2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
38 #include <asm/virtext.h>
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static int __read_mostly bypass_guest_pf
= 1;
51 module_param(bypass_guest_pf
, bool, S_IRUGO
);
53 static int __read_mostly enable_vpid
= 1;
54 module_param_named(vpid
, enable_vpid
, bool, 0444);
56 static int __read_mostly flexpriority_enabled
= 1;
57 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
59 static int __read_mostly enable_ept
= 1;
60 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
62 static int __read_mostly enable_unrestricted_guest
= 1;
63 module_param_named(unrestricted_guest
,
64 enable_unrestricted_guest
, bool, S_IRUGO
);
66 static int __read_mostly emulate_invalid_guest_state
= 0;
67 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
69 static int __read_mostly vmm_exclusive
= 1;
70 module_param(vmm_exclusive
, bool, S_IRUGO
);
72 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
73 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
74 #define KVM_GUEST_CR0_MASK \
75 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
76 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
77 (X86_CR0_WP | X86_CR0_NE)
78 #define KVM_VM_CR0_ALWAYS_ON \
79 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
80 #define KVM_CR4_GUEST_OWNED_BITS \
81 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
84 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
85 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
87 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
90 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
91 * ple_gap: upper bound on the amount of time between two successive
92 * executions of PAUSE in a loop. Also indicate if ple enabled.
93 * According to test, this time is usually small than 41 cycles.
94 * ple_window: upper bound on the amount of time a guest is allowed to execute
95 * in a PAUSE loop. Tests indicate that most spinlocks are held for
96 * less than 2^12 cycles
97 * Time is measured based on a counter that runs at the same rate as the TSC,
98 * refer SDM volume 3b section 21.6.13 & 22.1.3.
100 #define KVM_VMX_DEFAULT_PLE_GAP 41
101 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
102 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
103 module_param(ple_gap
, int, S_IRUGO
);
105 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
106 module_param(ple_window
, int, S_IRUGO
);
108 #define NR_AUTOLOAD_MSRS 1
116 struct shared_msr_entry
{
123 struct kvm_vcpu vcpu
;
124 struct list_head local_vcpus_link
;
125 unsigned long host_rsp
;
129 u32 idt_vectoring_info
;
130 struct shared_msr_entry
*guest_msrs
;
134 u64 msr_host_kernel_gs_base
;
135 u64 msr_guest_kernel_gs_base
;
138 struct msr_autoload
{
140 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
141 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
145 u16 fs_sel
, gs_sel
, ldt_sel
;
146 int gs_ldt_reload_needed
;
147 int fs_reload_needed
;
152 struct kvm_save_segment
{
157 } tr
, es
, ds
, fs
, gs
;
160 bool emulation_required
;
162 /* Support for vnmi-less CPUs */
163 int soft_vnmi_blocked
;
165 s64 vnmi_blocked_time
;
171 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
173 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
176 static int init_rmode(struct kvm
*kvm
);
177 static u64
construct_eptp(unsigned long root_hpa
);
178 static void kvm_cpu_vmxon(u64 addr
);
179 static void kvm_cpu_vmxoff(void);
181 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
182 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
183 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
184 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
186 static unsigned long *vmx_io_bitmap_a
;
187 static unsigned long *vmx_io_bitmap_b
;
188 static unsigned long *vmx_msr_bitmap_legacy
;
189 static unsigned long *vmx_msr_bitmap_longmode
;
191 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
192 static DEFINE_SPINLOCK(vmx_vpid_lock
);
194 static struct vmcs_config
{
198 u32 pin_based_exec_ctrl
;
199 u32 cpu_based_exec_ctrl
;
200 u32 cpu_based_2nd_exec_ctrl
;
205 static struct vmx_capability
{
210 #define VMX_SEGMENT_FIELD(seg) \
211 [VCPU_SREG_##seg] = { \
212 .selector = GUEST_##seg##_SELECTOR, \
213 .base = GUEST_##seg##_BASE, \
214 .limit = GUEST_##seg##_LIMIT, \
215 .ar_bytes = GUEST_##seg##_AR_BYTES, \
218 static struct kvm_vmx_segment_field
{
223 } kvm_vmx_segment_fields
[] = {
224 VMX_SEGMENT_FIELD(CS
),
225 VMX_SEGMENT_FIELD(DS
),
226 VMX_SEGMENT_FIELD(ES
),
227 VMX_SEGMENT_FIELD(FS
),
228 VMX_SEGMENT_FIELD(GS
),
229 VMX_SEGMENT_FIELD(SS
),
230 VMX_SEGMENT_FIELD(TR
),
231 VMX_SEGMENT_FIELD(LDTR
),
234 static u64 host_efer
;
236 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
239 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
240 * away by decrementing the array size.
242 static const u32 vmx_msr_index
[] = {
244 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
246 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
248 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
250 static inline bool is_page_fault(u32 intr_info
)
252 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
253 INTR_INFO_VALID_MASK
)) ==
254 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
257 static inline bool is_no_device(u32 intr_info
)
259 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
260 INTR_INFO_VALID_MASK
)) ==
261 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
264 static inline bool is_invalid_opcode(u32 intr_info
)
266 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
267 INTR_INFO_VALID_MASK
)) ==
268 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
271 static inline bool is_external_interrupt(u32 intr_info
)
273 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
274 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
277 static inline bool is_machine_check(u32 intr_info
)
279 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
280 INTR_INFO_VALID_MASK
)) ==
281 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
284 static inline bool cpu_has_vmx_msr_bitmap(void)
286 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
289 static inline bool cpu_has_vmx_tpr_shadow(void)
291 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
294 static inline bool vm_need_tpr_shadow(struct kvm
*kvm
)
296 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
299 static inline bool cpu_has_secondary_exec_ctrls(void)
301 return vmcs_config
.cpu_based_exec_ctrl
&
302 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
305 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
307 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
308 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
311 static inline bool cpu_has_vmx_flexpriority(void)
313 return cpu_has_vmx_tpr_shadow() &&
314 cpu_has_vmx_virtualize_apic_accesses();
317 static inline bool cpu_has_vmx_ept_execute_only(void)
319 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
322 static inline bool cpu_has_vmx_eptp_uncacheable(void)
324 return vmx_capability
.ept
& VMX_EPTP_UC_BIT
;
327 static inline bool cpu_has_vmx_eptp_writeback(void)
329 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
332 static inline bool cpu_has_vmx_ept_2m_page(void)
334 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
337 static inline bool cpu_has_vmx_ept_1g_page(void)
339 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
342 static inline bool cpu_has_vmx_ept_4levels(void)
344 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
347 static inline bool cpu_has_vmx_invept_individual_addr(void)
349 return vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
;
352 static inline bool cpu_has_vmx_invept_context(void)
354 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
357 static inline bool cpu_has_vmx_invept_global(void)
359 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
362 static inline bool cpu_has_vmx_invvpid_single(void)
364 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
367 static inline bool cpu_has_vmx_invvpid_global(void)
369 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
372 static inline bool cpu_has_vmx_ept(void)
374 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
375 SECONDARY_EXEC_ENABLE_EPT
;
378 static inline bool cpu_has_vmx_unrestricted_guest(void)
380 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
381 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
384 static inline bool cpu_has_vmx_ple(void)
386 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
387 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
390 static inline bool vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
392 return flexpriority_enabled
&& irqchip_in_kernel(kvm
);
395 static inline bool cpu_has_vmx_vpid(void)
397 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
398 SECONDARY_EXEC_ENABLE_VPID
;
401 static inline bool cpu_has_vmx_rdtscp(void)
403 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
404 SECONDARY_EXEC_RDTSCP
;
407 static inline bool cpu_has_virtual_nmis(void)
409 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
412 static inline bool cpu_has_vmx_wbinvd_exit(void)
414 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
415 SECONDARY_EXEC_WBINVD_EXITING
;
418 static inline bool report_flexpriority(void)
420 return flexpriority_enabled
;
423 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
427 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
428 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
433 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
439 } operand
= { vpid
, 0, gva
};
441 asm volatile (__ex(ASM_VMX_INVVPID
)
442 /* CF==1 or ZF==1 --> rc = -1 */
444 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
447 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
451 } operand
= {eptp
, gpa
};
453 asm volatile (__ex(ASM_VMX_INVEPT
)
454 /* CF==1 or ZF==1 --> rc = -1 */
455 "; ja 1f ; ud2 ; 1:\n"
456 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
459 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
463 i
= __find_msr_index(vmx
, msr
);
465 return &vmx
->guest_msrs
[i
];
469 static void vmcs_clear(struct vmcs
*vmcs
)
471 u64 phys_addr
= __pa(vmcs
);
474 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
475 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
478 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
482 static void vmcs_load(struct vmcs
*vmcs
)
484 u64 phys_addr
= __pa(vmcs
);
487 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
488 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
491 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
495 static void __vcpu_clear(void *arg
)
497 struct vcpu_vmx
*vmx
= arg
;
498 int cpu
= raw_smp_processor_id();
500 if (vmx
->vcpu
.cpu
== cpu
)
501 vmcs_clear(vmx
->vmcs
);
502 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
503 per_cpu(current_vmcs
, cpu
) = NULL
;
504 list_del(&vmx
->local_vcpus_link
);
509 static void vcpu_clear(struct vcpu_vmx
*vmx
)
511 if (vmx
->vcpu
.cpu
== -1)
513 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
516 static inline void vpid_sync_vcpu_single(struct vcpu_vmx
*vmx
)
521 if (cpu_has_vmx_invvpid_single())
522 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
525 static inline void vpid_sync_vcpu_global(void)
527 if (cpu_has_vmx_invvpid_global())
528 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
531 static inline void vpid_sync_context(struct vcpu_vmx
*vmx
)
533 if (cpu_has_vmx_invvpid_single())
534 vpid_sync_vcpu_single(vmx
);
536 vpid_sync_vcpu_global();
539 static inline void ept_sync_global(void)
541 if (cpu_has_vmx_invept_global())
542 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
545 static inline void ept_sync_context(u64 eptp
)
548 if (cpu_has_vmx_invept_context())
549 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
555 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
558 if (cpu_has_vmx_invept_individual_addr())
559 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
562 ept_sync_context(eptp
);
566 static unsigned long vmcs_readl(unsigned long field
)
570 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
571 : "=a"(value
) : "d"(field
) : "cc");
575 static u16
vmcs_read16(unsigned long field
)
577 return vmcs_readl(field
);
580 static u32
vmcs_read32(unsigned long field
)
582 return vmcs_readl(field
);
585 static u64
vmcs_read64(unsigned long field
)
588 return vmcs_readl(field
);
590 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
594 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
596 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
597 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
601 static void vmcs_writel(unsigned long field
, unsigned long value
)
605 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
606 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
608 vmwrite_error(field
, value
);
611 static void vmcs_write16(unsigned long field
, u16 value
)
613 vmcs_writel(field
, value
);
616 static void vmcs_write32(unsigned long field
, u32 value
)
618 vmcs_writel(field
, value
);
621 static void vmcs_write64(unsigned long field
, u64 value
)
623 vmcs_writel(field
, value
);
624 #ifndef CONFIG_X86_64
626 vmcs_writel(field
+1, value
>> 32);
630 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
632 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
635 static void vmcs_set_bits(unsigned long field
, u32 mask
)
637 vmcs_writel(field
, vmcs_readl(field
) | mask
);
640 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
644 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
645 (1u << NM_VECTOR
) | (1u << DB_VECTOR
);
646 if ((vcpu
->guest_debug
&
647 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
648 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
649 eb
|= 1u << BP_VECTOR
;
650 if (to_vmx(vcpu
)->rmode
.vm86_active
)
653 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
654 if (vcpu
->fpu_active
)
655 eb
&= ~(1u << NM_VECTOR
);
656 vmcs_write32(EXCEPTION_BITMAP
, eb
);
659 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
662 struct msr_autoload
*m
= &vmx
->msr_autoload
;
664 for (i
= 0; i
< m
->nr
; ++i
)
665 if (m
->guest
[i
].index
== msr
)
671 m
->guest
[i
] = m
->guest
[m
->nr
];
672 m
->host
[i
] = m
->host
[m
->nr
];
673 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
674 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
677 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
678 u64 guest_val
, u64 host_val
)
681 struct msr_autoload
*m
= &vmx
->msr_autoload
;
683 for (i
= 0; i
< m
->nr
; ++i
)
684 if (m
->guest
[i
].index
== msr
)
689 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
690 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
693 m
->guest
[i
].index
= msr
;
694 m
->guest
[i
].value
= guest_val
;
695 m
->host
[i
].index
= msr
;
696 m
->host
[i
].value
= host_val
;
699 static void reload_tss(void)
702 * VT restores TR but not its size. Useless.
704 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
705 struct desc_struct
*descs
;
707 descs
= (void *)gdt
->address
;
708 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
712 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
717 guest_efer
= vmx
->vcpu
.arch
.efer
;
720 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
723 ignore_bits
= EFER_NX
| EFER_SCE
;
725 ignore_bits
|= EFER_LMA
| EFER_LME
;
726 /* SCE is meaningful only in long mode on Intel */
727 if (guest_efer
& EFER_LMA
)
728 ignore_bits
&= ~(u64
)EFER_SCE
;
730 guest_efer
&= ~ignore_bits
;
731 guest_efer
|= host_efer
& ignore_bits
;
732 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
733 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
735 clear_atomic_switch_msr(vmx
, MSR_EFER
);
736 /* On ept, can't emulate nx, and must switch nx atomically */
737 if (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
)) {
738 guest_efer
= vmx
->vcpu
.arch
.efer
;
739 if (!(guest_efer
& EFER_LMA
))
740 guest_efer
&= ~EFER_LME
;
741 add_atomic_switch_msr(vmx
, MSR_EFER
, guest_efer
, host_efer
);
748 static unsigned long segment_base(u16 selector
)
750 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
751 struct desc_struct
*d
;
752 unsigned long table_base
;
755 if (!(selector
& ~3))
758 table_base
= gdt
->address
;
760 if (selector
& 4) { /* from ldt */
761 u16 ldt_selector
= kvm_read_ldt();
763 if (!(ldt_selector
& ~3))
766 table_base
= segment_base(ldt_selector
);
768 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
769 v
= get_desc_base(d
);
771 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
772 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
777 static inline unsigned long kvm_read_tr_base(void)
780 asm("str %0" : "=g"(tr
));
781 return segment_base(tr
);
784 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
786 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
789 if (vmx
->host_state
.loaded
)
792 vmx
->host_state
.loaded
= 1;
794 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
795 * allow segment selectors with cpl > 0 or ti == 1.
797 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
798 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
799 savesegment(fs
, vmx
->host_state
.fs_sel
);
800 if (!(vmx
->host_state
.fs_sel
& 7)) {
801 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
802 vmx
->host_state
.fs_reload_needed
= 0;
804 vmcs_write16(HOST_FS_SELECTOR
, 0);
805 vmx
->host_state
.fs_reload_needed
= 1;
807 savesegment(gs
, vmx
->host_state
.gs_sel
);
808 if (!(vmx
->host_state
.gs_sel
& 7))
809 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
811 vmcs_write16(HOST_GS_SELECTOR
, 0);
812 vmx
->host_state
.gs_ldt_reload_needed
= 1;
816 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
817 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
819 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
820 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
824 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
825 if (is_long_mode(&vmx
->vcpu
))
826 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
828 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
829 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
830 vmx
->guest_msrs
[i
].data
,
831 vmx
->guest_msrs
[i
].mask
);
834 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
836 if (!vmx
->host_state
.loaded
)
839 ++vmx
->vcpu
.stat
.host_state_reload
;
840 vmx
->host_state
.loaded
= 0;
842 if (is_long_mode(&vmx
->vcpu
))
843 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
845 if (vmx
->host_state
.gs_ldt_reload_needed
) {
846 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
848 load_gs_index(vmx
->host_state
.gs_sel
);
850 loadsegment(gs
, vmx
->host_state
.gs_sel
);
853 if (vmx
->host_state
.fs_reload_needed
)
854 loadsegment(fs
, vmx
->host_state
.fs_sel
);
857 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
859 if (current_thread_info()->status
& TS_USEDFPU
)
861 load_gdt(&__get_cpu_var(host_gdt
));
864 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
867 __vmx_load_host_state(vmx
);
872 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
873 * vcpu mutex is already taken.
875 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
877 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
878 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
881 kvm_cpu_vmxon(phys_addr
);
882 else if (vcpu
->cpu
!= cpu
)
885 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
886 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
887 vmcs_load(vmx
->vmcs
);
890 if (vcpu
->cpu
!= cpu
) {
891 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
892 unsigned long sysenter_esp
;
894 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
896 list_add(&vmx
->local_vcpus_link
,
897 &per_cpu(vcpus_on_cpu
, cpu
));
901 * Linux uses per-cpu TSS and GDT, so set these when switching
904 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
905 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
907 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
908 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
912 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
914 __vmx_load_host_state(to_vmx(vcpu
));
915 if (!vmm_exclusive
) {
916 __vcpu_clear(to_vmx(vcpu
));
921 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
925 if (vcpu
->fpu_active
)
927 vcpu
->fpu_active
= 1;
928 cr0
= vmcs_readl(GUEST_CR0
);
929 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
930 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
931 vmcs_writel(GUEST_CR0
, cr0
);
932 update_exception_bitmap(vcpu
);
933 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
934 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
937 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
939 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
941 vmx_decache_cr0_guest_bits(vcpu
);
942 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
943 update_exception_bitmap(vcpu
);
944 vcpu
->arch
.cr0_guest_owned_bits
= 0;
945 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
946 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
949 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
951 unsigned long rflags
, save_rflags
;
953 rflags
= vmcs_readl(GUEST_RFLAGS
);
954 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
955 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
956 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
957 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
962 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
964 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
965 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
966 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
968 vmcs_writel(GUEST_RFLAGS
, rflags
);
971 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
973 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
976 if (interruptibility
& GUEST_INTR_STATE_STI
)
977 ret
|= KVM_X86_SHADOW_INT_STI
;
978 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
979 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
984 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
986 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
987 u32 interruptibility
= interruptibility_old
;
989 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
991 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
992 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
993 else if (mask
& KVM_X86_SHADOW_INT_STI
)
994 interruptibility
|= GUEST_INTR_STATE_STI
;
996 if ((interruptibility
!= interruptibility_old
))
997 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
1000 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1004 rip
= kvm_rip_read(vcpu
);
1005 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
1006 kvm_rip_write(vcpu
, rip
);
1008 /* skipping an emulated instruction also counts */
1009 vmx_set_interrupt_shadow(vcpu
, 0);
1012 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
1013 bool has_error_code
, u32 error_code
,
1016 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1017 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
1019 if (has_error_code
) {
1020 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
1021 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
1024 if (vmx
->rmode
.vm86_active
) {
1025 if (kvm_inject_realmode_interrupt(vcpu
, nr
) != EMULATE_DONE
)
1026 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
1030 if (kvm_exception_is_soft(nr
)) {
1031 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
1032 vmx
->vcpu
.arch
.event_exit_inst_len
);
1033 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
1035 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
1037 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
1040 static bool vmx_rdtscp_supported(void)
1042 return cpu_has_vmx_rdtscp();
1046 * Swap MSR entry in host/guest MSR entry array.
1048 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
1050 struct shared_msr_entry tmp
;
1052 tmp
= vmx
->guest_msrs
[to
];
1053 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
1054 vmx
->guest_msrs
[from
] = tmp
;
1058 * Set up the vmcs to automatically save and restore system
1059 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1060 * mode, as fiddling with msrs is very expensive.
1062 static void setup_msrs(struct vcpu_vmx
*vmx
)
1064 int save_nmsrs
, index
;
1065 unsigned long *msr_bitmap
;
1067 vmx_load_host_state(vmx
);
1069 #ifdef CONFIG_X86_64
1070 if (is_long_mode(&vmx
->vcpu
)) {
1071 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
1073 move_msr_up(vmx
, index
, save_nmsrs
++);
1074 index
= __find_msr_index(vmx
, MSR_LSTAR
);
1076 move_msr_up(vmx
, index
, save_nmsrs
++);
1077 index
= __find_msr_index(vmx
, MSR_CSTAR
);
1079 move_msr_up(vmx
, index
, save_nmsrs
++);
1080 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
1081 if (index
>= 0 && vmx
->rdtscp_enabled
)
1082 move_msr_up(vmx
, index
, save_nmsrs
++);
1084 * MSR_STAR is only needed on long mode guests, and only
1085 * if efer.sce is enabled.
1087 index
= __find_msr_index(vmx
, MSR_STAR
);
1088 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
1089 move_msr_up(vmx
, index
, save_nmsrs
++);
1092 index
= __find_msr_index(vmx
, MSR_EFER
);
1093 if (index
>= 0 && update_transition_efer(vmx
, index
))
1094 move_msr_up(vmx
, index
, save_nmsrs
++);
1096 vmx
->save_nmsrs
= save_nmsrs
;
1098 if (cpu_has_vmx_msr_bitmap()) {
1099 if (is_long_mode(&vmx
->vcpu
))
1100 msr_bitmap
= vmx_msr_bitmap_longmode
;
1102 msr_bitmap
= vmx_msr_bitmap_legacy
;
1104 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
1109 * reads and returns guest's timestamp counter "register"
1110 * guest_tsc = host_tsc + tsc_offset -- 21.3
1112 static u64
guest_read_tsc(void)
1114 u64 host_tsc
, tsc_offset
;
1117 tsc_offset
= vmcs_read64(TSC_OFFSET
);
1118 return host_tsc
+ tsc_offset
;
1122 * writes 'offset' into guest's timestamp counter offset register
1124 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1126 vmcs_write64(TSC_OFFSET
, offset
);
1129 static void vmx_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1131 u64 offset
= vmcs_read64(TSC_OFFSET
);
1132 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
1136 * Reads an msr value (of 'msr_index') into 'pdata'.
1137 * Returns 0 on success, non-0 otherwise.
1138 * Assumes vcpu_load() was already called.
1140 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1143 struct shared_msr_entry
*msr
;
1146 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
1150 switch (msr_index
) {
1151 #ifdef CONFIG_X86_64
1153 data
= vmcs_readl(GUEST_FS_BASE
);
1156 data
= vmcs_readl(GUEST_GS_BASE
);
1158 case MSR_KERNEL_GS_BASE
:
1159 vmx_load_host_state(to_vmx(vcpu
));
1160 data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
1164 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1166 data
= guest_read_tsc();
1168 case MSR_IA32_SYSENTER_CS
:
1169 data
= vmcs_read32(GUEST_SYSENTER_CS
);
1171 case MSR_IA32_SYSENTER_EIP
:
1172 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
1174 case MSR_IA32_SYSENTER_ESP
:
1175 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
1178 if (!to_vmx(vcpu
)->rdtscp_enabled
)
1180 /* Otherwise falls through */
1182 vmx_load_host_state(to_vmx(vcpu
));
1183 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
1185 vmx_load_host_state(to_vmx(vcpu
));
1189 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1197 * Writes msr value into into the appropriate "register".
1198 * Returns 0 on success, non-0 otherwise.
1199 * Assumes vcpu_load() was already called.
1201 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1203 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1204 struct shared_msr_entry
*msr
;
1207 switch (msr_index
) {
1209 vmx_load_host_state(vmx
);
1210 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1212 #ifdef CONFIG_X86_64
1214 vmcs_writel(GUEST_FS_BASE
, data
);
1217 vmcs_writel(GUEST_GS_BASE
, data
);
1219 case MSR_KERNEL_GS_BASE
:
1220 vmx_load_host_state(vmx
);
1221 vmx
->msr_guest_kernel_gs_base
= data
;
1224 case MSR_IA32_SYSENTER_CS
:
1225 vmcs_write32(GUEST_SYSENTER_CS
, data
);
1227 case MSR_IA32_SYSENTER_EIP
:
1228 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
1230 case MSR_IA32_SYSENTER_ESP
:
1231 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
1234 kvm_write_tsc(vcpu
, data
);
1236 case MSR_IA32_CR_PAT
:
1237 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
1238 vmcs_write64(GUEST_IA32_PAT
, data
);
1239 vcpu
->arch
.pat
= data
;
1242 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1245 if (!vmx
->rdtscp_enabled
)
1247 /* Check reserved bit, higher 32 bits should be zero */
1248 if ((data
>> 32) != 0)
1250 /* Otherwise falls through */
1252 msr
= find_msr_entry(vmx
, msr_index
);
1254 vmx_load_host_state(vmx
);
1258 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1264 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1266 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
1269 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
1272 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
1274 case VCPU_EXREG_PDPTR
:
1276 ept_save_pdptrs(vcpu
);
1283 static void set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1285 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1286 vmcs_writel(GUEST_DR7
, dbg
->arch
.debugreg
[7]);
1288 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
1290 update_exception_bitmap(vcpu
);
1293 static __init
int cpu_has_kvm_support(void)
1295 return cpu_has_vmx();
1298 static __init
int vmx_disabled_by_bios(void)
1302 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1303 if (msr
& FEATURE_CONTROL_LOCKED
) {
1304 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
1307 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
1308 && !tboot_enabled())
1313 /* locked but not enabled */
1316 static void kvm_cpu_vmxon(u64 addr
)
1318 asm volatile (ASM_VMX_VMXON_RAX
1319 : : "a"(&addr
), "m"(addr
)
1323 static int hardware_enable(void *garbage
)
1325 int cpu
= raw_smp_processor_id();
1326 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1329 if (read_cr4() & X86_CR4_VMXE
)
1332 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1333 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1335 test_bits
= FEATURE_CONTROL_LOCKED
;
1336 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
1337 if (tboot_enabled())
1338 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
1340 if ((old
& test_bits
) != test_bits
) {
1341 /* enable and lock */
1342 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
1344 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1346 if (vmm_exclusive
) {
1347 kvm_cpu_vmxon(phys_addr
);
1351 store_gdt(&__get_cpu_var(host_gdt
));
1356 static void vmclear_local_vcpus(void)
1358 int cpu
= raw_smp_processor_id();
1359 struct vcpu_vmx
*vmx
, *n
;
1361 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1367 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1370 static void kvm_cpu_vmxoff(void)
1372 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1375 static void hardware_disable(void *garbage
)
1377 if (vmm_exclusive
) {
1378 vmclear_local_vcpus();
1381 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1384 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1385 u32 msr
, u32
*result
)
1387 u32 vmx_msr_low
, vmx_msr_high
;
1388 u32 ctl
= ctl_min
| ctl_opt
;
1390 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1392 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1393 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1395 /* Ensure minimum (required) set of control bits are supported. */
1403 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1405 u32 vmx_msr_low
, vmx_msr_high
;
1406 u32 min
, opt
, min2
, opt2
;
1407 u32 _pin_based_exec_control
= 0;
1408 u32 _cpu_based_exec_control
= 0;
1409 u32 _cpu_based_2nd_exec_control
= 0;
1410 u32 _vmexit_control
= 0;
1411 u32 _vmentry_control
= 0;
1413 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1414 opt
= PIN_BASED_VIRTUAL_NMIS
;
1415 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1416 &_pin_based_exec_control
) < 0)
1419 min
= CPU_BASED_HLT_EXITING
|
1420 #ifdef CONFIG_X86_64
1421 CPU_BASED_CR8_LOAD_EXITING
|
1422 CPU_BASED_CR8_STORE_EXITING
|
1424 CPU_BASED_CR3_LOAD_EXITING
|
1425 CPU_BASED_CR3_STORE_EXITING
|
1426 CPU_BASED_USE_IO_BITMAPS
|
1427 CPU_BASED_MOV_DR_EXITING
|
1428 CPU_BASED_USE_TSC_OFFSETING
|
1429 CPU_BASED_MWAIT_EXITING
|
1430 CPU_BASED_MONITOR_EXITING
|
1431 CPU_BASED_INVLPG_EXITING
;
1432 opt
= CPU_BASED_TPR_SHADOW
|
1433 CPU_BASED_USE_MSR_BITMAPS
|
1434 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1435 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1436 &_cpu_based_exec_control
) < 0)
1438 #ifdef CONFIG_X86_64
1439 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1440 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1441 ~CPU_BASED_CR8_STORE_EXITING
;
1443 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1445 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1446 SECONDARY_EXEC_WBINVD_EXITING
|
1447 SECONDARY_EXEC_ENABLE_VPID
|
1448 SECONDARY_EXEC_ENABLE_EPT
|
1449 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
1450 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
1451 SECONDARY_EXEC_RDTSCP
;
1452 if (adjust_vmx_controls(min2
, opt2
,
1453 MSR_IA32_VMX_PROCBASED_CTLS2
,
1454 &_cpu_based_2nd_exec_control
) < 0)
1457 #ifndef CONFIG_X86_64
1458 if (!(_cpu_based_2nd_exec_control
&
1459 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1460 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1462 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1463 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1465 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1466 CPU_BASED_CR3_STORE_EXITING
|
1467 CPU_BASED_INVLPG_EXITING
);
1468 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1469 vmx_capability
.ept
, vmx_capability
.vpid
);
1473 #ifdef CONFIG_X86_64
1474 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1476 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
1477 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1478 &_vmexit_control
) < 0)
1482 opt
= VM_ENTRY_LOAD_IA32_PAT
;
1483 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1484 &_vmentry_control
) < 0)
1487 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1489 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1490 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1493 #ifdef CONFIG_X86_64
1494 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1495 if (vmx_msr_high
& (1u<<16))
1499 /* Require Write-Back (WB) memory type for VMCS accesses. */
1500 if (((vmx_msr_high
>> 18) & 15) != 6)
1503 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1504 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1505 vmcs_conf
->revision_id
= vmx_msr_low
;
1507 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1508 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1509 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1510 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1511 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1516 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1518 int node
= cpu_to_node(cpu
);
1522 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1525 vmcs
= page_address(pages
);
1526 memset(vmcs
, 0, vmcs_config
.size
);
1527 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1531 static struct vmcs
*alloc_vmcs(void)
1533 return alloc_vmcs_cpu(raw_smp_processor_id());
1536 static void free_vmcs(struct vmcs
*vmcs
)
1538 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1541 static void free_kvm_area(void)
1545 for_each_possible_cpu(cpu
) {
1546 free_vmcs(per_cpu(vmxarea
, cpu
));
1547 per_cpu(vmxarea
, cpu
) = NULL
;
1551 static __init
int alloc_kvm_area(void)
1555 for_each_possible_cpu(cpu
) {
1558 vmcs
= alloc_vmcs_cpu(cpu
);
1564 per_cpu(vmxarea
, cpu
) = vmcs
;
1569 static __init
int hardware_setup(void)
1571 if (setup_vmcs_config(&vmcs_config
) < 0)
1574 if (boot_cpu_has(X86_FEATURE_NX
))
1575 kvm_enable_efer_bits(EFER_NX
);
1577 if (!cpu_has_vmx_vpid())
1580 if (!cpu_has_vmx_ept() ||
1581 !cpu_has_vmx_ept_4levels()) {
1583 enable_unrestricted_guest
= 0;
1586 if (!cpu_has_vmx_unrestricted_guest())
1587 enable_unrestricted_guest
= 0;
1589 if (!cpu_has_vmx_flexpriority())
1590 flexpriority_enabled
= 0;
1592 if (!cpu_has_vmx_tpr_shadow())
1593 kvm_x86_ops
->update_cr8_intercept
= NULL
;
1595 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
1596 kvm_disable_largepages();
1598 if (!cpu_has_vmx_ple())
1601 return alloc_kvm_area();
1604 static __exit
void hardware_unsetup(void)
1609 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1611 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1613 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1614 vmcs_write16(sf
->selector
, save
->selector
);
1615 vmcs_writel(sf
->base
, save
->base
);
1616 vmcs_write32(sf
->limit
, save
->limit
);
1617 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1619 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1621 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1625 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1627 unsigned long flags
;
1628 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1630 vmx
->emulation_required
= 1;
1631 vmx
->rmode
.vm86_active
= 0;
1633 vmcs_writel(GUEST_TR_BASE
, vmx
->rmode
.tr
.base
);
1634 vmcs_write32(GUEST_TR_LIMIT
, vmx
->rmode
.tr
.limit
);
1635 vmcs_write32(GUEST_TR_AR_BYTES
, vmx
->rmode
.tr
.ar
);
1637 flags
= vmcs_readl(GUEST_RFLAGS
);
1638 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1639 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1640 vmcs_writel(GUEST_RFLAGS
, flags
);
1642 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1643 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1645 update_exception_bitmap(vcpu
);
1647 if (emulate_invalid_guest_state
)
1650 fix_pmode_dataseg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1651 fix_pmode_dataseg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1652 fix_pmode_dataseg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1653 fix_pmode_dataseg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1655 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1656 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1658 vmcs_write16(GUEST_CS_SELECTOR
,
1659 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1660 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1663 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1665 if (!kvm
->arch
.tss_addr
) {
1666 struct kvm_memslots
*slots
;
1669 slots
= kvm_memslots(kvm
);
1670 base_gfn
= slots
->memslots
[0].base_gfn
+
1671 kvm
->memslots
->memslots
[0].npages
- 3;
1672 return base_gfn
<< PAGE_SHIFT
;
1674 return kvm
->arch
.tss_addr
;
1677 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1679 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1681 save
->selector
= vmcs_read16(sf
->selector
);
1682 save
->base
= vmcs_readl(sf
->base
);
1683 save
->limit
= vmcs_read32(sf
->limit
);
1684 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1685 vmcs_write16(sf
->selector
, save
->base
>> 4);
1686 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1687 vmcs_write32(sf
->limit
, 0xffff);
1688 vmcs_write32(sf
->ar_bytes
, 0xf3);
1691 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1693 unsigned long flags
;
1694 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1696 if (enable_unrestricted_guest
)
1699 vmx
->emulation_required
= 1;
1700 vmx
->rmode
.vm86_active
= 1;
1702 vmx
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1703 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1705 vmx
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1706 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1708 vmx
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1709 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1711 flags
= vmcs_readl(GUEST_RFLAGS
);
1712 vmx
->rmode
.save_rflags
= flags
;
1714 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1716 vmcs_writel(GUEST_RFLAGS
, flags
);
1717 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1718 update_exception_bitmap(vcpu
);
1720 if (emulate_invalid_guest_state
)
1721 goto continue_rmode
;
1723 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1724 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1725 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1727 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1728 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1729 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1730 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1731 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1733 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1734 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1735 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1736 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1739 kvm_mmu_reset_context(vcpu
);
1740 init_rmode(vcpu
->kvm
);
1743 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1745 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1746 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1752 * Force kernel_gs_base reloading before EFER changes, as control
1753 * of this msr depends on is_long_mode().
1755 vmx_load_host_state(to_vmx(vcpu
));
1756 vcpu
->arch
.efer
= efer
;
1757 if (efer
& EFER_LMA
) {
1758 vmcs_write32(VM_ENTRY_CONTROLS
,
1759 vmcs_read32(VM_ENTRY_CONTROLS
) |
1760 VM_ENTRY_IA32E_MODE
);
1763 vmcs_write32(VM_ENTRY_CONTROLS
,
1764 vmcs_read32(VM_ENTRY_CONTROLS
) &
1765 ~VM_ENTRY_IA32E_MODE
);
1767 msr
->data
= efer
& ~EFER_LME
;
1772 #ifdef CONFIG_X86_64
1774 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1778 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1779 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1780 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1782 vmcs_write32(GUEST_TR_AR_BYTES
,
1783 (guest_tr_ar
& ~AR_TYPE_MASK
)
1784 | AR_TYPE_BUSY_64_TSS
);
1786 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
1789 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1791 vmcs_write32(VM_ENTRY_CONTROLS
,
1792 vmcs_read32(VM_ENTRY_CONTROLS
)
1793 & ~VM_ENTRY_IA32E_MODE
);
1794 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
1799 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1801 vpid_sync_context(to_vmx(vcpu
));
1803 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
1805 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1809 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1811 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
1813 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
1814 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
1817 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1819 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
1821 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
1822 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
1825 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1827 if (!test_bit(VCPU_EXREG_PDPTR
,
1828 (unsigned long *)&vcpu
->arch
.regs_dirty
))
1831 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1832 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.mmu
.pdptrs
[0]);
1833 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.mmu
.pdptrs
[1]);
1834 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.mmu
.pdptrs
[2]);
1835 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.mmu
.pdptrs
[3]);
1839 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
1841 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1842 vcpu
->arch
.mmu
.pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
1843 vcpu
->arch
.mmu
.pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
1844 vcpu
->arch
.mmu
.pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
1845 vcpu
->arch
.mmu
.pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
1848 __set_bit(VCPU_EXREG_PDPTR
,
1849 (unsigned long *)&vcpu
->arch
.regs_avail
);
1850 __set_bit(VCPU_EXREG_PDPTR
,
1851 (unsigned long *)&vcpu
->arch
.regs_dirty
);
1854 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1856 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1858 struct kvm_vcpu
*vcpu
)
1860 if (!(cr0
& X86_CR0_PG
)) {
1861 /* From paging/starting to nonpaging */
1862 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1863 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1864 (CPU_BASED_CR3_LOAD_EXITING
|
1865 CPU_BASED_CR3_STORE_EXITING
));
1866 vcpu
->arch
.cr0
= cr0
;
1867 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
1868 } else if (!is_paging(vcpu
)) {
1869 /* From nonpaging to paging */
1870 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1871 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1872 ~(CPU_BASED_CR3_LOAD_EXITING
|
1873 CPU_BASED_CR3_STORE_EXITING
));
1874 vcpu
->arch
.cr0
= cr0
;
1875 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
1878 if (!(cr0
& X86_CR0_WP
))
1879 *hw_cr0
&= ~X86_CR0_WP
;
1882 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1884 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1885 unsigned long hw_cr0
;
1887 if (enable_unrestricted_guest
)
1888 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST
)
1889 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
1891 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
;
1893 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
1896 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
1899 #ifdef CONFIG_X86_64
1900 if (vcpu
->arch
.efer
& EFER_LME
) {
1901 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1903 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1909 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1911 if (!vcpu
->fpu_active
)
1912 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
1914 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1915 vmcs_writel(GUEST_CR0
, hw_cr0
);
1916 vcpu
->arch
.cr0
= cr0
;
1919 static u64
construct_eptp(unsigned long root_hpa
)
1923 /* TODO write the value reading from MSR */
1924 eptp
= VMX_EPT_DEFAULT_MT
|
1925 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
1926 eptp
|= (root_hpa
& PAGE_MASK
);
1931 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1933 unsigned long guest_cr3
;
1938 eptp
= construct_eptp(cr3
);
1939 vmcs_write64(EPT_POINTER
, eptp
);
1940 guest_cr3
= is_paging(vcpu
) ? vcpu
->arch
.cr3
:
1941 vcpu
->kvm
->arch
.ept_identity_map_addr
;
1942 ept_load_pdptrs(vcpu
);
1945 vmx_flush_tlb(vcpu
);
1946 vmcs_writel(GUEST_CR3
, guest_cr3
);
1949 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1951 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
1952 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
1954 vcpu
->arch
.cr4
= cr4
;
1956 if (!is_paging(vcpu
)) {
1957 hw_cr4
&= ~X86_CR4_PAE
;
1958 hw_cr4
|= X86_CR4_PSE
;
1959 } else if (!(cr4
& X86_CR4_PAE
)) {
1960 hw_cr4
&= ~X86_CR4_PAE
;
1964 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1965 vmcs_writel(GUEST_CR4
, hw_cr4
);
1968 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1970 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1972 return vmcs_readl(sf
->base
);
1975 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1976 struct kvm_segment
*var
, int seg
)
1978 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1981 var
->base
= vmcs_readl(sf
->base
);
1982 var
->limit
= vmcs_read32(sf
->limit
);
1983 var
->selector
= vmcs_read16(sf
->selector
);
1984 ar
= vmcs_read32(sf
->ar_bytes
);
1985 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
1987 var
->type
= ar
& 15;
1988 var
->s
= (ar
>> 4) & 1;
1989 var
->dpl
= (ar
>> 5) & 3;
1990 var
->present
= (ar
>> 7) & 1;
1991 var
->avl
= (ar
>> 12) & 1;
1992 var
->l
= (ar
>> 13) & 1;
1993 var
->db
= (ar
>> 14) & 1;
1994 var
->g
= (ar
>> 15) & 1;
1995 var
->unusable
= (ar
>> 16) & 1;
1998 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
2000 if (!is_protmode(vcpu
))
2003 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
2006 return vmcs_read16(GUEST_CS_SELECTOR
) & 3;
2009 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
2016 ar
= var
->type
& 15;
2017 ar
|= (var
->s
& 1) << 4;
2018 ar
|= (var
->dpl
& 3) << 5;
2019 ar
|= (var
->present
& 1) << 7;
2020 ar
|= (var
->avl
& 1) << 12;
2021 ar
|= (var
->l
& 1) << 13;
2022 ar
|= (var
->db
& 1) << 14;
2023 ar
|= (var
->g
& 1) << 15;
2025 if (ar
== 0) /* a 0 value means unusable */
2026 ar
= AR_UNUSABLE_MASK
;
2031 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
2032 struct kvm_segment
*var
, int seg
)
2034 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2035 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2038 if (vmx
->rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
2039 vmx
->rmode
.tr
.selector
= var
->selector
;
2040 vmx
->rmode
.tr
.base
= var
->base
;
2041 vmx
->rmode
.tr
.limit
= var
->limit
;
2042 vmx
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
2045 vmcs_writel(sf
->base
, var
->base
);
2046 vmcs_write32(sf
->limit
, var
->limit
);
2047 vmcs_write16(sf
->selector
, var
->selector
);
2048 if (vmx
->rmode
.vm86_active
&& var
->s
) {
2050 * Hack real-mode segments into vm86 compatibility.
2052 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
2053 vmcs_writel(sf
->base
, 0xf0000);
2056 ar
= vmx_segment_access_rights(var
);
2059 * Fix the "Accessed" bit in AR field of segment registers for older
2061 * IA32 arch specifies that at the time of processor reset the
2062 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2063 * is setting it to 0 in the usedland code. This causes invalid guest
2064 * state vmexit when "unrestricted guest" mode is turned on.
2065 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2066 * tree. Newer qemu binaries with that qemu fix would not need this
2069 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
2070 ar
|= 0x1; /* Accessed */
2072 vmcs_write32(sf
->ar_bytes
, ar
);
2075 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
2077 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
2079 *db
= (ar
>> 14) & 1;
2080 *l
= (ar
>> 13) & 1;
2083 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2085 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
2086 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
2089 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2091 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
2092 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
2095 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2097 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
2098 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
2101 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2103 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
2104 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
2107 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
2109 struct kvm_segment var
;
2112 vmx_get_segment(vcpu
, &var
, seg
);
2113 ar
= vmx_segment_access_rights(&var
);
2115 if (var
.base
!= (var
.selector
<< 4))
2117 if (var
.limit
!= 0xffff)
2125 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
2127 struct kvm_segment cs
;
2128 unsigned int cs_rpl
;
2130 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2131 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
2135 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
2139 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
2140 if (cs
.dpl
> cs_rpl
)
2143 if (cs
.dpl
!= cs_rpl
)
2149 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2153 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
2155 struct kvm_segment ss
;
2156 unsigned int ss_rpl
;
2158 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
2159 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
2163 if (ss
.type
!= 3 && ss
.type
!= 7)
2167 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
2175 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
2177 struct kvm_segment var
;
2180 vmx_get_segment(vcpu
, &var
, seg
);
2181 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
2189 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
2190 if (var
.dpl
< rpl
) /* DPL < RPL */
2194 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2200 static bool tr_valid(struct kvm_vcpu
*vcpu
)
2202 struct kvm_segment tr
;
2204 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
2208 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2210 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
2218 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
2220 struct kvm_segment ldtr
;
2222 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
2226 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2236 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
2238 struct kvm_segment cs
, ss
;
2240 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2241 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
2243 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
2244 (ss
.selector
& SELECTOR_RPL_MASK
));
2248 * Check if guest state is valid. Returns true if valid, false if
2250 * We assume that registers are always usable
2252 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
2254 /* real mode guest state checks */
2255 if (!is_protmode(vcpu
)) {
2256 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
2258 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
2260 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
2262 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
2264 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
2266 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
2269 /* protected mode guest state checks */
2270 if (!cs_ss_rpl_check(vcpu
))
2272 if (!code_segment_valid(vcpu
))
2274 if (!stack_segment_valid(vcpu
))
2276 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
2278 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
2280 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
2282 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
2284 if (!tr_valid(vcpu
))
2286 if (!ldtr_valid(vcpu
))
2290 * - Add checks on RIP
2291 * - Add checks on RFLAGS
2297 static int init_rmode_tss(struct kvm
*kvm
)
2299 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
2304 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2307 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
2308 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
2309 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
2312 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
2315 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2319 r
= kvm_write_guest_page(kvm
, fn
, &data
,
2320 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
2330 static int init_rmode_identity_map(struct kvm
*kvm
)
2333 pfn_t identity_map_pfn
;
2338 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
2339 printk(KERN_ERR
"EPT: identity-mapping pagetable "
2340 "haven't been allocated!\n");
2343 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
2346 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
2347 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
2350 /* Set up identity-mapping pagetable for EPT in real mode */
2351 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
2352 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
2353 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
2354 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
2355 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
2359 kvm
->arch
.ept_identity_pagetable_done
= true;
2365 static void seg_setup(int seg
)
2367 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2370 vmcs_write16(sf
->selector
, 0);
2371 vmcs_writel(sf
->base
, 0);
2372 vmcs_write32(sf
->limit
, 0xffff);
2373 if (enable_unrestricted_guest
) {
2375 if (seg
== VCPU_SREG_CS
)
2376 ar
|= 0x08; /* code segment */
2380 vmcs_write32(sf
->ar_bytes
, ar
);
2383 static int alloc_apic_access_page(struct kvm
*kvm
)
2385 struct kvm_userspace_memory_region kvm_userspace_mem
;
2388 mutex_lock(&kvm
->slots_lock
);
2389 if (kvm
->arch
.apic_access_page
)
2391 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
2392 kvm_userspace_mem
.flags
= 0;
2393 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
2394 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2395 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2399 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
2401 mutex_unlock(&kvm
->slots_lock
);
2405 static int alloc_identity_pagetable(struct kvm
*kvm
)
2407 struct kvm_userspace_memory_region kvm_userspace_mem
;
2410 mutex_lock(&kvm
->slots_lock
);
2411 if (kvm
->arch
.ept_identity_pagetable
)
2413 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
2414 kvm_userspace_mem
.flags
= 0;
2415 kvm_userspace_mem
.guest_phys_addr
=
2416 kvm
->arch
.ept_identity_map_addr
;
2417 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2418 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2422 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
2423 kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
2425 mutex_unlock(&kvm
->slots_lock
);
2429 static void allocate_vpid(struct vcpu_vmx
*vmx
)
2436 spin_lock(&vmx_vpid_lock
);
2437 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
2438 if (vpid
< VMX_NR_VPIDS
) {
2440 __set_bit(vpid
, vmx_vpid_bitmap
);
2442 spin_unlock(&vmx_vpid_lock
);
2445 static void free_vpid(struct vcpu_vmx
*vmx
)
2449 spin_lock(&vmx_vpid_lock
);
2451 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
2452 spin_unlock(&vmx_vpid_lock
);
2455 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
2457 int f
= sizeof(unsigned long);
2459 if (!cpu_has_vmx_msr_bitmap())
2463 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2464 * have the write-low and read-high bitmap offsets the wrong way round.
2465 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2467 if (msr
<= 0x1fff) {
2468 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
2469 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
2470 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2472 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
2473 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
2477 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
2480 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
2481 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
2485 * Sets up the vmcs for emulated real mode.
2487 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
2489 u32 host_sysenter_cs
, msr_low
, msr_high
;
2495 unsigned long kvm_vmx_return
;
2499 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
2500 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
2502 if (cpu_has_vmx_msr_bitmap())
2503 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
2505 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
2508 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
2509 vmcs_config
.pin_based_exec_ctrl
);
2511 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
2512 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
2513 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2514 #ifdef CONFIG_X86_64
2515 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
2516 CPU_BASED_CR8_LOAD_EXITING
;
2520 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
2521 CPU_BASED_CR3_LOAD_EXITING
|
2522 CPU_BASED_INVLPG_EXITING
;
2523 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
2525 if (cpu_has_secondary_exec_ctrls()) {
2526 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
2527 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2529 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2531 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
2533 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
2534 enable_unrestricted_guest
= 0;
2536 if (!enable_unrestricted_guest
)
2537 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2539 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
2540 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
2544 vmcs_write32(PLE_GAP
, ple_gap
);
2545 vmcs_write32(PLE_WINDOW
, ple_window
);
2548 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
2549 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
2550 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
2552 vmcs_writel(HOST_CR0
, read_cr0() | X86_CR0_TS
); /* 22.2.3 */
2553 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
2554 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2556 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
2557 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2558 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2559 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
2560 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
2561 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2562 #ifdef CONFIG_X86_64
2563 rdmsrl(MSR_FS_BASE
, a
);
2564 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
2565 rdmsrl(MSR_GS_BASE
, a
);
2566 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
2568 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
2569 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
2572 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
2574 native_store_idt(&dt
);
2575 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
2577 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
2578 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
2579 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
2580 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
2581 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
2582 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
2583 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
2585 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
2586 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
2587 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
2588 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
2589 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
2590 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
2592 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
2593 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2594 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2595 vmcs_write64(HOST_IA32_PAT
, host_pat
);
2597 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2598 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2599 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2600 /* Write the default value follow host pat */
2601 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
2602 /* Keep arch.pat sync with GUEST_IA32_PAT */
2603 vmx
->vcpu
.arch
.pat
= host_pat
;
2606 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
2607 u32 index
= vmx_msr_index
[i
];
2608 u32 data_low
, data_high
;
2611 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
2613 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
2615 vmx
->guest_msrs
[j
].index
= i
;
2616 vmx
->guest_msrs
[j
].data
= 0;
2617 vmx
->guest_msrs
[j
].mask
= -1ull;
2621 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
2623 /* 22.2.1, 20.8.1 */
2624 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2626 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2627 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
2629 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
2630 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
2632 kvm_write_tsc(&vmx
->vcpu
, 0);
2637 static int init_rmode(struct kvm
*kvm
)
2641 idx
= srcu_read_lock(&kvm
->srcu
);
2642 if (!init_rmode_tss(kvm
))
2644 if (!init_rmode_identity_map(kvm
))
2649 srcu_read_unlock(&kvm
->srcu
, idx
);
2653 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2655 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2659 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
2660 if (!init_rmode(vmx
->vcpu
.kvm
)) {
2665 vmx
->rmode
.vm86_active
= 0;
2667 vmx
->soft_vnmi_blocked
= 0;
2669 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2670 kvm_set_cr8(&vmx
->vcpu
, 0);
2671 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2672 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2673 msr
|= MSR_IA32_APICBASE_BSP
;
2674 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2676 ret
= fx_init(&vmx
->vcpu
);
2680 seg_setup(VCPU_SREG_CS
);
2682 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2683 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2685 if (kvm_vcpu_is_bsp(&vmx
->vcpu
)) {
2686 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2687 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2689 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2690 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2693 seg_setup(VCPU_SREG_DS
);
2694 seg_setup(VCPU_SREG_ES
);
2695 seg_setup(VCPU_SREG_FS
);
2696 seg_setup(VCPU_SREG_GS
);
2697 seg_setup(VCPU_SREG_SS
);
2699 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2700 vmcs_writel(GUEST_TR_BASE
, 0);
2701 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2702 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2704 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2705 vmcs_writel(GUEST_LDTR_BASE
, 0);
2706 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2707 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2709 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2710 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2711 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2713 vmcs_writel(GUEST_RFLAGS
, 0x02);
2714 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2715 kvm_rip_write(vcpu
, 0xfff0);
2717 kvm_rip_write(vcpu
, 0);
2718 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
2720 vmcs_writel(GUEST_DR7
, 0x400);
2722 vmcs_writel(GUEST_GDTR_BASE
, 0);
2723 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2725 vmcs_writel(GUEST_IDTR_BASE
, 0);
2726 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2728 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
2729 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2730 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2732 /* Special registers */
2733 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2737 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2739 if (cpu_has_vmx_tpr_shadow()) {
2740 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2741 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2742 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2743 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
2744 vmcs_write32(TPR_THRESHOLD
, 0);
2747 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2748 vmcs_write64(APIC_ACCESS_ADDR
,
2749 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2752 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2754 vmx
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
2755 vmx_set_cr0(&vmx
->vcpu
, kvm_read_cr0(vcpu
)); /* enter rmode */
2756 vmx_set_cr4(&vmx
->vcpu
, 0);
2757 vmx_set_efer(&vmx
->vcpu
, 0);
2758 vmx_fpu_activate(&vmx
->vcpu
);
2759 update_exception_bitmap(&vmx
->vcpu
);
2761 vpid_sync_context(vmx
);
2765 /* HACK: Don't enable emulation on guest boot/reset */
2766 vmx
->emulation_required
= 0;
2772 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2774 u32 cpu_based_vm_exec_control
;
2776 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2777 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2778 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2781 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2783 u32 cpu_based_vm_exec_control
;
2785 if (!cpu_has_virtual_nmis()) {
2786 enable_irq_window(vcpu
);
2790 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2791 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2792 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2795 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
2797 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2799 int irq
= vcpu
->arch
.interrupt
.nr
;
2801 trace_kvm_inj_virq(irq
);
2803 ++vcpu
->stat
.irq_injections
;
2804 if (vmx
->rmode
.vm86_active
) {
2805 if (kvm_inject_realmode_interrupt(vcpu
, irq
) != EMULATE_DONE
)
2806 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2809 intr
= irq
| INTR_INFO_VALID_MASK
;
2810 if (vcpu
->arch
.interrupt
.soft
) {
2811 intr
|= INTR_TYPE_SOFT_INTR
;
2812 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2813 vmx
->vcpu
.arch
.event_exit_inst_len
);
2815 intr
|= INTR_TYPE_EXT_INTR
;
2816 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
2819 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2821 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2823 if (!cpu_has_virtual_nmis()) {
2825 * Tracking the NMI-blocked state in software is built upon
2826 * finding the next open IRQ window. This, in turn, depends on
2827 * well-behaving guests: They have to keep IRQs disabled at
2828 * least as long as the NMI handler runs. Otherwise we may
2829 * cause NMI nesting, maybe breaking the guest. But as this is
2830 * highly unlikely, we can live with the residual risk.
2832 vmx
->soft_vnmi_blocked
= 1;
2833 vmx
->vnmi_blocked_time
= 0;
2836 ++vcpu
->stat
.nmi_injections
;
2837 if (vmx
->rmode
.vm86_active
) {
2838 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
) != EMULATE_DONE
)
2839 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2842 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2843 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2846 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
2848 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
2851 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2852 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_NMI
));
2855 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
2857 if (!cpu_has_virtual_nmis())
2858 return to_vmx(vcpu
)->soft_vnmi_blocked
;
2859 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
2862 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
2864 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2866 if (!cpu_has_virtual_nmis()) {
2867 if (vmx
->soft_vnmi_blocked
!= masked
) {
2868 vmx
->soft_vnmi_blocked
= masked
;
2869 vmx
->vnmi_blocked_time
= 0;
2873 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
2874 GUEST_INTR_STATE_NMI
);
2876 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
2877 GUEST_INTR_STATE_NMI
);
2881 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2883 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2884 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2885 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
2888 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2891 struct kvm_userspace_memory_region tss_mem
= {
2892 .slot
= TSS_PRIVATE_MEMSLOT
,
2893 .guest_phys_addr
= addr
,
2894 .memory_size
= PAGE_SIZE
* 3,
2898 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
2901 kvm
->arch
.tss_addr
= addr
;
2905 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
2906 int vec
, u32 err_code
)
2909 * Instruction with address size override prefix opcode 0x67
2910 * Cause the #SS fault with 0 error code in VM86 mode.
2912 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
2913 if (emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DONE
)
2916 * Forward all other exceptions that are valid in real mode.
2917 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2918 * the required debugging infrastructure rework.
2922 if (vcpu
->guest_debug
&
2923 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
2925 kvm_queue_exception(vcpu
, vec
);
2929 * Update instruction length as we may reinject the exception
2930 * from user space while in guest debugging mode.
2932 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
2933 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
2934 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2945 kvm_queue_exception(vcpu
, vec
);
2952 * Trigger machine check on the host. We assume all the MSRs are already set up
2953 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2954 * We pass a fake environment to the machine check handler because we want
2955 * the guest to be always treated like user space, no matter what context
2956 * it used internally.
2958 static void kvm_machine_check(void)
2960 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2961 struct pt_regs regs
= {
2962 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
2963 .flags
= X86_EFLAGS_IF
,
2966 do_machine_check(®s
, 0);
2970 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
2972 /* already handled by vcpu_run */
2976 static int handle_exception(struct kvm_vcpu
*vcpu
)
2978 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2979 struct kvm_run
*kvm_run
= vcpu
->run
;
2980 u32 intr_info
, ex_no
, error_code
;
2981 unsigned long cr2
, rip
, dr6
;
2983 enum emulation_result er
;
2985 vect_info
= vmx
->idt_vectoring_info
;
2986 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2988 if (is_machine_check(intr_info
))
2989 return handle_machine_check(vcpu
);
2991 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
2992 !is_page_fault(intr_info
)) {
2993 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2994 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
2995 vcpu
->run
->internal
.ndata
= 2;
2996 vcpu
->run
->internal
.data
[0] = vect_info
;
2997 vcpu
->run
->internal
.data
[1] = intr_info
;
3001 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
3002 return 1; /* already handled by vmx_vcpu_run() */
3004 if (is_no_device(intr_info
)) {
3005 vmx_fpu_activate(vcpu
);
3009 if (is_invalid_opcode(intr_info
)) {
3010 er
= emulate_instruction(vcpu
, 0, 0, EMULTYPE_TRAP_UD
);
3011 if (er
!= EMULATE_DONE
)
3012 kvm_queue_exception(vcpu
, UD_VECTOR
);
3017 rip
= kvm_rip_read(vcpu
);
3018 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
3019 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
3020 if (is_page_fault(intr_info
)) {
3021 /* EPT won't cause page fault directly */
3024 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
3025 trace_kvm_page_fault(cr2
, error_code
);
3027 if (kvm_event_needs_reinjection(vcpu
))
3028 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
3029 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
3032 if (vmx
->rmode
.vm86_active
&&
3033 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
3035 if (vcpu
->arch
.halt_request
) {
3036 vcpu
->arch
.halt_request
= 0;
3037 return kvm_emulate_halt(vcpu
);
3042 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
3045 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
3046 if (!(vcpu
->guest_debug
&
3047 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
3048 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
3049 kvm_queue_exception(vcpu
, DB_VECTOR
);
3052 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
3053 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
3057 * Update instruction length as we may reinject #BP from
3058 * user space while in guest debugging mode. Reading it for
3059 * #DB as well causes no harm, it is not used in that case.
3061 vmx
->vcpu
.arch
.event_exit_inst_len
=
3062 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3063 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
3064 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
3065 kvm_run
->debug
.arch
.exception
= ex_no
;
3068 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
3069 kvm_run
->ex
.exception
= ex_no
;
3070 kvm_run
->ex
.error_code
= error_code
;
3076 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
3078 ++vcpu
->stat
.irq_exits
;
3082 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
3084 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3088 static int handle_io(struct kvm_vcpu
*vcpu
)
3090 unsigned long exit_qualification
;
3091 int size
, in
, string
;
3094 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3095 string
= (exit_qualification
& 16) != 0;
3096 in
= (exit_qualification
& 8) != 0;
3098 ++vcpu
->stat
.io_exits
;
3101 return emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DONE
;
3103 port
= exit_qualification
>> 16;
3104 size
= (exit_qualification
& 7) + 1;
3105 skip_emulated_instruction(vcpu
);
3107 return kvm_fast_pio_out(vcpu
, size
, port
);
3111 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3114 * Patch in the VMCALL instruction:
3116 hypercall
[0] = 0x0f;
3117 hypercall
[1] = 0x01;
3118 hypercall
[2] = 0xc1;
3121 static void complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
3124 kvm_inject_gp(vcpu
, 0);
3126 skip_emulated_instruction(vcpu
);
3129 static int handle_cr(struct kvm_vcpu
*vcpu
)
3131 unsigned long exit_qualification
, val
;
3136 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3137 cr
= exit_qualification
& 15;
3138 reg
= (exit_qualification
>> 8) & 15;
3139 switch ((exit_qualification
>> 4) & 3) {
3140 case 0: /* mov to cr */
3141 val
= kvm_register_read(vcpu
, reg
);
3142 trace_kvm_cr_write(cr
, val
);
3145 err
= kvm_set_cr0(vcpu
, val
);
3146 complete_insn_gp(vcpu
, err
);
3149 err
= kvm_set_cr3(vcpu
, val
);
3150 complete_insn_gp(vcpu
, err
);
3153 err
= kvm_set_cr4(vcpu
, val
);
3154 complete_insn_gp(vcpu
, err
);
3157 u8 cr8_prev
= kvm_get_cr8(vcpu
);
3158 u8 cr8
= kvm_register_read(vcpu
, reg
);
3159 kvm_set_cr8(vcpu
, cr8
);
3160 skip_emulated_instruction(vcpu
);
3161 if (irqchip_in_kernel(vcpu
->kvm
))
3163 if (cr8_prev
<= cr8
)
3165 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
3171 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
3172 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
3173 skip_emulated_instruction(vcpu
);
3174 vmx_fpu_activate(vcpu
);
3176 case 1: /*mov from cr*/
3179 kvm_register_write(vcpu
, reg
, vcpu
->arch
.cr3
);
3180 trace_kvm_cr_read(cr
, vcpu
->arch
.cr3
);
3181 skip_emulated_instruction(vcpu
);
3184 val
= kvm_get_cr8(vcpu
);
3185 kvm_register_write(vcpu
, reg
, val
);
3186 trace_kvm_cr_read(cr
, val
);
3187 skip_emulated_instruction(vcpu
);
3192 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
3193 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
3194 kvm_lmsw(vcpu
, val
);
3196 skip_emulated_instruction(vcpu
);
3201 vcpu
->run
->exit_reason
= 0;
3202 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
3203 (int)(exit_qualification
>> 4) & 3, cr
);
3207 static int handle_dr(struct kvm_vcpu
*vcpu
)
3209 unsigned long exit_qualification
;
3212 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3213 if (!kvm_require_cpl(vcpu
, 0))
3215 dr
= vmcs_readl(GUEST_DR7
);
3218 * As the vm-exit takes precedence over the debug trap, we
3219 * need to emulate the latter, either for the host or the
3220 * guest debugging itself.
3222 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
3223 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
3224 vcpu
->run
->debug
.arch
.dr7
= dr
;
3225 vcpu
->run
->debug
.arch
.pc
=
3226 vmcs_readl(GUEST_CS_BASE
) +
3227 vmcs_readl(GUEST_RIP
);
3228 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
3229 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
3232 vcpu
->arch
.dr7
&= ~DR7_GD
;
3233 vcpu
->arch
.dr6
|= DR6_BD
;
3234 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
3235 kvm_queue_exception(vcpu
, DB_VECTOR
);
3240 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3241 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
3242 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
3243 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
3245 if (!kvm_get_dr(vcpu
, dr
, &val
))
3246 kvm_register_write(vcpu
, reg
, val
);
3248 kvm_set_dr(vcpu
, dr
, vcpu
->arch
.regs
[reg
]);
3249 skip_emulated_instruction(vcpu
);
3253 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
3255 vmcs_writel(GUEST_DR7
, val
);
3258 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
3260 kvm_emulate_cpuid(vcpu
);
3264 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
3266 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3269 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
3270 trace_kvm_msr_read_ex(ecx
);
3271 kvm_inject_gp(vcpu
, 0);
3275 trace_kvm_msr_read(ecx
, data
);
3277 /* FIXME: handling of bits 32:63 of rax, rdx */
3278 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
3279 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
3280 skip_emulated_instruction(vcpu
);
3284 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
3286 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3287 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
3288 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3290 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
3291 trace_kvm_msr_write_ex(ecx
, data
);
3292 kvm_inject_gp(vcpu
, 0);
3296 trace_kvm_msr_write(ecx
, data
);
3297 skip_emulated_instruction(vcpu
);
3301 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
3303 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3307 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
3309 u32 cpu_based_vm_exec_control
;
3311 /* clear pending irq */
3312 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3313 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
3314 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3316 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3318 ++vcpu
->stat
.irq_window_exits
;
3321 * If the user space waits to inject interrupts, exit as soon as
3324 if (!irqchip_in_kernel(vcpu
->kvm
) &&
3325 vcpu
->run
->request_interrupt_window
&&
3326 !kvm_cpu_has_interrupt(vcpu
)) {
3327 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3333 static int handle_halt(struct kvm_vcpu
*vcpu
)
3335 skip_emulated_instruction(vcpu
);
3336 return kvm_emulate_halt(vcpu
);
3339 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
3341 skip_emulated_instruction(vcpu
);
3342 kvm_emulate_hypercall(vcpu
);
3346 static int handle_vmx_insn(struct kvm_vcpu
*vcpu
)
3348 kvm_queue_exception(vcpu
, UD_VECTOR
);
3352 static int handle_invd(struct kvm_vcpu
*vcpu
)
3354 return emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DONE
;
3357 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
3359 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3361 kvm_mmu_invlpg(vcpu
, exit_qualification
);
3362 skip_emulated_instruction(vcpu
);
3366 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
3368 skip_emulated_instruction(vcpu
);
3369 kvm_emulate_wbinvd(vcpu
);
3373 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
3375 u64 new_bv
= kvm_read_edx_eax(vcpu
);
3376 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3378 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
3379 skip_emulated_instruction(vcpu
);
3383 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
3385 return emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DONE
;
3388 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
3390 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3391 unsigned long exit_qualification
;
3392 bool has_error_code
= false;
3395 int reason
, type
, idt_v
;
3397 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
3398 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
3400 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3402 reason
= (u32
)exit_qualification
>> 30;
3403 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
3405 case INTR_TYPE_NMI_INTR
:
3406 vcpu
->arch
.nmi_injected
= false;
3407 if (cpu_has_virtual_nmis())
3408 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3409 GUEST_INTR_STATE_NMI
);
3411 case INTR_TYPE_EXT_INTR
:
3412 case INTR_TYPE_SOFT_INTR
:
3413 kvm_clear_interrupt_queue(vcpu
);
3415 case INTR_TYPE_HARD_EXCEPTION
:
3416 if (vmx
->idt_vectoring_info
&
3417 VECTORING_INFO_DELIVER_CODE_MASK
) {
3418 has_error_code
= true;
3420 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
3423 case INTR_TYPE_SOFT_EXCEPTION
:
3424 kvm_clear_exception_queue(vcpu
);
3430 tss_selector
= exit_qualification
;
3432 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
3433 type
!= INTR_TYPE_EXT_INTR
&&
3434 type
!= INTR_TYPE_NMI_INTR
))
3435 skip_emulated_instruction(vcpu
);
3437 if (kvm_task_switch(vcpu
, tss_selector
, reason
,
3438 has_error_code
, error_code
) == EMULATE_FAIL
) {
3439 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3440 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
3441 vcpu
->run
->internal
.ndata
= 0;
3445 /* clear all local breakpoint enable flags */
3446 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
3449 * TODO: What about debug traps on tss switch?
3450 * Are we supposed to inject them and update dr6?
3456 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
3458 unsigned long exit_qualification
;
3462 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3464 if (exit_qualification
& (1 << 6)) {
3465 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
3469 gla_validity
= (exit_qualification
>> 7) & 0x3;
3470 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
3471 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
3472 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3473 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
3474 vmcs_readl(GUEST_LINEAR_ADDRESS
));
3475 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3476 (long unsigned int)exit_qualification
);
3477 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3478 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
3482 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3483 trace_kvm_page_fault(gpa
, exit_qualification
);
3484 return kvm_mmu_page_fault(vcpu
, gpa
, exit_qualification
& 0x3);
3487 static u64
ept_rsvd_mask(u64 spte
, int level
)
3492 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
3493 mask
|= (1ULL << i
);
3496 /* bits 7:3 reserved */
3498 else if (level
== 2) {
3499 if (spte
& (1ULL << 7))
3500 /* 2MB ref, bits 20:12 reserved */
3503 /* bits 6:3 reserved */
3510 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
3513 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
3515 /* 010b (write-only) */
3516 WARN_ON((spte
& 0x7) == 0x2);
3518 /* 110b (write/execute) */
3519 WARN_ON((spte
& 0x7) == 0x6);
3521 /* 100b (execute-only) and value not supported by logical processor */
3522 if (!cpu_has_vmx_ept_execute_only())
3523 WARN_ON((spte
& 0x7) == 0x4);
3527 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
3529 if (rsvd_bits
!= 0) {
3530 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
3531 __func__
, rsvd_bits
);
3535 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
3536 u64 ept_mem_type
= (spte
& 0x38) >> 3;
3538 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
3539 ept_mem_type
== 7) {
3540 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
3541 __func__
, ept_mem_type
);
3548 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
3554 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3556 printk(KERN_ERR
"EPT: Misconfiguration.\n");
3557 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
3559 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
3561 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
3562 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
3564 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3565 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
3570 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
3572 u32 cpu_based_vm_exec_control
;
3574 /* clear pending NMI */
3575 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3576 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
3577 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3578 ++vcpu
->stat
.nmi_window_exits
;
3579 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3584 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
3586 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3587 enum emulation_result err
= EMULATE_DONE
;
3590 bool intr_window_requested
;
3592 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3593 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
3595 while (!guest_state_valid(vcpu
)) {
3596 if (intr_window_requested
3597 && (kvm_get_rflags(&vmx
->vcpu
) & X86_EFLAGS_IF
))
3598 return handle_interrupt_window(&vmx
->vcpu
);
3600 err
= emulate_instruction(vcpu
, 0, 0, 0);
3602 if (err
== EMULATE_DO_MMIO
) {
3607 if (err
!= EMULATE_DONE
)
3610 if (signal_pending(current
))
3616 vmx
->emulation_required
= 0;
3622 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3623 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3625 static int handle_pause(struct kvm_vcpu
*vcpu
)
3627 skip_emulated_instruction(vcpu
);
3628 kvm_vcpu_on_spin(vcpu
);
3633 static int handle_invalid_op(struct kvm_vcpu
*vcpu
)
3635 kvm_queue_exception(vcpu
, UD_VECTOR
);
3640 * The exit handlers return 1 if the exit was handled fully and guest execution
3641 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3642 * to be done to userspace and return 0.
3644 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
3645 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
3646 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
3647 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
3648 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
3649 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
3650 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
3651 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
3652 [EXIT_REASON_CPUID
] = handle_cpuid
,
3653 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
3654 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
3655 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
3656 [EXIT_REASON_HLT
] = handle_halt
,
3657 [EXIT_REASON_INVD
] = handle_invd
,
3658 [EXIT_REASON_INVLPG
] = handle_invlpg
,
3659 [EXIT_REASON_VMCALL
] = handle_vmcall
,
3660 [EXIT_REASON_VMCLEAR
] = handle_vmx_insn
,
3661 [EXIT_REASON_VMLAUNCH
] = handle_vmx_insn
,
3662 [EXIT_REASON_VMPTRLD
] = handle_vmx_insn
,
3663 [EXIT_REASON_VMPTRST
] = handle_vmx_insn
,
3664 [EXIT_REASON_VMREAD
] = handle_vmx_insn
,
3665 [EXIT_REASON_VMRESUME
] = handle_vmx_insn
,
3666 [EXIT_REASON_VMWRITE
] = handle_vmx_insn
,
3667 [EXIT_REASON_VMOFF
] = handle_vmx_insn
,
3668 [EXIT_REASON_VMON
] = handle_vmx_insn
,
3669 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
3670 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
3671 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
3672 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
3673 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
3674 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
3675 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
3676 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
3677 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
3678 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_invalid_op
,
3679 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_invalid_op
,
3682 static const int kvm_vmx_max_exit_handlers
=
3683 ARRAY_SIZE(kvm_vmx_exit_handlers
);
3686 * The guest has exited. See if we can fix it or if we need userspace
3689 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
3691 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3692 u32 exit_reason
= vmx
->exit_reason
;
3693 u32 vectoring_info
= vmx
->idt_vectoring_info
;
3695 trace_kvm_exit(exit_reason
, vcpu
);
3697 /* If guest state is invalid, start emulating */
3698 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
3699 return handle_invalid_guest_state(vcpu
);
3701 /* Access CR3 don't cause VMExit in paging mode, so we need
3702 * to sync with guest real CR3. */
3703 if (enable_ept
&& is_paging(vcpu
))
3704 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3706 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
3707 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3708 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
3713 if (unlikely(vmx
->fail
)) {
3714 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3715 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
3716 = vmcs_read32(VM_INSTRUCTION_ERROR
);
3720 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
3721 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
3722 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
3723 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
3724 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
3725 "(0x%x) and exit reason is 0x%x\n",
3726 __func__
, vectoring_info
, exit_reason
);
3728 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
)) {
3729 if (vmx_interrupt_allowed(vcpu
)) {
3730 vmx
->soft_vnmi_blocked
= 0;
3731 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
3732 vcpu
->arch
.nmi_pending
) {
3734 * This CPU don't support us in finding the end of an
3735 * NMI-blocked window if the guest runs with IRQs
3736 * disabled. So we pull the trigger after 1 s of
3737 * futile waiting, but inform the user about this.
3739 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
3740 "state on VCPU %d after 1 s timeout\n",
3741 __func__
, vcpu
->vcpu_id
);
3742 vmx
->soft_vnmi_blocked
= 0;
3746 if (exit_reason
< kvm_vmx_max_exit_handlers
3747 && kvm_vmx_exit_handlers
[exit_reason
])
3748 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
3750 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3751 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
3756 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3758 if (irr
== -1 || tpr
< irr
) {
3759 vmcs_write32(TPR_THRESHOLD
, 0);
3763 vmcs_write32(TPR_THRESHOLD
, irr
);
3766 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
3768 u32 exit_intr_info
= vmx
->exit_intr_info
;
3770 /* Handle machine checks before interrupts are enabled */
3771 if ((vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
)
3772 || (vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
3773 && is_machine_check(exit_intr_info
)))
3774 kvm_machine_check();
3776 /* We need to handle NMIs before interrupts are enabled */
3777 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
3778 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
3779 kvm_before_handle_nmi(&vmx
->vcpu
);
3781 kvm_after_handle_nmi(&vmx
->vcpu
);
3785 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
3787 u32 exit_intr_info
= vmx
->exit_intr_info
;
3790 bool idtv_info_valid
;
3792 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3794 if (cpu_has_virtual_nmis()) {
3795 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
3796 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
3798 * SDM 3: 27.7.1.2 (September 2008)
3799 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3800 * a guest IRET fault.
3801 * SDM 3: 23.2.2 (September 2008)
3802 * Bit 12 is undefined in any of the following cases:
3803 * If the VM exit sets the valid bit in the IDT-vectoring
3804 * information field.
3805 * If the VM exit is due to a double fault.
3807 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
3808 vector
!= DF_VECTOR
&& !idtv_info_valid
)
3809 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3810 GUEST_INTR_STATE_NMI
);
3811 } else if (unlikely(vmx
->soft_vnmi_blocked
))
3812 vmx
->vnmi_blocked_time
+=
3813 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
3816 static void __vmx_complete_interrupts(struct vcpu_vmx
*vmx
,
3817 u32 idt_vectoring_info
,
3818 int instr_len_field
,
3819 int error_code_field
)
3823 bool idtv_info_valid
;
3825 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3827 vmx
->vcpu
.arch
.nmi_injected
= false;
3828 kvm_clear_exception_queue(&vmx
->vcpu
);
3829 kvm_clear_interrupt_queue(&vmx
->vcpu
);
3831 if (!idtv_info_valid
)
3834 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
3836 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
3837 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
3840 case INTR_TYPE_NMI_INTR
:
3841 vmx
->vcpu
.arch
.nmi_injected
= true;
3843 * SDM 3: 27.7.1.2 (September 2008)
3844 * Clear bit "block by NMI" before VM entry if a NMI
3847 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
3848 GUEST_INTR_STATE_NMI
);
3850 case INTR_TYPE_SOFT_EXCEPTION
:
3851 vmx
->vcpu
.arch
.event_exit_inst_len
=
3852 vmcs_read32(instr_len_field
);
3854 case INTR_TYPE_HARD_EXCEPTION
:
3855 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
3856 u32 err
= vmcs_read32(error_code_field
);
3857 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
3859 kvm_queue_exception(&vmx
->vcpu
, vector
);
3861 case INTR_TYPE_SOFT_INTR
:
3862 vmx
->vcpu
.arch
.event_exit_inst_len
=
3863 vmcs_read32(instr_len_field
);
3865 case INTR_TYPE_EXT_INTR
:
3866 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
3867 type
== INTR_TYPE_SOFT_INTR
);
3874 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
3876 __vmx_complete_interrupts(vmx
, vmx
->idt_vectoring_info
,
3877 VM_EXIT_INSTRUCTION_LEN
,
3878 IDT_VECTORING_ERROR_CODE
);
3881 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
3883 __vmx_complete_interrupts(to_vmx(vcpu
),
3884 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
3885 VM_ENTRY_INSTRUCTION_LEN
,
3886 VM_ENTRY_EXCEPTION_ERROR_CODE
);
3888 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
3891 #ifdef CONFIG_X86_64
3900 * We put this into a separate noinline function to prevent the compiler
3901 * from duplicating the code. This is needed because this code
3902 * uses non local labels that cannot be duplicated.
3903 * Do not put any flow control into this function.
3904 * Better would be to put this whole monstrosity into a .S file.
3906 static void noinline
do_vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
3908 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3910 /* Store host registers */
3911 "push %%"R
"dx; push %%"R
"bp;"
3913 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
3915 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
3916 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
3918 /* Reload cr2 if changed */
3919 "mov %c[cr2](%0), %%"R
"ax \n\t"
3920 "mov %%cr2, %%"R
"dx \n\t"
3921 "cmp %%"R
"ax, %%"R
"dx \n\t"
3923 "mov %%"R
"ax, %%cr2 \n\t"
3925 /* Check if vmlaunch of vmresume is needed */
3926 "cmpl $0, %c[launched](%0) \n\t"
3927 /* Load guest registers. Don't clobber flags. */
3928 "mov %c[rax](%0), %%"R
"ax \n\t"
3929 "mov %c[rbx](%0), %%"R
"bx \n\t"
3930 "mov %c[rdx](%0), %%"R
"dx \n\t"
3931 "mov %c[rsi](%0), %%"R
"si \n\t"
3932 "mov %c[rdi](%0), %%"R
"di \n\t"
3933 "mov %c[rbp](%0), %%"R
"bp \n\t"
3934 #ifdef CONFIG_X86_64
3935 "mov %c[r8](%0), %%r8 \n\t"
3936 "mov %c[r9](%0), %%r9 \n\t"
3937 "mov %c[r10](%0), %%r10 \n\t"
3938 "mov %c[r11](%0), %%r11 \n\t"
3939 "mov %c[r12](%0), %%r12 \n\t"
3940 "mov %c[r13](%0), %%r13 \n\t"
3941 "mov %c[r14](%0), %%r14 \n\t"
3942 "mov %c[r15](%0), %%r15 \n\t"
3944 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
3946 /* Enter guest mode */
3947 "jne .Llaunched \n\t"
3948 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
3949 "jmp .Lkvm_vmx_return \n\t"
3950 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
3951 ".Lkvm_vmx_return: "
3952 /* Save guest registers, load host registers, keep flags */
3953 "xchg %0, (%%"R
"sp) \n\t"
3954 "mov %%"R
"ax, %c[rax](%0) \n\t"
3955 "mov %%"R
"bx, %c[rbx](%0) \n\t"
3956 "push"Q
" (%%"R
"sp); pop"Q
" %c[rcx](%0) \n\t"
3957 "mov %%"R
"dx, %c[rdx](%0) \n\t"
3958 "mov %%"R
"si, %c[rsi](%0) \n\t"
3959 "mov %%"R
"di, %c[rdi](%0) \n\t"
3960 "mov %%"R
"bp, %c[rbp](%0) \n\t"
3961 #ifdef CONFIG_X86_64
3962 "mov %%r8, %c[r8](%0) \n\t"
3963 "mov %%r9, %c[r9](%0) \n\t"
3964 "mov %%r10, %c[r10](%0) \n\t"
3965 "mov %%r11, %c[r11](%0) \n\t"
3966 "mov %%r12, %c[r12](%0) \n\t"
3967 "mov %%r13, %c[r13](%0) \n\t"
3968 "mov %%r14, %c[r14](%0) \n\t"
3969 "mov %%r15, %c[r15](%0) \n\t"
3971 "mov %%cr2, %%"R
"ax \n\t"
3972 "mov %%"R
"ax, %c[cr2](%0) \n\t"
3974 "pop %%"R
"bp; pop %%"R
"bp; pop %%"R
"dx \n\t"
3975 "setbe %c[fail](%0) \n\t"
3976 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
3977 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
3978 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
3979 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
3980 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
3981 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3982 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3983 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3984 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3985 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3986 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
3987 #ifdef CONFIG_X86_64
3988 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3989 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3990 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3991 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3992 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3993 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3994 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3995 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
3997 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
3999 , R
"ax", R
"bx", R
"di", R
"si"
4000 #ifdef CONFIG_X86_64
4001 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4006 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
4008 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4010 /* Record the guest's net vcpu time for enforced NMI injections. */
4011 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
4012 vmx
->entry_time
= ktime_get();
4014 /* Don't enter VMX if guest state is invalid, let the exit handler
4015 start emulation until we arrive back to a valid state */
4016 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
4019 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
4020 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
4021 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
4022 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
4024 /* When single-stepping over STI and MOV SS, we must clear the
4025 * corresponding interruptibility bits in the guest state. Otherwise
4026 * vmentry fails as it then expects bit 14 (BS) in pending debug
4027 * exceptions being set, but that's not correct for the guest debugging
4029 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
4030 vmx_set_interrupt_shadow(vcpu
, 0);
4032 do_vmx_vcpu_run(vcpu
);
4034 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
4035 | (1 << VCPU_EXREG_PDPTR
));
4036 vcpu
->arch
.regs_dirty
= 0;
4038 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
4040 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
4043 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
4044 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
4046 vmx_complete_atomic_exit(vmx
);
4047 vmx_recover_nmi_blocking(vmx
);
4048 vmx_complete_interrupts(vmx
);
4054 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
4056 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4060 free_vmcs(vmx
->vmcs
);
4065 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
4067 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4070 vmx_free_vmcs(vcpu
);
4071 kfree(vmx
->guest_msrs
);
4072 kvm_vcpu_uninit(vcpu
);
4073 kmem_cache_free(kvm_vcpu_cache
, vmx
);
4076 static inline void vmcs_init(struct vmcs
*vmcs
)
4078 u64 phys_addr
= __pa(per_cpu(vmxarea
, raw_smp_processor_id()));
4081 kvm_cpu_vmxon(phys_addr
);
4089 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
4092 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
4096 return ERR_PTR(-ENOMEM
);
4100 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
4104 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4105 if (!vmx
->guest_msrs
) {
4110 vmx
->vmcs
= alloc_vmcs();
4114 vmcs_init(vmx
->vmcs
);
4117 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
4118 vmx
->vcpu
.cpu
= cpu
;
4119 err
= vmx_vcpu_setup(vmx
);
4120 vmx_vcpu_put(&vmx
->vcpu
);
4124 if (vm_need_virtualize_apic_accesses(kvm
))
4125 if (alloc_apic_access_page(kvm
) != 0)
4129 if (!kvm
->arch
.ept_identity_map_addr
)
4130 kvm
->arch
.ept_identity_map_addr
=
4131 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
4132 if (alloc_identity_pagetable(kvm
) != 0)
4139 free_vmcs(vmx
->vmcs
);
4141 kfree(vmx
->guest_msrs
);
4143 kvm_vcpu_uninit(&vmx
->vcpu
);
4146 kmem_cache_free(kvm_vcpu_cache
, vmx
);
4147 return ERR_PTR(err
);
4150 static void __init
vmx_check_processor_compat(void *rtn
)
4152 struct vmcs_config vmcs_conf
;
4155 if (setup_vmcs_config(&vmcs_conf
) < 0)
4157 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
4158 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
4159 smp_processor_id());
4164 static int get_ept_level(void)
4166 return VMX_EPT_DEFAULT_GAW
+ 1;
4169 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
4173 /* For VT-d and EPT combination
4174 * 1. MMIO: always map as UC
4176 * a. VT-d without snooping control feature: can't guarantee the
4177 * result, try to trust guest.
4178 * b. VT-d with snooping control feature: snooping control feature of
4179 * VT-d engine can guarantee the cache correctness. Just set it
4180 * to WB to keep consistent with host. So the same as item 3.
4181 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4182 * consistent with host MTRR
4185 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
4186 else if (vcpu
->kvm
->arch
.iommu_domain
&&
4187 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
4188 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
4189 VMX_EPT_MT_EPTE_SHIFT
;
4191 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
4197 #define _ER(x) { EXIT_REASON_##x, #x }
4199 static const struct trace_print_flags vmx_exit_reasons_str
[] = {
4201 _ER(EXTERNAL_INTERRUPT
),
4203 _ER(PENDING_INTERRUPT
),
4223 _ER(IO_INSTRUCTION
),
4226 _ER(MWAIT_INSTRUCTION
),
4227 _ER(MONITOR_INSTRUCTION
),
4228 _ER(PAUSE_INSTRUCTION
),
4229 _ER(MCE_DURING_VMENTRY
),
4230 _ER(TPR_BELOW_THRESHOLD
),
4240 static int vmx_get_lpage_level(void)
4242 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
4243 return PT_DIRECTORY_LEVEL
;
4245 /* For shadow and EPT supported 1GB page */
4246 return PT_PDPE_LEVEL
;
4249 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
4251 struct kvm_cpuid_entry2
*best
;
4252 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4255 vmx
->rdtscp_enabled
= false;
4256 if (vmx_rdtscp_supported()) {
4257 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
4258 if (exec_control
& SECONDARY_EXEC_RDTSCP
) {
4259 best
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
4260 if (best
&& (best
->edx
& bit(X86_FEATURE_RDTSCP
)))
4261 vmx
->rdtscp_enabled
= true;
4263 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
4264 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
4271 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
4275 static struct kvm_x86_ops vmx_x86_ops
= {
4276 .cpu_has_kvm_support
= cpu_has_kvm_support
,
4277 .disabled_by_bios
= vmx_disabled_by_bios
,
4278 .hardware_setup
= hardware_setup
,
4279 .hardware_unsetup
= hardware_unsetup
,
4280 .check_processor_compatibility
= vmx_check_processor_compat
,
4281 .hardware_enable
= hardware_enable
,
4282 .hardware_disable
= hardware_disable
,
4283 .cpu_has_accelerated_tpr
= report_flexpriority
,
4285 .vcpu_create
= vmx_create_vcpu
,
4286 .vcpu_free
= vmx_free_vcpu
,
4287 .vcpu_reset
= vmx_vcpu_reset
,
4289 .prepare_guest_switch
= vmx_save_host_state
,
4290 .vcpu_load
= vmx_vcpu_load
,
4291 .vcpu_put
= vmx_vcpu_put
,
4293 .set_guest_debug
= set_guest_debug
,
4294 .get_msr
= vmx_get_msr
,
4295 .set_msr
= vmx_set_msr
,
4296 .get_segment_base
= vmx_get_segment_base
,
4297 .get_segment
= vmx_get_segment
,
4298 .set_segment
= vmx_set_segment
,
4299 .get_cpl
= vmx_get_cpl
,
4300 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
4301 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
4302 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
4303 .set_cr0
= vmx_set_cr0
,
4304 .set_cr3
= vmx_set_cr3
,
4305 .set_cr4
= vmx_set_cr4
,
4306 .set_efer
= vmx_set_efer
,
4307 .get_idt
= vmx_get_idt
,
4308 .set_idt
= vmx_set_idt
,
4309 .get_gdt
= vmx_get_gdt
,
4310 .set_gdt
= vmx_set_gdt
,
4311 .set_dr7
= vmx_set_dr7
,
4312 .cache_reg
= vmx_cache_reg
,
4313 .get_rflags
= vmx_get_rflags
,
4314 .set_rflags
= vmx_set_rflags
,
4315 .fpu_activate
= vmx_fpu_activate
,
4316 .fpu_deactivate
= vmx_fpu_deactivate
,
4318 .tlb_flush
= vmx_flush_tlb
,
4320 .run
= vmx_vcpu_run
,
4321 .handle_exit
= vmx_handle_exit
,
4322 .skip_emulated_instruction
= skip_emulated_instruction
,
4323 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
4324 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
4325 .patch_hypercall
= vmx_patch_hypercall
,
4326 .set_irq
= vmx_inject_irq
,
4327 .set_nmi
= vmx_inject_nmi
,
4328 .queue_exception
= vmx_queue_exception
,
4329 .cancel_injection
= vmx_cancel_injection
,
4330 .interrupt_allowed
= vmx_interrupt_allowed
,
4331 .nmi_allowed
= vmx_nmi_allowed
,
4332 .get_nmi_mask
= vmx_get_nmi_mask
,
4333 .set_nmi_mask
= vmx_set_nmi_mask
,
4334 .enable_nmi_window
= enable_nmi_window
,
4335 .enable_irq_window
= enable_irq_window
,
4336 .update_cr8_intercept
= update_cr8_intercept
,
4338 .set_tss_addr
= vmx_set_tss_addr
,
4339 .get_tdp_level
= get_ept_level
,
4340 .get_mt_mask
= vmx_get_mt_mask
,
4342 .exit_reasons_str
= vmx_exit_reasons_str
,
4343 .get_lpage_level
= vmx_get_lpage_level
,
4345 .cpuid_update
= vmx_cpuid_update
,
4347 .rdtscp_supported
= vmx_rdtscp_supported
,
4349 .set_supported_cpuid
= vmx_set_supported_cpuid
,
4351 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
4353 .write_tsc_offset
= vmx_write_tsc_offset
,
4354 .adjust_tsc_offset
= vmx_adjust_tsc_offset
,
4356 .set_tdp_cr3
= vmx_set_cr3
,
4359 static int __init
vmx_init(void)
4363 rdmsrl_safe(MSR_EFER
, &host_efer
);
4365 for (i
= 0; i
< NR_VMX_MSR
; ++i
)
4366 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
4368 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4369 if (!vmx_io_bitmap_a
)
4372 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4373 if (!vmx_io_bitmap_b
) {
4378 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4379 if (!vmx_msr_bitmap_legacy
) {
4384 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4385 if (!vmx_msr_bitmap_longmode
) {
4391 * Allow direct access to the PC debug port (it is often used for I/O
4392 * delays, but the vmexits simply slow things down).
4394 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
4395 clear_bit(0x80, vmx_io_bitmap_a
);
4397 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
4399 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
4400 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
4402 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
4404 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
4405 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
4409 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
4410 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
4411 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
4412 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
4413 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
4414 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
4417 bypass_guest_pf
= 0;
4418 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4419 VMX_EPT_EXECUTABLE_MASK
);
4424 if (bypass_guest_pf
)
4425 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
4430 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4432 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4434 free_page((unsigned long)vmx_io_bitmap_b
);
4436 free_page((unsigned long)vmx_io_bitmap_a
);
4440 static void __exit
vmx_exit(void)
4442 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4443 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4444 free_page((unsigned long)vmx_io_bitmap_b
);
4445 free_page((unsigned long)vmx_io_bitmap_a
);
4450 module_init(vmx_init
)
4451 module_exit(vmx_exit
)