer has expired otherwise -EINTR
1829 int __sched schedule_hrtimeout(ktime_t *expires,
1830 const enum hrtimer_mode mode)
1832 return schedule_hrtimeout_range(expires, 0, mode);
1834 EXPORT_SYMBOL_GPL(schedule_hrtimeout);