xen: fix truncation of machine address
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ide-io.c
blob28057747c1f8fcf91b34dfd2aac2a375c3ab09d9
1 /*
2 * IDE I/O functions
4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
60 int ret = 1;
61 int error = 0;
63 if (uptodate <= 0)
64 error = uptodate ? uptodate : -EIO;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
73 if (!blk_fs_request(rq) && error && !rq->errors)
74 rq->errors = -EIO;
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81 drive->state = 0;
82 ide_dma_on(drive);
85 if (!__blk_end_request(rq, error, nr_bytes)) {
86 if (dequeue)
87 HWGROUP(drive)->rq = NULL;
88 ret = 0;
91 return ret;
94 /**
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
97 * @uptodate:
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 unsigned int nr_bytes = nr_sectors << 9;
108 struct request *rq;
109 unsigned long flags;
110 int ret = 1;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
119 if (!nr_bytes) {
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
122 else
123 nr_bytes = rq->hard_cur_sectors << 9;
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128 spin_unlock_irqrestore(&ide_lock, flags);
129 return ret;
131 EXPORT_SYMBOL(ide_end_request);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
139 enum {
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
141 idedisk_pm_standby,
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
144 idedisk_pm_idle,
145 ide_pm_restore_dma,
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 struct request_pm_state *pm = rq->data;
152 if (drive->media != ide_disk)
153 return;
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
159 else
160 pm->pm_step = idedisk_pm_standby;
161 break;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
164 break;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
167 break;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
170 break;
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
179 memset(args, 0, sizeof(*args));
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
184 break;
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
188 return ide_stopped;
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
192 else
193 args->tf.command = WIN_FLUSH_CACHE;
194 goto out_do_tf;
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
198 goto out_do_tf;
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
207 else
208 ide_complete_power_step(drive, rq, 0, 0);
209 return ide_stopped;
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
213 goto out_do_tf;
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive->hwif->dma_ops == NULL)
222 break;
224 * TODO: respect ->using_dma setting
226 ide_set_dma(drive);
227 break;
229 pm->pm_step = ide_pm_state_completed;
230 return ide_stopped;
232 out_do_tf:
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
241 * @uptodate:
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
250 * on ide-cd anyway.
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
256 unsigned long flags;
257 int ret;
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
264 return ret;
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
272 * @rq: request
274 * This function cleans up the current PM request and stops the queue
275 * if necessary.
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 unsigned long flags;
281 #ifdef DEBUG_PM
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
288 } else {
289 drive->blocked = 0;
290 blk_start_queue(drive->queue);
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
294 BUG();
295 spin_unlock_irqrestore(&ide_lock, flags);
299 * ide_end_drive_cmd - end an explicit drive command
300 * @drive: command
301 * @stat: status bits
302 * @err: error bits
304 * Clean up after success/failure of an explicit drive command.
305 * These get thrown onto the queue so they are synchronized with
306 * real I/O operations on the drive.
308 * In LBA48 mode we have to read the register set twice to get
309 * all the extra information out.
312 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
314 unsigned long flags;
315 struct request *rq;
317 spin_lock_irqsave(&ide_lock, flags);
318 rq = HWGROUP(drive)->rq;
319 spin_unlock_irqrestore(&ide_lock, flags);
321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322 ide_task_t *task = (ide_task_t *)rq->special;
324 if (rq->errors == 0)
325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
327 if (task) {
328 struct ide_taskfile *tf = &task->tf;
330 tf->error = err;
331 tf->status = stat;
333 drive->hwif->tf_read(drive, task);
335 if (task->tf_flags & IDE_TFLAG_DYN)
336 kfree(task);
338 } else if (blk_pm_request(rq)) {
339 struct request_pm_state *pm = rq->data;
340 #ifdef DEBUG_PM
341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342 drive->name, rq->pm->pm_step, stat, err);
343 #endif
344 ide_complete_power_step(drive, rq, stat, err);
345 if (pm->pm_step == ide_pm_state_completed)
346 ide_complete_pm_request(drive, rq);
347 return;
350 spin_lock_irqsave(&ide_lock, flags);
351 HWGROUP(drive)->rq = NULL;
352 rq->errors = err;
353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354 blk_rq_bytes(rq))))
355 BUG();
356 spin_unlock_irqrestore(&ide_lock, flags);
359 EXPORT_SYMBOL(ide_end_drive_cmd);
361 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
363 if (rq->rq_disk) {
364 ide_driver_t *drv;
366 drv = *(ide_driver_t **)rq->rq_disk->private_data;
367 drv->end_request(drive, 0, 0);
368 } else
369 ide_end_request(drive, 0, 0);
372 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
374 ide_hwif_t *hwif = drive->hwif;
376 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377 /* other bits are useless when BUSY */
378 rq->errors |= ERROR_RESET;
379 } else if (stat & ERR_STAT) {
380 /* err has different meaning on cdrom and tape */
381 if (err == ABRT_ERR) {
382 if (drive->select.b.lba &&
383 /* some newer drives don't support WIN_SPECIFY */
384 hwif->INB(hwif->io_ports.command_addr) ==
385 WIN_SPECIFY)
386 return ide_stopped;
387 } else if ((err & BAD_CRC) == BAD_CRC) {
388 /* UDMA crc error, just retry the operation */
389 drive->crc_count++;
390 } else if (err & (BBD_ERR | ECC_ERR)) {
391 /* retries won't help these */
392 rq->errors = ERROR_MAX;
393 } else if (err & TRK0_ERR) {
394 /* help it find track zero */
395 rq->errors |= ERROR_RECAL;
399 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
400 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
401 int nsect = drive->mult_count ? drive->mult_count : 1;
403 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
406 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
407 ide_kill_rq(drive, rq);
408 return ide_stopped;
411 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
412 rq->errors |= ERROR_RESET;
414 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
415 ++rq->errors;
416 return ide_do_reset(drive);
419 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
420 drive->special.b.recalibrate = 1;
422 ++rq->errors;
424 return ide_stopped;
427 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
429 ide_hwif_t *hwif = drive->hwif;
431 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
432 /* other bits are useless when BUSY */
433 rq->errors |= ERROR_RESET;
434 } else {
435 /* add decoding error stuff */
438 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
439 /* force an abort */
440 hwif->OUTBSYNC(hwif, WIN_IDLEIMMEDIATE,
441 hwif->io_ports.command_addr);
443 if (rq->errors >= ERROR_MAX) {
444 ide_kill_rq(drive, rq);
445 } else {
446 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
447 ++rq->errors;
448 return ide_do_reset(drive);
450 ++rq->errors;
453 return ide_stopped;
456 ide_startstop_t
457 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
459 if (drive->media == ide_disk)
460 return ide_ata_error(drive, rq, stat, err);
461 return ide_atapi_error(drive, rq, stat, err);
464 EXPORT_SYMBOL_GPL(__ide_error);
467 * ide_error - handle an error on the IDE
468 * @drive: drive the error occurred on
469 * @msg: message to report
470 * @stat: status bits
472 * ide_error() takes action based on the error returned by the drive.
473 * For normal I/O that may well include retries. We deal with
474 * both new-style (taskfile) and old style command handling here.
475 * In the case of taskfile command handling there is work left to
476 * do
479 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
481 struct request *rq;
482 u8 err;
484 err = ide_dump_status(drive, msg, stat);
486 if ((rq = HWGROUP(drive)->rq) == NULL)
487 return ide_stopped;
489 /* retry only "normal" I/O: */
490 if (!blk_fs_request(rq)) {
491 rq->errors = 1;
492 ide_end_drive_cmd(drive, stat, err);
493 return ide_stopped;
496 if (rq->rq_disk) {
497 ide_driver_t *drv;
499 drv = *(ide_driver_t **)rq->rq_disk->private_data;
500 return drv->error(drive, rq, stat, err);
501 } else
502 return __ide_error(drive, rq, stat, err);
505 EXPORT_SYMBOL_GPL(ide_error);
507 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
509 if (drive->media != ide_disk)
510 rq->errors |= ERROR_RESET;
512 ide_kill_rq(drive, rq);
514 return ide_stopped;
517 EXPORT_SYMBOL_GPL(__ide_abort);
520 * ide_abort - abort pending IDE operations
521 * @drive: drive the error occurred on
522 * @msg: message to report
524 * ide_abort kills and cleans up when we are about to do a
525 * host initiated reset on active commands. Longer term we
526 * want handlers to have sensible abort handling themselves
528 * This differs fundamentally from ide_error because in
529 * this case the command is doing just fine when we
530 * blow it away.
533 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
535 struct request *rq;
537 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
538 return ide_stopped;
540 /* retry only "normal" I/O: */
541 if (!blk_fs_request(rq)) {
542 rq->errors = 1;
543 ide_end_drive_cmd(drive, BUSY_STAT, 0);
544 return ide_stopped;
547 if (rq->rq_disk) {
548 ide_driver_t *drv;
550 drv = *(ide_driver_t **)rq->rq_disk->private_data;
551 return drv->abort(drive, rq);
552 } else
553 return __ide_abort(drive, rq);
556 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
558 tf->nsect = drive->sect;
559 tf->lbal = drive->sect;
560 tf->lbam = drive->cyl;
561 tf->lbah = drive->cyl >> 8;
562 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
563 tf->command = WIN_SPECIFY;
566 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
568 tf->nsect = drive->sect;
569 tf->command = WIN_RESTORE;
572 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
574 tf->nsect = drive->mult_req;
575 tf->command = WIN_SETMULT;
578 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
580 special_t *s = &drive->special;
581 ide_task_t args;
583 memset(&args, 0, sizeof(ide_task_t));
584 args.data_phase = TASKFILE_NO_DATA;
586 if (s->b.set_geometry) {
587 s->b.set_geometry = 0;
588 ide_tf_set_specify_cmd(drive, &args.tf);
589 } else if (s->b.recalibrate) {
590 s->b.recalibrate = 0;
591 ide_tf_set_restore_cmd(drive, &args.tf);
592 } else if (s->b.set_multmode) {
593 s->b.set_multmode = 0;
594 if (drive->mult_req > drive->id->max_multsect)
595 drive->mult_req = drive->id->max_multsect;
596 ide_tf_set_setmult_cmd(drive, &args.tf);
597 } else if (s->all) {
598 int special = s->all;
599 s->all = 0;
600 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
601 return ide_stopped;
604 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
605 IDE_TFLAG_CUSTOM_HANDLER;
607 do_rw_taskfile(drive, &args);
609 return ide_started;
613 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
615 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
617 switch (req_pio) {
618 case 202:
619 case 201:
620 case 200:
621 case 102:
622 case 101:
623 case 100:
624 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
625 case 9:
626 case 8:
627 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
628 case 7:
629 case 6:
630 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
631 default:
632 return 0;
637 * do_special - issue some special commands
638 * @drive: drive the command is for
640 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
641 * commands to a drive. It used to do much more, but has been scaled
642 * back.
645 static ide_startstop_t do_special (ide_drive_t *drive)
647 special_t *s = &drive->special;
649 #ifdef DEBUG
650 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
651 #endif
652 if (s->b.set_tune) {
653 ide_hwif_t *hwif = drive->hwif;
654 const struct ide_port_ops *port_ops = hwif->port_ops;
655 u8 req_pio = drive->tune_req;
657 s->b.set_tune = 0;
659 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
661 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
663 if (req_pio == 8 || req_pio == 9) {
664 unsigned long flags;
666 spin_lock_irqsave(&ide_lock, flags);
667 port_ops->set_pio_mode(drive, req_pio);
668 spin_unlock_irqrestore(&ide_lock, flags);
669 } else
670 port_ops->set_pio_mode(drive, req_pio);
671 } else {
672 int keep_dma = drive->using_dma;
674 ide_set_pio(drive, req_pio);
676 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
677 if (keep_dma)
678 ide_dma_on(drive);
682 return ide_stopped;
683 } else {
684 if (drive->media == ide_disk)
685 return ide_disk_special(drive);
687 s->all = 0;
688 drive->mult_req = 0;
689 return ide_stopped;
693 void ide_map_sg(ide_drive_t *drive, struct request *rq)
695 ide_hwif_t *hwif = drive->hwif;
696 struct scatterlist *sg = hwif->sg_table;
698 if (hwif->sg_mapped) /* needed by ide-scsi */
699 return;
701 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
702 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
703 } else {
704 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
705 hwif->sg_nents = 1;
709 EXPORT_SYMBOL_GPL(ide_map_sg);
711 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
713 ide_hwif_t *hwif = drive->hwif;
715 hwif->nsect = hwif->nleft = rq->nr_sectors;
716 hwif->cursg_ofs = 0;
717 hwif->cursg = NULL;
720 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
723 * execute_drive_command - issue special drive command
724 * @drive: the drive to issue the command on
725 * @rq: the request structure holding the command
727 * execute_drive_cmd() issues a special drive command, usually
728 * initiated by ioctl() from the external hdparm program. The
729 * command can be a drive command, drive task or taskfile
730 * operation. Weirdly you can call it with NULL to wait for
731 * all commands to finish. Don't do this as that is due to change
734 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
735 struct request *rq)
737 ide_hwif_t *hwif = HWIF(drive);
738 ide_task_t *task = rq->special;
740 if (task) {
741 hwif->data_phase = task->data_phase;
743 switch (hwif->data_phase) {
744 case TASKFILE_MULTI_OUT:
745 case TASKFILE_OUT:
746 case TASKFILE_MULTI_IN:
747 case TASKFILE_IN:
748 ide_init_sg_cmd(drive, rq);
749 ide_map_sg(drive, rq);
750 default:
751 break;
754 return do_rw_taskfile(drive, task);
758 * NULL is actually a valid way of waiting for
759 * all current requests to be flushed from the queue.
761 #ifdef DEBUG
762 printk("%s: DRIVE_CMD (null)\n", drive->name);
763 #endif
764 ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
766 return ide_stopped;
769 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
771 struct request_pm_state *pm = rq->data;
773 if (blk_pm_suspend_request(rq) &&
774 pm->pm_step == ide_pm_state_start_suspend)
775 /* Mark drive blocked when starting the suspend sequence. */
776 drive->blocked = 1;
777 else if (blk_pm_resume_request(rq) &&
778 pm->pm_step == ide_pm_state_start_resume) {
780 * The first thing we do on wakeup is to wait for BSY bit to
781 * go away (with a looong timeout) as a drive on this hwif may
782 * just be POSTing itself.
783 * We do that before even selecting as the "other" device on
784 * the bus may be broken enough to walk on our toes at this
785 * point.
787 int rc;
788 #ifdef DEBUG_PM
789 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
790 #endif
791 rc = ide_wait_not_busy(HWIF(drive), 35000);
792 if (rc)
793 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
794 SELECT_DRIVE(drive);
795 ide_set_irq(drive, 1);
796 rc = ide_wait_not_busy(HWIF(drive), 100000);
797 if (rc)
798 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
803 * start_request - start of I/O and command issuing for IDE
805 * start_request() initiates handling of a new I/O request. It
806 * accepts commands and I/O (read/write) requests. It also does
807 * the final remapping for weird stuff like EZDrive. Once
808 * device mapper can work sector level the EZDrive stuff can go away
810 * FIXME: this function needs a rename
813 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
815 ide_startstop_t startstop;
816 sector_t block;
818 BUG_ON(!blk_rq_started(rq));
820 #ifdef DEBUG
821 printk("%s: start_request: current=0x%08lx\n",
822 HWIF(drive)->name, (unsigned long) rq);
823 #endif
825 /* bail early if we've exceeded max_failures */
826 if (drive->max_failures && (drive->failures > drive->max_failures)) {
827 rq->cmd_flags |= REQ_FAILED;
828 goto kill_rq;
831 block = rq->sector;
832 if (blk_fs_request(rq) &&
833 (drive->media == ide_disk || drive->media == ide_floppy)) {
834 block += drive->sect0;
836 /* Yecch - this will shift the entire interval,
837 possibly killing some innocent following sector */
838 if (block == 0 && drive->remap_0_to_1 == 1)
839 block = 1; /* redirect MBR access to EZ-Drive partn table */
841 if (blk_pm_request(rq))
842 ide_check_pm_state(drive, rq);
844 SELECT_DRIVE(drive);
845 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
846 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
847 return startstop;
849 if (!drive->special.all) {
850 ide_driver_t *drv;
853 * We reset the drive so we need to issue a SETFEATURES.
854 * Do it _after_ do_special() restored device parameters.
856 if (drive->current_speed == 0xff)
857 ide_config_drive_speed(drive, drive->desired_speed);
859 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
860 return execute_drive_cmd(drive, rq);
861 else if (blk_pm_request(rq)) {
862 struct request_pm_state *pm = rq->data;
863 #ifdef DEBUG_PM
864 printk("%s: start_power_step(step: %d)\n",
865 drive->name, rq->pm->pm_step);
866 #endif
867 startstop = ide_start_power_step(drive, rq);
868 if (startstop == ide_stopped &&
869 pm->pm_step == ide_pm_state_completed)
870 ide_complete_pm_request(drive, rq);
871 return startstop;
874 drv = *(ide_driver_t **)rq->rq_disk->private_data;
875 return drv->do_request(drive, rq, block);
877 return do_special(drive);
878 kill_rq:
879 ide_kill_rq(drive, rq);
880 return ide_stopped;
884 * ide_stall_queue - pause an IDE device
885 * @drive: drive to stall
886 * @timeout: time to stall for (jiffies)
888 * ide_stall_queue() can be used by a drive to give excess bandwidth back
889 * to the hwgroup by sleeping for timeout jiffies.
892 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
894 if (timeout > WAIT_WORSTCASE)
895 timeout = WAIT_WORSTCASE;
896 drive->sleep = timeout + jiffies;
897 drive->sleeping = 1;
900 EXPORT_SYMBOL(ide_stall_queue);
902 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
905 * choose_drive - select a drive to service
906 * @hwgroup: hardware group to select on
908 * choose_drive() selects the next drive which will be serviced.
909 * This is necessary because the IDE layer can't issue commands
910 * to both drives on the same cable, unlike SCSI.
913 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
915 ide_drive_t *drive, *best;
917 repeat:
918 best = NULL;
919 drive = hwgroup->drive;
922 * drive is doing pre-flush, ordered write, post-flush sequence. even
923 * though that is 3 requests, it must be seen as a single transaction.
924 * we must not preempt this drive until that is complete
926 if (blk_queue_flushing(drive->queue)) {
928 * small race where queue could get replugged during
929 * the 3-request flush cycle, just yank the plug since
930 * we want it to finish asap
932 blk_remove_plug(drive->queue);
933 return drive;
936 do {
937 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
938 && !elv_queue_empty(drive->queue)) {
939 if (!best
940 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
941 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
943 if (!blk_queue_plugged(drive->queue))
944 best = drive;
947 } while ((drive = drive->next) != hwgroup->drive);
948 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
949 long t = (signed long)(WAKEUP(best) - jiffies);
950 if (t >= WAIT_MIN_SLEEP) {
952 * We *may* have some time to spare, but first let's see if
953 * someone can potentially benefit from our nice mood today..
955 drive = best->next;
956 do {
957 if (!drive->sleeping
958 && time_before(jiffies - best->service_time, WAKEUP(drive))
959 && time_before(WAKEUP(drive), jiffies + t))
961 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
962 goto repeat;
964 } while ((drive = drive->next) != best);
967 return best;
971 * Issue a new request to a drive from hwgroup
972 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
974 * A hwgroup is a serialized group of IDE interfaces. Usually there is
975 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
976 * may have both interfaces in a single hwgroup to "serialize" access.
977 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
978 * together into one hwgroup for serialized access.
980 * Note also that several hwgroups can end up sharing a single IRQ,
981 * possibly along with many other devices. This is especially common in
982 * PCI-based systems with off-board IDE controller cards.
984 * The IDE driver uses the single global ide_lock spinlock to protect
985 * access to the request queues, and to protect the hwgroup->busy flag.
987 * The first thread into the driver for a particular hwgroup sets the
988 * hwgroup->busy flag to indicate that this hwgroup is now active,
989 * and then initiates processing of the top request from the request queue.
991 * Other threads attempting entry notice the busy setting, and will simply
992 * queue their new requests and exit immediately. Note that hwgroup->busy
993 * remains set even when the driver is merely awaiting the next interrupt.
994 * Thus, the meaning is "this hwgroup is busy processing a request".
996 * When processing of a request completes, the completing thread or IRQ-handler
997 * will start the next request from the queue. If no more work remains,
998 * the driver will clear the hwgroup->busy flag and exit.
1000 * The ide_lock (spinlock) is used to protect all access to the
1001 * hwgroup->busy flag, but is otherwise not needed for most processing in
1002 * the driver. This makes the driver much more friendlier to shared IRQs
1003 * than previous designs, while remaining 100% (?) SMP safe and capable.
1005 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1007 ide_drive_t *drive;
1008 ide_hwif_t *hwif;
1009 struct request *rq;
1010 ide_startstop_t startstop;
1011 int loops = 0;
1013 /* for atari only: POSSIBLY BROKEN HERE(?) */
1014 ide_get_lock(ide_intr, hwgroup);
1016 /* caller must own ide_lock */
1017 BUG_ON(!irqs_disabled());
1019 while (!hwgroup->busy) {
1020 hwgroup->busy = 1;
1021 drive = choose_drive(hwgroup);
1022 if (drive == NULL) {
1023 int sleeping = 0;
1024 unsigned long sleep = 0; /* shut up, gcc */
1025 hwgroup->rq = NULL;
1026 drive = hwgroup->drive;
1027 do {
1028 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1029 sleeping = 1;
1030 sleep = drive->sleep;
1032 } while ((drive = drive->next) != hwgroup->drive);
1033 if (sleeping) {
1035 * Take a short snooze, and then wake up this hwgroup again.
1036 * This gives other hwgroups on the same a chance to
1037 * play fairly with us, just in case there are big differences
1038 * in relative throughputs.. don't want to hog the cpu too much.
1040 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1041 sleep = jiffies + WAIT_MIN_SLEEP;
1042 #if 1
1043 if (timer_pending(&hwgroup->timer))
1044 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1045 #endif
1046 /* so that ide_timer_expiry knows what to do */
1047 hwgroup->sleeping = 1;
1048 hwgroup->req_gen_timer = hwgroup->req_gen;
1049 mod_timer(&hwgroup->timer, sleep);
1050 /* we purposely leave hwgroup->busy==1
1051 * while sleeping */
1052 } else {
1053 /* Ugly, but how can we sleep for the lock
1054 * otherwise? perhaps from tq_disk?
1057 /* for atari only */
1058 ide_release_lock();
1059 hwgroup->busy = 0;
1062 /* no more work for this hwgroup (for now) */
1063 return;
1065 again:
1066 hwif = HWIF(drive);
1067 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1069 * set nIEN for previous hwif, drives in the
1070 * quirk_list may not like intr setups/cleanups
1072 if (drive->quirk_list != 1)
1073 ide_set_irq(drive, 0);
1075 hwgroup->hwif = hwif;
1076 hwgroup->drive = drive;
1077 drive->sleeping = 0;
1078 drive->service_start = jiffies;
1080 if (blk_queue_plugged(drive->queue)) {
1081 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1082 break;
1086 * we know that the queue isn't empty, but this can happen
1087 * if the q->prep_rq_fn() decides to kill a request
1089 rq = elv_next_request(drive->queue);
1090 if (!rq) {
1091 hwgroup->busy = 0;
1092 break;
1096 * Sanity: don't accept a request that isn't a PM request
1097 * if we are currently power managed. This is very important as
1098 * blk_stop_queue() doesn't prevent the elv_next_request()
1099 * above to return us whatever is in the queue. Since we call
1100 * ide_do_request() ourselves, we end up taking requests while
1101 * the queue is blocked...
1103 * We let requests forced at head of queue with ide-preempt
1104 * though. I hope that doesn't happen too much, hopefully not
1105 * unless the subdriver triggers such a thing in its own PM
1106 * state machine.
1108 * We count how many times we loop here to make sure we service
1109 * all drives in the hwgroup without looping for ever
1111 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1112 drive = drive->next ? drive->next : hwgroup->drive;
1113 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1114 goto again;
1115 /* We clear busy, there should be no pending ATA command at this point. */
1116 hwgroup->busy = 0;
1117 break;
1120 hwgroup->rq = rq;
1123 * Some systems have trouble with IDE IRQs arriving while
1124 * the driver is still setting things up. So, here we disable
1125 * the IRQ used by this interface while the request is being started.
1126 * This may look bad at first, but pretty much the same thing
1127 * happens anyway when any interrupt comes in, IDE or otherwise
1128 * -- the kernel masks the IRQ while it is being handled.
1130 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1131 disable_irq_nosync(hwif->irq);
1132 spin_unlock(&ide_lock);
1133 local_irq_enable_in_hardirq();
1134 /* allow other IRQs while we start this request */
1135 startstop = start_request(drive, rq);
1136 spin_lock_irq(&ide_lock);
1137 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1138 enable_irq(hwif->irq);
1139 if (startstop == ide_stopped)
1140 hwgroup->busy = 0;
1145 * Passes the stuff to ide_do_request
1147 void do_ide_request(struct request_queue *q)
1149 ide_drive_t *drive = q->queuedata;
1151 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1155 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1156 * retry the current request in pio mode instead of risking tossing it
1157 * all away
1159 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1161 ide_hwif_t *hwif = HWIF(drive);
1162 struct request *rq;
1163 ide_startstop_t ret = ide_stopped;
1166 * end current dma transaction
1169 if (error < 0) {
1170 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1171 (void)hwif->dma_ops->dma_end(drive);
1172 ret = ide_error(drive, "dma timeout error",
1173 ide_read_status(drive));
1174 } else {
1175 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1176 hwif->dma_ops->dma_timeout(drive);
1180 * disable dma for now, but remember that we did so because of
1181 * a timeout -- we'll reenable after we finish this next request
1182 * (or rather the first chunk of it) in pio.
1184 drive->retry_pio++;
1185 drive->state = DMA_PIO_RETRY;
1186 ide_dma_off_quietly(drive);
1189 * un-busy drive etc (hwgroup->busy is cleared on return) and
1190 * make sure request is sane
1192 rq = HWGROUP(drive)->rq;
1194 if (!rq)
1195 goto out;
1197 HWGROUP(drive)->rq = NULL;
1199 rq->errors = 0;
1201 if (!rq->bio)
1202 goto out;
1204 rq->sector = rq->bio->bi_sector;
1205 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1206 rq->hard_cur_sectors = rq->current_nr_sectors;
1207 rq->buffer = bio_data(rq->bio);
1208 out:
1209 return ret;
1213 * ide_timer_expiry - handle lack of an IDE interrupt
1214 * @data: timer callback magic (hwgroup)
1216 * An IDE command has timed out before the expected drive return
1217 * occurred. At this point we attempt to clean up the current
1218 * mess. If the current handler includes an expiry handler then
1219 * we invoke the expiry handler, and providing it is happy the
1220 * work is done. If that fails we apply generic recovery rules
1221 * invoking the handler and checking the drive DMA status. We
1222 * have an excessively incestuous relationship with the DMA
1223 * logic that wants cleaning up.
1226 void ide_timer_expiry (unsigned long data)
1228 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1229 ide_handler_t *handler;
1230 ide_expiry_t *expiry;
1231 unsigned long flags;
1232 unsigned long wait = -1;
1234 spin_lock_irqsave(&ide_lock, flags);
1236 if (((handler = hwgroup->handler) == NULL) ||
1237 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1239 * Either a marginal timeout occurred
1240 * (got the interrupt just as timer expired),
1241 * or we were "sleeping" to give other devices a chance.
1242 * Either way, we don't really want to complain about anything.
1244 if (hwgroup->sleeping) {
1245 hwgroup->sleeping = 0;
1246 hwgroup->busy = 0;
1248 } else {
1249 ide_drive_t *drive = hwgroup->drive;
1250 if (!drive) {
1251 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1252 hwgroup->handler = NULL;
1253 } else {
1254 ide_hwif_t *hwif;
1255 ide_startstop_t startstop = ide_stopped;
1256 if (!hwgroup->busy) {
1257 hwgroup->busy = 1; /* paranoia */
1258 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1260 if ((expiry = hwgroup->expiry) != NULL) {
1261 /* continue */
1262 if ((wait = expiry(drive)) > 0) {
1263 /* reset timer */
1264 hwgroup->timer.expires = jiffies + wait;
1265 hwgroup->req_gen_timer = hwgroup->req_gen;
1266 add_timer(&hwgroup->timer);
1267 spin_unlock_irqrestore(&ide_lock, flags);
1268 return;
1271 hwgroup->handler = NULL;
1273 * We need to simulate a real interrupt when invoking
1274 * the handler() function, which means we need to
1275 * globally mask the specific IRQ:
1277 spin_unlock(&ide_lock);
1278 hwif = HWIF(drive);
1279 /* disable_irq_nosync ?? */
1280 disable_irq(hwif->irq);
1281 /* local CPU only,
1282 * as if we were handling an interrupt */
1283 local_irq_disable();
1284 if (hwgroup->polling) {
1285 startstop = handler(drive);
1286 } else if (drive_is_ready(drive)) {
1287 if (drive->waiting_for_dma)
1288 hwif->dma_ops->dma_lost_irq(drive);
1289 (void)ide_ack_intr(hwif);
1290 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1291 startstop = handler(drive);
1292 } else {
1293 if (drive->waiting_for_dma) {
1294 startstop = ide_dma_timeout_retry(drive, wait);
1295 } else
1296 startstop =
1297 ide_error(drive, "irq timeout",
1298 ide_read_status(drive));
1300 drive->service_time = jiffies - drive->service_start;
1301 spin_lock_irq(&ide_lock);
1302 enable_irq(hwif->irq);
1303 if (startstop == ide_stopped)
1304 hwgroup->busy = 0;
1307 ide_do_request(hwgroup, IDE_NO_IRQ);
1308 spin_unlock_irqrestore(&ide_lock, flags);
1312 * unexpected_intr - handle an unexpected IDE interrupt
1313 * @irq: interrupt line
1314 * @hwgroup: hwgroup being processed
1316 * There's nothing really useful we can do with an unexpected interrupt,
1317 * other than reading the status register (to clear it), and logging it.
1318 * There should be no way that an irq can happen before we're ready for it,
1319 * so we needn't worry much about losing an "important" interrupt here.
1321 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1322 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1323 * looks "good", we just ignore the interrupt completely.
1325 * This routine assumes __cli() is in effect when called.
1327 * If an unexpected interrupt happens on irq15 while we are handling irq14
1328 * and if the two interfaces are "serialized" (CMD640), then it looks like
1329 * we could screw up by interfering with a new request being set up for
1330 * irq15.
1332 * In reality, this is a non-issue. The new command is not sent unless
1333 * the drive is ready to accept one, in which case we know the drive is
1334 * not trying to interrupt us. And ide_set_handler() is always invoked
1335 * before completing the issuance of any new drive command, so we will not
1336 * be accidentally invoked as a result of any valid command completion
1337 * interrupt.
1339 * Note that we must walk the entire hwgroup here. We know which hwif
1340 * is doing the current command, but we don't know which hwif burped
1341 * mysteriously.
1344 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1346 u8 stat;
1347 ide_hwif_t *hwif = hwgroup->hwif;
1350 * handle the unexpected interrupt
1352 do {
1353 if (hwif->irq == irq) {
1354 stat = hwif->INB(hwif->io_ports.status_addr);
1355 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1356 /* Try to not flood the console with msgs */
1357 static unsigned long last_msgtime, count;
1358 ++count;
1359 if (time_after(jiffies, last_msgtime + HZ)) {
1360 last_msgtime = jiffies;
1361 printk(KERN_ERR "%s%s: unexpected interrupt, "
1362 "status=0x%02x, count=%ld\n",
1363 hwif->name,
1364 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1368 } while ((hwif = hwif->next) != hwgroup->hwif);
1372 * ide_intr - default IDE interrupt handler
1373 * @irq: interrupt number
1374 * @dev_id: hwif group
1375 * @regs: unused weirdness from the kernel irq layer
1377 * This is the default IRQ handler for the IDE layer. You should
1378 * not need to override it. If you do be aware it is subtle in
1379 * places
1381 * hwgroup->hwif is the interface in the group currently performing
1382 * a command. hwgroup->drive is the drive and hwgroup->handler is
1383 * the IRQ handler to call. As we issue a command the handlers
1384 * step through multiple states, reassigning the handler to the
1385 * next step in the process. Unlike a smart SCSI controller IDE
1386 * expects the main processor to sequence the various transfer
1387 * stages. We also manage a poll timer to catch up with most
1388 * timeout situations. There are still a few where the handlers
1389 * don't ever decide to give up.
1391 * The handler eventually returns ide_stopped to indicate the
1392 * request completed. At this point we issue the next request
1393 * on the hwgroup and the process begins again.
1396 irqreturn_t ide_intr (int irq, void *dev_id)
1398 unsigned long flags;
1399 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1400 ide_hwif_t *hwif;
1401 ide_drive_t *drive;
1402 ide_handler_t *handler;
1403 ide_startstop_t startstop;
1405 spin_lock_irqsave(&ide_lock, flags);
1406 hwif = hwgroup->hwif;
1408 if (!ide_ack_intr(hwif)) {
1409 spin_unlock_irqrestore(&ide_lock, flags);
1410 return IRQ_NONE;
1413 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1415 * Not expecting an interrupt from this drive.
1416 * That means this could be:
1417 * (1) an interrupt from another PCI device
1418 * sharing the same PCI INT# as us.
1419 * or (2) a drive just entered sleep or standby mode,
1420 * and is interrupting to let us know.
1421 * or (3) a spurious interrupt of unknown origin.
1423 * For PCI, we cannot tell the difference,
1424 * so in that case we just ignore it and hope it goes away.
1426 * FIXME: unexpected_intr should be hwif-> then we can
1427 * remove all the ifdef PCI crap
1429 #ifdef CONFIG_BLK_DEV_IDEPCI
1430 if (hwif->chipset != ide_pci)
1431 #endif /* CONFIG_BLK_DEV_IDEPCI */
1434 * Probably not a shared PCI interrupt,
1435 * so we can safely try to do something about it:
1437 unexpected_intr(irq, hwgroup);
1438 #ifdef CONFIG_BLK_DEV_IDEPCI
1439 } else {
1441 * Whack the status register, just in case
1442 * we have a leftover pending IRQ.
1444 (void) hwif->INB(hwif->io_ports.status_addr);
1445 #endif /* CONFIG_BLK_DEV_IDEPCI */
1447 spin_unlock_irqrestore(&ide_lock, flags);
1448 return IRQ_NONE;
1450 drive = hwgroup->drive;
1451 if (!drive) {
1453 * This should NEVER happen, and there isn't much
1454 * we could do about it here.
1456 * [Note - this can occur if the drive is hot unplugged]
1458 spin_unlock_irqrestore(&ide_lock, flags);
1459 return IRQ_HANDLED;
1461 if (!drive_is_ready(drive)) {
1463 * This happens regularly when we share a PCI IRQ with
1464 * another device. Unfortunately, it can also happen
1465 * with some buggy drives that trigger the IRQ before
1466 * their status register is up to date. Hopefully we have
1467 * enough advance overhead that the latter isn't a problem.
1469 spin_unlock_irqrestore(&ide_lock, flags);
1470 return IRQ_NONE;
1472 if (!hwgroup->busy) {
1473 hwgroup->busy = 1; /* paranoia */
1474 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1476 hwgroup->handler = NULL;
1477 hwgroup->req_gen++;
1478 del_timer(&hwgroup->timer);
1479 spin_unlock(&ide_lock);
1481 /* Some controllers might set DMA INTR no matter DMA or PIO;
1482 * bmdma status might need to be cleared even for
1483 * PIO interrupts to prevent spurious/lost irq.
1485 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1486 /* ide_dma_end() needs bmdma status for error checking.
1487 * So, skip clearing bmdma status here and leave it
1488 * to ide_dma_end() if this is dma interrupt.
1490 hwif->ide_dma_clear_irq(drive);
1492 if (drive->unmask)
1493 local_irq_enable_in_hardirq();
1494 /* service this interrupt, may set handler for next interrupt */
1495 startstop = handler(drive);
1496 spin_lock_irq(&ide_lock);
1499 * Note that handler() may have set things up for another
1500 * interrupt to occur soon, but it cannot happen until
1501 * we exit from this routine, because it will be the
1502 * same irq as is currently being serviced here, and Linux
1503 * won't allow another of the same (on any CPU) until we return.
1505 drive->service_time = jiffies - drive->service_start;
1506 if (startstop == ide_stopped) {
1507 if (hwgroup->handler == NULL) { /* paranoia */
1508 hwgroup->busy = 0;
1509 ide_do_request(hwgroup, hwif->irq);
1510 } else {
1511 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1512 "on exit\n", drive->name);
1515 spin_unlock_irqrestore(&ide_lock, flags);
1516 return IRQ_HANDLED;
1520 * ide_do_drive_cmd - issue IDE special command
1521 * @drive: device to issue command
1522 * @rq: request to issue
1524 * This function issues a special IDE device request
1525 * onto the request queue.
1527 * the rq is queued at the head of the request queue, displacing
1528 * the currently-being-processed request and this function
1529 * returns immediately without waiting for the new rq to be
1530 * completed. This is VERY DANGEROUS, and is intended for
1531 * careful use by the ATAPI tape/cdrom driver code.
1534 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1536 unsigned long flags;
1537 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1539 spin_lock_irqsave(&ide_lock, flags);
1540 hwgroup->rq = NULL;
1541 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1542 __generic_unplug_device(drive->queue);
1543 spin_unlock_irqrestore(&ide_lock, flags);
1546 EXPORT_SYMBOL(ide_do_drive_cmd);
1548 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1550 ide_task_t task;
1552 memset(&task, 0, sizeof(task));
1553 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1554 IDE_TFLAG_OUT_FEATURE | tf_flags;
1555 task.tf.feature = dma; /* Use PIO/DMA */
1556 task.tf.lbam = bcount & 0xff;
1557 task.tf.lbah = (bcount >> 8) & 0xff;
1559 ide_tf_dump(drive->name, &task.tf);
1560 ide_set_irq(drive, 1);
1561 SELECT_MASK(drive, 0);
1562 drive->hwif->tf_load(drive, &task);
1565 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1567 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1569 ide_hwif_t *hwif = drive->hwif;
1570 u8 buf[4] = { 0 };
1572 while (len > 0) {
1573 if (write)
1574 hwif->output_data(drive, NULL, buf, min(4, len));
1575 else
1576 hwif->input_data(drive, NULL, buf, min(4, len));
1577 len -= 4;
1580 EXPORT_SYMBOL_GPL(ide_pad_transfer);