2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
30 #include "print-tree.h"
31 #include "transaction.h"
34 #include "free-space-cache.h"
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
50 CHUNK_ALLOC_NO_FORCE
= 0,
51 CHUNK_ALLOC_FORCE
= 1,
52 CHUNK_ALLOC_LIMITED
= 2,
55 static int update_block_group(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 bytenr
, u64 num_bytes
, int alloc
);
58 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
59 struct btrfs_root
*root
,
60 u64 bytenr
, u64 num_bytes
, u64 parent
,
61 u64 root_objectid
, u64 owner_objectid
,
62 u64 owner_offset
, int refs_to_drop
,
63 struct btrfs_delayed_extent_op
*extra_op
);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
65 struct extent_buffer
*leaf
,
66 struct btrfs_extent_item
*ei
);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
68 struct btrfs_root
*root
,
69 u64 parent
, u64 root_objectid
,
70 u64 flags
, u64 owner
, u64 offset
,
71 struct btrfs_key
*ins
, int ref_mod
);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
73 struct btrfs_root
*root
,
74 u64 parent
, u64 root_objectid
,
75 u64 flags
, struct btrfs_disk_key
*key
,
76 int level
, struct btrfs_key
*ins
);
77 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
79 u64 flags
, int force
);
80 static int find_next_key(struct btrfs_path
*path
, int level
,
81 struct btrfs_key
*key
);
82 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
83 int dump_block_groups
);
86 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
89 return cache
->cached
== BTRFS_CACHE_FINISHED
;
92 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
94 return (cache
->flags
& bits
) == bits
;
97 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
99 atomic_inc(&cache
->count
);
102 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
104 if (atomic_dec_and_test(&cache
->count
)) {
105 WARN_ON(cache
->pinned
> 0);
106 WARN_ON(cache
->reserved
> 0);
107 WARN_ON(cache
->reserved_pinned
> 0);
108 kfree(cache
->free_space_ctl
);
114 * this adds the block group to the fs_info rb tree for the block group
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
118 struct btrfs_block_group_cache
*block_group
)
121 struct rb_node
*parent
= NULL
;
122 struct btrfs_block_group_cache
*cache
;
124 spin_lock(&info
->block_group_cache_lock
);
125 p
= &info
->block_group_cache_tree
.rb_node
;
129 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
131 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
133 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
136 spin_unlock(&info
->block_group_cache_lock
);
141 rb_link_node(&block_group
->cache_node
, parent
, p
);
142 rb_insert_color(&block_group
->cache_node
,
143 &info
->block_group_cache_tree
);
144 spin_unlock(&info
->block_group_cache_lock
);
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
153 static struct btrfs_block_group_cache
*
154 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
157 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
161 spin_lock(&info
->block_group_cache_lock
);
162 n
= info
->block_group_cache_tree
.rb_node
;
165 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
167 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
168 start
= cache
->key
.objectid
;
170 if (bytenr
< start
) {
171 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
174 } else if (bytenr
> start
) {
175 if (contains
&& bytenr
<= end
) {
186 btrfs_get_block_group(ret
);
187 spin_unlock(&info
->block_group_cache_lock
);
192 static int add_excluded_extent(struct btrfs_root
*root
,
193 u64 start
, u64 num_bytes
)
195 u64 end
= start
+ num_bytes
- 1;
196 set_extent_bits(&root
->fs_info
->freed_extents
[0],
197 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
198 set_extent_bits(&root
->fs_info
->freed_extents
[1],
199 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
203 static void free_excluded_extents(struct btrfs_root
*root
,
204 struct btrfs_block_group_cache
*cache
)
208 start
= cache
->key
.objectid
;
209 end
= start
+ cache
->key
.offset
- 1;
211 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
212 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
213 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
214 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
217 static int exclude_super_stripes(struct btrfs_root
*root
,
218 struct btrfs_block_group_cache
*cache
)
225 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
226 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
227 cache
->bytes_super
+= stripe_len
;
228 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
233 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
234 bytenr
= btrfs_sb_offset(i
);
235 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
236 cache
->key
.objectid
, bytenr
,
237 0, &logical
, &nr
, &stripe_len
);
241 cache
->bytes_super
+= stripe_len
;
242 ret
= add_excluded_extent(root
, logical
[nr
],
252 static struct btrfs_caching_control
*
253 get_caching_control(struct btrfs_block_group_cache
*cache
)
255 struct btrfs_caching_control
*ctl
;
257 spin_lock(&cache
->lock
);
258 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
259 spin_unlock(&cache
->lock
);
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache
->caching_ctl
) {
265 spin_unlock(&cache
->lock
);
269 ctl
= cache
->caching_ctl
;
270 atomic_inc(&ctl
->count
);
271 spin_unlock(&cache
->lock
);
275 static void put_caching_control(struct btrfs_caching_control
*ctl
)
277 if (atomic_dec_and_test(&ctl
->count
))
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
286 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
287 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
289 u64 extent_start
, extent_end
, size
, total_added
= 0;
292 while (start
< end
) {
293 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
294 &extent_start
, &extent_end
,
295 EXTENT_DIRTY
| EXTENT_UPTODATE
);
299 if (extent_start
<= start
) {
300 start
= extent_end
+ 1;
301 } else if (extent_start
> start
&& extent_start
< end
) {
302 size
= extent_start
- start
;
304 ret
= btrfs_add_free_space(block_group
, start
,
307 start
= extent_end
+ 1;
316 ret
= btrfs_add_free_space(block_group
, start
, size
);
323 static int caching_kthread(void *data
)
325 struct btrfs_block_group_cache
*block_group
= data
;
326 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
327 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
328 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
329 struct btrfs_path
*path
;
330 struct extent_buffer
*leaf
;
331 struct btrfs_key key
;
337 path
= btrfs_alloc_path();
341 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
344 * We don't want to deadlock with somebody trying to allocate a new
345 * extent for the extent root while also trying to search the extent
346 * root to add free space. So we skip locking and search the commit
347 * root, since its read-only
349 path
->skip_locking
= 1;
350 path
->search_commit_root
= 1;
355 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
357 mutex_lock(&caching_ctl
->mutex
);
358 /* need to make sure the commit_root doesn't disappear */
359 down_read(&fs_info
->extent_commit_sem
);
361 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
365 leaf
= path
->nodes
[0];
366 nritems
= btrfs_header_nritems(leaf
);
369 if (btrfs_fs_closing(fs_info
) > 1) {
374 if (path
->slots
[0] < nritems
) {
375 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
377 ret
= find_next_key(path
, 0, &key
);
381 if (need_resched() ||
382 btrfs_next_leaf(extent_root
, path
)) {
383 caching_ctl
->progress
= last
;
384 btrfs_release_path(path
);
385 up_read(&fs_info
->extent_commit_sem
);
386 mutex_unlock(&caching_ctl
->mutex
);
390 leaf
= path
->nodes
[0];
391 nritems
= btrfs_header_nritems(leaf
);
395 if (key
.objectid
< block_group
->key
.objectid
) {
400 if (key
.objectid
>= block_group
->key
.objectid
+
401 block_group
->key
.offset
)
404 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
405 total_found
+= add_new_free_space(block_group
,
408 last
= key
.objectid
+ key
.offset
;
410 if (total_found
> (1024 * 1024 * 2)) {
412 wake_up(&caching_ctl
->wait
);
419 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
420 block_group
->key
.objectid
+
421 block_group
->key
.offset
);
422 caching_ctl
->progress
= (u64
)-1;
424 spin_lock(&block_group
->lock
);
425 block_group
->caching_ctl
= NULL
;
426 block_group
->cached
= BTRFS_CACHE_FINISHED
;
427 spin_unlock(&block_group
->lock
);
430 btrfs_free_path(path
);
431 up_read(&fs_info
->extent_commit_sem
);
433 free_excluded_extents(extent_root
, block_group
);
435 mutex_unlock(&caching_ctl
->mutex
);
436 wake_up(&caching_ctl
->wait
);
438 put_caching_control(caching_ctl
);
439 atomic_dec(&block_group
->space_info
->caching_threads
);
440 btrfs_put_block_group(block_group
);
445 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
446 struct btrfs_trans_handle
*trans
,
447 struct btrfs_root
*root
,
450 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
451 struct btrfs_caching_control
*caching_ctl
;
452 struct task_struct
*tsk
;
456 if (cache
->cached
!= BTRFS_CACHE_NO
)
460 * We can't do the read from on-disk cache during a commit since we need
461 * to have the normal tree locking. Also if we are currently trying to
462 * allocate blocks for the tree root we can't do the fast caching since
463 * we likely hold important locks.
465 if (trans
&& (!trans
->transaction
->in_commit
) &&
466 (root
&& root
!= root
->fs_info
->tree_root
)) {
467 spin_lock(&cache
->lock
);
468 if (cache
->cached
!= BTRFS_CACHE_NO
) {
469 spin_unlock(&cache
->lock
);
472 cache
->cached
= BTRFS_CACHE_STARTED
;
473 spin_unlock(&cache
->lock
);
475 ret
= load_free_space_cache(fs_info
, cache
);
477 spin_lock(&cache
->lock
);
479 cache
->cached
= BTRFS_CACHE_FINISHED
;
480 cache
->last_byte_to_unpin
= (u64
)-1;
482 cache
->cached
= BTRFS_CACHE_NO
;
484 spin_unlock(&cache
->lock
);
486 free_excluded_extents(fs_info
->extent_root
, cache
);
494 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
495 BUG_ON(!caching_ctl
);
497 INIT_LIST_HEAD(&caching_ctl
->list
);
498 mutex_init(&caching_ctl
->mutex
);
499 init_waitqueue_head(&caching_ctl
->wait
);
500 caching_ctl
->block_group
= cache
;
501 caching_ctl
->progress
= cache
->key
.objectid
;
502 /* one for caching kthread, one for caching block group list */
503 atomic_set(&caching_ctl
->count
, 2);
505 spin_lock(&cache
->lock
);
506 if (cache
->cached
!= BTRFS_CACHE_NO
) {
507 spin_unlock(&cache
->lock
);
511 cache
->caching_ctl
= caching_ctl
;
512 cache
->cached
= BTRFS_CACHE_STARTED
;
513 spin_unlock(&cache
->lock
);
515 down_write(&fs_info
->extent_commit_sem
);
516 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
517 up_write(&fs_info
->extent_commit_sem
);
519 atomic_inc(&cache
->space_info
->caching_threads
);
520 btrfs_get_block_group(cache
);
522 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
523 cache
->key
.objectid
);
526 printk(KERN_ERR
"error running thread %d\n", ret
);
534 * return the block group that starts at or after bytenr
536 static struct btrfs_block_group_cache
*
537 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
539 struct btrfs_block_group_cache
*cache
;
541 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
547 * return the block group that contains the given bytenr
549 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
550 struct btrfs_fs_info
*info
,
553 struct btrfs_block_group_cache
*cache
;
555 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
560 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
563 struct list_head
*head
= &info
->space_info
;
564 struct btrfs_space_info
*found
;
566 flags
&= BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_SYSTEM
|
567 BTRFS_BLOCK_GROUP_METADATA
;
570 list_for_each_entry_rcu(found
, head
, list
) {
571 if (found
->flags
& flags
) {
581 * after adding space to the filesystem, we need to clear the full flags
582 * on all the space infos.
584 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
586 struct list_head
*head
= &info
->space_info
;
587 struct btrfs_space_info
*found
;
590 list_for_each_entry_rcu(found
, head
, list
)
595 static u64
div_factor(u64 num
, int factor
)
604 static u64
div_factor_fine(u64 num
, int factor
)
613 u64
btrfs_find_block_group(struct btrfs_root
*root
,
614 u64 search_start
, u64 search_hint
, int owner
)
616 struct btrfs_block_group_cache
*cache
;
618 u64 last
= max(search_hint
, search_start
);
625 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
629 spin_lock(&cache
->lock
);
630 last
= cache
->key
.objectid
+ cache
->key
.offset
;
631 used
= btrfs_block_group_used(&cache
->item
);
633 if ((full_search
|| !cache
->ro
) &&
634 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
635 if (used
+ cache
->pinned
+ cache
->reserved
<
636 div_factor(cache
->key
.offset
, factor
)) {
637 group_start
= cache
->key
.objectid
;
638 spin_unlock(&cache
->lock
);
639 btrfs_put_block_group(cache
);
643 spin_unlock(&cache
->lock
);
644 btrfs_put_block_group(cache
);
652 if (!full_search
&& factor
< 10) {
662 /* simple helper to search for an existing extent at a given offset */
663 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
666 struct btrfs_key key
;
667 struct btrfs_path
*path
;
669 path
= btrfs_alloc_path();
671 key
.objectid
= start
;
673 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
674 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
676 btrfs_free_path(path
);
681 * helper function to lookup reference count and flags of extent.
683 * the head node for delayed ref is used to store the sum of all the
684 * reference count modifications queued up in the rbtree. the head
685 * node may also store the extent flags to set. This way you can check
686 * to see what the reference count and extent flags would be if all of
687 * the delayed refs are not processed.
689 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
690 struct btrfs_root
*root
, u64 bytenr
,
691 u64 num_bytes
, u64
*refs
, u64
*flags
)
693 struct btrfs_delayed_ref_head
*head
;
694 struct btrfs_delayed_ref_root
*delayed_refs
;
695 struct btrfs_path
*path
;
696 struct btrfs_extent_item
*ei
;
697 struct extent_buffer
*leaf
;
698 struct btrfs_key key
;
704 path
= btrfs_alloc_path();
708 key
.objectid
= bytenr
;
709 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
710 key
.offset
= num_bytes
;
712 path
->skip_locking
= 1;
713 path
->search_commit_root
= 1;
716 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
722 leaf
= path
->nodes
[0];
723 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
724 if (item_size
>= sizeof(*ei
)) {
725 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
726 struct btrfs_extent_item
);
727 num_refs
= btrfs_extent_refs(leaf
, ei
);
728 extent_flags
= btrfs_extent_flags(leaf
, ei
);
730 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
731 struct btrfs_extent_item_v0
*ei0
;
732 BUG_ON(item_size
!= sizeof(*ei0
));
733 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
734 struct btrfs_extent_item_v0
);
735 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
736 /* FIXME: this isn't correct for data */
737 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
742 BUG_ON(num_refs
== 0);
752 delayed_refs
= &trans
->transaction
->delayed_refs
;
753 spin_lock(&delayed_refs
->lock
);
754 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
756 if (!mutex_trylock(&head
->mutex
)) {
757 atomic_inc(&head
->node
.refs
);
758 spin_unlock(&delayed_refs
->lock
);
760 btrfs_release_path(path
);
763 * Mutex was contended, block until it's released and try
766 mutex_lock(&head
->mutex
);
767 mutex_unlock(&head
->mutex
);
768 btrfs_put_delayed_ref(&head
->node
);
771 if (head
->extent_op
&& head
->extent_op
->update_flags
)
772 extent_flags
|= head
->extent_op
->flags_to_set
;
774 BUG_ON(num_refs
== 0);
776 num_refs
+= head
->node
.ref_mod
;
777 mutex_unlock(&head
->mutex
);
779 spin_unlock(&delayed_refs
->lock
);
781 WARN_ON(num_refs
== 0);
785 *flags
= extent_flags
;
787 btrfs_free_path(path
);
792 * Back reference rules. Back refs have three main goals:
794 * 1) differentiate between all holders of references to an extent so that
795 * when a reference is dropped we can make sure it was a valid reference
796 * before freeing the extent.
798 * 2) Provide enough information to quickly find the holders of an extent
799 * if we notice a given block is corrupted or bad.
801 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
802 * maintenance. This is actually the same as #2, but with a slightly
803 * different use case.
805 * There are two kinds of back refs. The implicit back refs is optimized
806 * for pointers in non-shared tree blocks. For a given pointer in a block,
807 * back refs of this kind provide information about the block's owner tree
808 * and the pointer's key. These information allow us to find the block by
809 * b-tree searching. The full back refs is for pointers in tree blocks not
810 * referenced by their owner trees. The location of tree block is recorded
811 * in the back refs. Actually the full back refs is generic, and can be
812 * used in all cases the implicit back refs is used. The major shortcoming
813 * of the full back refs is its overhead. Every time a tree block gets
814 * COWed, we have to update back refs entry for all pointers in it.
816 * For a newly allocated tree block, we use implicit back refs for
817 * pointers in it. This means most tree related operations only involve
818 * implicit back refs. For a tree block created in old transaction, the
819 * only way to drop a reference to it is COW it. So we can detect the
820 * event that tree block loses its owner tree's reference and do the
821 * back refs conversion.
823 * When a tree block is COW'd through a tree, there are four cases:
825 * The reference count of the block is one and the tree is the block's
826 * owner tree. Nothing to do in this case.
828 * The reference count of the block is one and the tree is not the
829 * block's owner tree. In this case, full back refs is used for pointers
830 * in the block. Remove these full back refs, add implicit back refs for
831 * every pointers in the new block.
833 * The reference count of the block is greater than one and the tree is
834 * the block's owner tree. In this case, implicit back refs is used for
835 * pointers in the block. Add full back refs for every pointers in the
836 * block, increase lower level extents' reference counts. The original
837 * implicit back refs are entailed to the new block.
839 * The reference count of the block is greater than one and the tree is
840 * not the block's owner tree. Add implicit back refs for every pointer in
841 * the new block, increase lower level extents' reference count.
843 * Back Reference Key composing:
845 * The key objectid corresponds to the first byte in the extent,
846 * The key type is used to differentiate between types of back refs.
847 * There are different meanings of the key offset for different types
850 * File extents can be referenced by:
852 * - multiple snapshots, subvolumes, or different generations in one subvol
853 * - different files inside a single subvolume
854 * - different offsets inside a file (bookend extents in file.c)
856 * The extent ref structure for the implicit back refs has fields for:
858 * - Objectid of the subvolume root
859 * - objectid of the file holding the reference
860 * - original offset in the file
861 * - how many bookend extents
863 * The key offset for the implicit back refs is hash of the first
866 * The extent ref structure for the full back refs has field for:
868 * - number of pointers in the tree leaf
870 * The key offset for the implicit back refs is the first byte of
873 * When a file extent is allocated, The implicit back refs is used.
874 * the fields are filled in:
876 * (root_key.objectid, inode objectid, offset in file, 1)
878 * When a file extent is removed file truncation, we find the
879 * corresponding implicit back refs and check the following fields:
881 * (btrfs_header_owner(leaf), inode objectid, offset in file)
883 * Btree extents can be referenced by:
885 * - Different subvolumes
887 * Both the implicit back refs and the full back refs for tree blocks
888 * only consist of key. The key offset for the implicit back refs is
889 * objectid of block's owner tree. The key offset for the full back refs
890 * is the first byte of parent block.
892 * When implicit back refs is used, information about the lowest key and
893 * level of the tree block are required. These information are stored in
894 * tree block info structure.
897 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
898 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
899 struct btrfs_root
*root
,
900 struct btrfs_path
*path
,
901 u64 owner
, u32 extra_size
)
903 struct btrfs_extent_item
*item
;
904 struct btrfs_extent_item_v0
*ei0
;
905 struct btrfs_extent_ref_v0
*ref0
;
906 struct btrfs_tree_block_info
*bi
;
907 struct extent_buffer
*leaf
;
908 struct btrfs_key key
;
909 struct btrfs_key found_key
;
910 u32 new_size
= sizeof(*item
);
914 leaf
= path
->nodes
[0];
915 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
917 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
918 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
919 struct btrfs_extent_item_v0
);
920 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
922 if (owner
== (u64
)-1) {
924 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
925 ret
= btrfs_next_leaf(root
, path
);
929 leaf
= path
->nodes
[0];
931 btrfs_item_key_to_cpu(leaf
, &found_key
,
933 BUG_ON(key
.objectid
!= found_key
.objectid
);
934 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
938 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
939 struct btrfs_extent_ref_v0
);
940 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
944 btrfs_release_path(path
);
946 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
947 new_size
+= sizeof(*bi
);
949 new_size
-= sizeof(*ei0
);
950 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
951 new_size
+ extra_size
, 1);
956 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
958 leaf
= path
->nodes
[0];
959 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
960 btrfs_set_extent_refs(leaf
, item
, refs
);
961 /* FIXME: get real generation */
962 btrfs_set_extent_generation(leaf
, item
, 0);
963 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
964 btrfs_set_extent_flags(leaf
, item
,
965 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
966 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
967 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
968 /* FIXME: get first key of the block */
969 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
970 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
972 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
974 btrfs_mark_buffer_dirty(leaf
);
979 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
981 u32 high_crc
= ~(u32
)0;
982 u32 low_crc
= ~(u32
)0;
985 lenum
= cpu_to_le64(root_objectid
);
986 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
987 lenum
= cpu_to_le64(owner
);
988 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
989 lenum
= cpu_to_le64(offset
);
990 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
992 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
995 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
996 struct btrfs_extent_data_ref
*ref
)
998 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
999 btrfs_extent_data_ref_objectid(leaf
, ref
),
1000 btrfs_extent_data_ref_offset(leaf
, ref
));
1003 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1004 struct btrfs_extent_data_ref
*ref
,
1005 u64 root_objectid
, u64 owner
, u64 offset
)
1007 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1008 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1009 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1014 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1015 struct btrfs_root
*root
,
1016 struct btrfs_path
*path
,
1017 u64 bytenr
, u64 parent
,
1019 u64 owner
, u64 offset
)
1021 struct btrfs_key key
;
1022 struct btrfs_extent_data_ref
*ref
;
1023 struct extent_buffer
*leaf
;
1029 key
.objectid
= bytenr
;
1031 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1032 key
.offset
= parent
;
1034 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1035 key
.offset
= hash_extent_data_ref(root_objectid
,
1040 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1049 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1050 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1051 btrfs_release_path(path
);
1052 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1063 leaf
= path
->nodes
[0];
1064 nritems
= btrfs_header_nritems(leaf
);
1066 if (path
->slots
[0] >= nritems
) {
1067 ret
= btrfs_next_leaf(root
, path
);
1073 leaf
= path
->nodes
[0];
1074 nritems
= btrfs_header_nritems(leaf
);
1078 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1079 if (key
.objectid
!= bytenr
||
1080 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1083 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1084 struct btrfs_extent_data_ref
);
1086 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1089 btrfs_release_path(path
);
1101 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1102 struct btrfs_root
*root
,
1103 struct btrfs_path
*path
,
1104 u64 bytenr
, u64 parent
,
1105 u64 root_objectid
, u64 owner
,
1106 u64 offset
, int refs_to_add
)
1108 struct btrfs_key key
;
1109 struct extent_buffer
*leaf
;
1114 key
.objectid
= bytenr
;
1116 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1117 key
.offset
= parent
;
1118 size
= sizeof(struct btrfs_shared_data_ref
);
1120 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1121 key
.offset
= hash_extent_data_ref(root_objectid
,
1123 size
= sizeof(struct btrfs_extent_data_ref
);
1126 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1127 if (ret
&& ret
!= -EEXIST
)
1130 leaf
= path
->nodes
[0];
1132 struct btrfs_shared_data_ref
*ref
;
1133 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1134 struct btrfs_shared_data_ref
);
1136 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1138 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1139 num_refs
+= refs_to_add
;
1140 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1143 struct btrfs_extent_data_ref
*ref
;
1144 while (ret
== -EEXIST
) {
1145 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1146 struct btrfs_extent_data_ref
);
1147 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1150 btrfs_release_path(path
);
1152 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1154 if (ret
&& ret
!= -EEXIST
)
1157 leaf
= path
->nodes
[0];
1159 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1160 struct btrfs_extent_data_ref
);
1162 btrfs_set_extent_data_ref_root(leaf
, ref
,
1164 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1165 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1166 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1168 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1169 num_refs
+= refs_to_add
;
1170 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1173 btrfs_mark_buffer_dirty(leaf
);
1176 btrfs_release_path(path
);
1180 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1181 struct btrfs_root
*root
,
1182 struct btrfs_path
*path
,
1185 struct btrfs_key key
;
1186 struct btrfs_extent_data_ref
*ref1
= NULL
;
1187 struct btrfs_shared_data_ref
*ref2
= NULL
;
1188 struct extent_buffer
*leaf
;
1192 leaf
= path
->nodes
[0];
1193 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1195 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1196 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1197 struct btrfs_extent_data_ref
);
1198 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1199 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1200 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1201 struct btrfs_shared_data_ref
);
1202 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1203 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1204 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1205 struct btrfs_extent_ref_v0
*ref0
;
1206 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1207 struct btrfs_extent_ref_v0
);
1208 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1214 BUG_ON(num_refs
< refs_to_drop
);
1215 num_refs
-= refs_to_drop
;
1217 if (num_refs
== 0) {
1218 ret
= btrfs_del_item(trans
, root
, path
);
1220 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1221 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1222 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1223 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1224 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1226 struct btrfs_extent_ref_v0
*ref0
;
1227 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1228 struct btrfs_extent_ref_v0
);
1229 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1232 btrfs_mark_buffer_dirty(leaf
);
1237 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1238 struct btrfs_path
*path
,
1239 struct btrfs_extent_inline_ref
*iref
)
1241 struct btrfs_key key
;
1242 struct extent_buffer
*leaf
;
1243 struct btrfs_extent_data_ref
*ref1
;
1244 struct btrfs_shared_data_ref
*ref2
;
1247 leaf
= path
->nodes
[0];
1248 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1250 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1251 BTRFS_EXTENT_DATA_REF_KEY
) {
1252 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1253 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1255 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1256 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1258 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1259 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1260 struct btrfs_extent_data_ref
);
1261 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1262 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1263 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1264 struct btrfs_shared_data_ref
);
1265 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1268 struct btrfs_extent_ref_v0
*ref0
;
1269 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1270 struct btrfs_extent_ref_v0
);
1271 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1279 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1280 struct btrfs_root
*root
,
1281 struct btrfs_path
*path
,
1282 u64 bytenr
, u64 parent
,
1285 struct btrfs_key key
;
1288 key
.objectid
= bytenr
;
1290 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1291 key
.offset
= parent
;
1293 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1294 key
.offset
= root_objectid
;
1297 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1300 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1301 if (ret
== -ENOENT
&& parent
) {
1302 btrfs_release_path(path
);
1303 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1304 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1312 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1313 struct btrfs_root
*root
,
1314 struct btrfs_path
*path
,
1315 u64 bytenr
, u64 parent
,
1318 struct btrfs_key key
;
1321 key
.objectid
= bytenr
;
1323 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1324 key
.offset
= parent
;
1326 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1327 key
.offset
= root_objectid
;
1330 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1331 btrfs_release_path(path
);
1335 static inline int extent_ref_type(u64 parent
, u64 owner
)
1338 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1340 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1342 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1345 type
= BTRFS_SHARED_DATA_REF_KEY
;
1347 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1352 static int find_next_key(struct btrfs_path
*path
, int level
,
1353 struct btrfs_key
*key
)
1356 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1357 if (!path
->nodes
[level
])
1359 if (path
->slots
[level
] + 1 >=
1360 btrfs_header_nritems(path
->nodes
[level
]))
1363 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1364 path
->slots
[level
] + 1);
1366 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1367 path
->slots
[level
] + 1);
1374 * look for inline back ref. if back ref is found, *ref_ret is set
1375 * to the address of inline back ref, and 0 is returned.
1377 * if back ref isn't found, *ref_ret is set to the address where it
1378 * should be inserted, and -ENOENT is returned.
1380 * if insert is true and there are too many inline back refs, the path
1381 * points to the extent item, and -EAGAIN is returned.
1383 * NOTE: inline back refs are ordered in the same way that back ref
1384 * items in the tree are ordered.
1386 static noinline_for_stack
1387 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1388 struct btrfs_root
*root
,
1389 struct btrfs_path
*path
,
1390 struct btrfs_extent_inline_ref
**ref_ret
,
1391 u64 bytenr
, u64 num_bytes
,
1392 u64 parent
, u64 root_objectid
,
1393 u64 owner
, u64 offset
, int insert
)
1395 struct btrfs_key key
;
1396 struct extent_buffer
*leaf
;
1397 struct btrfs_extent_item
*ei
;
1398 struct btrfs_extent_inline_ref
*iref
;
1409 key
.objectid
= bytenr
;
1410 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1411 key
.offset
= num_bytes
;
1413 want
= extent_ref_type(parent
, owner
);
1415 extra_size
= btrfs_extent_inline_ref_size(want
);
1416 path
->keep_locks
= 1;
1419 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1426 leaf
= path
->nodes
[0];
1427 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1428 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1429 if (item_size
< sizeof(*ei
)) {
1434 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1440 leaf
= path
->nodes
[0];
1441 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1444 BUG_ON(item_size
< sizeof(*ei
));
1446 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1447 flags
= btrfs_extent_flags(leaf
, ei
);
1449 ptr
= (unsigned long)(ei
+ 1);
1450 end
= (unsigned long)ei
+ item_size
;
1452 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1453 ptr
+= sizeof(struct btrfs_tree_block_info
);
1456 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1465 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1466 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1470 ptr
+= btrfs_extent_inline_ref_size(type
);
1474 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1475 struct btrfs_extent_data_ref
*dref
;
1476 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1477 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1482 if (hash_extent_data_ref_item(leaf
, dref
) <
1483 hash_extent_data_ref(root_objectid
, owner
, offset
))
1487 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1489 if (parent
== ref_offset
) {
1493 if (ref_offset
< parent
)
1496 if (root_objectid
== ref_offset
) {
1500 if (ref_offset
< root_objectid
)
1504 ptr
+= btrfs_extent_inline_ref_size(type
);
1506 if (err
== -ENOENT
&& insert
) {
1507 if (item_size
+ extra_size
>=
1508 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1513 * To add new inline back ref, we have to make sure
1514 * there is no corresponding back ref item.
1515 * For simplicity, we just do not add new inline back
1516 * ref if there is any kind of item for this block
1518 if (find_next_key(path
, 0, &key
) == 0 &&
1519 key
.objectid
== bytenr
&&
1520 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1525 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1528 path
->keep_locks
= 0;
1529 btrfs_unlock_up_safe(path
, 1);
1535 * helper to add new inline back ref
1537 static noinline_for_stack
1538 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1539 struct btrfs_root
*root
,
1540 struct btrfs_path
*path
,
1541 struct btrfs_extent_inline_ref
*iref
,
1542 u64 parent
, u64 root_objectid
,
1543 u64 owner
, u64 offset
, int refs_to_add
,
1544 struct btrfs_delayed_extent_op
*extent_op
)
1546 struct extent_buffer
*leaf
;
1547 struct btrfs_extent_item
*ei
;
1550 unsigned long item_offset
;
1556 leaf
= path
->nodes
[0];
1557 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1558 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1560 type
= extent_ref_type(parent
, owner
);
1561 size
= btrfs_extent_inline_ref_size(type
);
1563 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1565 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1566 refs
= btrfs_extent_refs(leaf
, ei
);
1567 refs
+= refs_to_add
;
1568 btrfs_set_extent_refs(leaf
, ei
, refs
);
1570 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1572 ptr
= (unsigned long)ei
+ item_offset
;
1573 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1574 if (ptr
< end
- size
)
1575 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1578 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1579 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1580 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1581 struct btrfs_extent_data_ref
*dref
;
1582 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1583 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1584 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1585 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1586 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1587 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1588 struct btrfs_shared_data_ref
*sref
;
1589 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1590 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1591 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1592 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1593 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1595 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1597 btrfs_mark_buffer_dirty(leaf
);
1601 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1602 struct btrfs_root
*root
,
1603 struct btrfs_path
*path
,
1604 struct btrfs_extent_inline_ref
**ref_ret
,
1605 u64 bytenr
, u64 num_bytes
, u64 parent
,
1606 u64 root_objectid
, u64 owner
, u64 offset
)
1610 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1611 bytenr
, num_bytes
, parent
,
1612 root_objectid
, owner
, offset
, 0);
1616 btrfs_release_path(path
);
1619 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1620 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1623 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1624 root_objectid
, owner
, offset
);
1630 * helper to update/remove inline back ref
1632 static noinline_for_stack
1633 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1634 struct btrfs_root
*root
,
1635 struct btrfs_path
*path
,
1636 struct btrfs_extent_inline_ref
*iref
,
1638 struct btrfs_delayed_extent_op
*extent_op
)
1640 struct extent_buffer
*leaf
;
1641 struct btrfs_extent_item
*ei
;
1642 struct btrfs_extent_data_ref
*dref
= NULL
;
1643 struct btrfs_shared_data_ref
*sref
= NULL
;
1652 leaf
= path
->nodes
[0];
1653 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1654 refs
= btrfs_extent_refs(leaf
, ei
);
1655 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1656 refs
+= refs_to_mod
;
1657 btrfs_set_extent_refs(leaf
, ei
, refs
);
1659 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1661 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1663 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1664 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1665 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1666 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1667 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1668 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1671 BUG_ON(refs_to_mod
!= -1);
1674 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1675 refs
+= refs_to_mod
;
1678 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1679 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1681 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1683 size
= btrfs_extent_inline_ref_size(type
);
1684 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1685 ptr
= (unsigned long)iref
;
1686 end
= (unsigned long)ei
+ item_size
;
1687 if (ptr
+ size
< end
)
1688 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1691 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1693 btrfs_mark_buffer_dirty(leaf
);
1697 static noinline_for_stack
1698 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1699 struct btrfs_root
*root
,
1700 struct btrfs_path
*path
,
1701 u64 bytenr
, u64 num_bytes
, u64 parent
,
1702 u64 root_objectid
, u64 owner
,
1703 u64 offset
, int refs_to_add
,
1704 struct btrfs_delayed_extent_op
*extent_op
)
1706 struct btrfs_extent_inline_ref
*iref
;
1709 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1710 bytenr
, num_bytes
, parent
,
1711 root_objectid
, owner
, offset
, 1);
1713 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1714 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1715 refs_to_add
, extent_op
);
1716 } else if (ret
== -ENOENT
) {
1717 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1718 parent
, root_objectid
,
1719 owner
, offset
, refs_to_add
,
1725 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1726 struct btrfs_root
*root
,
1727 struct btrfs_path
*path
,
1728 u64 bytenr
, u64 parent
, u64 root_objectid
,
1729 u64 owner
, u64 offset
, int refs_to_add
)
1732 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1733 BUG_ON(refs_to_add
!= 1);
1734 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1735 parent
, root_objectid
);
1737 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1738 parent
, root_objectid
,
1739 owner
, offset
, refs_to_add
);
1744 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1745 struct btrfs_root
*root
,
1746 struct btrfs_path
*path
,
1747 struct btrfs_extent_inline_ref
*iref
,
1748 int refs_to_drop
, int is_data
)
1752 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1754 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1755 -refs_to_drop
, NULL
);
1756 } else if (is_data
) {
1757 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1759 ret
= btrfs_del_item(trans
, root
, path
);
1764 static int btrfs_issue_discard(struct block_device
*bdev
,
1767 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1770 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1771 u64 num_bytes
, u64
*actual_bytes
)
1774 u64 discarded_bytes
= 0;
1775 struct btrfs_multi_bio
*multi
= NULL
;
1778 /* Tell the block device(s) that the sectors can be discarded */
1779 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, REQ_DISCARD
,
1780 bytenr
, &num_bytes
, &multi
, 0);
1782 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1786 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1787 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1791 discarded_bytes
+= stripe
->length
;
1792 else if (ret
!= -EOPNOTSUPP
)
1797 if (discarded_bytes
&& ret
== -EOPNOTSUPP
)
1801 *actual_bytes
= discarded_bytes
;
1807 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1808 struct btrfs_root
*root
,
1809 u64 bytenr
, u64 num_bytes
, u64 parent
,
1810 u64 root_objectid
, u64 owner
, u64 offset
)
1813 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1814 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1816 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1817 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1818 parent
, root_objectid
, (int)owner
,
1819 BTRFS_ADD_DELAYED_REF
, NULL
);
1821 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1822 parent
, root_objectid
, owner
, offset
,
1823 BTRFS_ADD_DELAYED_REF
, NULL
);
1828 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1829 struct btrfs_root
*root
,
1830 u64 bytenr
, u64 num_bytes
,
1831 u64 parent
, u64 root_objectid
,
1832 u64 owner
, u64 offset
, int refs_to_add
,
1833 struct btrfs_delayed_extent_op
*extent_op
)
1835 struct btrfs_path
*path
;
1836 struct extent_buffer
*leaf
;
1837 struct btrfs_extent_item
*item
;
1842 path
= btrfs_alloc_path();
1847 path
->leave_spinning
= 1;
1848 /* this will setup the path even if it fails to insert the back ref */
1849 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1850 path
, bytenr
, num_bytes
, parent
,
1851 root_objectid
, owner
, offset
,
1852 refs_to_add
, extent_op
);
1856 if (ret
!= -EAGAIN
) {
1861 leaf
= path
->nodes
[0];
1862 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1863 refs
= btrfs_extent_refs(leaf
, item
);
1864 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1866 __run_delayed_extent_op(extent_op
, leaf
, item
);
1868 btrfs_mark_buffer_dirty(leaf
);
1869 btrfs_release_path(path
);
1872 path
->leave_spinning
= 1;
1874 /* now insert the actual backref */
1875 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1876 path
, bytenr
, parent
, root_objectid
,
1877 owner
, offset
, refs_to_add
);
1880 btrfs_free_path(path
);
1884 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1885 struct btrfs_root
*root
,
1886 struct btrfs_delayed_ref_node
*node
,
1887 struct btrfs_delayed_extent_op
*extent_op
,
1888 int insert_reserved
)
1891 struct btrfs_delayed_data_ref
*ref
;
1892 struct btrfs_key ins
;
1897 ins
.objectid
= node
->bytenr
;
1898 ins
.offset
= node
->num_bytes
;
1899 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1901 ref
= btrfs_delayed_node_to_data_ref(node
);
1902 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1903 parent
= ref
->parent
;
1905 ref_root
= ref
->root
;
1907 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1909 BUG_ON(extent_op
->update_key
);
1910 flags
|= extent_op
->flags_to_set
;
1912 ret
= alloc_reserved_file_extent(trans
, root
,
1913 parent
, ref_root
, flags
,
1914 ref
->objectid
, ref
->offset
,
1915 &ins
, node
->ref_mod
);
1916 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1917 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1918 node
->num_bytes
, parent
,
1919 ref_root
, ref
->objectid
,
1920 ref
->offset
, node
->ref_mod
,
1922 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1923 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1924 node
->num_bytes
, parent
,
1925 ref_root
, ref
->objectid
,
1926 ref
->offset
, node
->ref_mod
,
1934 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1935 struct extent_buffer
*leaf
,
1936 struct btrfs_extent_item
*ei
)
1938 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1939 if (extent_op
->update_flags
) {
1940 flags
|= extent_op
->flags_to_set
;
1941 btrfs_set_extent_flags(leaf
, ei
, flags
);
1944 if (extent_op
->update_key
) {
1945 struct btrfs_tree_block_info
*bi
;
1946 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1947 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1948 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1952 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1953 struct btrfs_root
*root
,
1954 struct btrfs_delayed_ref_node
*node
,
1955 struct btrfs_delayed_extent_op
*extent_op
)
1957 struct btrfs_key key
;
1958 struct btrfs_path
*path
;
1959 struct btrfs_extent_item
*ei
;
1960 struct extent_buffer
*leaf
;
1965 path
= btrfs_alloc_path();
1969 key
.objectid
= node
->bytenr
;
1970 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1971 key
.offset
= node
->num_bytes
;
1974 path
->leave_spinning
= 1;
1975 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1986 leaf
= path
->nodes
[0];
1987 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1989 if (item_size
< sizeof(*ei
)) {
1990 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1996 leaf
= path
->nodes
[0];
1997 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2000 BUG_ON(item_size
< sizeof(*ei
));
2001 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2002 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2004 btrfs_mark_buffer_dirty(leaf
);
2006 btrfs_free_path(path
);
2010 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2011 struct btrfs_root
*root
,
2012 struct btrfs_delayed_ref_node
*node
,
2013 struct btrfs_delayed_extent_op
*extent_op
,
2014 int insert_reserved
)
2017 struct btrfs_delayed_tree_ref
*ref
;
2018 struct btrfs_key ins
;
2022 ins
.objectid
= node
->bytenr
;
2023 ins
.offset
= node
->num_bytes
;
2024 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2026 ref
= btrfs_delayed_node_to_tree_ref(node
);
2027 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2028 parent
= ref
->parent
;
2030 ref_root
= ref
->root
;
2032 BUG_ON(node
->ref_mod
!= 1);
2033 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2034 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2035 !extent_op
->update_key
);
2036 ret
= alloc_reserved_tree_block(trans
, root
,
2038 extent_op
->flags_to_set
,
2041 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2042 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2043 node
->num_bytes
, parent
, ref_root
,
2044 ref
->level
, 0, 1, extent_op
);
2045 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2046 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2047 node
->num_bytes
, parent
, ref_root
,
2048 ref
->level
, 0, 1, extent_op
);
2055 /* helper function to actually process a single delayed ref entry */
2056 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2057 struct btrfs_root
*root
,
2058 struct btrfs_delayed_ref_node
*node
,
2059 struct btrfs_delayed_extent_op
*extent_op
,
2060 int insert_reserved
)
2063 if (btrfs_delayed_ref_is_head(node
)) {
2064 struct btrfs_delayed_ref_head
*head
;
2066 * we've hit the end of the chain and we were supposed
2067 * to insert this extent into the tree. But, it got
2068 * deleted before we ever needed to insert it, so all
2069 * we have to do is clean up the accounting
2072 head
= btrfs_delayed_node_to_head(node
);
2073 if (insert_reserved
) {
2074 btrfs_pin_extent(root
, node
->bytenr
,
2075 node
->num_bytes
, 1);
2076 if (head
->is_data
) {
2077 ret
= btrfs_del_csums(trans
, root
,
2083 mutex_unlock(&head
->mutex
);
2087 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2088 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2089 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2091 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2092 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2093 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2100 static noinline
struct btrfs_delayed_ref_node
*
2101 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2103 struct rb_node
*node
;
2104 struct btrfs_delayed_ref_node
*ref
;
2105 int action
= BTRFS_ADD_DELAYED_REF
;
2108 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2109 * this prevents ref count from going down to zero when
2110 * there still are pending delayed ref.
2112 node
= rb_prev(&head
->node
.rb_node
);
2116 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2118 if (ref
->bytenr
!= head
->node
.bytenr
)
2120 if (ref
->action
== action
)
2122 node
= rb_prev(node
);
2124 if (action
== BTRFS_ADD_DELAYED_REF
) {
2125 action
= BTRFS_DROP_DELAYED_REF
;
2131 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2132 struct btrfs_root
*root
,
2133 struct list_head
*cluster
)
2135 struct btrfs_delayed_ref_root
*delayed_refs
;
2136 struct btrfs_delayed_ref_node
*ref
;
2137 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2138 struct btrfs_delayed_extent_op
*extent_op
;
2141 int must_insert_reserved
= 0;
2143 delayed_refs
= &trans
->transaction
->delayed_refs
;
2146 /* pick a new head ref from the cluster list */
2147 if (list_empty(cluster
))
2150 locked_ref
= list_entry(cluster
->next
,
2151 struct btrfs_delayed_ref_head
, cluster
);
2153 /* grab the lock that says we are going to process
2154 * all the refs for this head */
2155 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2158 * we may have dropped the spin lock to get the head
2159 * mutex lock, and that might have given someone else
2160 * time to free the head. If that's true, it has been
2161 * removed from our list and we can move on.
2163 if (ret
== -EAGAIN
) {
2171 * record the must insert reserved flag before we
2172 * drop the spin lock.
2174 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2175 locked_ref
->must_insert_reserved
= 0;
2177 extent_op
= locked_ref
->extent_op
;
2178 locked_ref
->extent_op
= NULL
;
2181 * locked_ref is the head node, so we have to go one
2182 * node back for any delayed ref updates
2184 ref
= select_delayed_ref(locked_ref
);
2186 /* All delayed refs have been processed, Go ahead
2187 * and send the head node to run_one_delayed_ref,
2188 * so that any accounting fixes can happen
2190 ref
= &locked_ref
->node
;
2192 if (extent_op
&& must_insert_reserved
) {
2198 spin_unlock(&delayed_refs
->lock
);
2200 ret
= run_delayed_extent_op(trans
, root
,
2206 spin_lock(&delayed_refs
->lock
);
2210 list_del_init(&locked_ref
->cluster
);
2215 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2216 delayed_refs
->num_entries
--;
2218 spin_unlock(&delayed_refs
->lock
);
2220 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2221 must_insert_reserved
);
2224 btrfs_put_delayed_ref(ref
);
2229 spin_lock(&delayed_refs
->lock
);
2235 * this starts processing the delayed reference count updates and
2236 * extent insertions we have queued up so far. count can be
2237 * 0, which means to process everything in the tree at the start
2238 * of the run (but not newly added entries), or it can be some target
2239 * number you'd like to process.
2241 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2242 struct btrfs_root
*root
, unsigned long count
)
2244 struct rb_node
*node
;
2245 struct btrfs_delayed_ref_root
*delayed_refs
;
2246 struct btrfs_delayed_ref_node
*ref
;
2247 struct list_head cluster
;
2249 int run_all
= count
== (unsigned long)-1;
2252 if (root
== root
->fs_info
->extent_root
)
2253 root
= root
->fs_info
->tree_root
;
2255 delayed_refs
= &trans
->transaction
->delayed_refs
;
2256 INIT_LIST_HEAD(&cluster
);
2258 spin_lock(&delayed_refs
->lock
);
2260 count
= delayed_refs
->num_entries
* 2;
2264 if (!(run_all
|| run_most
) &&
2265 delayed_refs
->num_heads_ready
< 64)
2269 * go find something we can process in the rbtree. We start at
2270 * the beginning of the tree, and then build a cluster
2271 * of refs to process starting at the first one we are able to
2274 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2275 delayed_refs
->run_delayed_start
);
2279 ret
= run_clustered_refs(trans
, root
, &cluster
);
2282 count
-= min_t(unsigned long, ret
, count
);
2289 node
= rb_first(&delayed_refs
->root
);
2292 count
= (unsigned long)-1;
2295 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2297 if (btrfs_delayed_ref_is_head(ref
)) {
2298 struct btrfs_delayed_ref_head
*head
;
2300 head
= btrfs_delayed_node_to_head(ref
);
2301 atomic_inc(&ref
->refs
);
2303 spin_unlock(&delayed_refs
->lock
);
2305 * Mutex was contended, block until it's
2306 * released and try again
2308 mutex_lock(&head
->mutex
);
2309 mutex_unlock(&head
->mutex
);
2311 btrfs_put_delayed_ref(ref
);
2315 node
= rb_next(node
);
2317 spin_unlock(&delayed_refs
->lock
);
2318 schedule_timeout(1);
2322 spin_unlock(&delayed_refs
->lock
);
2326 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2327 struct btrfs_root
*root
,
2328 u64 bytenr
, u64 num_bytes
, u64 flags
,
2331 struct btrfs_delayed_extent_op
*extent_op
;
2334 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2338 extent_op
->flags_to_set
= flags
;
2339 extent_op
->update_flags
= 1;
2340 extent_op
->update_key
= 0;
2341 extent_op
->is_data
= is_data
? 1 : 0;
2343 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2349 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2350 struct btrfs_root
*root
,
2351 struct btrfs_path
*path
,
2352 u64 objectid
, u64 offset
, u64 bytenr
)
2354 struct btrfs_delayed_ref_head
*head
;
2355 struct btrfs_delayed_ref_node
*ref
;
2356 struct btrfs_delayed_data_ref
*data_ref
;
2357 struct btrfs_delayed_ref_root
*delayed_refs
;
2358 struct rb_node
*node
;
2362 delayed_refs
= &trans
->transaction
->delayed_refs
;
2363 spin_lock(&delayed_refs
->lock
);
2364 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2368 if (!mutex_trylock(&head
->mutex
)) {
2369 atomic_inc(&head
->node
.refs
);
2370 spin_unlock(&delayed_refs
->lock
);
2372 btrfs_release_path(path
);
2375 * Mutex was contended, block until it's released and let
2378 mutex_lock(&head
->mutex
);
2379 mutex_unlock(&head
->mutex
);
2380 btrfs_put_delayed_ref(&head
->node
);
2384 node
= rb_prev(&head
->node
.rb_node
);
2388 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2390 if (ref
->bytenr
!= bytenr
)
2394 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2397 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2399 node
= rb_prev(node
);
2401 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2402 if (ref
->bytenr
== bytenr
)
2406 if (data_ref
->root
!= root
->root_key
.objectid
||
2407 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2412 mutex_unlock(&head
->mutex
);
2414 spin_unlock(&delayed_refs
->lock
);
2418 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2419 struct btrfs_root
*root
,
2420 struct btrfs_path
*path
,
2421 u64 objectid
, u64 offset
, u64 bytenr
)
2423 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2424 struct extent_buffer
*leaf
;
2425 struct btrfs_extent_data_ref
*ref
;
2426 struct btrfs_extent_inline_ref
*iref
;
2427 struct btrfs_extent_item
*ei
;
2428 struct btrfs_key key
;
2432 key
.objectid
= bytenr
;
2433 key
.offset
= (u64
)-1;
2434 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2436 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2442 if (path
->slots
[0] == 0)
2446 leaf
= path
->nodes
[0];
2447 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2449 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2453 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2454 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2455 if (item_size
< sizeof(*ei
)) {
2456 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2460 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2462 if (item_size
!= sizeof(*ei
) +
2463 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2466 if (btrfs_extent_generation(leaf
, ei
) <=
2467 btrfs_root_last_snapshot(&root
->root_item
))
2470 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2471 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2472 BTRFS_EXTENT_DATA_REF_KEY
)
2475 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2476 if (btrfs_extent_refs(leaf
, ei
) !=
2477 btrfs_extent_data_ref_count(leaf
, ref
) ||
2478 btrfs_extent_data_ref_root(leaf
, ref
) !=
2479 root
->root_key
.objectid
||
2480 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2481 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2489 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2490 struct btrfs_root
*root
,
2491 u64 objectid
, u64 offset
, u64 bytenr
)
2493 struct btrfs_path
*path
;
2497 path
= btrfs_alloc_path();
2502 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2504 if (ret
&& ret
!= -ENOENT
)
2507 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2509 } while (ret2
== -EAGAIN
);
2511 if (ret2
&& ret2
!= -ENOENT
) {
2516 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2519 btrfs_free_path(path
);
2520 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2525 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2526 struct btrfs_root
*root
,
2527 struct extent_buffer
*buf
,
2528 int full_backref
, int inc
)
2535 struct btrfs_key key
;
2536 struct btrfs_file_extent_item
*fi
;
2540 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2541 u64
, u64
, u64
, u64
, u64
, u64
);
2543 ref_root
= btrfs_header_owner(buf
);
2544 nritems
= btrfs_header_nritems(buf
);
2545 level
= btrfs_header_level(buf
);
2547 if (!root
->ref_cows
&& level
== 0)
2551 process_func
= btrfs_inc_extent_ref
;
2553 process_func
= btrfs_free_extent
;
2556 parent
= buf
->start
;
2560 for (i
= 0; i
< nritems
; i
++) {
2562 btrfs_item_key_to_cpu(buf
, &key
, i
);
2563 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2565 fi
= btrfs_item_ptr(buf
, i
,
2566 struct btrfs_file_extent_item
);
2567 if (btrfs_file_extent_type(buf
, fi
) ==
2568 BTRFS_FILE_EXTENT_INLINE
)
2570 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2574 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2575 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2576 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2577 parent
, ref_root
, key
.objectid
,
2582 bytenr
= btrfs_node_blockptr(buf
, i
);
2583 num_bytes
= btrfs_level_size(root
, level
- 1);
2584 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2585 parent
, ref_root
, level
- 1, 0);
2596 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2597 struct extent_buffer
*buf
, int full_backref
)
2599 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2602 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2603 struct extent_buffer
*buf
, int full_backref
)
2605 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2608 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2609 struct btrfs_root
*root
,
2610 struct btrfs_path
*path
,
2611 struct btrfs_block_group_cache
*cache
)
2614 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2616 struct extent_buffer
*leaf
;
2618 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2623 leaf
= path
->nodes
[0];
2624 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2625 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2626 btrfs_mark_buffer_dirty(leaf
);
2627 btrfs_release_path(path
);
2635 static struct btrfs_block_group_cache
*
2636 next_block_group(struct btrfs_root
*root
,
2637 struct btrfs_block_group_cache
*cache
)
2639 struct rb_node
*node
;
2640 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2641 node
= rb_next(&cache
->cache_node
);
2642 btrfs_put_block_group(cache
);
2644 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2646 btrfs_get_block_group(cache
);
2649 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2653 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2654 struct btrfs_trans_handle
*trans
,
2655 struct btrfs_path
*path
)
2657 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2658 struct inode
*inode
= NULL
;
2660 int dcs
= BTRFS_DC_ERROR
;
2666 * If this block group is smaller than 100 megs don't bother caching the
2669 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2670 spin_lock(&block_group
->lock
);
2671 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2672 spin_unlock(&block_group
->lock
);
2677 inode
= lookup_free_space_inode(root
, block_group
, path
);
2678 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2679 ret
= PTR_ERR(inode
);
2680 btrfs_release_path(path
);
2684 if (IS_ERR(inode
)) {
2688 if (block_group
->ro
)
2691 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2698 * We want to set the generation to 0, that way if anything goes wrong
2699 * from here on out we know not to trust this cache when we load up next
2702 BTRFS_I(inode
)->generation
= 0;
2703 ret
= btrfs_update_inode(trans
, root
, inode
);
2706 if (i_size_read(inode
) > 0) {
2707 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2713 spin_lock(&block_group
->lock
);
2714 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2715 /* We're not cached, don't bother trying to write stuff out */
2716 dcs
= BTRFS_DC_WRITTEN
;
2717 spin_unlock(&block_group
->lock
);
2720 spin_unlock(&block_group
->lock
);
2722 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2727 * Just to make absolutely sure we have enough space, we're going to
2728 * preallocate 12 pages worth of space for each block group. In
2729 * practice we ought to use at most 8, but we need extra space so we can
2730 * add our header and have a terminator between the extents and the
2734 num_pages
*= PAGE_CACHE_SIZE
;
2736 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2740 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2741 num_pages
, num_pages
,
2744 dcs
= BTRFS_DC_SETUP
;
2745 btrfs_free_reserved_data_space(inode
, num_pages
);
2749 btrfs_release_path(path
);
2751 spin_lock(&block_group
->lock
);
2752 block_group
->disk_cache_state
= dcs
;
2753 spin_unlock(&block_group
->lock
);
2758 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2759 struct btrfs_root
*root
)
2761 struct btrfs_block_group_cache
*cache
;
2763 struct btrfs_path
*path
;
2766 path
= btrfs_alloc_path();
2772 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2774 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2776 cache
= next_block_group(root
, cache
);
2784 err
= cache_save_setup(cache
, trans
, path
);
2785 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2786 btrfs_put_block_group(cache
);
2791 err
= btrfs_run_delayed_refs(trans
, root
,
2796 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2798 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2799 btrfs_put_block_group(cache
);
2805 cache
= next_block_group(root
, cache
);
2814 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
2815 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
2817 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2819 err
= write_one_cache_group(trans
, root
, path
, cache
);
2821 btrfs_put_block_group(cache
);
2826 * I don't think this is needed since we're just marking our
2827 * preallocated extent as written, but just in case it can't
2831 err
= btrfs_run_delayed_refs(trans
, root
,
2836 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2839 * Really this shouldn't happen, but it could if we
2840 * couldn't write the entire preallocated extent and
2841 * splitting the extent resulted in a new block.
2844 btrfs_put_block_group(cache
);
2847 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2849 cache
= next_block_group(root
, cache
);
2858 btrfs_write_out_cache(root
, trans
, cache
, path
);
2861 * If we didn't have an error then the cache state is still
2862 * NEED_WRITE, so we can set it to WRITTEN.
2864 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2865 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2866 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2867 btrfs_put_block_group(cache
);
2870 btrfs_free_path(path
);
2874 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2876 struct btrfs_block_group_cache
*block_group
;
2879 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2880 if (!block_group
|| block_group
->ro
)
2883 btrfs_put_block_group(block_group
);
2887 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2888 u64 total_bytes
, u64 bytes_used
,
2889 struct btrfs_space_info
**space_info
)
2891 struct btrfs_space_info
*found
;
2895 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
2896 BTRFS_BLOCK_GROUP_RAID10
))
2901 found
= __find_space_info(info
, flags
);
2903 spin_lock(&found
->lock
);
2904 found
->total_bytes
+= total_bytes
;
2905 found
->disk_total
+= total_bytes
* factor
;
2906 found
->bytes_used
+= bytes_used
;
2907 found
->disk_used
+= bytes_used
* factor
;
2909 spin_unlock(&found
->lock
);
2910 *space_info
= found
;
2913 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2917 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
2918 INIT_LIST_HEAD(&found
->block_groups
[i
]);
2919 init_rwsem(&found
->groups_sem
);
2920 spin_lock_init(&found
->lock
);
2921 found
->flags
= flags
& (BTRFS_BLOCK_GROUP_DATA
|
2922 BTRFS_BLOCK_GROUP_SYSTEM
|
2923 BTRFS_BLOCK_GROUP_METADATA
);
2924 found
->total_bytes
= total_bytes
;
2925 found
->disk_total
= total_bytes
* factor
;
2926 found
->bytes_used
= bytes_used
;
2927 found
->disk_used
= bytes_used
* factor
;
2928 found
->bytes_pinned
= 0;
2929 found
->bytes_reserved
= 0;
2930 found
->bytes_readonly
= 0;
2931 found
->bytes_may_use
= 0;
2933 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
2934 found
->chunk_alloc
= 0;
2935 *space_info
= found
;
2936 list_add_rcu(&found
->list
, &info
->space_info
);
2937 atomic_set(&found
->caching_threads
, 0);
2941 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2943 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
2944 BTRFS_BLOCK_GROUP_RAID1
|
2945 BTRFS_BLOCK_GROUP_RAID10
|
2946 BTRFS_BLOCK_GROUP_DUP
);
2948 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2949 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2950 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2951 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2952 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2953 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2957 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2960 * we add in the count of missing devices because we want
2961 * to make sure that any RAID levels on a degraded FS
2962 * continue to be honored.
2964 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
2965 root
->fs_info
->fs_devices
->missing_devices
;
2967 if (num_devices
== 1)
2968 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
2969 if (num_devices
< 4)
2970 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
2972 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
2973 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
2974 BTRFS_BLOCK_GROUP_RAID10
))) {
2975 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
2978 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
2979 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
2980 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
2983 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
2984 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
2985 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
2986 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
2987 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
2991 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2993 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2994 flags
|= root
->fs_info
->avail_data_alloc_bits
&
2995 root
->fs_info
->data_alloc_profile
;
2996 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2997 flags
|= root
->fs_info
->avail_system_alloc_bits
&
2998 root
->fs_info
->system_alloc_profile
;
2999 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3000 flags
|= root
->fs_info
->avail_metadata_alloc_bits
&
3001 root
->fs_info
->metadata_alloc_profile
;
3002 return btrfs_reduce_alloc_profile(root
, flags
);
3005 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3010 flags
= BTRFS_BLOCK_GROUP_DATA
;
3011 else if (root
== root
->fs_info
->chunk_root
)
3012 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3014 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3016 return get_alloc_profile(root
, flags
);
3019 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3021 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3022 BTRFS_BLOCK_GROUP_DATA
);
3026 * This will check the space that the inode allocates from to make sure we have
3027 * enough space for bytes.
3029 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3031 struct btrfs_space_info
*data_sinfo
;
3032 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3034 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3036 /* make sure bytes are sectorsize aligned */
3037 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3039 if (root
== root
->fs_info
->tree_root
||
3040 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
) {
3045 data_sinfo
= BTRFS_I(inode
)->space_info
;
3050 /* make sure we have enough space to handle the data first */
3051 spin_lock(&data_sinfo
->lock
);
3052 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3053 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3054 data_sinfo
->bytes_may_use
;
3056 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3057 struct btrfs_trans_handle
*trans
;
3060 * if we don't have enough free bytes in this space then we need
3061 * to alloc a new chunk.
3063 if (!data_sinfo
->full
&& alloc_chunk
) {
3066 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3067 spin_unlock(&data_sinfo
->lock
);
3069 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3070 trans
= btrfs_join_transaction(root
);
3072 return PTR_ERR(trans
);
3074 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3075 bytes
+ 2 * 1024 * 1024,
3077 CHUNK_ALLOC_NO_FORCE
);
3078 btrfs_end_transaction(trans
, root
);
3087 btrfs_set_inode_space_info(root
, inode
);
3088 data_sinfo
= BTRFS_I(inode
)->space_info
;
3092 spin_unlock(&data_sinfo
->lock
);
3094 /* commit the current transaction and try again */
3097 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3099 trans
= btrfs_join_transaction(root
);
3101 return PTR_ERR(trans
);
3102 ret
= btrfs_commit_transaction(trans
, root
);
3110 data_sinfo
->bytes_may_use
+= bytes
;
3111 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3112 spin_unlock(&data_sinfo
->lock
);
3118 * called when we are clearing an delalloc extent from the
3119 * inode's io_tree or there was an error for whatever reason
3120 * after calling btrfs_check_data_free_space
3122 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3124 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3125 struct btrfs_space_info
*data_sinfo
;
3127 /* make sure bytes are sectorsize aligned */
3128 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3130 data_sinfo
= BTRFS_I(inode
)->space_info
;
3131 spin_lock(&data_sinfo
->lock
);
3132 data_sinfo
->bytes_may_use
-= bytes
;
3133 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3134 spin_unlock(&data_sinfo
->lock
);
3137 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3139 struct list_head
*head
= &info
->space_info
;
3140 struct btrfs_space_info
*found
;
3143 list_for_each_entry_rcu(found
, head
, list
) {
3144 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3145 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3150 static int should_alloc_chunk(struct btrfs_root
*root
,
3151 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
,
3154 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3155 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3158 if (force
== CHUNK_ALLOC_FORCE
)
3162 * in limited mode, we want to have some free space up to
3163 * about 1% of the FS size.
3165 if (force
== CHUNK_ALLOC_LIMITED
) {
3166 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3167 thresh
= max_t(u64
, 64 * 1024 * 1024,
3168 div_factor_fine(thresh
, 1));
3170 if (num_bytes
- num_allocated
< thresh
)
3175 * we have two similar checks here, one based on percentage
3176 * and once based on a hard number of 256MB. The idea
3177 * is that if we have a good amount of free
3178 * room, don't allocate a chunk. A good mount is
3179 * less than 80% utilized of the chunks we have allocated,
3180 * or more than 256MB free
3182 if (num_allocated
+ alloc_bytes
+ 256 * 1024 * 1024 < num_bytes
)
3185 if (num_allocated
+ alloc_bytes
< div_factor(num_bytes
, 8))
3188 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3190 /* 256MB or 5% of the FS */
3191 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 5));
3193 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 3))
3198 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3199 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3200 u64 flags
, int force
)
3202 struct btrfs_space_info
*space_info
;
3203 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3204 int wait_for_alloc
= 0;
3207 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3209 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3211 ret
= update_space_info(extent_root
->fs_info
, flags
,
3215 BUG_ON(!space_info
);
3218 spin_lock(&space_info
->lock
);
3219 if (space_info
->force_alloc
)
3220 force
= space_info
->force_alloc
;
3221 if (space_info
->full
) {
3222 spin_unlock(&space_info
->lock
);
3226 if (!should_alloc_chunk(extent_root
, space_info
, alloc_bytes
, force
)) {
3227 spin_unlock(&space_info
->lock
);
3229 } else if (space_info
->chunk_alloc
) {
3232 space_info
->chunk_alloc
= 1;
3235 spin_unlock(&space_info
->lock
);
3237 mutex_lock(&fs_info
->chunk_mutex
);
3240 * The chunk_mutex is held throughout the entirety of a chunk
3241 * allocation, so once we've acquired the chunk_mutex we know that the
3242 * other guy is done and we need to recheck and see if we should
3245 if (wait_for_alloc
) {
3246 mutex_unlock(&fs_info
->chunk_mutex
);
3252 * If we have mixed data/metadata chunks we want to make sure we keep
3253 * allocating mixed chunks instead of individual chunks.
3255 if (btrfs_mixed_space_info(space_info
))
3256 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3259 * if we're doing a data chunk, go ahead and make sure that
3260 * we keep a reasonable number of metadata chunks allocated in the
3263 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3264 fs_info
->data_chunk_allocations
++;
3265 if (!(fs_info
->data_chunk_allocations
%
3266 fs_info
->metadata_ratio
))
3267 force_metadata_allocation(fs_info
);
3270 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3271 spin_lock(&space_info
->lock
);
3273 space_info
->full
= 1;
3277 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3278 space_info
->chunk_alloc
= 0;
3279 spin_unlock(&space_info
->lock
);
3280 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3285 * shrink metadata reservation for delalloc
3287 static int shrink_delalloc(struct btrfs_trans_handle
*trans
,
3288 struct btrfs_root
*root
, u64 to_reclaim
, int sync
)
3290 struct btrfs_block_rsv
*block_rsv
;
3291 struct btrfs_space_info
*space_info
;
3296 int nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3298 unsigned long progress
;
3300 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3301 space_info
= block_rsv
->space_info
;
3304 reserved
= space_info
->bytes_reserved
;
3305 progress
= space_info
->reservation_progress
;
3310 /* nothing to shrink - nothing to reclaim */
3311 if (root
->fs_info
->delalloc_bytes
== 0)
3314 max_reclaim
= min(reserved
, to_reclaim
);
3316 while (loops
< 1024) {
3317 /* have the flusher threads jump in and do some IO */
3319 nr_pages
= min_t(unsigned long, nr_pages
,
3320 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3321 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
);
3323 spin_lock(&space_info
->lock
);
3324 if (reserved
> space_info
->bytes_reserved
)
3325 reclaimed
+= reserved
- space_info
->bytes_reserved
;
3326 reserved
= space_info
->bytes_reserved
;
3327 spin_unlock(&space_info
->lock
);
3331 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3334 if (trans
&& trans
->transaction
->blocked
)
3337 time_left
= schedule_timeout_interruptible(1);
3339 /* We were interrupted, exit */
3343 /* we've kicked the IO a few times, if anything has been freed,
3344 * exit. There is no sense in looping here for a long time
3345 * when we really need to commit the transaction, or there are
3346 * just too many writers without enough free space
3351 if (progress
!= space_info
->reservation_progress
)
3356 return reclaimed
>= to_reclaim
;
3360 * Retries tells us how many times we've called reserve_metadata_bytes. The
3361 * idea is if this is the first call (retries == 0) then we will add to our
3362 * reserved count if we can't make the allocation in order to hold our place
3363 * while we go and try and free up space. That way for retries > 1 we don't try
3364 * and add space, we just check to see if the amount of unused space is >= the
3365 * total space, meaning that our reservation is valid.
3367 * However if we don't intend to retry this reservation, pass -1 as retries so
3368 * that it short circuits this logic.
3370 static int reserve_metadata_bytes(struct btrfs_trans_handle
*trans
,
3371 struct btrfs_root
*root
,
3372 struct btrfs_block_rsv
*block_rsv
,
3373 u64 orig_bytes
, int flush
)
3375 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3377 u64 num_bytes
= orig_bytes
;
3380 bool reserved
= false;
3381 bool committed
= false;
3388 spin_lock(&space_info
->lock
);
3389 unused
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3390 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3391 space_info
->bytes_may_use
;
3394 * The idea here is that we've not already over-reserved the block group
3395 * then we can go ahead and save our reservation first and then start
3396 * flushing if we need to. Otherwise if we've already overcommitted
3397 * lets start flushing stuff first and then come back and try to make
3400 if (unused
<= space_info
->total_bytes
) {
3401 unused
= space_info
->total_bytes
- unused
;
3402 if (unused
>= num_bytes
) {
3404 space_info
->bytes_reserved
+= orig_bytes
;
3408 * Ok set num_bytes to orig_bytes since we aren't
3409 * overocmmitted, this way we only try and reclaim what
3412 num_bytes
= orig_bytes
;
3416 * Ok we're over committed, set num_bytes to the overcommitted
3417 * amount plus the amount of bytes that we need for this
3420 num_bytes
= unused
- space_info
->total_bytes
+
3421 (orig_bytes
* (retries
+ 1));
3425 * Couldn't make our reservation, save our place so while we're trying
3426 * to reclaim space we can actually use it instead of somebody else
3427 * stealing it from us.
3429 if (ret
&& !reserved
) {
3430 space_info
->bytes_reserved
+= orig_bytes
;
3434 spin_unlock(&space_info
->lock
);
3443 * We do synchronous shrinking since we don't actually unreserve
3444 * metadata until after the IO is completed.
3446 ret
= shrink_delalloc(trans
, root
, num_bytes
, 1);
3453 * So if we were overcommitted it's possible that somebody else flushed
3454 * out enough space and we simply didn't have enough space to reclaim,
3455 * so go back around and try again.
3462 spin_lock(&space_info
->lock
);
3464 * Not enough space to be reclaimed, don't bother committing the
3467 if (space_info
->bytes_pinned
< orig_bytes
)
3469 spin_unlock(&space_info
->lock
);
3474 if (trans
|| committed
)
3478 trans
= btrfs_join_transaction(root
);
3481 ret
= btrfs_commit_transaction(trans
, root
);
3490 spin_lock(&space_info
->lock
);
3491 space_info
->bytes_reserved
-= orig_bytes
;
3492 spin_unlock(&space_info
->lock
);
3498 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3499 struct btrfs_root
*root
)
3501 struct btrfs_block_rsv
*block_rsv
;
3503 block_rsv
= trans
->block_rsv
;
3505 block_rsv
= root
->block_rsv
;
3508 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3513 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3517 spin_lock(&block_rsv
->lock
);
3518 if (block_rsv
->reserved
>= num_bytes
) {
3519 block_rsv
->reserved
-= num_bytes
;
3520 if (block_rsv
->reserved
< block_rsv
->size
)
3521 block_rsv
->full
= 0;
3524 spin_unlock(&block_rsv
->lock
);
3528 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3529 u64 num_bytes
, int update_size
)
3531 spin_lock(&block_rsv
->lock
);
3532 block_rsv
->reserved
+= num_bytes
;
3534 block_rsv
->size
+= num_bytes
;
3535 else if (block_rsv
->reserved
>= block_rsv
->size
)
3536 block_rsv
->full
= 1;
3537 spin_unlock(&block_rsv
->lock
);
3540 static void block_rsv_release_bytes(struct btrfs_block_rsv
*block_rsv
,
3541 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3543 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3545 spin_lock(&block_rsv
->lock
);
3546 if (num_bytes
== (u64
)-1)
3547 num_bytes
= block_rsv
->size
;
3548 block_rsv
->size
-= num_bytes
;
3549 if (block_rsv
->reserved
>= block_rsv
->size
) {
3550 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3551 block_rsv
->reserved
= block_rsv
->size
;
3552 block_rsv
->full
= 1;
3556 spin_unlock(&block_rsv
->lock
);
3558 if (num_bytes
> 0) {
3560 spin_lock(&dest
->lock
);
3564 bytes_to_add
= dest
->size
- dest
->reserved
;
3565 bytes_to_add
= min(num_bytes
, bytes_to_add
);
3566 dest
->reserved
+= bytes_to_add
;
3567 if (dest
->reserved
>= dest
->size
)
3569 num_bytes
-= bytes_to_add
;
3571 spin_unlock(&dest
->lock
);
3574 spin_lock(&space_info
->lock
);
3575 space_info
->bytes_reserved
-= num_bytes
;
3576 space_info
->reservation_progress
++;
3577 spin_unlock(&space_info
->lock
);
3582 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3583 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3587 ret
= block_rsv_use_bytes(src
, num_bytes
);
3591 block_rsv_add_bytes(dst
, num_bytes
, 1);
3595 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3597 memset(rsv
, 0, sizeof(*rsv
));
3598 spin_lock_init(&rsv
->lock
);
3599 atomic_set(&rsv
->usage
, 1);
3601 INIT_LIST_HEAD(&rsv
->list
);
3604 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3606 struct btrfs_block_rsv
*block_rsv
;
3607 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3609 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3613 btrfs_init_block_rsv(block_rsv
);
3614 block_rsv
->space_info
= __find_space_info(fs_info
,
3615 BTRFS_BLOCK_GROUP_METADATA
);
3619 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3620 struct btrfs_block_rsv
*rsv
)
3622 if (rsv
&& atomic_dec_and_test(&rsv
->usage
)) {
3623 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3630 * make the block_rsv struct be able to capture freed space.
3631 * the captured space will re-add to the the block_rsv struct
3632 * after transaction commit
3634 void btrfs_add_durable_block_rsv(struct btrfs_fs_info
*fs_info
,
3635 struct btrfs_block_rsv
*block_rsv
)
3637 block_rsv
->durable
= 1;
3638 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
3639 list_add_tail(&block_rsv
->list
, &fs_info
->durable_block_rsv_list
);
3640 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
3643 int btrfs_block_rsv_add(struct btrfs_trans_handle
*trans
,
3644 struct btrfs_root
*root
,
3645 struct btrfs_block_rsv
*block_rsv
,
3653 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, num_bytes
, 1);
3655 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3662 int btrfs_block_rsv_check(struct btrfs_trans_handle
*trans
,
3663 struct btrfs_root
*root
,
3664 struct btrfs_block_rsv
*block_rsv
,
3665 u64 min_reserved
, int min_factor
)
3668 int commit_trans
= 0;
3674 spin_lock(&block_rsv
->lock
);
3676 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
3677 if (min_reserved
> num_bytes
)
3678 num_bytes
= min_reserved
;
3680 if (block_rsv
->reserved
>= num_bytes
) {
3683 num_bytes
-= block_rsv
->reserved
;
3684 if (block_rsv
->durable
&&
3685 block_rsv
->freed
[0] + block_rsv
->freed
[1] >= num_bytes
)
3688 spin_unlock(&block_rsv
->lock
);
3692 if (block_rsv
->refill_used
) {
3693 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
3696 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
3705 trans
= btrfs_join_transaction(root
);
3706 BUG_ON(IS_ERR(trans
));
3707 ret
= btrfs_commit_transaction(trans
, root
);
3714 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
3715 struct btrfs_block_rsv
*dst_rsv
,
3718 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3721 void btrfs_block_rsv_release(struct btrfs_root
*root
,
3722 struct btrfs_block_rsv
*block_rsv
,
3725 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3726 if (global_rsv
->full
|| global_rsv
== block_rsv
||
3727 block_rsv
->space_info
!= global_rsv
->space_info
)
3729 block_rsv_release_bytes(block_rsv
, global_rsv
, num_bytes
);
3733 * helper to calculate size of global block reservation.
3734 * the desired value is sum of space used by extent tree,
3735 * checksum tree and root tree
3737 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
3739 struct btrfs_space_info
*sinfo
;
3743 int csum_size
= btrfs_super_csum_size(&fs_info
->super_copy
);
3745 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
3746 spin_lock(&sinfo
->lock
);
3747 data_used
= sinfo
->bytes_used
;
3748 spin_unlock(&sinfo
->lock
);
3750 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3751 spin_lock(&sinfo
->lock
);
3752 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
3754 meta_used
= sinfo
->bytes_used
;
3755 spin_unlock(&sinfo
->lock
);
3757 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
3759 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
3761 if (num_bytes
* 3 > meta_used
)
3762 num_bytes
= div64_u64(meta_used
, 3);
3764 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
3767 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3769 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3770 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
3773 num_bytes
= calc_global_metadata_size(fs_info
);
3775 spin_lock(&block_rsv
->lock
);
3776 spin_lock(&sinfo
->lock
);
3778 block_rsv
->size
= num_bytes
;
3780 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
3781 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
3782 sinfo
->bytes_may_use
;
3784 if (sinfo
->total_bytes
> num_bytes
) {
3785 num_bytes
= sinfo
->total_bytes
- num_bytes
;
3786 block_rsv
->reserved
+= num_bytes
;
3787 sinfo
->bytes_reserved
+= num_bytes
;
3790 if (block_rsv
->reserved
>= block_rsv
->size
) {
3791 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3792 sinfo
->bytes_reserved
-= num_bytes
;
3793 sinfo
->reservation_progress
++;
3794 block_rsv
->reserved
= block_rsv
->size
;
3795 block_rsv
->full
= 1;
3798 spin_unlock(&sinfo
->lock
);
3799 spin_unlock(&block_rsv
->lock
);
3802 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3804 struct btrfs_space_info
*space_info
;
3806 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3807 fs_info
->chunk_block_rsv
.space_info
= space_info
;
3808 fs_info
->chunk_block_rsv
.priority
= 10;
3810 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3811 fs_info
->global_block_rsv
.space_info
= space_info
;
3812 fs_info
->global_block_rsv
.priority
= 10;
3813 fs_info
->global_block_rsv
.refill_used
= 1;
3814 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
3815 fs_info
->trans_block_rsv
.space_info
= space_info
;
3816 fs_info
->empty_block_rsv
.space_info
= space_info
;
3817 fs_info
->empty_block_rsv
.priority
= 10;
3819 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
3820 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
3821 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
3822 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
3823 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
3825 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->global_block_rsv
);
3827 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->delalloc_block_rsv
);
3829 update_global_block_rsv(fs_info
);
3832 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3834 block_rsv_release_bytes(&fs_info
->global_block_rsv
, NULL
, (u64
)-1);
3835 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
3836 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
3837 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
3838 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
3839 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
3840 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
3843 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle
*trans
,
3844 struct btrfs_root
*root
,
3845 struct btrfs_block_rsv
*rsv
)
3847 struct btrfs_block_rsv
*trans_rsv
= &root
->fs_info
->trans_block_rsv
;
3852 * Truncate should be freeing data, but give us 2 items just in case it
3853 * needs to use some space. We may want to be smarter about this in the
3856 num_bytes
= btrfs_calc_trans_metadata_size(root
, 2);
3858 /* We already have enough bytes, just return */
3859 if (rsv
->reserved
>= num_bytes
)
3862 num_bytes
-= rsv
->reserved
;
3865 * You should have reserved enough space before hand to do this, so this
3868 ret
= block_rsv_migrate_bytes(trans_rsv
, rsv
, num_bytes
);
3874 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle
*trans
,
3875 struct btrfs_root
*root
,
3881 if (num_items
== 0 || root
->fs_info
->chunk_root
== root
)
3884 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
3885 ret
= btrfs_block_rsv_add(trans
, root
, &root
->fs_info
->trans_block_rsv
,
3888 trans
->bytes_reserved
+= num_bytes
;
3889 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3894 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
3895 struct btrfs_root
*root
)
3897 if (!trans
->bytes_reserved
)
3900 BUG_ON(trans
->block_rsv
!= &root
->fs_info
->trans_block_rsv
);
3901 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3902 trans
->bytes_reserved
);
3903 trans
->bytes_reserved
= 0;
3906 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
3907 struct inode
*inode
)
3909 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3910 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3911 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
3914 * We need to hold space in order to delete our orphan item once we've
3915 * added it, so this takes the reservation so we can release it later
3916 * when we are truly done with the orphan item.
3918 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
3919 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3922 void btrfs_orphan_release_metadata(struct inode
*inode
)
3924 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3925 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
3926 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
3929 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
3930 struct btrfs_pending_snapshot
*pending
)
3932 struct btrfs_root
*root
= pending
->root
;
3933 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3934 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
3936 * two for root back/forward refs, two for directory entries
3937 * and one for root of the snapshot.
3939 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
3940 dst_rsv
->space_info
= src_rsv
->space_info
;
3941 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3944 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
)
3946 return num_bytes
>>= 3;
3949 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
3951 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3952 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3955 int reserved_extents
;
3958 if (btrfs_transaction_in_commit(root
->fs_info
))
3959 schedule_timeout(1);
3961 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
3963 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
) + 1;
3964 reserved_extents
= atomic_read(&BTRFS_I(inode
)->reserved_extents
);
3966 if (nr_extents
> reserved_extents
) {
3967 nr_extents
-= reserved_extents
;
3968 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
3974 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
);
3975 ret
= reserve_metadata_bytes(NULL
, root
, block_rsv
, to_reserve
, 1);
3979 atomic_add(nr_extents
, &BTRFS_I(inode
)->reserved_extents
);
3980 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
3982 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
3984 if (block_rsv
->size
> 512 * 1024 * 1024)
3985 shrink_delalloc(NULL
, root
, to_reserve
, 0);
3990 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
3992 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3995 int reserved_extents
;
3997 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
3998 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
3999 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
) < 0);
4001 reserved_extents
= atomic_read(&BTRFS_I(inode
)->reserved_extents
);
4005 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
);
4006 if (nr_extents
>= reserved_extents
) {
4010 old
= reserved_extents
;
4011 nr_extents
= reserved_extents
- nr_extents
;
4012 new = reserved_extents
- nr_extents
;
4013 old
= atomic_cmpxchg(&BTRFS_I(inode
)->reserved_extents
,
4014 reserved_extents
, new);
4015 if (likely(old
== reserved_extents
))
4017 reserved_extents
= old
;
4020 to_free
= calc_csum_metadata_size(inode
, num_bytes
);
4022 to_free
+= btrfs_calc_trans_metadata_size(root
, nr_extents
);
4024 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4028 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4032 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4036 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4038 btrfs_free_reserved_data_space(inode
, num_bytes
);
4045 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4047 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4048 btrfs_free_reserved_data_space(inode
, num_bytes
);
4051 static int update_block_group(struct btrfs_trans_handle
*trans
,
4052 struct btrfs_root
*root
,
4053 u64 bytenr
, u64 num_bytes
, int alloc
)
4055 struct btrfs_block_group_cache
*cache
= NULL
;
4056 struct btrfs_fs_info
*info
= root
->fs_info
;
4057 u64 total
= num_bytes
;
4062 /* block accounting for super block */
4063 spin_lock(&info
->delalloc_lock
);
4064 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
4066 old_val
+= num_bytes
;
4068 old_val
-= num_bytes
;
4069 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
4070 spin_unlock(&info
->delalloc_lock
);
4073 cache
= btrfs_lookup_block_group(info
, bytenr
);
4076 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4077 BTRFS_BLOCK_GROUP_RAID1
|
4078 BTRFS_BLOCK_GROUP_RAID10
))
4083 * If this block group has free space cache written out, we
4084 * need to make sure to load it if we are removing space. This
4085 * is because we need the unpinning stage to actually add the
4086 * space back to the block group, otherwise we will leak space.
4088 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4089 cache_block_group(cache
, trans
, NULL
, 1);
4091 byte_in_group
= bytenr
- cache
->key
.objectid
;
4092 WARN_ON(byte_in_group
> cache
->key
.offset
);
4094 spin_lock(&cache
->space_info
->lock
);
4095 spin_lock(&cache
->lock
);
4097 if (btrfs_super_cache_generation(&info
->super_copy
) != 0 &&
4098 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4099 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4102 old_val
= btrfs_block_group_used(&cache
->item
);
4103 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4105 old_val
+= num_bytes
;
4106 btrfs_set_block_group_used(&cache
->item
, old_val
);
4107 cache
->reserved
-= num_bytes
;
4108 cache
->space_info
->bytes_reserved
-= num_bytes
;
4109 cache
->space_info
->reservation_progress
++;
4110 cache
->space_info
->bytes_used
+= num_bytes
;
4111 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4112 spin_unlock(&cache
->lock
);
4113 spin_unlock(&cache
->space_info
->lock
);
4115 old_val
-= num_bytes
;
4116 btrfs_set_block_group_used(&cache
->item
, old_val
);
4117 cache
->pinned
+= num_bytes
;
4118 cache
->space_info
->bytes_pinned
+= num_bytes
;
4119 cache
->space_info
->bytes_used
-= num_bytes
;
4120 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4121 spin_unlock(&cache
->lock
);
4122 spin_unlock(&cache
->space_info
->lock
);
4124 set_extent_dirty(info
->pinned_extents
,
4125 bytenr
, bytenr
+ num_bytes
- 1,
4126 GFP_NOFS
| __GFP_NOFAIL
);
4128 btrfs_put_block_group(cache
);
4130 bytenr
+= num_bytes
;
4135 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4137 struct btrfs_block_group_cache
*cache
;
4140 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4144 bytenr
= cache
->key
.objectid
;
4145 btrfs_put_block_group(cache
);
4150 static int pin_down_extent(struct btrfs_root
*root
,
4151 struct btrfs_block_group_cache
*cache
,
4152 u64 bytenr
, u64 num_bytes
, int reserved
)
4154 spin_lock(&cache
->space_info
->lock
);
4155 spin_lock(&cache
->lock
);
4156 cache
->pinned
+= num_bytes
;
4157 cache
->space_info
->bytes_pinned
+= num_bytes
;
4159 cache
->reserved
-= num_bytes
;
4160 cache
->space_info
->bytes_reserved
-= num_bytes
;
4161 cache
->space_info
->reservation_progress
++;
4163 spin_unlock(&cache
->lock
);
4164 spin_unlock(&cache
->space_info
->lock
);
4166 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4167 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4172 * this function must be called within transaction
4174 int btrfs_pin_extent(struct btrfs_root
*root
,
4175 u64 bytenr
, u64 num_bytes
, int reserved
)
4177 struct btrfs_block_group_cache
*cache
;
4179 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4182 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4184 btrfs_put_block_group(cache
);
4189 * update size of reserved extents. this function may return -EAGAIN
4190 * if 'reserve' is true or 'sinfo' is false.
4192 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4193 u64 num_bytes
, int reserve
, int sinfo
)
4197 struct btrfs_space_info
*space_info
= cache
->space_info
;
4198 spin_lock(&space_info
->lock
);
4199 spin_lock(&cache
->lock
);
4204 cache
->reserved
+= num_bytes
;
4205 space_info
->bytes_reserved
+= num_bytes
;
4209 space_info
->bytes_readonly
+= num_bytes
;
4210 cache
->reserved
-= num_bytes
;
4211 space_info
->bytes_reserved
-= num_bytes
;
4212 space_info
->reservation_progress
++;
4214 spin_unlock(&cache
->lock
);
4215 spin_unlock(&space_info
->lock
);
4217 spin_lock(&cache
->lock
);
4222 cache
->reserved
+= num_bytes
;
4224 cache
->reserved
-= num_bytes
;
4226 spin_unlock(&cache
->lock
);
4231 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4232 struct btrfs_root
*root
)
4234 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4235 struct btrfs_caching_control
*next
;
4236 struct btrfs_caching_control
*caching_ctl
;
4237 struct btrfs_block_group_cache
*cache
;
4239 down_write(&fs_info
->extent_commit_sem
);
4241 list_for_each_entry_safe(caching_ctl
, next
,
4242 &fs_info
->caching_block_groups
, list
) {
4243 cache
= caching_ctl
->block_group
;
4244 if (block_group_cache_done(cache
)) {
4245 cache
->last_byte_to_unpin
= (u64
)-1;
4246 list_del_init(&caching_ctl
->list
);
4247 put_caching_control(caching_ctl
);
4249 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4253 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4254 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4256 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4258 up_write(&fs_info
->extent_commit_sem
);
4260 update_global_block_rsv(fs_info
);
4264 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4266 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4267 struct btrfs_block_group_cache
*cache
= NULL
;
4270 while (start
<= end
) {
4272 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4274 btrfs_put_block_group(cache
);
4275 cache
= btrfs_lookup_block_group(fs_info
, start
);
4279 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4280 len
= min(len
, end
+ 1 - start
);
4282 if (start
< cache
->last_byte_to_unpin
) {
4283 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4284 btrfs_add_free_space(cache
, start
, len
);
4289 spin_lock(&cache
->space_info
->lock
);
4290 spin_lock(&cache
->lock
);
4291 cache
->pinned
-= len
;
4292 cache
->space_info
->bytes_pinned
-= len
;
4294 cache
->space_info
->bytes_readonly
+= len
;
4295 } else if (cache
->reserved_pinned
> 0) {
4296 len
= min(len
, cache
->reserved_pinned
);
4297 cache
->reserved_pinned
-= len
;
4298 cache
->space_info
->bytes_reserved
+= len
;
4300 spin_unlock(&cache
->lock
);
4301 spin_unlock(&cache
->space_info
->lock
);
4305 btrfs_put_block_group(cache
);
4309 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4310 struct btrfs_root
*root
)
4312 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4313 struct extent_io_tree
*unpin
;
4314 struct btrfs_block_rsv
*block_rsv
;
4315 struct btrfs_block_rsv
*next_rsv
;
4321 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4322 unpin
= &fs_info
->freed_extents
[1];
4324 unpin
= &fs_info
->freed_extents
[0];
4327 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4332 if (btrfs_test_opt(root
, DISCARD
))
4333 ret
= btrfs_discard_extent(root
, start
,
4334 end
+ 1 - start
, NULL
);
4336 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4337 unpin_extent_range(root
, start
, end
);
4341 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
4342 list_for_each_entry_safe(block_rsv
, next_rsv
,
4343 &fs_info
->durable_block_rsv_list
, list
) {
4345 idx
= trans
->transid
& 0x1;
4346 if (block_rsv
->freed
[idx
] > 0) {
4347 block_rsv_add_bytes(block_rsv
,
4348 block_rsv
->freed
[idx
], 0);
4349 block_rsv
->freed
[idx
] = 0;
4351 if (atomic_read(&block_rsv
->usage
) == 0) {
4352 btrfs_block_rsv_release(root
, block_rsv
, (u64
)-1);
4354 if (block_rsv
->freed
[0] == 0 &&
4355 block_rsv
->freed
[1] == 0) {
4356 list_del_init(&block_rsv
->list
);
4360 btrfs_block_rsv_release(root
, block_rsv
, 0);
4363 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
4368 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4369 struct btrfs_root
*root
,
4370 u64 bytenr
, u64 num_bytes
, u64 parent
,
4371 u64 root_objectid
, u64 owner_objectid
,
4372 u64 owner_offset
, int refs_to_drop
,
4373 struct btrfs_delayed_extent_op
*extent_op
)
4375 struct btrfs_key key
;
4376 struct btrfs_path
*path
;
4377 struct btrfs_fs_info
*info
= root
->fs_info
;
4378 struct btrfs_root
*extent_root
= info
->extent_root
;
4379 struct extent_buffer
*leaf
;
4380 struct btrfs_extent_item
*ei
;
4381 struct btrfs_extent_inline_ref
*iref
;
4384 int extent_slot
= 0;
4385 int found_extent
= 0;
4390 path
= btrfs_alloc_path();
4395 path
->leave_spinning
= 1;
4397 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4398 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4400 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4401 bytenr
, num_bytes
, parent
,
4402 root_objectid
, owner_objectid
,
4405 extent_slot
= path
->slots
[0];
4406 while (extent_slot
>= 0) {
4407 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4409 if (key
.objectid
!= bytenr
)
4411 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4412 key
.offset
== num_bytes
) {
4416 if (path
->slots
[0] - extent_slot
> 5)
4420 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4421 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4422 if (found_extent
&& item_size
< sizeof(*ei
))
4425 if (!found_extent
) {
4427 ret
= remove_extent_backref(trans
, extent_root
, path
,
4431 btrfs_release_path(path
);
4432 path
->leave_spinning
= 1;
4434 key
.objectid
= bytenr
;
4435 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4436 key
.offset
= num_bytes
;
4438 ret
= btrfs_search_slot(trans
, extent_root
,
4441 printk(KERN_ERR
"umm, got %d back from search"
4442 ", was looking for %llu\n", ret
,
4443 (unsigned long long)bytenr
);
4444 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4447 extent_slot
= path
->slots
[0];
4450 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4452 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4453 "parent %llu root %llu owner %llu offset %llu\n",
4454 (unsigned long long)bytenr
,
4455 (unsigned long long)parent
,
4456 (unsigned long long)root_objectid
,
4457 (unsigned long long)owner_objectid
,
4458 (unsigned long long)owner_offset
);
4461 leaf
= path
->nodes
[0];
4462 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4463 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4464 if (item_size
< sizeof(*ei
)) {
4465 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4466 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4470 btrfs_release_path(path
);
4471 path
->leave_spinning
= 1;
4473 key
.objectid
= bytenr
;
4474 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4475 key
.offset
= num_bytes
;
4477 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4480 printk(KERN_ERR
"umm, got %d back from search"
4481 ", was looking for %llu\n", ret
,
4482 (unsigned long long)bytenr
);
4483 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4486 extent_slot
= path
->slots
[0];
4487 leaf
= path
->nodes
[0];
4488 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4491 BUG_ON(item_size
< sizeof(*ei
));
4492 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4493 struct btrfs_extent_item
);
4494 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4495 struct btrfs_tree_block_info
*bi
;
4496 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4497 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4498 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4501 refs
= btrfs_extent_refs(leaf
, ei
);
4502 BUG_ON(refs
< refs_to_drop
);
4503 refs
-= refs_to_drop
;
4507 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4509 * In the case of inline back ref, reference count will
4510 * be updated by remove_extent_backref
4513 BUG_ON(!found_extent
);
4515 btrfs_set_extent_refs(leaf
, ei
, refs
);
4516 btrfs_mark_buffer_dirty(leaf
);
4519 ret
= remove_extent_backref(trans
, extent_root
, path
,
4526 BUG_ON(is_data
&& refs_to_drop
!=
4527 extent_data_ref_count(root
, path
, iref
));
4529 BUG_ON(path
->slots
[0] != extent_slot
);
4531 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
4532 path
->slots
[0] = extent_slot
;
4537 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
4540 btrfs_release_path(path
);
4543 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
4546 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
4547 bytenr
>> PAGE_CACHE_SHIFT
,
4548 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
4551 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
4554 btrfs_free_path(path
);
4559 * when we free an block, it is possible (and likely) that we free the last
4560 * delayed ref for that extent as well. This searches the delayed ref tree for
4561 * a given extent, and if there are no other delayed refs to be processed, it
4562 * removes it from the tree.
4564 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
4565 struct btrfs_root
*root
, u64 bytenr
)
4567 struct btrfs_delayed_ref_head
*head
;
4568 struct btrfs_delayed_ref_root
*delayed_refs
;
4569 struct btrfs_delayed_ref_node
*ref
;
4570 struct rb_node
*node
;
4573 delayed_refs
= &trans
->transaction
->delayed_refs
;
4574 spin_lock(&delayed_refs
->lock
);
4575 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
4579 node
= rb_prev(&head
->node
.rb_node
);
4583 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
4585 /* there are still entries for this ref, we can't drop it */
4586 if (ref
->bytenr
== bytenr
)
4589 if (head
->extent_op
) {
4590 if (!head
->must_insert_reserved
)
4592 kfree(head
->extent_op
);
4593 head
->extent_op
= NULL
;
4597 * waiting for the lock here would deadlock. If someone else has it
4598 * locked they are already in the process of dropping it anyway
4600 if (!mutex_trylock(&head
->mutex
))
4604 * at this point we have a head with no other entries. Go
4605 * ahead and process it.
4607 head
->node
.in_tree
= 0;
4608 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
4610 delayed_refs
->num_entries
--;
4613 * we don't take a ref on the node because we're removing it from the
4614 * tree, so we just steal the ref the tree was holding.
4616 delayed_refs
->num_heads
--;
4617 if (list_empty(&head
->cluster
))
4618 delayed_refs
->num_heads_ready
--;
4620 list_del_init(&head
->cluster
);
4621 spin_unlock(&delayed_refs
->lock
);
4623 BUG_ON(head
->extent_op
);
4624 if (head
->must_insert_reserved
)
4627 mutex_unlock(&head
->mutex
);
4628 btrfs_put_delayed_ref(&head
->node
);
4631 spin_unlock(&delayed_refs
->lock
);
4635 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
4636 struct btrfs_root
*root
,
4637 struct extent_buffer
*buf
,
4638 u64 parent
, int last_ref
)
4640 struct btrfs_block_rsv
*block_rsv
;
4641 struct btrfs_block_group_cache
*cache
= NULL
;
4644 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4645 ret
= btrfs_add_delayed_tree_ref(trans
, buf
->start
, buf
->len
,
4646 parent
, root
->root_key
.objectid
,
4647 btrfs_header_level(buf
),
4648 BTRFS_DROP_DELAYED_REF
, NULL
);
4655 block_rsv
= get_block_rsv(trans
, root
);
4656 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
4657 if (block_rsv
->space_info
!= cache
->space_info
)
4660 if (btrfs_header_generation(buf
) == trans
->transid
) {
4661 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4662 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
4667 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
4668 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
4672 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
4674 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
4675 ret
= btrfs_update_reserved_bytes(cache
, buf
->len
, 0, 0);
4676 if (ret
== -EAGAIN
) {
4677 /* block group became read-only */
4678 btrfs_update_reserved_bytes(cache
, buf
->len
, 0, 1);
4683 spin_lock(&block_rsv
->lock
);
4684 if (block_rsv
->reserved
< block_rsv
->size
) {
4685 block_rsv
->reserved
+= buf
->len
;
4688 spin_unlock(&block_rsv
->lock
);
4691 spin_lock(&cache
->space_info
->lock
);
4692 cache
->space_info
->bytes_reserved
-= buf
->len
;
4693 cache
->space_info
->reservation_progress
++;
4694 spin_unlock(&cache
->space_info
->lock
);
4699 if (block_rsv
->durable
&& !cache
->ro
) {
4701 spin_lock(&cache
->lock
);
4703 cache
->reserved_pinned
+= buf
->len
;
4706 spin_unlock(&cache
->lock
);
4709 spin_lock(&block_rsv
->lock
);
4710 block_rsv
->freed
[trans
->transid
& 0x1] += buf
->len
;
4711 spin_unlock(&block_rsv
->lock
);
4716 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4719 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
4720 btrfs_put_block_group(cache
);
4723 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4724 struct btrfs_root
*root
,
4725 u64 bytenr
, u64 num_bytes
, u64 parent
,
4726 u64 root_objectid
, u64 owner
, u64 offset
)
4731 * tree log blocks never actually go into the extent allocation
4732 * tree, just update pinning info and exit early.
4734 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4735 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4736 /* unlocks the pinned mutex */
4737 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4739 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4740 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4741 parent
, root_objectid
, (int)owner
,
4742 BTRFS_DROP_DELAYED_REF
, NULL
);
4745 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4746 parent
, root_objectid
, owner
,
4747 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4753 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4755 u64 mask
= ((u64
)root
->stripesize
- 1);
4756 u64 ret
= (val
+ mask
) & ~mask
;
4761 * when we wait for progress in the block group caching, its because
4762 * our allocation attempt failed at least once. So, we must sleep
4763 * and let some progress happen before we try again.
4765 * This function will sleep at least once waiting for new free space to
4766 * show up, and then it will check the block group free space numbers
4767 * for our min num_bytes. Another option is to have it go ahead
4768 * and look in the rbtree for a free extent of a given size, but this
4772 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4775 struct btrfs_caching_control
*caching_ctl
;
4778 caching_ctl
= get_caching_control(cache
);
4782 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4783 (cache
->free_space_ctl
->free_space
>= num_bytes
));
4785 put_caching_control(caching_ctl
);
4790 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4792 struct btrfs_caching_control
*caching_ctl
;
4795 caching_ctl
= get_caching_control(cache
);
4799 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4801 put_caching_control(caching_ctl
);
4805 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
4808 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
4810 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
4812 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
4814 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
4821 enum btrfs_loop_type
{
4822 LOOP_FIND_IDEAL
= 0,
4823 LOOP_CACHING_NOWAIT
= 1,
4824 LOOP_CACHING_WAIT
= 2,
4825 LOOP_ALLOC_CHUNK
= 3,
4826 LOOP_NO_EMPTY_SIZE
= 4,
4830 * walks the btree of allocated extents and find a hole of a given size.
4831 * The key ins is changed to record the hole:
4832 * ins->objectid == block start
4833 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4834 * ins->offset == number of blocks
4835 * Any available blocks before search_start are skipped.
4837 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4838 struct btrfs_root
*orig_root
,
4839 u64 num_bytes
, u64 empty_size
,
4840 u64 search_start
, u64 search_end
,
4841 u64 hint_byte
, struct btrfs_key
*ins
,
4845 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4846 struct btrfs_free_cluster
*last_ptr
= NULL
;
4847 struct btrfs_block_group_cache
*block_group
= NULL
;
4848 int empty_cluster
= 2 * 1024 * 1024;
4849 int allowed_chunk_alloc
= 0;
4850 int done_chunk_alloc
= 0;
4851 struct btrfs_space_info
*space_info
;
4852 int last_ptr_loop
= 0;
4855 bool found_uncached_bg
= false;
4856 bool failed_cluster_refill
= false;
4857 bool failed_alloc
= false;
4858 bool use_cluster
= true;
4859 u64 ideal_cache_percent
= 0;
4860 u64 ideal_cache_offset
= 0;
4862 WARN_ON(num_bytes
< root
->sectorsize
);
4863 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4867 space_info
= __find_space_info(root
->fs_info
, data
);
4869 printk(KERN_ERR
"No space info for %d\n", data
);
4874 * If the space info is for both data and metadata it means we have a
4875 * small filesystem and we can't use the clustering stuff.
4877 if (btrfs_mixed_space_info(space_info
))
4878 use_cluster
= false;
4880 if (orig_root
->ref_cows
|| empty_size
)
4881 allowed_chunk_alloc
= 1;
4883 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
4884 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4885 if (!btrfs_test_opt(root
, SSD
))
4886 empty_cluster
= 64 * 1024;
4889 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
4890 btrfs_test_opt(root
, SSD
)) {
4891 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4895 spin_lock(&last_ptr
->lock
);
4896 if (last_ptr
->block_group
)
4897 hint_byte
= last_ptr
->window_start
;
4898 spin_unlock(&last_ptr
->lock
);
4901 search_start
= max(search_start
, first_logical_byte(root
, 0));
4902 search_start
= max(search_start
, hint_byte
);
4907 if (search_start
== hint_byte
) {
4909 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4912 * we don't want to use the block group if it doesn't match our
4913 * allocation bits, or if its not cached.
4915 * However if we are re-searching with an ideal block group
4916 * picked out then we don't care that the block group is cached.
4918 if (block_group
&& block_group_bits(block_group
, data
) &&
4919 (block_group
->cached
!= BTRFS_CACHE_NO
||
4920 search_start
== ideal_cache_offset
)) {
4921 down_read(&space_info
->groups_sem
);
4922 if (list_empty(&block_group
->list
) ||
4925 * someone is removing this block group,
4926 * we can't jump into the have_block_group
4927 * target because our list pointers are not
4930 btrfs_put_block_group(block_group
);
4931 up_read(&space_info
->groups_sem
);
4933 index
= get_block_group_index(block_group
);
4934 goto have_block_group
;
4936 } else if (block_group
) {
4937 btrfs_put_block_group(block_group
);
4941 down_read(&space_info
->groups_sem
);
4942 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
4947 btrfs_get_block_group(block_group
);
4948 search_start
= block_group
->key
.objectid
;
4951 * this can happen if we end up cycling through all the
4952 * raid types, but we want to make sure we only allocate
4953 * for the proper type.
4955 if (!block_group_bits(block_group
, data
)) {
4956 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
4957 BTRFS_BLOCK_GROUP_RAID1
|
4958 BTRFS_BLOCK_GROUP_RAID10
;
4961 * if they asked for extra copies and this block group
4962 * doesn't provide them, bail. This does allow us to
4963 * fill raid0 from raid1.
4965 if ((data
& extra
) && !(block_group
->flags
& extra
))
4970 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
4973 ret
= cache_block_group(block_group
, trans
,
4975 if (block_group
->cached
== BTRFS_CACHE_FINISHED
)
4976 goto have_block_group
;
4978 free_percent
= btrfs_block_group_used(&block_group
->item
);
4979 free_percent
*= 100;
4980 free_percent
= div64_u64(free_percent
,
4981 block_group
->key
.offset
);
4982 free_percent
= 100 - free_percent
;
4983 if (free_percent
> ideal_cache_percent
&&
4984 likely(!block_group
->ro
)) {
4985 ideal_cache_offset
= block_group
->key
.objectid
;
4986 ideal_cache_percent
= free_percent
;
4990 * We only want to start kthread caching if we are at
4991 * the point where we will wait for caching to make
4992 * progress, or if our ideal search is over and we've
4993 * found somebody to start caching.
4995 if (loop
> LOOP_CACHING_NOWAIT
||
4996 (loop
> LOOP_FIND_IDEAL
&&
4997 atomic_read(&space_info
->caching_threads
) < 2)) {
4998 ret
= cache_block_group(block_group
, trans
,
5002 found_uncached_bg
= true;
5005 * If loop is set for cached only, try the next block
5008 if (loop
== LOOP_FIND_IDEAL
)
5012 cached
= block_group_cache_done(block_group
);
5013 if (unlikely(!cached
))
5014 found_uncached_bg
= true;
5016 if (unlikely(block_group
->ro
))
5019 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
5021 block_group
->free_space_ctl
->free_space
<
5022 num_bytes
+ empty_size
) {
5023 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5026 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5029 * Ok we want to try and use the cluster allocator, so lets look
5030 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5031 * have tried the cluster allocator plenty of times at this
5032 * point and not have found anything, so we are likely way too
5033 * fragmented for the clustering stuff to find anything, so lets
5034 * just skip it and let the allocator find whatever block it can
5037 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5039 * the refill lock keeps out other
5040 * people trying to start a new cluster
5042 spin_lock(&last_ptr
->refill_lock
);
5043 if (last_ptr
->block_group
&&
5044 (last_ptr
->block_group
->ro
||
5045 !block_group_bits(last_ptr
->block_group
, data
))) {
5047 goto refill_cluster
;
5050 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
5051 num_bytes
, search_start
);
5053 /* we have a block, we're done */
5054 spin_unlock(&last_ptr
->refill_lock
);
5058 spin_lock(&last_ptr
->lock
);
5060 * whoops, this cluster doesn't actually point to
5061 * this block group. Get a ref on the block
5062 * group is does point to and try again
5064 if (!last_ptr_loop
&& last_ptr
->block_group
&&
5065 last_ptr
->block_group
!= block_group
) {
5067 btrfs_put_block_group(block_group
);
5068 block_group
= last_ptr
->block_group
;
5069 btrfs_get_block_group(block_group
);
5070 spin_unlock(&last_ptr
->lock
);
5071 spin_unlock(&last_ptr
->refill_lock
);
5074 search_start
= block_group
->key
.objectid
;
5076 * we know this block group is properly
5077 * in the list because
5078 * btrfs_remove_block_group, drops the
5079 * cluster before it removes the block
5080 * group from the list
5082 goto have_block_group
;
5084 spin_unlock(&last_ptr
->lock
);
5087 * this cluster didn't work out, free it and
5090 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5094 /* allocate a cluster in this block group */
5095 ret
= btrfs_find_space_cluster(trans
, root
,
5096 block_group
, last_ptr
,
5098 empty_cluster
+ empty_size
);
5101 * now pull our allocation out of this
5104 offset
= btrfs_alloc_from_cluster(block_group
,
5105 last_ptr
, num_bytes
,
5108 /* we found one, proceed */
5109 spin_unlock(&last_ptr
->refill_lock
);
5112 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5113 && !failed_cluster_refill
) {
5114 spin_unlock(&last_ptr
->refill_lock
);
5116 failed_cluster_refill
= true;
5117 wait_block_group_cache_progress(block_group
,
5118 num_bytes
+ empty_cluster
+ empty_size
);
5119 goto have_block_group
;
5123 * at this point we either didn't find a cluster
5124 * or we weren't able to allocate a block from our
5125 * cluster. Free the cluster we've been trying
5126 * to use, and go to the next block group
5128 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5129 spin_unlock(&last_ptr
->refill_lock
);
5133 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5134 num_bytes
, empty_size
);
5136 * If we didn't find a chunk, and we haven't failed on this
5137 * block group before, and this block group is in the middle of
5138 * caching and we are ok with waiting, then go ahead and wait
5139 * for progress to be made, and set failed_alloc to true.
5141 * If failed_alloc is true then we've already waited on this
5142 * block group once and should move on to the next block group.
5144 if (!offset
&& !failed_alloc
&& !cached
&&
5145 loop
> LOOP_CACHING_NOWAIT
) {
5146 wait_block_group_cache_progress(block_group
,
5147 num_bytes
+ empty_size
);
5148 failed_alloc
= true;
5149 goto have_block_group
;
5150 } else if (!offset
) {
5154 search_start
= stripe_align(root
, offset
);
5155 /* move on to the next group */
5156 if (search_start
+ num_bytes
>= search_end
) {
5157 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5161 /* move on to the next group */
5162 if (search_start
+ num_bytes
>
5163 block_group
->key
.objectid
+ block_group
->key
.offset
) {
5164 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5168 ins
->objectid
= search_start
;
5169 ins
->offset
= num_bytes
;
5171 if (offset
< search_start
)
5172 btrfs_add_free_space(block_group
, offset
,
5173 search_start
- offset
);
5174 BUG_ON(offset
> search_start
);
5176 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
, 1,
5177 (data
& BTRFS_BLOCK_GROUP_DATA
));
5178 if (ret
== -EAGAIN
) {
5179 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5183 /* we are all good, lets return */
5184 ins
->objectid
= search_start
;
5185 ins
->offset
= num_bytes
;
5187 if (offset
< search_start
)
5188 btrfs_add_free_space(block_group
, offset
,
5189 search_start
- offset
);
5190 BUG_ON(offset
> search_start
);
5191 btrfs_put_block_group(block_group
);
5194 failed_cluster_refill
= false;
5195 failed_alloc
= false;
5196 BUG_ON(index
!= get_block_group_index(block_group
));
5197 btrfs_put_block_group(block_group
);
5199 up_read(&space_info
->groups_sem
);
5201 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5204 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5205 * for them to make caching progress. Also
5206 * determine the best possible bg to cache
5207 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5208 * caching kthreads as we move along
5209 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5210 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5211 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5214 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
5215 (found_uncached_bg
|| empty_size
|| empty_cluster
||
5216 allowed_chunk_alloc
)) {
5218 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
5219 found_uncached_bg
= false;
5221 if (!ideal_cache_percent
&&
5222 atomic_read(&space_info
->caching_threads
))
5226 * 1 of the following 2 things have happened so far
5228 * 1) We found an ideal block group for caching that
5229 * is mostly full and will cache quickly, so we might
5230 * as well wait for it.
5232 * 2) We searched for cached only and we didn't find
5233 * anything, and we didn't start any caching kthreads
5234 * either, so chances are we will loop through and
5235 * start a couple caching kthreads, and then come back
5236 * around and just wait for them. This will be slower
5237 * because we will have 2 caching kthreads reading at
5238 * the same time when we could have just started one
5239 * and waited for it to get far enough to give us an
5240 * allocation, so go ahead and go to the wait caching
5243 loop
= LOOP_CACHING_WAIT
;
5244 search_start
= ideal_cache_offset
;
5245 ideal_cache_percent
= 0;
5247 } else if (loop
== LOOP_FIND_IDEAL
) {
5249 * Didn't find a uncached bg, wait on anything we find
5252 loop
= LOOP_CACHING_WAIT
;
5256 if (loop
< LOOP_CACHING_WAIT
) {
5261 if (loop
== LOOP_ALLOC_CHUNK
) {
5266 if (allowed_chunk_alloc
) {
5267 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5268 2 * 1024 * 1024, data
,
5269 CHUNK_ALLOC_LIMITED
);
5270 allowed_chunk_alloc
= 0;
5271 done_chunk_alloc
= 1;
5272 } else if (!done_chunk_alloc
&&
5273 space_info
->force_alloc
== CHUNK_ALLOC_NO_FORCE
) {
5274 space_info
->force_alloc
= CHUNK_ALLOC_LIMITED
;
5277 if (loop
< LOOP_NO_EMPTY_SIZE
) {
5282 } else if (!ins
->objectid
) {
5284 } else if (ins
->objectid
) {
5291 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5292 int dump_block_groups
)
5294 struct btrfs_block_group_cache
*cache
;
5297 spin_lock(&info
->lock
);
5298 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
5299 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5300 info
->bytes_pinned
- info
->bytes_reserved
-
5301 info
->bytes_readonly
),
5302 (info
->full
) ? "" : "not ");
5303 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5304 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5305 (unsigned long long)info
->total_bytes
,
5306 (unsigned long long)info
->bytes_used
,
5307 (unsigned long long)info
->bytes_pinned
,
5308 (unsigned long long)info
->bytes_reserved
,
5309 (unsigned long long)info
->bytes_may_use
,
5310 (unsigned long long)info
->bytes_readonly
);
5311 spin_unlock(&info
->lock
);
5313 if (!dump_block_groups
)
5316 down_read(&info
->groups_sem
);
5318 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5319 spin_lock(&cache
->lock
);
5320 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5321 "%llu pinned %llu reserved\n",
5322 (unsigned long long)cache
->key
.objectid
,
5323 (unsigned long long)cache
->key
.offset
,
5324 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5325 (unsigned long long)cache
->pinned
,
5326 (unsigned long long)cache
->reserved
);
5327 btrfs_dump_free_space(cache
, bytes
);
5328 spin_unlock(&cache
->lock
);
5330 if (++index
< BTRFS_NR_RAID_TYPES
)
5332 up_read(&info
->groups_sem
);
5335 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5336 struct btrfs_root
*root
,
5337 u64 num_bytes
, u64 min_alloc_size
,
5338 u64 empty_size
, u64 hint_byte
,
5339 u64 search_end
, struct btrfs_key
*ins
,
5343 u64 search_start
= 0;
5345 data
= btrfs_get_alloc_profile(root
, data
);
5348 * the only place that sets empty_size is btrfs_realloc_node, which
5349 * is not called recursively on allocations
5351 if (empty_size
|| root
->ref_cows
)
5352 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5353 num_bytes
+ 2 * 1024 * 1024, data
,
5354 CHUNK_ALLOC_NO_FORCE
);
5356 WARN_ON(num_bytes
< root
->sectorsize
);
5357 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5358 search_start
, search_end
, hint_byte
,
5361 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
5362 num_bytes
= num_bytes
>> 1;
5363 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5364 num_bytes
= max(num_bytes
, min_alloc_size
);
5365 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5366 num_bytes
, data
, CHUNK_ALLOC_FORCE
);
5369 if (ret
== -ENOSPC
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5370 struct btrfs_space_info
*sinfo
;
5372 sinfo
= __find_space_info(root
->fs_info
, data
);
5373 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5374 "wanted %llu\n", (unsigned long long)data
,
5375 (unsigned long long)num_bytes
);
5376 dump_space_info(sinfo
, num_bytes
, 1);
5379 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
5384 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
5386 struct btrfs_block_group_cache
*cache
;
5389 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5391 printk(KERN_ERR
"Unable to find block group for %llu\n",
5392 (unsigned long long)start
);
5396 if (btrfs_test_opt(root
, DISCARD
))
5397 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
5399 btrfs_add_free_space(cache
, start
, len
);
5400 btrfs_update_reserved_bytes(cache
, len
, 0, 1);
5401 btrfs_put_block_group(cache
);
5403 trace_btrfs_reserved_extent_free(root
, start
, len
);
5408 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5409 struct btrfs_root
*root
,
5410 u64 parent
, u64 root_objectid
,
5411 u64 flags
, u64 owner
, u64 offset
,
5412 struct btrfs_key
*ins
, int ref_mod
)
5415 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5416 struct btrfs_extent_item
*extent_item
;
5417 struct btrfs_extent_inline_ref
*iref
;
5418 struct btrfs_path
*path
;
5419 struct extent_buffer
*leaf
;
5424 type
= BTRFS_SHARED_DATA_REF_KEY
;
5426 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5428 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5430 path
= btrfs_alloc_path();
5434 path
->leave_spinning
= 1;
5435 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5439 leaf
= path
->nodes
[0];
5440 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5441 struct btrfs_extent_item
);
5442 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5443 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5444 btrfs_set_extent_flags(leaf
, extent_item
,
5445 flags
| BTRFS_EXTENT_FLAG_DATA
);
5447 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5448 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5450 struct btrfs_shared_data_ref
*ref
;
5451 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5452 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5453 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5455 struct btrfs_extent_data_ref
*ref
;
5456 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5457 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5458 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5459 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5460 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5463 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5464 btrfs_free_path(path
);
5466 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5468 printk(KERN_ERR
"btrfs update block group failed for %llu "
5469 "%llu\n", (unsigned long long)ins
->objectid
,
5470 (unsigned long long)ins
->offset
);
5476 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5477 struct btrfs_root
*root
,
5478 u64 parent
, u64 root_objectid
,
5479 u64 flags
, struct btrfs_disk_key
*key
,
5480 int level
, struct btrfs_key
*ins
)
5483 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5484 struct btrfs_extent_item
*extent_item
;
5485 struct btrfs_tree_block_info
*block_info
;
5486 struct btrfs_extent_inline_ref
*iref
;
5487 struct btrfs_path
*path
;
5488 struct extent_buffer
*leaf
;
5489 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5491 path
= btrfs_alloc_path();
5494 path
->leave_spinning
= 1;
5495 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5499 leaf
= path
->nodes
[0];
5500 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5501 struct btrfs_extent_item
);
5502 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5503 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5504 btrfs_set_extent_flags(leaf
, extent_item
,
5505 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5506 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5508 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5509 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5511 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5513 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5514 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5515 BTRFS_SHARED_BLOCK_REF_KEY
);
5516 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5518 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5519 BTRFS_TREE_BLOCK_REF_KEY
);
5520 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
5523 btrfs_mark_buffer_dirty(leaf
);
5524 btrfs_free_path(path
);
5526 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5528 printk(KERN_ERR
"btrfs update block group failed for %llu "
5529 "%llu\n", (unsigned long long)ins
->objectid
,
5530 (unsigned long long)ins
->offset
);
5536 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5537 struct btrfs_root
*root
,
5538 u64 root_objectid
, u64 owner
,
5539 u64 offset
, struct btrfs_key
*ins
)
5543 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
5545 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
5546 0, root_objectid
, owner
, offset
,
5547 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
5552 * this is used by the tree logging recovery code. It records that
5553 * an extent has been allocated and makes sure to clear the free
5554 * space cache bits as well
5556 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
5557 struct btrfs_root
*root
,
5558 u64 root_objectid
, u64 owner
, u64 offset
,
5559 struct btrfs_key
*ins
)
5562 struct btrfs_block_group_cache
*block_group
;
5563 struct btrfs_caching_control
*caching_ctl
;
5564 u64 start
= ins
->objectid
;
5565 u64 num_bytes
= ins
->offset
;
5567 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
5568 cache_block_group(block_group
, trans
, NULL
, 0);
5569 caching_ctl
= get_caching_control(block_group
);
5572 BUG_ON(!block_group_cache_done(block_group
));
5573 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5576 mutex_lock(&caching_ctl
->mutex
);
5578 if (start
>= caching_ctl
->progress
) {
5579 ret
= add_excluded_extent(root
, start
, num_bytes
);
5581 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5582 ret
= btrfs_remove_free_space(block_group
,
5586 num_bytes
= caching_ctl
->progress
- start
;
5587 ret
= btrfs_remove_free_space(block_group
,
5591 start
= caching_ctl
->progress
;
5592 num_bytes
= ins
->objectid
+ ins
->offset
-
5593 caching_ctl
->progress
;
5594 ret
= add_excluded_extent(root
, start
, num_bytes
);
5598 mutex_unlock(&caching_ctl
->mutex
);
5599 put_caching_control(caching_ctl
);
5602 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
, 1, 1);
5604 btrfs_put_block_group(block_group
);
5605 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
5606 0, owner
, offset
, ins
, 1);
5610 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
5611 struct btrfs_root
*root
,
5612 u64 bytenr
, u32 blocksize
,
5615 struct extent_buffer
*buf
;
5617 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5619 return ERR_PTR(-ENOMEM
);
5620 btrfs_set_header_generation(buf
, trans
->transid
);
5621 btrfs_set_buffer_lockdep_class(buf
, level
);
5622 btrfs_tree_lock(buf
);
5623 clean_tree_block(trans
, root
, buf
);
5625 btrfs_set_lock_blocking(buf
);
5626 btrfs_set_buffer_uptodate(buf
);
5628 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5630 * we allow two log transactions at a time, use different
5631 * EXENT bit to differentiate dirty pages.
5633 if (root
->log_transid
% 2 == 0)
5634 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
5635 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5637 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
5638 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5640 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
5641 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5643 trans
->blocks_used
++;
5644 /* this returns a buffer locked for blocking */
5648 static struct btrfs_block_rsv
*
5649 use_block_rsv(struct btrfs_trans_handle
*trans
,
5650 struct btrfs_root
*root
, u32 blocksize
)
5652 struct btrfs_block_rsv
*block_rsv
;
5653 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5656 block_rsv
= get_block_rsv(trans
, root
);
5658 if (block_rsv
->size
== 0) {
5659 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
5662 * If we couldn't reserve metadata bytes try and use some from
5663 * the global reserve.
5665 if (ret
&& block_rsv
!= global_rsv
) {
5666 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5669 return ERR_PTR(ret
);
5671 return ERR_PTR(ret
);
5676 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
5681 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, blocksize
,
5684 spin_lock(&block_rsv
->lock
);
5685 block_rsv
->size
+= blocksize
;
5686 spin_unlock(&block_rsv
->lock
);
5688 } else if (ret
&& block_rsv
!= global_rsv
) {
5689 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5695 return ERR_PTR(-ENOSPC
);
5698 static void unuse_block_rsv(struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
5700 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
5701 block_rsv_release_bytes(block_rsv
, NULL
, 0);
5705 * finds a free extent and does all the dirty work required for allocation
5706 * returns the key for the extent through ins, and a tree buffer for
5707 * the first block of the extent through buf.
5709 * returns the tree buffer or NULL.
5711 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
5712 struct btrfs_root
*root
, u32 blocksize
,
5713 u64 parent
, u64 root_objectid
,
5714 struct btrfs_disk_key
*key
, int level
,
5715 u64 hint
, u64 empty_size
)
5717 struct btrfs_key ins
;
5718 struct btrfs_block_rsv
*block_rsv
;
5719 struct extent_buffer
*buf
;
5724 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
5725 if (IS_ERR(block_rsv
))
5726 return ERR_CAST(block_rsv
);
5728 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
5729 empty_size
, hint
, (u64
)-1, &ins
, 0);
5731 unuse_block_rsv(block_rsv
, blocksize
);
5732 return ERR_PTR(ret
);
5735 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
5737 BUG_ON(IS_ERR(buf
));
5739 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
5741 parent
= ins
.objectid
;
5742 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5746 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5747 struct btrfs_delayed_extent_op
*extent_op
;
5748 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
5751 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
5753 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
5754 extent_op
->flags_to_set
= flags
;
5755 extent_op
->update_key
= 1;
5756 extent_op
->update_flags
= 1;
5757 extent_op
->is_data
= 0;
5759 ret
= btrfs_add_delayed_tree_ref(trans
, ins
.objectid
,
5760 ins
.offset
, parent
, root_objectid
,
5761 level
, BTRFS_ADD_DELAYED_EXTENT
,
5768 struct walk_control
{
5769 u64 refs
[BTRFS_MAX_LEVEL
];
5770 u64 flags
[BTRFS_MAX_LEVEL
];
5771 struct btrfs_key update_progress
;
5781 #define DROP_REFERENCE 1
5782 #define UPDATE_BACKREF 2
5784 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
5785 struct btrfs_root
*root
,
5786 struct walk_control
*wc
,
5787 struct btrfs_path
*path
)
5795 struct btrfs_key key
;
5796 struct extent_buffer
*eb
;
5801 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
5802 wc
->reada_count
= wc
->reada_count
* 2 / 3;
5803 wc
->reada_count
= max(wc
->reada_count
, 2);
5805 wc
->reada_count
= wc
->reada_count
* 3 / 2;
5806 wc
->reada_count
= min_t(int, wc
->reada_count
,
5807 BTRFS_NODEPTRS_PER_BLOCK(root
));
5810 eb
= path
->nodes
[wc
->level
];
5811 nritems
= btrfs_header_nritems(eb
);
5812 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
5814 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
5815 if (nread
>= wc
->reada_count
)
5819 bytenr
= btrfs_node_blockptr(eb
, slot
);
5820 generation
= btrfs_node_ptr_generation(eb
, slot
);
5822 if (slot
== path
->slots
[wc
->level
])
5825 if (wc
->stage
== UPDATE_BACKREF
&&
5826 generation
<= root
->root_key
.offset
)
5829 /* We don't lock the tree block, it's OK to be racy here */
5830 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5835 if (wc
->stage
== DROP_REFERENCE
) {
5839 if (wc
->level
== 1 &&
5840 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5842 if (!wc
->update_ref
||
5843 generation
<= root
->root_key
.offset
)
5845 btrfs_node_key_to_cpu(eb
, &key
, slot
);
5846 ret
= btrfs_comp_cpu_keys(&key
,
5847 &wc
->update_progress
);
5851 if (wc
->level
== 1 &&
5852 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5856 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
5862 wc
->reada_slot
= slot
;
5866 * hepler to process tree block while walking down the tree.
5868 * when wc->stage == UPDATE_BACKREF, this function updates
5869 * back refs for pointers in the block.
5871 * NOTE: return value 1 means we should stop walking down.
5873 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5874 struct btrfs_root
*root
,
5875 struct btrfs_path
*path
,
5876 struct walk_control
*wc
, int lookup_info
)
5878 int level
= wc
->level
;
5879 struct extent_buffer
*eb
= path
->nodes
[level
];
5880 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5883 if (wc
->stage
== UPDATE_BACKREF
&&
5884 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5888 * when reference count of tree block is 1, it won't increase
5889 * again. once full backref flag is set, we never clear it.
5892 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5893 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5894 BUG_ON(!path
->locks
[level
]);
5895 ret
= btrfs_lookup_extent_info(trans
, root
,
5900 BUG_ON(wc
->refs
[level
] == 0);
5903 if (wc
->stage
== DROP_REFERENCE
) {
5904 if (wc
->refs
[level
] > 1)
5907 if (path
->locks
[level
] && !wc
->keep_locks
) {
5908 btrfs_tree_unlock(eb
);
5909 path
->locks
[level
] = 0;
5914 /* wc->stage == UPDATE_BACKREF */
5915 if (!(wc
->flags
[level
] & flag
)) {
5916 BUG_ON(!path
->locks
[level
]);
5917 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5919 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5921 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5924 wc
->flags
[level
] |= flag
;
5928 * the block is shared by multiple trees, so it's not good to
5929 * keep the tree lock
5931 if (path
->locks
[level
] && level
> 0) {
5932 btrfs_tree_unlock(eb
);
5933 path
->locks
[level
] = 0;
5939 * hepler to process tree block pointer.
5941 * when wc->stage == DROP_REFERENCE, this function checks
5942 * reference count of the block pointed to. if the block
5943 * is shared and we need update back refs for the subtree
5944 * rooted at the block, this function changes wc->stage to
5945 * UPDATE_BACKREF. if the block is shared and there is no
5946 * need to update back, this function drops the reference
5949 * NOTE: return value 1 means we should stop walking down.
5951 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5952 struct btrfs_root
*root
,
5953 struct btrfs_path
*path
,
5954 struct walk_control
*wc
, int *lookup_info
)
5960 struct btrfs_key key
;
5961 struct extent_buffer
*next
;
5962 int level
= wc
->level
;
5966 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5967 path
->slots
[level
]);
5969 * if the lower level block was created before the snapshot
5970 * was created, we know there is no need to update back refs
5973 if (wc
->stage
== UPDATE_BACKREF
&&
5974 generation
<= root
->root_key
.offset
) {
5979 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5980 blocksize
= btrfs_level_size(root
, level
- 1);
5982 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
5984 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5989 btrfs_tree_lock(next
);
5990 btrfs_set_lock_blocking(next
);
5992 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5993 &wc
->refs
[level
- 1],
5994 &wc
->flags
[level
- 1]);
5996 BUG_ON(wc
->refs
[level
- 1] == 0);
5999 if (wc
->stage
== DROP_REFERENCE
) {
6000 if (wc
->refs
[level
- 1] > 1) {
6002 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6005 if (!wc
->update_ref
||
6006 generation
<= root
->root_key
.offset
)
6009 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6010 path
->slots
[level
]);
6011 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6015 wc
->stage
= UPDATE_BACKREF
;
6016 wc
->shared_level
= level
- 1;
6020 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6024 if (!btrfs_buffer_uptodate(next
, generation
)) {
6025 btrfs_tree_unlock(next
);
6026 free_extent_buffer(next
);
6032 if (reada
&& level
== 1)
6033 reada_walk_down(trans
, root
, wc
, path
);
6034 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6037 btrfs_tree_lock(next
);
6038 btrfs_set_lock_blocking(next
);
6042 BUG_ON(level
!= btrfs_header_level(next
));
6043 path
->nodes
[level
] = next
;
6044 path
->slots
[level
] = 0;
6045 path
->locks
[level
] = 1;
6051 wc
->refs
[level
- 1] = 0;
6052 wc
->flags
[level
- 1] = 0;
6053 if (wc
->stage
== DROP_REFERENCE
) {
6054 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6055 parent
= path
->nodes
[level
]->start
;
6057 BUG_ON(root
->root_key
.objectid
!=
6058 btrfs_header_owner(path
->nodes
[level
]));
6062 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6063 root
->root_key
.objectid
, level
- 1, 0);
6066 btrfs_tree_unlock(next
);
6067 free_extent_buffer(next
);
6073 * hepler to process tree block while walking up the tree.
6075 * when wc->stage == DROP_REFERENCE, this function drops
6076 * reference count on the block.
6078 * when wc->stage == UPDATE_BACKREF, this function changes
6079 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6080 * to UPDATE_BACKREF previously while processing the block.
6082 * NOTE: return value 1 means we should stop walking up.
6084 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6085 struct btrfs_root
*root
,
6086 struct btrfs_path
*path
,
6087 struct walk_control
*wc
)
6090 int level
= wc
->level
;
6091 struct extent_buffer
*eb
= path
->nodes
[level
];
6094 if (wc
->stage
== UPDATE_BACKREF
) {
6095 BUG_ON(wc
->shared_level
< level
);
6096 if (level
< wc
->shared_level
)
6099 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6103 wc
->stage
= DROP_REFERENCE
;
6104 wc
->shared_level
= -1;
6105 path
->slots
[level
] = 0;
6108 * check reference count again if the block isn't locked.
6109 * we should start walking down the tree again if reference
6112 if (!path
->locks
[level
]) {
6114 btrfs_tree_lock(eb
);
6115 btrfs_set_lock_blocking(eb
);
6116 path
->locks
[level
] = 1;
6118 ret
= btrfs_lookup_extent_info(trans
, root
,
6123 BUG_ON(wc
->refs
[level
] == 0);
6124 if (wc
->refs
[level
] == 1) {
6125 btrfs_tree_unlock(eb
);
6126 path
->locks
[level
] = 0;
6132 /* wc->stage == DROP_REFERENCE */
6133 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6135 if (wc
->refs
[level
] == 1) {
6137 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6138 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
6140 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6143 /* make block locked assertion in clean_tree_block happy */
6144 if (!path
->locks
[level
] &&
6145 btrfs_header_generation(eb
) == trans
->transid
) {
6146 btrfs_tree_lock(eb
);
6147 btrfs_set_lock_blocking(eb
);
6148 path
->locks
[level
] = 1;
6150 clean_tree_block(trans
, root
, eb
);
6153 if (eb
== root
->node
) {
6154 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6157 BUG_ON(root
->root_key
.objectid
!=
6158 btrfs_header_owner(eb
));
6160 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6161 parent
= path
->nodes
[level
+ 1]->start
;
6163 BUG_ON(root
->root_key
.objectid
!=
6164 btrfs_header_owner(path
->nodes
[level
+ 1]));
6167 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6169 wc
->refs
[level
] = 0;
6170 wc
->flags
[level
] = 0;
6174 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6175 struct btrfs_root
*root
,
6176 struct btrfs_path
*path
,
6177 struct walk_control
*wc
)
6179 int level
= wc
->level
;
6180 int lookup_info
= 1;
6183 while (level
>= 0) {
6184 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6191 if (path
->slots
[level
] >=
6192 btrfs_header_nritems(path
->nodes
[level
]))
6195 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6197 path
->slots
[level
]++;
6206 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6207 struct btrfs_root
*root
,
6208 struct btrfs_path
*path
,
6209 struct walk_control
*wc
, int max_level
)
6211 int level
= wc
->level
;
6214 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6215 while (level
< max_level
&& path
->nodes
[level
]) {
6217 if (path
->slots
[level
] + 1 <
6218 btrfs_header_nritems(path
->nodes
[level
])) {
6219 path
->slots
[level
]++;
6222 ret
= walk_up_proc(trans
, root
, path
, wc
);
6226 if (path
->locks
[level
]) {
6227 btrfs_tree_unlock(path
->nodes
[level
]);
6228 path
->locks
[level
] = 0;
6230 free_extent_buffer(path
->nodes
[level
]);
6231 path
->nodes
[level
] = NULL
;
6239 * drop a subvolume tree.
6241 * this function traverses the tree freeing any blocks that only
6242 * referenced by the tree.
6244 * when a shared tree block is found. this function decreases its
6245 * reference count by one. if update_ref is true, this function
6246 * also make sure backrefs for the shared block and all lower level
6247 * blocks are properly updated.
6249 int btrfs_drop_snapshot(struct btrfs_root
*root
,
6250 struct btrfs_block_rsv
*block_rsv
, int update_ref
)
6252 struct btrfs_path
*path
;
6253 struct btrfs_trans_handle
*trans
;
6254 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6255 struct btrfs_root_item
*root_item
= &root
->root_item
;
6256 struct walk_control
*wc
;
6257 struct btrfs_key key
;
6262 path
= btrfs_alloc_path();
6265 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6268 trans
= btrfs_start_transaction(tree_root
, 0);
6269 BUG_ON(IS_ERR(trans
));
6272 trans
->block_rsv
= block_rsv
;
6274 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6275 level
= btrfs_header_level(root
->node
);
6276 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6277 btrfs_set_lock_blocking(path
->nodes
[level
]);
6278 path
->slots
[level
] = 0;
6279 path
->locks
[level
] = 1;
6280 memset(&wc
->update_progress
, 0,
6281 sizeof(wc
->update_progress
));
6283 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6284 memcpy(&wc
->update_progress
, &key
,
6285 sizeof(wc
->update_progress
));
6287 level
= root_item
->drop_level
;
6289 path
->lowest_level
= level
;
6290 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6291 path
->lowest_level
= 0;
6299 * unlock our path, this is safe because only this
6300 * function is allowed to delete this snapshot
6302 btrfs_unlock_up_safe(path
, 0);
6304 level
= btrfs_header_level(root
->node
);
6306 btrfs_tree_lock(path
->nodes
[level
]);
6307 btrfs_set_lock_blocking(path
->nodes
[level
]);
6309 ret
= btrfs_lookup_extent_info(trans
, root
,
6310 path
->nodes
[level
]->start
,
6311 path
->nodes
[level
]->len
,
6315 BUG_ON(wc
->refs
[level
] == 0);
6317 if (level
== root_item
->drop_level
)
6320 btrfs_tree_unlock(path
->nodes
[level
]);
6321 WARN_ON(wc
->refs
[level
] != 1);
6327 wc
->shared_level
= -1;
6328 wc
->stage
= DROP_REFERENCE
;
6329 wc
->update_ref
= update_ref
;
6331 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6334 ret
= walk_down_tree(trans
, root
, path
, wc
);
6340 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6347 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6351 if (wc
->stage
== DROP_REFERENCE
) {
6353 btrfs_node_key(path
->nodes
[level
],
6354 &root_item
->drop_progress
,
6355 path
->slots
[level
]);
6356 root_item
->drop_level
= level
;
6359 BUG_ON(wc
->level
== 0);
6360 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6361 ret
= btrfs_update_root(trans
, tree_root
,
6366 btrfs_end_transaction_throttle(trans
, tree_root
);
6367 trans
= btrfs_start_transaction(tree_root
, 0);
6368 BUG_ON(IS_ERR(trans
));
6370 trans
->block_rsv
= block_rsv
;
6373 btrfs_release_path(path
);
6376 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6379 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6380 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6384 /* if we fail to delete the orphan item this time
6385 * around, it'll get picked up the next time.
6387 * The most common failure here is just -ENOENT.
6389 btrfs_del_orphan_item(trans
, tree_root
,
6390 root
->root_key
.objectid
);
6394 if (root
->in_radix
) {
6395 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6397 free_extent_buffer(root
->node
);
6398 free_extent_buffer(root
->commit_root
);
6402 btrfs_end_transaction_throttle(trans
, tree_root
);
6404 btrfs_free_path(path
);
6409 * drop subtree rooted at tree block 'node'.
6411 * NOTE: this function will unlock and release tree block 'node'
6413 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6414 struct btrfs_root
*root
,
6415 struct extent_buffer
*node
,
6416 struct extent_buffer
*parent
)
6418 struct btrfs_path
*path
;
6419 struct walk_control
*wc
;
6425 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6427 path
= btrfs_alloc_path();
6431 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6433 btrfs_free_path(path
);
6437 btrfs_assert_tree_locked(parent
);
6438 parent_level
= btrfs_header_level(parent
);
6439 extent_buffer_get(parent
);
6440 path
->nodes
[parent_level
] = parent
;
6441 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6443 btrfs_assert_tree_locked(node
);
6444 level
= btrfs_header_level(node
);
6445 path
->nodes
[level
] = node
;
6446 path
->slots
[level
] = 0;
6447 path
->locks
[level
] = 1;
6449 wc
->refs
[parent_level
] = 1;
6450 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6452 wc
->shared_level
= -1;
6453 wc
->stage
= DROP_REFERENCE
;
6456 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6459 wret
= walk_down_tree(trans
, root
, path
, wc
);
6465 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6473 btrfs_free_path(path
);
6477 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
6480 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
6481 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
6484 * we add in the count of missing devices because we want
6485 * to make sure that any RAID levels on a degraded FS
6486 * continue to be honored.
6488 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
6489 root
->fs_info
->fs_devices
->missing_devices
;
6491 if (num_devices
== 1) {
6492 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6493 stripped
= flags
& ~stripped
;
6495 /* turn raid0 into single device chunks */
6496 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6499 /* turn mirroring into duplication */
6500 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
6501 BTRFS_BLOCK_GROUP_RAID10
))
6502 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
6505 /* they already had raid on here, just return */
6506 if (flags
& stripped
)
6509 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6510 stripped
= flags
& ~stripped
;
6512 /* switch duplicated blocks with raid1 */
6513 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6514 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
6516 /* turn single device chunks into raid0 */
6517 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
6522 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
)
6524 struct btrfs_space_info
*sinfo
= cache
->space_info
;
6531 spin_lock(&sinfo
->lock
);
6532 spin_lock(&cache
->lock
);
6533 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
6534 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
6536 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
6537 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+
6538 cache
->reserved_pinned
+ num_bytes
<= sinfo
->total_bytes
) {
6539 sinfo
->bytes_readonly
+= num_bytes
;
6540 sinfo
->bytes_reserved
+= cache
->reserved_pinned
;
6541 cache
->reserved_pinned
= 0;
6546 spin_unlock(&cache
->lock
);
6547 spin_unlock(&sinfo
->lock
);
6551 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
6552 struct btrfs_block_group_cache
*cache
)
6555 struct btrfs_trans_handle
*trans
;
6561 trans
= btrfs_join_transaction(root
);
6562 BUG_ON(IS_ERR(trans
));
6564 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
6565 if (alloc_flags
!= cache
->flags
)
6566 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6569 ret
= set_block_group_ro(cache
);
6572 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
6573 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6577 ret
= set_block_group_ro(cache
);
6579 btrfs_end_transaction(trans
, root
);
6583 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
6584 struct btrfs_root
*root
, u64 type
)
6586 u64 alloc_flags
= get_alloc_profile(root
, type
);
6587 return do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6592 * helper to account the unused space of all the readonly block group in the
6593 * list. takes mirrors into account.
6595 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
6597 struct btrfs_block_group_cache
*block_group
;
6601 list_for_each_entry(block_group
, groups_list
, list
) {
6602 spin_lock(&block_group
->lock
);
6604 if (!block_group
->ro
) {
6605 spin_unlock(&block_group
->lock
);
6609 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
6610 BTRFS_BLOCK_GROUP_RAID10
|
6611 BTRFS_BLOCK_GROUP_DUP
))
6616 free_bytes
+= (block_group
->key
.offset
-
6617 btrfs_block_group_used(&block_group
->item
)) *
6620 spin_unlock(&block_group
->lock
);
6627 * helper to account the unused space of all the readonly block group in the
6628 * space_info. takes mirrors into account.
6630 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
6635 spin_lock(&sinfo
->lock
);
6637 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
6638 if (!list_empty(&sinfo
->block_groups
[i
]))
6639 free_bytes
+= __btrfs_get_ro_block_group_free_space(
6640 &sinfo
->block_groups
[i
]);
6642 spin_unlock(&sinfo
->lock
);
6647 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
6648 struct btrfs_block_group_cache
*cache
)
6650 struct btrfs_space_info
*sinfo
= cache
->space_info
;
6655 spin_lock(&sinfo
->lock
);
6656 spin_lock(&cache
->lock
);
6657 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
6658 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
6659 sinfo
->bytes_readonly
-= num_bytes
;
6661 spin_unlock(&cache
->lock
);
6662 spin_unlock(&sinfo
->lock
);
6667 * checks to see if its even possible to relocate this block group.
6669 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6670 * ok to go ahead and try.
6672 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
6674 struct btrfs_block_group_cache
*block_group
;
6675 struct btrfs_space_info
*space_info
;
6676 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6677 struct btrfs_device
*device
;
6681 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6683 /* odd, couldn't find the block group, leave it alone */
6687 /* no bytes used, we're good */
6688 if (!btrfs_block_group_used(&block_group
->item
))
6691 space_info
= block_group
->space_info
;
6692 spin_lock(&space_info
->lock
);
6694 full
= space_info
->full
;
6697 * if this is the last block group we have in this space, we can't
6698 * relocate it unless we're able to allocate a new chunk below.
6700 * Otherwise, we need to make sure we have room in the space to handle
6701 * all of the extents from this block group. If we can, we're good
6703 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
6704 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
6705 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
6706 btrfs_block_group_used(&block_group
->item
) <
6707 space_info
->total_bytes
)) {
6708 spin_unlock(&space_info
->lock
);
6711 spin_unlock(&space_info
->lock
);
6714 * ok we don't have enough space, but maybe we have free space on our
6715 * devices to allocate new chunks for relocation, so loop through our
6716 * alloc devices and guess if we have enough space. However, if we
6717 * were marked as full, then we know there aren't enough chunks, and we
6724 mutex_lock(&root
->fs_info
->chunk_mutex
);
6725 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
6726 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
6730 * check to make sure we can actually find a chunk with enough
6731 * space to fit our block group in.
6733 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
6734 ret
= find_free_dev_extent(NULL
, device
, min_free
,
6741 mutex_unlock(&root
->fs_info
->chunk_mutex
);
6743 btrfs_put_block_group(block_group
);
6747 static int find_first_block_group(struct btrfs_root
*root
,
6748 struct btrfs_path
*path
, struct btrfs_key
*key
)
6751 struct btrfs_key found_key
;
6752 struct extent_buffer
*leaf
;
6755 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
6760 slot
= path
->slots
[0];
6761 leaf
= path
->nodes
[0];
6762 if (slot
>= btrfs_header_nritems(leaf
)) {
6763 ret
= btrfs_next_leaf(root
, path
);
6770 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6772 if (found_key
.objectid
>= key
->objectid
&&
6773 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
6783 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
6785 struct btrfs_block_group_cache
*block_group
;
6789 struct inode
*inode
;
6791 block_group
= btrfs_lookup_first_block_group(info
, last
);
6792 while (block_group
) {
6793 spin_lock(&block_group
->lock
);
6794 if (block_group
->iref
)
6796 spin_unlock(&block_group
->lock
);
6797 block_group
= next_block_group(info
->tree_root
,
6807 inode
= block_group
->inode
;
6808 block_group
->iref
= 0;
6809 block_group
->inode
= NULL
;
6810 spin_unlock(&block_group
->lock
);
6812 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
6813 btrfs_put_block_group(block_group
);
6817 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
6819 struct btrfs_block_group_cache
*block_group
;
6820 struct btrfs_space_info
*space_info
;
6821 struct btrfs_caching_control
*caching_ctl
;
6824 down_write(&info
->extent_commit_sem
);
6825 while (!list_empty(&info
->caching_block_groups
)) {
6826 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
6827 struct btrfs_caching_control
, list
);
6828 list_del(&caching_ctl
->list
);
6829 put_caching_control(caching_ctl
);
6831 up_write(&info
->extent_commit_sem
);
6833 spin_lock(&info
->block_group_cache_lock
);
6834 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
6835 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
6837 rb_erase(&block_group
->cache_node
,
6838 &info
->block_group_cache_tree
);
6839 spin_unlock(&info
->block_group_cache_lock
);
6841 down_write(&block_group
->space_info
->groups_sem
);
6842 list_del(&block_group
->list
);
6843 up_write(&block_group
->space_info
->groups_sem
);
6845 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
6846 wait_block_group_cache_done(block_group
);
6849 * We haven't cached this block group, which means we could
6850 * possibly have excluded extents on this block group.
6852 if (block_group
->cached
== BTRFS_CACHE_NO
)
6853 free_excluded_extents(info
->extent_root
, block_group
);
6855 btrfs_remove_free_space_cache(block_group
);
6856 btrfs_put_block_group(block_group
);
6858 spin_lock(&info
->block_group_cache_lock
);
6860 spin_unlock(&info
->block_group_cache_lock
);
6862 /* now that all the block groups are freed, go through and
6863 * free all the space_info structs. This is only called during
6864 * the final stages of unmount, and so we know nobody is
6865 * using them. We call synchronize_rcu() once before we start,
6866 * just to be on the safe side.
6870 release_global_block_rsv(info
);
6872 while(!list_empty(&info
->space_info
)) {
6873 space_info
= list_entry(info
->space_info
.next
,
6874 struct btrfs_space_info
,
6876 if (space_info
->bytes_pinned
> 0 ||
6877 space_info
->bytes_reserved
> 0) {
6879 dump_space_info(space_info
, 0, 0);
6881 list_del(&space_info
->list
);
6887 static void __link_block_group(struct btrfs_space_info
*space_info
,
6888 struct btrfs_block_group_cache
*cache
)
6890 int index
= get_block_group_index(cache
);
6892 down_write(&space_info
->groups_sem
);
6893 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
6894 up_write(&space_info
->groups_sem
);
6897 int btrfs_read_block_groups(struct btrfs_root
*root
)
6899 struct btrfs_path
*path
;
6901 struct btrfs_block_group_cache
*cache
;
6902 struct btrfs_fs_info
*info
= root
->fs_info
;
6903 struct btrfs_space_info
*space_info
;
6904 struct btrfs_key key
;
6905 struct btrfs_key found_key
;
6906 struct extent_buffer
*leaf
;
6910 root
= info
->extent_root
;
6913 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
6914 path
= btrfs_alloc_path();
6919 cache_gen
= btrfs_super_cache_generation(&root
->fs_info
->super_copy
);
6920 if (cache_gen
!= 0 &&
6921 btrfs_super_generation(&root
->fs_info
->super_copy
) != cache_gen
)
6923 if (btrfs_test_opt(root
, CLEAR_CACHE
))
6925 if (!btrfs_test_opt(root
, SPACE_CACHE
) && cache_gen
)
6926 printk(KERN_INFO
"btrfs: disk space caching is enabled\n");
6929 ret
= find_first_block_group(root
, path
, &key
);
6934 leaf
= path
->nodes
[0];
6935 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6936 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
6941 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
6943 if (!cache
->free_space_ctl
) {
6949 atomic_set(&cache
->count
, 1);
6950 spin_lock_init(&cache
->lock
);
6951 cache
->fs_info
= info
;
6952 INIT_LIST_HEAD(&cache
->list
);
6953 INIT_LIST_HEAD(&cache
->cluster_list
);
6956 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6958 read_extent_buffer(leaf
, &cache
->item
,
6959 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
6960 sizeof(cache
->item
));
6961 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
6963 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
6964 btrfs_release_path(path
);
6965 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
6966 cache
->sectorsize
= root
->sectorsize
;
6968 btrfs_init_free_space_ctl(cache
);
6971 * We need to exclude the super stripes now so that the space
6972 * info has super bytes accounted for, otherwise we'll think
6973 * we have more space than we actually do.
6975 exclude_super_stripes(root
, cache
);
6978 * check for two cases, either we are full, and therefore
6979 * don't need to bother with the caching work since we won't
6980 * find any space, or we are empty, and we can just add all
6981 * the space in and be done with it. This saves us _alot_ of
6982 * time, particularly in the full case.
6984 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
6985 cache
->last_byte_to_unpin
= (u64
)-1;
6986 cache
->cached
= BTRFS_CACHE_FINISHED
;
6987 free_excluded_extents(root
, cache
);
6988 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
6989 cache
->last_byte_to_unpin
= (u64
)-1;
6990 cache
->cached
= BTRFS_CACHE_FINISHED
;
6991 add_new_free_space(cache
, root
->fs_info
,
6993 found_key
.objectid
+
6995 free_excluded_extents(root
, cache
);
6998 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
6999 btrfs_block_group_used(&cache
->item
),
7002 cache
->space_info
= space_info
;
7003 spin_lock(&cache
->space_info
->lock
);
7004 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7005 spin_unlock(&cache
->space_info
->lock
);
7007 __link_block_group(space_info
, cache
);
7009 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7012 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7013 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7014 set_block_group_ro(cache
);
7017 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
7018 if (!(get_alloc_profile(root
, space_info
->flags
) &
7019 (BTRFS_BLOCK_GROUP_RAID10
|
7020 BTRFS_BLOCK_GROUP_RAID1
|
7021 BTRFS_BLOCK_GROUP_DUP
)))
7024 * avoid allocating from un-mirrored block group if there are
7025 * mirrored block groups.
7027 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
7028 set_block_group_ro(cache
);
7029 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
7030 set_block_group_ro(cache
);
7033 init_global_block_rsv(info
);
7036 btrfs_free_path(path
);
7040 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7041 struct btrfs_root
*root
, u64 bytes_used
,
7042 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7046 struct btrfs_root
*extent_root
;
7047 struct btrfs_block_group_cache
*cache
;
7049 extent_root
= root
->fs_info
->extent_root
;
7051 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7053 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7056 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7058 if (!cache
->free_space_ctl
) {
7063 cache
->key
.objectid
= chunk_offset
;
7064 cache
->key
.offset
= size
;
7065 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7066 cache
->sectorsize
= root
->sectorsize
;
7067 cache
->fs_info
= root
->fs_info
;
7069 atomic_set(&cache
->count
, 1);
7070 spin_lock_init(&cache
->lock
);
7071 INIT_LIST_HEAD(&cache
->list
);
7072 INIT_LIST_HEAD(&cache
->cluster_list
);
7074 btrfs_init_free_space_ctl(cache
);
7076 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7077 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7078 cache
->flags
= type
;
7079 btrfs_set_block_group_flags(&cache
->item
, type
);
7081 cache
->last_byte_to_unpin
= (u64
)-1;
7082 cache
->cached
= BTRFS_CACHE_FINISHED
;
7083 exclude_super_stripes(root
, cache
);
7085 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7086 chunk_offset
+ size
);
7088 free_excluded_extents(root
, cache
);
7090 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7091 &cache
->space_info
);
7094 spin_lock(&cache
->space_info
->lock
);
7095 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7096 spin_unlock(&cache
->space_info
->lock
);
7098 __link_block_group(cache
->space_info
, cache
);
7100 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7103 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7104 sizeof(cache
->item
));
7107 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7112 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7113 struct btrfs_root
*root
, u64 group_start
)
7115 struct btrfs_path
*path
;
7116 struct btrfs_block_group_cache
*block_group
;
7117 struct btrfs_free_cluster
*cluster
;
7118 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7119 struct btrfs_key key
;
7120 struct inode
*inode
;
7124 root
= root
->fs_info
->extent_root
;
7126 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7127 BUG_ON(!block_group
);
7128 BUG_ON(!block_group
->ro
);
7131 * Free the reserved super bytes from this block group before
7134 free_excluded_extents(root
, block_group
);
7136 memcpy(&key
, &block_group
->key
, sizeof(key
));
7137 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
7138 BTRFS_BLOCK_GROUP_RAID1
|
7139 BTRFS_BLOCK_GROUP_RAID10
))
7144 /* make sure this block group isn't part of an allocation cluster */
7145 cluster
= &root
->fs_info
->data_alloc_cluster
;
7146 spin_lock(&cluster
->refill_lock
);
7147 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7148 spin_unlock(&cluster
->refill_lock
);
7151 * make sure this block group isn't part of a metadata
7152 * allocation cluster
7154 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7155 spin_lock(&cluster
->refill_lock
);
7156 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7157 spin_unlock(&cluster
->refill_lock
);
7159 path
= btrfs_alloc_path();
7162 inode
= lookup_free_space_inode(root
, block_group
, path
);
7163 if (!IS_ERR(inode
)) {
7164 btrfs_orphan_add(trans
, inode
);
7166 /* One for the block groups ref */
7167 spin_lock(&block_group
->lock
);
7168 if (block_group
->iref
) {
7169 block_group
->iref
= 0;
7170 block_group
->inode
= NULL
;
7171 spin_unlock(&block_group
->lock
);
7174 spin_unlock(&block_group
->lock
);
7176 /* One for our lookup ref */
7180 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
7181 key
.offset
= block_group
->key
.objectid
;
7184 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
7188 btrfs_release_path(path
);
7190 ret
= btrfs_del_item(trans
, tree_root
, path
);
7193 btrfs_release_path(path
);
7196 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7197 rb_erase(&block_group
->cache_node
,
7198 &root
->fs_info
->block_group_cache_tree
);
7199 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7201 down_write(&block_group
->space_info
->groups_sem
);
7203 * we must use list_del_init so people can check to see if they
7204 * are still on the list after taking the semaphore
7206 list_del_init(&block_group
->list
);
7207 up_write(&block_group
->space_info
->groups_sem
);
7209 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7210 wait_block_group_cache_done(block_group
);
7212 btrfs_remove_free_space_cache(block_group
);
7214 spin_lock(&block_group
->space_info
->lock
);
7215 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7216 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7217 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
7218 spin_unlock(&block_group
->space_info
->lock
);
7220 memcpy(&key
, &block_group
->key
, sizeof(key
));
7222 btrfs_clear_space_info_full(root
->fs_info
);
7224 btrfs_put_block_group(block_group
);
7225 btrfs_put_block_group(block_group
);
7227 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7233 ret
= btrfs_del_item(trans
, root
, path
);
7235 btrfs_free_path(path
);
7239 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
7241 struct btrfs_space_info
*space_info
;
7242 struct btrfs_super_block
*disk_super
;
7248 disk_super
= &fs_info
->super_copy
;
7249 if (!btrfs_super_root(disk_super
))
7252 features
= btrfs_super_incompat_flags(disk_super
);
7253 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
7256 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
7257 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7262 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
7263 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7265 flags
= BTRFS_BLOCK_GROUP_METADATA
;
7266 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7270 flags
= BTRFS_BLOCK_GROUP_DATA
;
7271 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7277 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
7279 return unpin_extent_range(root
, start
, end
);
7282 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
7283 u64 num_bytes
, u64
*actual_bytes
)
7285 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
7288 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
7290 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7291 struct btrfs_block_group_cache
*cache
= NULL
;
7298 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
7301 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
7302 btrfs_put_block_group(cache
);
7306 start
= max(range
->start
, cache
->key
.objectid
);
7307 end
= min(range
->start
+ range
->len
,
7308 cache
->key
.objectid
+ cache
->key
.offset
);
7310 if (end
- start
>= range
->minlen
) {
7311 if (!block_group_cache_done(cache
)) {
7312 ret
= cache_block_group(cache
, NULL
, root
, 0);
7314 wait_block_group_cache_done(cache
);
7316 ret
= btrfs_trim_block_group(cache
,
7322 trimmed
+= group_trimmed
;
7324 btrfs_put_block_group(cache
);
7329 cache
= next_block_group(fs_info
->tree_root
, cache
);
7332 range
->len
= trimmed
;