2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
43 static struct workqueue_struct
*ata_sff_wq
;
45 const struct ata_port_operations ata_sff_port_ops
= {
46 .inherits
= &ata_base_port_ops
,
48 .qc_prep
= ata_noop_qc_prep
,
49 .qc_issue
= ata_sff_qc_issue
,
50 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
52 .freeze
= ata_sff_freeze
,
54 .prereset
= ata_sff_prereset
,
55 .softreset
= ata_sff_softreset
,
56 .hardreset
= sata_sff_hardreset
,
57 .postreset
= ata_sff_postreset
,
58 .error_handler
= ata_sff_error_handler
,
60 .sff_dev_select
= ata_sff_dev_select
,
61 .sff_check_status
= ata_sff_check_status
,
62 .sff_tf_load
= ata_sff_tf_load
,
63 .sff_tf_read
= ata_sff_tf_read
,
64 .sff_exec_command
= ata_sff_exec_command
,
65 .sff_data_xfer
= ata_sff_data_xfer
,
66 .sff_drain_fifo
= ata_sff_drain_fifo
,
68 .lost_interrupt
= ata_sff_lost_interrupt
,
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
73 * ata_sff_check_status - Read device status reg & clear interrupt
74 * @ap: port where the device is
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
81 * Inherited from caller.
83 u8
ata_sff_check_status(struct ata_port
*ap
)
85 return ioread8(ap
->ioaddr
.status_addr
);
87 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
90 * ata_sff_altstatus - Read device alternate status reg
91 * @ap: port where the device is
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
100 * Inherited from caller.
102 static u8
ata_sff_altstatus(struct ata_port
*ap
)
104 if (ap
->ops
->sff_check_altstatus
)
105 return ap
->ops
->sff_check_altstatus(ap
);
107 return ioread8(ap
->ioaddr
.altstatus_addr
);
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
120 * Inherited from caller.
122 static u8
ata_sff_irq_status(struct ata_port
*ap
)
126 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
127 status
= ata_sff_altstatus(ap
);
128 /* Not us: We are busy */
129 if (status
& ATA_BUSY
)
132 /* Clear INTRQ latch */
133 status
= ap
->ops
->sff_check_status(ap
);
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
146 * Inherited from caller.
149 static void ata_sff_sync(struct ata_port
*ap
)
151 if (ap
->ops
->sff_check_altstatus
)
152 ap
->ops
->sff_check_altstatus(ap
);
153 else if (ap
->ioaddr
.altstatus_addr
)
154 ioread8(ap
->ioaddr
.altstatus_addr
);
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
166 * Inherited from caller.
169 void ata_sff_pause(struct ata_port
*ap
)
174 EXPORT_SYMBOL_GPL(ata_sff_pause
);
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
184 void ata_sff_dma_pause(struct ata_port
*ap
)
186 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap
);
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
201 * @ap: port containing status register to be polled
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
209 * Kernel thread context (may sleep).
212 * 0 on success, -errno otherwise.
214 int ata_sff_busy_sleep(struct ata_port
*ap
,
215 unsigned long tmout_pat
, unsigned long tmout
)
217 unsigned long timer_start
, timeout
;
220 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
221 timer_start
= jiffies
;
222 timeout
= ata_deadline(timer_start
, tmout_pat
);
223 while (status
!= 0xff && (status
& ATA_BUSY
) &&
224 time_before(jiffies
, timeout
)) {
226 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
229 if (status
!= 0xff && (status
& ATA_BUSY
))
230 ata_port_printk(ap
, KERN_WARNING
,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status
);
234 timeout
= ata_deadline(timer_start
, tmout
);
235 while (status
!= 0xff && (status
& ATA_BUSY
) &&
236 time_before(jiffies
, timeout
)) {
238 status
= ap
->ops
->sff_check_status(ap
);
244 if (status
& ATA_BUSY
) {
245 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
247 DIV_ROUND_UP(tmout
, 1000), status
);
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
255 static int ata_sff_check_ready(struct ata_link
*link
)
257 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
259 return ata_check_ready(status
);
263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
264 * @link: SFF link to wait ready status for
265 * @deadline: deadline jiffies for the operation
267 * Sleep until ATA Status register bit BSY clears, or timeout
271 * Kernel thread context (may sleep).
274 * 0 on success, -errno otherwise.
276 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
278 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
287 * Writes ATA taskfile device control register.
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
293 * Inherited from caller.
295 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
297 if (ap
->ops
->sff_set_devctl
)
298 ap
->ops
->sff_set_devctl(ap
, ctl
);
300 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
304 * ata_sff_dev_select - Select device 0/1 on ATA bus
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
312 * May be used as the dev_select() entry in ata_port_operations.
317 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
322 tmp
= ATA_DEVICE_OBS
;
324 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
326 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
327 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
349 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
350 unsigned int wait
, unsigned int can_sleep
)
352 if (ata_msg_probe(ap
))
353 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device
, wait
);
359 ap
->ops
->sff_dev_select(ap
, device
);
362 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
369 * ata_sff_irq_on - Enable interrupts on a port.
370 * @ap: Port on which interrupts are enabled.
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
379 * Inherited from caller.
381 void ata_sff_irq_on(struct ata_port
*ap
)
383 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
385 if (ap
->ops
->sff_irq_on
) {
386 ap
->ops
->sff_irq_on(ap
);
390 ap
->ctl
&= ~ATA_NIEN
;
391 ap
->last_ctl
= ap
->ctl
;
393 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
394 ata_sff_set_devctl(ap
, ap
->ctl
);
397 if (ap
->ops
->sff_irq_clear
)
398 ap
->ops
->sff_irq_clear(ap
);
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
403 * ata_sff_tf_load - send taskfile registers to host controller
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
407 * Outputs ATA taskfile to standard ATA host controller.
410 * Inherited from caller.
412 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
414 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
415 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
417 if (tf
->ctl
!= ap
->last_ctl
) {
418 if (ioaddr
->ctl_addr
)
419 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
420 ap
->last_ctl
= tf
->ctl
;
423 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
424 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
425 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
426 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
427 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
428 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
429 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
430 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
439 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
440 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
441 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
442 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
443 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
444 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
452 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
453 iowrite8(tf
->device
, ioaddr
->device_addr
);
454 VPRINTK("device 0x%X\n", tf
->device
);
457 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
460 * ata_sff_tf_read - input device's ATA taskfile shadow registers
461 * @ap: Port from which input is read
462 * @tf: ATA taskfile register set for storing input
464 * Reads ATA taskfile registers for currently-selected device
465 * into @tf. Assumes the device has a fully SFF compliant task file
466 * layout and behaviour. If you device does not (eg has a different
467 * status method) then you will need to provide a replacement tf_read
470 * Inherited from caller.
472 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
474 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
476 tf
->command
= ata_sff_check_status(ap
);
477 tf
->feature
= ioread8(ioaddr
->error_addr
);
478 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
479 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
480 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
481 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
482 tf
->device
= ioread8(ioaddr
->device_addr
);
484 if (tf
->flags
& ATA_TFLAG_LBA48
) {
485 if (likely(ioaddr
->ctl_addr
)) {
486 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
487 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
488 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
489 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
490 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
491 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
492 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
493 ap
->last_ctl
= tf
->ctl
;
498 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
501 * ata_sff_exec_command - issue ATA command to host controller
502 * @ap: port to which command is being issued
503 * @tf: ATA taskfile register set
505 * Issues ATA command, with proper synchronization with interrupt
506 * handler / other threads.
509 * spin_lock_irqsave(host lock)
511 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
513 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
515 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
518 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
521 * ata_tf_to_host - issue ATA taskfile to host controller
522 * @ap: port to which command is being issued
523 * @tf: ATA taskfile register set
525 * Issues ATA taskfile register set to ATA host controller,
526 * with proper synchronization with interrupt handler and
530 * spin_lock_irqsave(host lock)
532 static inline void ata_tf_to_host(struct ata_port
*ap
,
533 const struct ata_taskfile
*tf
)
535 ap
->ops
->sff_tf_load(ap
, tf
);
536 ap
->ops
->sff_exec_command(ap
, tf
);
540 * ata_sff_data_xfer - Transfer data by PIO
541 * @dev: device to target
543 * @buflen: buffer length
546 * Transfer data from/to the device data register by PIO.
549 * Inherited from caller.
554 unsigned int ata_sff_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
555 unsigned int buflen
, int rw
)
557 struct ata_port
*ap
= dev
->link
->ap
;
558 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
559 unsigned int words
= buflen
>> 1;
561 /* Transfer multiple of 2 bytes */
563 ioread16_rep(data_addr
, buf
, words
);
565 iowrite16_rep(data_addr
, buf
, words
);
567 /* Transfer trailing byte, if any. */
568 if (unlikely(buflen
& 0x01)) {
569 unsigned char pad
[2];
571 /* Point buf to the tail of buffer */
575 * Use io*16_rep() accessors here as well to avoid pointlessly
576 * swapping bytes to and from on the big endian machines...
579 ioread16_rep(data_addr
, pad
, 1);
583 iowrite16_rep(data_addr
, pad
, 1);
590 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
593 * ata_sff_data_xfer32 - Transfer data by PIO
594 * @dev: device to target
596 * @buflen: buffer length
599 * Transfer data from/to the device data register by PIO using 32bit
603 * Inherited from caller.
609 unsigned int ata_sff_data_xfer32(struct ata_device
*dev
, unsigned char *buf
,
610 unsigned int buflen
, int rw
)
612 struct ata_port
*ap
= dev
->link
->ap
;
613 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
614 unsigned int words
= buflen
>> 2;
615 int slop
= buflen
& 3;
617 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
618 return ata_sff_data_xfer(dev
, buf
, buflen
, rw
);
620 /* Transfer multiple of 4 bytes */
622 ioread32_rep(data_addr
, buf
, words
);
624 iowrite32_rep(data_addr
, buf
, words
);
626 /* Transfer trailing bytes, if any */
627 if (unlikely(slop
)) {
628 unsigned char pad
[4];
630 /* Point buf to the tail of buffer */
631 buf
+= buflen
- slop
;
634 * Use io*_rep() accessors here as well to avoid pointlessly
635 * swapping bytes to and from on the big endian machines...
639 ioread16_rep(data_addr
, pad
, 1);
641 ioread32_rep(data_addr
, pad
, 1);
642 memcpy(buf
, pad
, slop
);
644 memcpy(pad
, buf
, slop
);
646 iowrite16_rep(data_addr
, pad
, 1);
648 iowrite32_rep(data_addr
, pad
, 1);
651 return (buflen
+ 1) & ~1;
653 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
656 * ata_sff_data_xfer_noirq - Transfer data by PIO
657 * @dev: device to target
659 * @buflen: buffer length
662 * Transfer data from/to the device data register by PIO. Do the
663 * transfer with interrupts disabled.
666 * Inherited from caller.
671 unsigned int ata_sff_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
672 unsigned int buflen
, int rw
)
675 unsigned int consumed
;
677 local_irq_save(flags
);
678 consumed
= ata_sff_data_xfer(dev
, buf
, buflen
, rw
);
679 local_irq_restore(flags
);
683 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq
);
686 * ata_pio_sector - Transfer a sector of data.
687 * @qc: Command on going
689 * Transfer qc->sect_size bytes of data from/to the ATA device.
692 * Inherited from caller.
694 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
696 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
697 struct ata_port
*ap
= qc
->ap
;
702 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
703 ap
->hsm_task_state
= HSM_ST_LAST
;
705 page
= sg_page(qc
->cursg
);
706 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
708 /* get the current page and offset */
709 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
712 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
714 if (PageHighMem(page
)) {
717 /* FIXME: use a bounce buffer */
718 local_irq_save(flags
);
719 buf
= kmap_atomic(page
, KM_IRQ0
);
721 /* do the actual data transfer */
722 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
725 kunmap_atomic(buf
, KM_IRQ0
);
726 local_irq_restore(flags
);
728 buf
= page_address(page
);
729 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
733 if (!do_write
&& !PageSlab(page
))
734 flush_dcache_page(page
);
736 qc
->curbytes
+= qc
->sect_size
;
737 qc
->cursg_ofs
+= qc
->sect_size
;
739 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
740 qc
->cursg
= sg_next(qc
->cursg
);
746 * ata_pio_sectors - Transfer one or many sectors.
747 * @qc: Command on going
749 * Transfer one or many sectors of data from/to the
750 * ATA device for the DRQ request.
753 * Inherited from caller.
755 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
757 if (is_multi_taskfile(&qc
->tf
)) {
758 /* READ/WRITE MULTIPLE */
761 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
763 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
764 qc
->dev
->multi_count
);
770 ata_sff_sync(qc
->ap
); /* flush */
774 * atapi_send_cdb - Write CDB bytes to hardware
775 * @ap: Port to which ATAPI device is attached.
776 * @qc: Taskfile currently active
778 * When device has indicated its readiness to accept
779 * a CDB, this function is called. Send the CDB.
784 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
787 DPRINTK("send cdb\n");
788 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
790 ap
->ops
->sff_data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
792 /* FIXME: If the CDB is for DMA do we need to do the transition delay
793 or is bmdma_start guaranteed to do it ? */
794 switch (qc
->tf
.protocol
) {
796 ap
->hsm_task_state
= HSM_ST
;
798 case ATAPI_PROT_NODATA
:
799 ap
->hsm_task_state
= HSM_ST_LAST
;
801 #ifdef CONFIG_ATA_BMDMA
803 ap
->hsm_task_state
= HSM_ST_LAST
;
805 ap
->ops
->bmdma_start(qc
);
807 #endif /* CONFIG_ATA_BMDMA */
814 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
815 * @qc: Command on going
816 * @bytes: number of bytes
818 * Transfer Transfer data from/to the ATAPI device.
821 * Inherited from caller.
824 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
826 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
827 struct ata_port
*ap
= qc
->ap
;
828 struct ata_device
*dev
= qc
->dev
;
829 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
830 struct scatterlist
*sg
;
833 unsigned int offset
, count
, consumed
;
838 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
839 "buf=%u cur=%u bytes=%u",
840 qc
->nbytes
, qc
->curbytes
, bytes
);
845 offset
= sg
->offset
+ qc
->cursg_ofs
;
847 /* get the current page and offset */
848 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
851 /* don't overrun current sg */
852 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
854 /* don't cross page boundaries */
855 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
857 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
859 if (PageHighMem(page
)) {
862 /* FIXME: use bounce buffer */
863 local_irq_save(flags
);
864 buf
= kmap_atomic(page
, KM_IRQ0
);
866 /* do the actual data transfer */
867 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
870 kunmap_atomic(buf
, KM_IRQ0
);
871 local_irq_restore(flags
);
873 buf
= page_address(page
);
874 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
878 bytes
-= min(bytes
, consumed
);
879 qc
->curbytes
+= count
;
880 qc
->cursg_ofs
+= count
;
882 if (qc
->cursg_ofs
== sg
->length
) {
883 qc
->cursg
= sg_next(qc
->cursg
);
888 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
889 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
890 * check correctly as it doesn't know if it is the last request being
891 * made. Somebody should implement a proper sanity check.
899 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
900 * @qc: Command on going
902 * Transfer Transfer data from/to the ATAPI device.
905 * Inherited from caller.
907 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
909 struct ata_port
*ap
= qc
->ap
;
910 struct ata_device
*dev
= qc
->dev
;
911 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
912 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
913 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
915 /* Abuse qc->result_tf for temp storage of intermediate TF
916 * here to save some kernel stack usage.
917 * For normal completion, qc->result_tf is not relevant. For
918 * error, qc->result_tf is later overwritten by ata_qc_complete().
919 * So, the correctness of qc->result_tf is not affected.
921 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
922 ireason
= qc
->result_tf
.nsect
;
923 bc_lo
= qc
->result_tf
.lbam
;
924 bc_hi
= qc
->result_tf
.lbah
;
925 bytes
= (bc_hi
<< 8) | bc_lo
;
927 /* shall be cleared to zero, indicating xfer of data */
928 if (unlikely(ireason
& (1 << 0)))
931 /* make sure transfer direction matches expected */
932 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
933 if (unlikely(do_write
!= i_write
))
936 if (unlikely(!bytes
))
939 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
941 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
943 ata_sff_sync(ap
); /* flush */
948 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
951 qc
->err_mask
|= AC_ERR_HSM
;
952 ap
->hsm_task_state
= HSM_ST_ERR
;
956 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
957 * @ap: the target ata_port
961 * 1 if ok in workqueue, 0 otherwise.
963 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
964 struct ata_queued_cmd
*qc
)
966 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
969 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
970 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
971 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
974 if (ata_is_atapi(qc
->tf
.protocol
) &&
975 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
983 * ata_hsm_qc_complete - finish a qc running on standard HSM
984 * @qc: Command to complete
985 * @in_wq: 1 if called from workqueue, 0 otherwise
987 * Finish @qc which is running on standard HSM.
990 * If @in_wq is zero, spin_lock_irqsave(host lock).
991 * Otherwise, none on entry and grabs host lock.
993 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
995 struct ata_port
*ap
= qc
->ap
;
998 if (ap
->ops
->error_handler
) {
1000 spin_lock_irqsave(ap
->lock
, flags
);
1002 /* EH might have kicked in while host lock is
1005 qc
= ata_qc_from_tag(ap
, qc
->tag
);
1007 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
1009 ata_qc_complete(qc
);
1011 ata_port_freeze(ap
);
1014 spin_unlock_irqrestore(ap
->lock
, flags
);
1016 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
1017 ata_qc_complete(qc
);
1019 ata_port_freeze(ap
);
1023 spin_lock_irqsave(ap
->lock
, flags
);
1025 ata_qc_complete(qc
);
1026 spin_unlock_irqrestore(ap
->lock
, flags
);
1028 ata_qc_complete(qc
);
1033 * ata_sff_hsm_move - move the HSM to the next state.
1034 * @ap: the target ata_port
1036 * @status: current device status
1037 * @in_wq: 1 if called from workqueue, 0 otherwise
1040 * 1 when poll next status needed, 0 otherwise.
1042 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1043 u8 status
, int in_wq
)
1045 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1046 unsigned long flags
= 0;
1049 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
1051 /* Make sure ata_sff_qc_issue() does not throw things
1052 * like DMA polling into the workqueue. Notice that
1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1055 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
1061 switch (ap
->hsm_task_state
) {
1063 /* Send first data block or PACKET CDB */
1065 /* If polling, we will stay in the work queue after
1066 * sending the data. Otherwise, interrupt handler
1067 * takes over after sending the data.
1069 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1071 /* check device status */
1072 if (unlikely((status
& ATA_DRQ
) == 0)) {
1073 /* handle BSY=0, DRQ=0 as error */
1074 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1075 /* device stops HSM for abort/error */
1076 qc
->err_mask
|= AC_ERR_DEV
;
1078 /* HSM violation. Let EH handle this */
1079 ata_ehi_push_desc(ehi
,
1080 "ST_FIRST: !(DRQ|ERR|DF)");
1081 qc
->err_mask
|= AC_ERR_HSM
;
1084 ap
->hsm_task_state
= HSM_ST_ERR
;
1088 /* Device should not ask for data transfer (DRQ=1)
1089 * when it finds something wrong.
1090 * We ignore DRQ here and stop the HSM by
1091 * changing hsm_task_state to HSM_ST_ERR and
1092 * let the EH abort the command or reset the device.
1094 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1095 /* Some ATAPI tape drives forget to clear the ERR bit
1096 * when doing the next command (mostly request sense).
1097 * We ignore ERR here to workaround and proceed sending
1100 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1101 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1102 "DRQ=1 with device error, "
1103 "dev_stat 0x%X", status
);
1104 qc
->err_mask
|= AC_ERR_HSM
;
1105 ap
->hsm_task_state
= HSM_ST_ERR
;
1110 /* Send the CDB (atapi) or the first data block (ata pio out).
1111 * During the state transition, interrupt handler shouldn't
1112 * be invoked before the data transfer is complete and
1113 * hsm_task_state is changed. Hence, the following locking.
1116 spin_lock_irqsave(ap
->lock
, flags
);
1118 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1119 /* PIO data out protocol.
1120 * send first data block.
1123 /* ata_pio_sectors() might change the state
1124 * to HSM_ST_LAST. so, the state is changed here
1125 * before ata_pio_sectors().
1127 ap
->hsm_task_state
= HSM_ST
;
1128 ata_pio_sectors(qc
);
1131 atapi_send_cdb(ap
, qc
);
1134 spin_unlock_irqrestore(ap
->lock
, flags
);
1136 /* if polling, ata_sff_pio_task() handles the rest.
1137 * otherwise, interrupt handler takes over from here.
1142 /* complete command or read/write the data register */
1143 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1144 /* ATAPI PIO protocol */
1145 if ((status
& ATA_DRQ
) == 0) {
1146 /* No more data to transfer or device error.
1147 * Device error will be tagged in HSM_ST_LAST.
1149 ap
->hsm_task_state
= HSM_ST_LAST
;
1153 /* Device should not ask for data transfer (DRQ=1)
1154 * when it finds something wrong.
1155 * We ignore DRQ here and stop the HSM by
1156 * changing hsm_task_state to HSM_ST_ERR and
1157 * let the EH abort the command or reset the device.
1159 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1160 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1161 "DRQ=1 with device error, "
1162 "dev_stat 0x%X", status
);
1163 qc
->err_mask
|= AC_ERR_HSM
;
1164 ap
->hsm_task_state
= HSM_ST_ERR
;
1168 atapi_pio_bytes(qc
);
1170 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1171 /* bad ireason reported by device */
1175 /* ATA PIO protocol */
1176 if (unlikely((status
& ATA_DRQ
) == 0)) {
1177 /* handle BSY=0, DRQ=0 as error */
1178 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1179 /* device stops HSM for abort/error */
1180 qc
->err_mask
|= AC_ERR_DEV
;
1182 /* If diagnostic failed and this is
1183 * IDENTIFY, it's likely a phantom
1184 * device. Mark hint.
1186 if (qc
->dev
->horkage
&
1187 ATA_HORKAGE_DIAGNOSTIC
)
1191 /* HSM violation. Let EH handle this.
1192 * Phantom devices also trigger this
1193 * condition. Mark hint.
1195 ata_ehi_push_desc(ehi
, "ST-ATA: "
1196 "DRQ=0 without device error, "
1197 "dev_stat 0x%X", status
);
1198 qc
->err_mask
|= AC_ERR_HSM
|
1202 ap
->hsm_task_state
= HSM_ST_ERR
;
1206 /* For PIO reads, some devices may ask for
1207 * data transfer (DRQ=1) alone with ERR=1.
1208 * We respect DRQ here and transfer one
1209 * block of junk data before changing the
1210 * hsm_task_state to HSM_ST_ERR.
1212 * For PIO writes, ERR=1 DRQ=1 doesn't make
1213 * sense since the data block has been
1214 * transferred to the device.
1216 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1217 /* data might be corrputed */
1218 qc
->err_mask
|= AC_ERR_DEV
;
1220 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1221 ata_pio_sectors(qc
);
1222 status
= ata_wait_idle(ap
);
1225 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1226 ata_ehi_push_desc(ehi
, "ST-ATA: "
1227 "BUSY|DRQ persists on ERR|DF, "
1228 "dev_stat 0x%X", status
);
1229 qc
->err_mask
|= AC_ERR_HSM
;
1232 /* There are oddball controllers with
1233 * status register stuck at 0x7f and
1234 * lbal/m/h at zero which makes it
1235 * pass all other presence detection
1236 * mechanisms we have. Set NODEV_HINT
1237 * for it. Kernel bz#7241.
1240 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1242 /* ata_pio_sectors() might change the
1243 * state to HSM_ST_LAST. so, the state
1244 * is changed after ata_pio_sectors().
1246 ap
->hsm_task_state
= HSM_ST_ERR
;
1250 ata_pio_sectors(qc
);
1252 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1253 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1255 status
= ata_wait_idle(ap
);
1264 if (unlikely(!ata_ok(status
))) {
1265 qc
->err_mask
|= __ac_err_mask(status
);
1266 ap
->hsm_task_state
= HSM_ST_ERR
;
1270 /* no more data to transfer */
1271 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1272 ap
->print_id
, qc
->dev
->devno
, status
);
1274 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1276 ap
->hsm_task_state
= HSM_ST_IDLE
;
1278 /* complete taskfile transaction */
1279 ata_hsm_qc_complete(qc
, in_wq
);
1285 ap
->hsm_task_state
= HSM_ST_IDLE
;
1287 /* complete taskfile transaction */
1288 ata_hsm_qc_complete(qc
, in_wq
);
1299 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1301 void ata_sff_queue_pio_task(struct ata_port
*ap
, unsigned long delay
)
1303 /* may fail if ata_sff_flush_pio_task() in progress */
1304 queue_delayed_work(ata_sff_wq
, &ap
->sff_pio_task
,
1305 msecs_to_jiffies(delay
));
1307 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1309 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1313 cancel_rearming_delayed_work(&ap
->sff_pio_task
);
1314 ap
->hsm_task_state
= HSM_ST_IDLE
;
1316 if (ata_msg_ctl(ap
))
1317 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1320 static void ata_sff_pio_task(struct work_struct
*work
)
1322 struct ata_port
*ap
=
1323 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1324 struct ata_queued_cmd
*qc
;
1328 /* qc can be NULL if timeout occurred */
1329 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1334 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1337 * This is purely heuristic. This is a fast path.
1338 * Sometimes when we enter, BSY will be cleared in
1339 * a chk-status or two. If not, the drive is probably seeking
1340 * or something. Snooze for a couple msecs, then
1341 * chk-status again. If still busy, queue delayed work.
1343 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1344 if (status
& ATA_BUSY
) {
1346 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1347 if (status
& ATA_BUSY
) {
1348 ata_sff_queue_pio_task(ap
, ATA_SHORT_PAUSE
);
1354 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1356 /* another command or interrupt handler
1357 * may be running at this point.
1364 * ata_sff_qc_issue - issue taskfile to a SFF controller
1365 * @qc: command to issue to device
1367 * This function issues a PIO or NODATA command to a SFF
1371 * spin_lock_irqsave(host lock)
1374 * Zero on success, AC_ERR_* mask on failure
1376 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1378 struct ata_port
*ap
= qc
->ap
;
1380 /* Use polling pio if the LLD doesn't handle
1381 * interrupt driven pio and atapi CDB interrupt.
1383 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1384 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1386 /* select the device */
1387 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1389 /* start the command */
1390 switch (qc
->tf
.protocol
) {
1391 case ATA_PROT_NODATA
:
1392 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1393 ata_qc_set_polling(qc
);
1395 ata_tf_to_host(ap
, &qc
->tf
);
1396 ap
->hsm_task_state
= HSM_ST_LAST
;
1398 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1399 ata_sff_queue_pio_task(ap
, 0);
1404 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1405 ata_qc_set_polling(qc
);
1407 ata_tf_to_host(ap
, &qc
->tf
);
1409 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1410 /* PIO data out protocol */
1411 ap
->hsm_task_state
= HSM_ST_FIRST
;
1412 ata_sff_queue_pio_task(ap
, 0);
1414 /* always send first data block using the
1415 * ata_sff_pio_task() codepath.
1418 /* PIO data in protocol */
1419 ap
->hsm_task_state
= HSM_ST
;
1421 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1422 ata_sff_queue_pio_task(ap
, 0);
1424 /* if polling, ata_sff_pio_task() handles the
1425 * rest. otherwise, interrupt handler takes
1432 case ATAPI_PROT_PIO
:
1433 case ATAPI_PROT_NODATA
:
1434 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1435 ata_qc_set_polling(qc
);
1437 ata_tf_to_host(ap
, &qc
->tf
);
1439 ap
->hsm_task_state
= HSM_ST_FIRST
;
1441 /* send cdb by polling if no cdb interrupt */
1442 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1443 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1444 ata_sff_queue_pio_task(ap
, 0);
1449 return AC_ERR_SYSTEM
;
1454 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1457 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1458 * @qc: qc to fill result TF for
1460 * @qc is finished and result TF needs to be filled. Fill it
1461 * using ->sff_tf_read.
1464 * spin_lock_irqsave(host lock)
1467 * true indicating that result TF is successfully filled.
1469 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1471 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1474 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1476 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1478 ap
->stats
.idle_irq
++;
1481 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1482 ap
->ops
->sff_check_status(ap
);
1483 if (ap
->ops
->sff_irq_clear
)
1484 ap
->ops
->sff_irq_clear(ap
);
1485 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
1489 return 0; /* irq not handled */
1492 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1493 struct ata_queued_cmd
*qc
,
1498 VPRINTK("ata%u: protocol %d task_state %d\n",
1499 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1501 /* Check whether we are expecting interrupt in this state */
1502 switch (ap
->hsm_task_state
) {
1504 /* Some pre-ATAPI-4 devices assert INTRQ
1505 * at this state when ready to receive CDB.
1508 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1509 * The flag was turned on only for atapi devices. No
1510 * need to check ata_is_atapi(qc->tf.protocol) again.
1512 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1513 return ata_sff_idle_irq(ap
);
1519 return ata_sff_idle_irq(ap
);
1522 /* check main status, clearing INTRQ if needed */
1523 status
= ata_sff_irq_status(ap
);
1524 if (status
& ATA_BUSY
) {
1526 /* BMDMA engine is already stopped, we're screwed */
1527 qc
->err_mask
|= AC_ERR_HSM
;
1528 ap
->hsm_task_state
= HSM_ST_ERR
;
1530 return ata_sff_idle_irq(ap
);
1533 /* clear irq events */
1534 if (ap
->ops
->sff_irq_clear
)
1535 ap
->ops
->sff_irq_clear(ap
);
1537 ata_sff_hsm_move(ap
, qc
, status
, 0);
1539 return 1; /* irq handled */
1543 * ata_sff_port_intr - Handle SFF port interrupt
1544 * @ap: Port on which interrupt arrived (possibly...)
1545 * @qc: Taskfile currently active in engine
1547 * Handle port interrupt for given queued command.
1550 * spin_lock_irqsave(host lock)
1553 * One if interrupt was handled, zero if not (shared irq).
1555 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1557 return __ata_sff_port_intr(ap
, qc
, false);
1559 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1561 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1562 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1564 struct ata_host
*host
= dev_instance
;
1565 bool retried
= false;
1567 unsigned int handled
, idle
, polling
;
1568 unsigned long flags
;
1570 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1571 spin_lock_irqsave(&host
->lock
, flags
);
1574 handled
= idle
= polling
= 0;
1575 for (i
= 0; i
< host
->n_ports
; i
++) {
1576 struct ata_port
*ap
= host
->ports
[i
];
1577 struct ata_queued_cmd
*qc
;
1579 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1581 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1582 handled
|= port_intr(ap
, qc
);
1590 * If no port was expecting IRQ but the controller is actually
1591 * asserting IRQ line, nobody cared will ensue. Check IRQ
1592 * pending status if available and clear spurious IRQ.
1594 if (!handled
&& !retried
) {
1597 for (i
= 0; i
< host
->n_ports
; i
++) {
1598 struct ata_port
*ap
= host
->ports
[i
];
1600 if (polling
& (1 << i
))
1603 if (!ap
->ops
->sff_irq_check
||
1604 !ap
->ops
->sff_irq_check(ap
))
1607 if (idle
& (1 << i
)) {
1608 ap
->ops
->sff_check_status(ap
);
1609 if (ap
->ops
->sff_irq_clear
)
1610 ap
->ops
->sff_irq_clear(ap
);
1612 /* clear INTRQ and check if BUSY cleared */
1613 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1616 * With command in flight, we can't do
1617 * sff_irq_clear() w/o racing with completion.
1628 spin_unlock_irqrestore(&host
->lock
, flags
);
1630 return IRQ_RETVAL(handled
);
1634 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1635 * @irq: irq line (unused)
1636 * @dev_instance: pointer to our ata_host information structure
1638 * Default interrupt handler for PCI IDE devices. Calls
1639 * ata_sff_port_intr() for each port that is not disabled.
1642 * Obtains host lock during operation.
1645 * IRQ_NONE or IRQ_HANDLED.
1647 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1649 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1651 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1654 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1655 * @ap: port that appears to have timed out
1657 * Called from the libata error handlers when the core code suspects
1658 * an interrupt has been lost. If it has complete anything we can and
1659 * then return. Interface must support altstatus for this faster
1660 * recovery to occur.
1663 * Caller holds host lock
1666 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1669 struct ata_queued_cmd
*qc
;
1671 /* Only one outstanding command per SFF channel */
1672 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1673 /* We cannot lose an interrupt on a non-existent or polled command */
1674 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1676 /* See if the controller thinks it is still busy - if so the command
1677 isn't a lost IRQ but is still in progress */
1678 status
= ata_sff_altstatus(ap
);
1679 if (status
& ATA_BUSY
)
1682 /* There was a command running, we are no longer busy and we have
1684 ata_port_printk(ap
, KERN_WARNING
, "lost interrupt (Status 0x%x)\n",
1686 /* Run the host interrupt logic as if the interrupt had not been
1688 ata_sff_port_intr(ap
, qc
);
1690 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1693 * ata_sff_freeze - Freeze SFF controller port
1694 * @ap: port to freeze
1696 * Freeze SFF controller port.
1699 * Inherited from caller.
1701 void ata_sff_freeze(struct ata_port
*ap
)
1703 ap
->ctl
|= ATA_NIEN
;
1704 ap
->last_ctl
= ap
->ctl
;
1706 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1707 ata_sff_set_devctl(ap
, ap
->ctl
);
1709 /* Under certain circumstances, some controllers raise IRQ on
1710 * ATA_NIEN manipulation. Also, many controllers fail to mask
1711 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1713 ap
->ops
->sff_check_status(ap
);
1715 if (ap
->ops
->sff_irq_clear
)
1716 ap
->ops
->sff_irq_clear(ap
);
1718 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1721 * ata_sff_thaw - Thaw SFF controller port
1724 * Thaw SFF controller port.
1727 * Inherited from caller.
1729 void ata_sff_thaw(struct ata_port
*ap
)
1731 /* clear & re-enable interrupts */
1732 ap
->ops
->sff_check_status(ap
);
1733 if (ap
->ops
->sff_irq_clear
)
1734 ap
->ops
->sff_irq_clear(ap
);
1737 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1740 * ata_sff_prereset - prepare SFF link for reset
1741 * @link: SFF link to be reset
1742 * @deadline: deadline jiffies for the operation
1744 * SFF link @link is about to be reset. Initialize it. It first
1745 * calls ata_std_prereset() and wait for !BSY if the port is
1749 * Kernel thread context (may sleep)
1752 * 0 on success, -errno otherwise.
1754 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1756 struct ata_eh_context
*ehc
= &link
->eh_context
;
1759 rc
= ata_std_prereset(link
, deadline
);
1763 /* if we're about to do hardreset, nothing more to do */
1764 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1767 /* wait for !BSY if we don't know that no device is attached */
1768 if (!ata_link_offline(link
)) {
1769 rc
= ata_sff_wait_ready(link
, deadline
);
1770 if (rc
&& rc
!= -ENODEV
) {
1771 ata_link_printk(link
, KERN_WARNING
, "device not ready "
1772 "(errno=%d), forcing hardreset\n", rc
);
1773 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1779 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1782 * ata_devchk - PATA device presence detection
1783 * @ap: ATA channel to examine
1784 * @device: Device to examine (starting at zero)
1786 * This technique was originally described in
1787 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1788 * later found its way into the ATA/ATAPI spec.
1790 * Write a pattern to the ATA shadow registers,
1791 * and if a device is present, it will respond by
1792 * correctly storing and echoing back the
1793 * ATA shadow register contents.
1798 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1800 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1803 ap
->ops
->sff_dev_select(ap
, device
);
1805 iowrite8(0x55, ioaddr
->nsect_addr
);
1806 iowrite8(0xaa, ioaddr
->lbal_addr
);
1808 iowrite8(0xaa, ioaddr
->nsect_addr
);
1809 iowrite8(0x55, ioaddr
->lbal_addr
);
1811 iowrite8(0x55, ioaddr
->nsect_addr
);
1812 iowrite8(0xaa, ioaddr
->lbal_addr
);
1814 nsect
= ioread8(ioaddr
->nsect_addr
);
1815 lbal
= ioread8(ioaddr
->lbal_addr
);
1817 if ((nsect
== 0x55) && (lbal
== 0xaa))
1818 return 1; /* we found a device */
1820 return 0; /* nothing found */
1824 * ata_sff_dev_classify - Parse returned ATA device signature
1825 * @dev: ATA device to classify (starting at zero)
1826 * @present: device seems present
1827 * @r_err: Value of error register on completion
1829 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1830 * an ATA/ATAPI-defined set of values is placed in the ATA
1831 * shadow registers, indicating the results of device detection
1834 * Select the ATA device, and read the values from the ATA shadow
1835 * registers. Then parse according to the Error register value,
1836 * and the spec-defined values examined by ata_dev_classify().
1842 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1844 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1847 struct ata_port
*ap
= dev
->link
->ap
;
1848 struct ata_taskfile tf
;
1852 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1854 memset(&tf
, 0, sizeof(tf
));
1856 ap
->ops
->sff_tf_read(ap
, &tf
);
1861 /* see if device passed diags: continue and warn later */
1863 /* diagnostic fail : do nothing _YET_ */
1864 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1867 else if ((dev
->devno
== 0) && (err
== 0x81))
1870 return ATA_DEV_NONE
;
1872 /* determine if device is ATA or ATAPI */
1873 class = ata_dev_classify(&tf
);
1875 if (class == ATA_DEV_UNKNOWN
) {
1876 /* If the device failed diagnostic, it's likely to
1877 * have reported incorrect device signature too.
1878 * Assume ATA device if the device seems present but
1879 * device signature is invalid with diagnostic
1882 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1883 class = ATA_DEV_ATA
;
1885 class = ATA_DEV_NONE
;
1886 } else if ((class == ATA_DEV_ATA
) &&
1887 (ap
->ops
->sff_check_status(ap
) == 0))
1888 class = ATA_DEV_NONE
;
1892 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1895 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1896 * @link: SFF link which is just reset
1897 * @devmask: mask of present devices
1898 * @deadline: deadline jiffies for the operation
1900 * Wait devices attached to SFF @link to become ready after
1901 * reset. It contains preceding 150ms wait to avoid accessing TF
1902 * status register too early.
1905 * Kernel thread context (may sleep).
1908 * 0 on success, -ENODEV if some or all of devices in @devmask
1909 * don't seem to exist. -errno on other errors.
1911 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1912 unsigned long deadline
)
1914 struct ata_port
*ap
= link
->ap
;
1915 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1916 unsigned int dev0
= devmask
& (1 << 0);
1917 unsigned int dev1
= devmask
& (1 << 1);
1920 msleep(ATA_WAIT_AFTER_RESET
);
1922 /* always check readiness of the master device */
1923 rc
= ata_sff_wait_ready(link
, deadline
);
1924 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1925 * and TF status is 0xff, bail out on it too.
1930 /* if device 1 was found in ata_devchk, wait for register
1931 * access briefly, then wait for BSY to clear.
1936 ap
->ops
->sff_dev_select(ap
, 1);
1938 /* Wait for register access. Some ATAPI devices fail
1939 * to set nsect/lbal after reset, so don't waste too
1940 * much time on it. We're gonna wait for !BSY anyway.
1942 for (i
= 0; i
< 2; i
++) {
1945 nsect
= ioread8(ioaddr
->nsect_addr
);
1946 lbal
= ioread8(ioaddr
->lbal_addr
);
1947 if ((nsect
== 1) && (lbal
== 1))
1949 msleep(50); /* give drive a breather */
1952 rc
= ata_sff_wait_ready(link
, deadline
);
1960 /* is all this really necessary? */
1961 ap
->ops
->sff_dev_select(ap
, 0);
1963 ap
->ops
->sff_dev_select(ap
, 1);
1965 ap
->ops
->sff_dev_select(ap
, 0);
1969 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
1971 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
1972 unsigned long deadline
)
1974 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1976 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
1978 /* software reset. causes dev0 to be selected */
1979 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1980 udelay(20); /* FIXME: flush */
1981 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
1982 udelay(20); /* FIXME: flush */
1983 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1984 ap
->last_ctl
= ap
->ctl
;
1986 /* wait the port to become ready */
1987 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
1991 * ata_sff_softreset - reset host port via ATA SRST
1992 * @link: ATA link to reset
1993 * @classes: resulting classes of attached devices
1994 * @deadline: deadline jiffies for the operation
1996 * Reset host port using ATA SRST.
1999 * Kernel thread context (may sleep)
2002 * 0 on success, -errno otherwise.
2004 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
2005 unsigned long deadline
)
2007 struct ata_port
*ap
= link
->ap
;
2008 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2009 unsigned int devmask
= 0;
2015 /* determine if device 0/1 are present */
2016 if (ata_devchk(ap
, 0))
2017 devmask
|= (1 << 0);
2018 if (slave_possible
&& ata_devchk(ap
, 1))
2019 devmask
|= (1 << 1);
2021 /* select device 0 again */
2022 ap
->ops
->sff_dev_select(ap
, 0);
2024 /* issue bus reset */
2025 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2026 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
2027 /* if link is occupied, -ENODEV too is an error */
2028 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
2029 ata_link_printk(link
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
2033 /* determine by signature whether we have ATA or ATAPI devices */
2034 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2035 devmask
& (1 << 0), &err
);
2036 if (slave_possible
&& err
!= 0x81)
2037 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2038 devmask
& (1 << 1), &err
);
2040 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2043 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2046 * sata_sff_hardreset - reset host port via SATA phy reset
2047 * @link: link to reset
2048 * @class: resulting class of attached device
2049 * @deadline: deadline jiffies for the operation
2051 * SATA phy-reset host port using DET bits of SControl register,
2052 * wait for !BSY and classify the attached device.
2055 * Kernel thread context (may sleep)
2058 * 0 on success, -errno otherwise.
2060 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2061 unsigned long deadline
)
2063 struct ata_eh_context
*ehc
= &link
->eh_context
;
2064 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2068 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2069 ata_sff_check_ready
);
2071 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2073 DPRINTK("EXIT, class=%u\n", *class);
2076 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2079 * ata_sff_postreset - SFF postreset callback
2080 * @link: the target SFF ata_link
2081 * @classes: classes of attached devices
2083 * This function is invoked after a successful reset. It first
2084 * calls ata_std_postreset() and performs SFF specific postreset
2088 * Kernel thread context (may sleep)
2090 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2092 struct ata_port
*ap
= link
->ap
;
2094 ata_std_postreset(link
, classes
);
2096 /* is double-select really necessary? */
2097 if (classes
[0] != ATA_DEV_NONE
)
2098 ap
->ops
->sff_dev_select(ap
, 1);
2099 if (classes
[1] != ATA_DEV_NONE
)
2100 ap
->ops
->sff_dev_select(ap
, 0);
2102 /* bail out if no device is present */
2103 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2104 DPRINTK("EXIT, no device\n");
2108 /* set up device control */
2109 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2110 ata_sff_set_devctl(ap
, ap
->ctl
);
2111 ap
->last_ctl
= ap
->ctl
;
2114 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2117 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2120 * Drain the FIFO and device of any stuck data following a command
2121 * failing to complete. In some cases this is necessary before a
2122 * reset will recover the device.
2126 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2129 struct ata_port
*ap
;
2131 /* We only need to flush incoming data when a command was running */
2132 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2136 /* Drain up to 64K of data before we give up this recovery method */
2137 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2138 && count
< 65536; count
+= 2)
2139 ioread16(ap
->ioaddr
.data_addr
);
2141 /* Can become DEBUG later */
2143 ata_port_printk(ap
, KERN_DEBUG
,
2144 "drained %d bytes to clear DRQ.\n", count
);
2147 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2150 * ata_sff_error_handler - Stock error handler for SFF controller
2151 * @ap: port to handle error for
2153 * Stock error handler for SFF controller. It can handle both
2154 * PATA and SATA controllers. Many controllers should be able to
2155 * use this EH as-is or with some added handling before and
2159 * Kernel thread context (may sleep)
2161 void ata_sff_error_handler(struct ata_port
*ap
)
2163 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2164 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2165 struct ata_queued_cmd
*qc
;
2166 unsigned long flags
;
2168 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2169 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2172 spin_lock_irqsave(ap
->lock
, flags
);
2175 * We *MUST* do FIFO draining before we issue a reset as
2176 * several devices helpfully clear their internal state and
2177 * will lock solid if we touch the data port post reset. Pass
2178 * qc in case anyone wants to do different PIO/DMA recovery or
2179 * has per command fixups
2181 if (ap
->ops
->sff_drain_fifo
)
2182 ap
->ops
->sff_drain_fifo(qc
);
2184 spin_unlock_irqrestore(ap
->lock
, flags
);
2186 /* ignore ata_sff_softreset if ctl isn't accessible */
2187 if (softreset
== ata_sff_softreset
&& !ap
->ioaddr
.ctl_addr
)
2190 /* ignore built-in hardresets if SCR access is not available */
2191 if ((hardreset
== sata_std_hardreset
||
2192 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2195 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2196 ap
->ops
->postreset
);
2198 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2201 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2202 * @ioaddr: IO address structure to be initialized
2204 * Utility function which initializes data_addr, error_addr,
2205 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2206 * device_addr, status_addr, and command_addr to standard offsets
2207 * relative to cmd_addr.
2209 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2211 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2213 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2214 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2215 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2216 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2217 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2218 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2219 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2220 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2221 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2222 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2224 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2228 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2232 /* Check the PCI resources for this channel are enabled */
2234 for (i
= 0; i
< 2; i
++) {
2235 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2236 pci_resource_len(pdev
, port
+ i
) == 0)
2243 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2244 * @host: target ATA host
2246 * Acquire native PCI ATA resources for @host and initialize the
2247 * first two ports of @host accordingly. Ports marked dummy are
2248 * skipped and allocation failure makes the port dummy.
2250 * Note that native PCI resources are valid even for legacy hosts
2251 * as we fix up pdev resources array early in boot, so this
2252 * function can be used for both native and legacy SFF hosts.
2255 * Inherited from calling layer (may sleep).
2258 * 0 if at least one port is initialized, -ENODEV if no port is
2261 int ata_pci_sff_init_host(struct ata_host
*host
)
2263 struct device
*gdev
= host
->dev
;
2264 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2265 unsigned int mask
= 0;
2268 /* request, iomap BARs and init port addresses accordingly */
2269 for (i
= 0; i
< 2; i
++) {
2270 struct ata_port
*ap
= host
->ports
[i
];
2272 void __iomem
* const *iomap
;
2274 if (ata_port_is_dummy(ap
))
2277 /* Discard disabled ports. Some controllers show
2278 * their unused channels this way. Disabled ports are
2281 if (!ata_resources_present(pdev
, i
)) {
2282 ap
->ops
= &ata_dummy_port_ops
;
2286 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2287 dev_driver_string(gdev
));
2289 dev_printk(KERN_WARNING
, gdev
,
2290 "failed to request/iomap BARs for port %d "
2291 "(errno=%d)\n", i
, rc
);
2293 pcim_pin_device(pdev
);
2294 ap
->ops
= &ata_dummy_port_ops
;
2297 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2299 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2300 ap
->ioaddr
.altstatus_addr
=
2301 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2302 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2303 ata_sff_std_ports(&ap
->ioaddr
);
2305 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2306 (unsigned long long)pci_resource_start(pdev
, base
),
2307 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2313 dev_printk(KERN_ERR
, gdev
, "no available native port\n");
2319 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2322 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2323 * @pdev: target PCI device
2324 * @ppi: array of port_info, must be enough for two ports
2325 * @r_host: out argument for the initialized ATA host
2327 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2328 * all PCI resources and initialize it accordingly in one go.
2331 * Inherited from calling layer (may sleep).
2334 * 0 on success, -errno otherwise.
2336 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2337 const struct ata_port_info
* const *ppi
,
2338 struct ata_host
**r_host
)
2340 struct ata_host
*host
;
2343 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2346 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2348 dev_printk(KERN_ERR
, &pdev
->dev
,
2349 "failed to allocate ATA host\n");
2354 rc
= ata_pci_sff_init_host(host
);
2358 devres_remove_group(&pdev
->dev
, NULL
);
2363 devres_release_group(&pdev
->dev
, NULL
);
2366 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2369 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2370 * @host: target SFF ATA host
2371 * @irq_handler: irq_handler used when requesting IRQ(s)
2372 * @sht: scsi_host_template to use when registering the host
2374 * This is the counterpart of ata_host_activate() for SFF ATA
2375 * hosts. This separate helper is necessary because SFF hosts
2376 * use two separate interrupts in legacy mode.
2379 * Inherited from calling layer (may sleep).
2382 * 0 on success, -errno otherwise.
2384 int ata_pci_sff_activate_host(struct ata_host
*host
,
2385 irq_handler_t irq_handler
,
2386 struct scsi_host_template
*sht
)
2388 struct device
*dev
= host
->dev
;
2389 struct pci_dev
*pdev
= to_pci_dev(dev
);
2390 const char *drv_name
= dev_driver_string(host
->dev
);
2391 int legacy_mode
= 0, rc
;
2393 rc
= ata_host_start(host
);
2397 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2400 /* TODO: What if one channel is in native mode ... */
2401 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2402 mask
= (1 << 2) | (1 << 0);
2403 if ((tmp8
& mask
) != mask
)
2405 #if defined(CONFIG_NO_ATA_LEGACY)
2406 /* Some platforms with PCI limits cannot address compat
2407 port space. In that case we punt if their firmware has
2408 left a device in compatibility mode */
2410 printk(KERN_ERR
"ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2416 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2419 if (!legacy_mode
&& pdev
->irq
) {
2420 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2421 IRQF_SHARED
, drv_name
, host
);
2425 ata_port_desc(host
->ports
[0], "irq %d", pdev
->irq
);
2426 ata_port_desc(host
->ports
[1], "irq %d", pdev
->irq
);
2427 } else if (legacy_mode
) {
2428 if (!ata_port_is_dummy(host
->ports
[0])) {
2429 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2430 irq_handler
, IRQF_SHARED
,
2435 ata_port_desc(host
->ports
[0], "irq %d",
2436 ATA_PRIMARY_IRQ(pdev
));
2439 if (!ata_port_is_dummy(host
->ports
[1])) {
2440 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2441 irq_handler
, IRQF_SHARED
,
2446 ata_port_desc(host
->ports
[1], "irq %d",
2447 ATA_SECONDARY_IRQ(pdev
));
2451 rc
= ata_host_register(host
, sht
);
2454 devres_remove_group(dev
, NULL
);
2456 devres_release_group(dev
, NULL
);
2460 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2462 static const struct ata_port_info
*ata_sff_find_valid_pi(
2463 const struct ata_port_info
* const *ppi
)
2467 /* look up the first valid port_info */
2468 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2469 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2476 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2477 * @pdev: Controller to be initialized
2478 * @ppi: array of port_info, must be enough for two ports
2479 * @sht: scsi_host_template to use when registering the host
2480 * @host_priv: host private_data
2481 * @hflag: host flags
2483 * This is a helper function which can be called from a driver's
2484 * xxx_init_one() probe function if the hardware uses traditional
2485 * IDE taskfile registers and is PIO only.
2488 * Nobody makes a single channel controller that appears solely as
2489 * the secondary legacy port on PCI.
2492 * Inherited from PCI layer (may sleep).
2495 * Zero on success, negative on errno-based value on error.
2497 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2498 const struct ata_port_info
* const *ppi
,
2499 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2501 struct device
*dev
= &pdev
->dev
;
2502 const struct ata_port_info
*pi
;
2503 struct ata_host
*host
= NULL
;
2508 pi
= ata_sff_find_valid_pi(ppi
);
2510 dev_printk(KERN_ERR
, &pdev
->dev
,
2511 "no valid port_info specified\n");
2515 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2518 rc
= pcim_enable_device(pdev
);
2522 /* prepare and activate SFF host */
2523 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2526 host
->private_data
= host_priv
;
2527 host
->flags
|= hflag
;
2529 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2532 devres_remove_group(&pdev
->dev
, NULL
);
2534 devres_release_group(&pdev
->dev
, NULL
);
2538 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2540 #endif /* CONFIG_PCI */
2546 #ifdef CONFIG_ATA_BMDMA
2548 const struct ata_port_operations ata_bmdma_port_ops
= {
2549 .inherits
= &ata_sff_port_ops
,
2551 .error_handler
= ata_bmdma_error_handler
,
2552 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2554 .qc_prep
= ata_bmdma_qc_prep
,
2555 .qc_issue
= ata_bmdma_qc_issue
,
2557 .sff_irq_clear
= ata_bmdma_irq_clear
,
2558 .bmdma_setup
= ata_bmdma_setup
,
2559 .bmdma_start
= ata_bmdma_start
,
2560 .bmdma_stop
= ata_bmdma_stop
,
2561 .bmdma_status
= ata_bmdma_status
,
2563 .port_start
= ata_bmdma_port_start
,
2565 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2567 const struct ata_port_operations ata_bmdma32_port_ops
= {
2568 .inherits
= &ata_bmdma_port_ops
,
2570 .sff_data_xfer
= ata_sff_data_xfer32
,
2571 .port_start
= ata_bmdma_port_start32
,
2573 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2576 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2577 * @qc: Metadata associated with taskfile to be transferred
2579 * Fill PCI IDE PRD (scatter-gather) table with segments
2580 * associated with the current disk command.
2583 * spin_lock_irqsave(host lock)
2586 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2588 struct ata_port
*ap
= qc
->ap
;
2589 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2590 struct scatterlist
*sg
;
2591 unsigned int si
, pi
;
2594 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2598 /* determine if physical DMA addr spans 64K boundary.
2599 * Note h/w doesn't support 64-bit, so we unconditionally
2600 * truncate dma_addr_t to u32.
2602 addr
= (u32
) sg_dma_address(sg
);
2603 sg_len
= sg_dma_len(sg
);
2606 offset
= addr
& 0xffff;
2608 if ((offset
+ sg_len
) > 0x10000)
2609 len
= 0x10000 - offset
;
2611 prd
[pi
].addr
= cpu_to_le32(addr
);
2612 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2613 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2621 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2625 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2626 * @qc: Metadata associated with taskfile to be transferred
2628 * Fill PCI IDE PRD (scatter-gather) table with segments
2629 * associated with the current disk command. Perform the fill
2630 * so that we avoid writing any length 64K records for
2631 * controllers that don't follow the spec.
2634 * spin_lock_irqsave(host lock)
2637 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2639 struct ata_port
*ap
= qc
->ap
;
2640 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2641 struct scatterlist
*sg
;
2642 unsigned int si
, pi
;
2645 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2647 u32 sg_len
, len
, blen
;
2649 /* determine if physical DMA addr spans 64K boundary.
2650 * Note h/w doesn't support 64-bit, so we unconditionally
2651 * truncate dma_addr_t to u32.
2653 addr
= (u32
) sg_dma_address(sg
);
2654 sg_len
= sg_dma_len(sg
);
2657 offset
= addr
& 0xffff;
2659 if ((offset
+ sg_len
) > 0x10000)
2660 len
= 0x10000 - offset
;
2662 blen
= len
& 0xffff;
2663 prd
[pi
].addr
= cpu_to_le32(addr
);
2665 /* Some PATA chipsets like the CS5530 can't
2666 cope with 0x0000 meaning 64K as the spec
2668 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2670 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2672 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2673 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2681 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2685 * ata_bmdma_qc_prep - Prepare taskfile for submission
2686 * @qc: Metadata associated with taskfile to be prepared
2688 * Prepare ATA taskfile for submission.
2691 * spin_lock_irqsave(host lock)
2693 void ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2695 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2698 ata_bmdma_fill_sg(qc
);
2700 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2703 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2704 * @qc: Metadata associated with taskfile to be prepared
2706 * Prepare ATA taskfile for submission.
2709 * spin_lock_irqsave(host lock)
2711 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2713 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2716 ata_bmdma_fill_sg_dumb(qc
);
2718 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2721 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2722 * @qc: command to issue to device
2724 * This function issues a PIO, NODATA or DMA command to a
2725 * SFF/BMDMA controller. PIO and NODATA are handled by
2726 * ata_sff_qc_issue().
2729 * spin_lock_irqsave(host lock)
2732 * Zero on success, AC_ERR_* mask on failure
2734 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2736 struct ata_port
*ap
= qc
->ap
;
2738 /* see ata_dma_blacklisted() */
2739 BUG_ON((ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
2740 qc
->tf
.protocol
== ATAPI_PROT_DMA
);
2742 /* defer PIO handling to sff_qc_issue */
2743 if (!ata_is_dma(qc
->tf
.protocol
))
2744 return ata_sff_qc_issue(qc
);
2746 /* select the device */
2747 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2749 /* start the command */
2750 switch (qc
->tf
.protocol
) {
2752 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2754 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2755 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2756 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2757 ap
->hsm_task_state
= HSM_ST_LAST
;
2760 case ATAPI_PROT_DMA
:
2761 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2763 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2764 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2765 ap
->hsm_task_state
= HSM_ST_FIRST
;
2767 /* send cdb by polling if no cdb interrupt */
2768 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2769 ata_sff_queue_pio_task(ap
, 0);
2774 return AC_ERR_SYSTEM
;
2779 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2782 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2783 * @ap: Port on which interrupt arrived (possibly...)
2784 * @qc: Taskfile currently active in engine
2786 * Handle port interrupt for given queued command.
2789 * spin_lock_irqsave(host lock)
2792 * One if interrupt was handled, zero if not (shared irq).
2794 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2796 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2798 bool bmdma_stopped
= false;
2799 unsigned int handled
;
2801 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2802 /* check status of DMA engine */
2803 host_stat
= ap
->ops
->bmdma_status(ap
);
2804 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2806 /* if it's not our irq... */
2807 if (!(host_stat
& ATA_DMA_INTR
))
2808 return ata_sff_idle_irq(ap
);
2810 /* before we do anything else, clear DMA-Start bit */
2811 ap
->ops
->bmdma_stop(qc
);
2812 bmdma_stopped
= true;
2814 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2815 /* error when transfering data to/from memory */
2816 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2817 ap
->hsm_task_state
= HSM_ST_ERR
;
2821 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2823 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2824 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2828 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2831 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2832 * @irq: irq line (unused)
2833 * @dev_instance: pointer to our ata_host information structure
2835 * Default interrupt handler for PCI IDE devices. Calls
2836 * ata_bmdma_port_intr() for each port that is not disabled.
2839 * Obtains host lock during operation.
2842 * IRQ_NONE or IRQ_HANDLED.
2844 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2846 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2848 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2851 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2852 * @ap: port to handle error for
2854 * Stock error handler for BMDMA controller. It can handle both
2855 * PATA and SATA controllers. Most BMDMA controllers should be
2856 * able to use this EH as-is or with some added handling before
2860 * Kernel thread context (may sleep)
2862 void ata_bmdma_error_handler(struct ata_port
*ap
)
2864 struct ata_queued_cmd
*qc
;
2865 unsigned long flags
;
2868 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2869 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2872 /* reset PIO HSM and stop DMA engine */
2873 spin_lock_irqsave(ap
->lock
, flags
);
2875 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2878 host_stat
= ap
->ops
->bmdma_status(ap
);
2880 /* BMDMA controllers indicate host bus error by
2881 * setting DMA_ERR bit and timing out. As it wasn't
2882 * really a timeout event, adjust error mask and
2883 * cancel frozen state.
2885 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2886 qc
->err_mask
= AC_ERR_HOST_BUS
;
2890 ap
->ops
->bmdma_stop(qc
);
2892 /* if we're gonna thaw, make sure IRQ is clear */
2894 ap
->ops
->sff_check_status(ap
);
2895 if (ap
->ops
->sff_irq_clear
)
2896 ap
->ops
->sff_irq_clear(ap
);
2900 spin_unlock_irqrestore(ap
->lock
, flags
);
2903 ata_eh_thaw_port(ap
);
2905 ata_sff_error_handler(ap
);
2907 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2910 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2911 * @qc: internal command to clean up
2914 * Kernel thread context (may sleep)
2916 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2918 struct ata_port
*ap
= qc
->ap
;
2919 unsigned long flags
;
2921 if (ata_is_dma(qc
->tf
.protocol
)) {
2922 spin_lock_irqsave(ap
->lock
, flags
);
2923 ap
->ops
->bmdma_stop(qc
);
2924 spin_unlock_irqrestore(ap
->lock
, flags
);
2927 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2930 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2931 * @ap: Port associated with this ATA transaction.
2933 * Clear interrupt and error flags in DMA status register.
2935 * May be used as the irq_clear() entry in ata_port_operations.
2938 * spin_lock_irqsave(host lock)
2940 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2942 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2947 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2949 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2952 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2953 * @qc: Info associated with this ATA transaction.
2956 * spin_lock_irqsave(host lock)
2958 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
2960 struct ata_port
*ap
= qc
->ap
;
2961 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
2964 /* load PRD table addr. */
2965 mb(); /* make sure PRD table writes are visible to controller */
2966 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
2968 /* specify data direction, triple-check start bit is clear */
2969 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2970 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
2972 dmactl
|= ATA_DMA_WR
;
2973 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2975 /* issue r/w command */
2976 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
2978 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
2981 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2982 * @qc: Info associated with this ATA transaction.
2985 * spin_lock_irqsave(host lock)
2987 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
2989 struct ata_port
*ap
= qc
->ap
;
2992 /* start host DMA transaction */
2993 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2994 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2996 /* Strictly, one may wish to issue an ioread8() here, to
2997 * flush the mmio write. However, control also passes
2998 * to the hardware at this point, and it will interrupt
2999 * us when we are to resume control. So, in effect,
3000 * we don't care when the mmio write flushes.
3001 * Further, a read of the DMA status register _immediately_
3002 * following the write may not be what certain flaky hardware
3003 * is expected, so I think it is best to not add a readb()
3004 * without first all the MMIO ATA cards/mobos.
3005 * Or maybe I'm just being paranoid.
3007 * FIXME: The posting of this write means I/O starts are
3008 * unneccessarily delayed for MMIO
3011 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3014 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3015 * @qc: Command we are ending DMA for
3017 * Clears the ATA_DMA_START flag in the dma control register
3019 * May be used as the bmdma_stop() entry in ata_port_operations.
3022 * spin_lock_irqsave(host lock)
3024 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3026 struct ata_port
*ap
= qc
->ap
;
3027 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3029 /* clear start/stop bit */
3030 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3031 mmio
+ ATA_DMA_CMD
);
3033 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3034 ata_sff_dma_pause(ap
);
3036 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3039 * ata_bmdma_status - Read PCI IDE BMDMA status
3040 * @ap: Port associated with this ATA transaction.
3042 * Read and return BMDMA status register.
3044 * May be used as the bmdma_status() entry in ata_port_operations.
3047 * spin_lock_irqsave(host lock)
3049 u8
ata_bmdma_status(struct ata_port
*ap
)
3051 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3053 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3057 * ata_bmdma_port_start - Set port up for bmdma.
3058 * @ap: Port to initialize
3060 * Called just after data structures for each port are
3061 * initialized. Allocates space for PRD table.
3063 * May be used as the port_start() entry in ata_port_operations.
3066 * Inherited from caller.
3068 int ata_bmdma_port_start(struct ata_port
*ap
)
3070 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3072 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3073 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3080 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3083 * ata_bmdma_port_start32 - Set port up for dma.
3084 * @ap: Port to initialize
3086 * Called just after data structures for each port are
3087 * initialized. Enables 32bit PIO and allocates space for PRD
3090 * May be used as the port_start() entry in ata_port_operations for
3091 * devices that are capable of 32bit PIO.
3094 * Inherited from caller.
3096 int ata_bmdma_port_start32(struct ata_port
*ap
)
3098 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3099 return ata_bmdma_port_start(ap
);
3101 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3106 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3109 * Some PCI ATA devices report simplex mode but in fact can be told to
3110 * enter non simplex mode. This implements the necessary logic to
3111 * perform the task on such devices. Calling it on other devices will
3112 * have -undefined- behaviour.
3114 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3116 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3122 simplex
= inb(bmdma
+ 0x02);
3123 outb(simplex
& 0x60, bmdma
+ 0x02);
3124 simplex
= inb(bmdma
+ 0x02);
3129 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3131 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3135 dev_printk(KERN_ERR
, host
->dev
, "BMDMA: %s, falling back to PIO\n",
3138 for (i
= 0; i
< 2; i
++) {
3139 host
->ports
[i
]->mwdma_mask
= 0;
3140 host
->ports
[i
]->udma_mask
= 0;
3145 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3146 * @host: target ATA host
3148 * Acquire PCI BMDMA resources and initialize @host accordingly.
3151 * Inherited from calling layer (may sleep).
3153 void ata_pci_bmdma_init(struct ata_host
*host
)
3155 struct device
*gdev
= host
->dev
;
3156 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3159 /* No BAR4 allocation: No DMA */
3160 if (pci_resource_start(pdev
, 4) == 0) {
3161 ata_bmdma_nodma(host
, "BAR4 is zero");
3166 * Some controllers require BMDMA region to be initialized
3167 * even if DMA is not in use to clear IRQ status via
3168 * ->sff_irq_clear method. Try to initialize bmdma_addr
3169 * regardless of dma masks.
3171 rc
= pci_set_dma_mask(pdev
, ATA_DMA_MASK
);
3173 ata_bmdma_nodma(host
, "failed to set dma mask");
3175 rc
= pci_set_consistent_dma_mask(pdev
, ATA_DMA_MASK
);
3177 ata_bmdma_nodma(host
,
3178 "failed to set consistent dma mask");
3181 /* request and iomap DMA region */
3182 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3184 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3187 host
->iomap
= pcim_iomap_table(pdev
);
3189 for (i
= 0; i
< 2; i
++) {
3190 struct ata_port
*ap
= host
->ports
[i
];
3191 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3193 if (ata_port_is_dummy(ap
))
3196 ap
->ioaddr
.bmdma_addr
= bmdma
;
3197 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3198 (ioread8(bmdma
+ 2) & 0x80))
3199 host
->flags
|= ATA_HOST_SIMPLEX
;
3201 ata_port_desc(ap
, "bmdma 0x%llx",
3202 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3205 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3208 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3209 * @pdev: target PCI device
3210 * @ppi: array of port_info, must be enough for two ports
3211 * @r_host: out argument for the initialized ATA host
3213 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3214 * resources and initialize it accordingly in one go.
3217 * Inherited from calling layer (may sleep).
3220 * 0 on success, -errno otherwise.
3222 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3223 const struct ata_port_info
* const * ppi
,
3224 struct ata_host
**r_host
)
3228 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3232 ata_pci_bmdma_init(*r_host
);
3235 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3238 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3239 * @pdev: Controller to be initialized
3240 * @ppi: array of port_info, must be enough for two ports
3241 * @sht: scsi_host_template to use when registering the host
3242 * @host_priv: host private_data
3243 * @hflags: host flags
3245 * This function is similar to ata_pci_sff_init_one() but also
3246 * takes care of BMDMA initialization.
3249 * Inherited from PCI layer (may sleep).
3252 * Zero on success, negative on errno-based value on error.
3254 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3255 const struct ata_port_info
* const * ppi
,
3256 struct scsi_host_template
*sht
, void *host_priv
,
3259 struct device
*dev
= &pdev
->dev
;
3260 const struct ata_port_info
*pi
;
3261 struct ata_host
*host
= NULL
;
3266 pi
= ata_sff_find_valid_pi(ppi
);
3268 dev_printk(KERN_ERR
, &pdev
->dev
,
3269 "no valid port_info specified\n");
3273 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
3276 rc
= pcim_enable_device(pdev
);
3280 /* prepare and activate BMDMA host */
3281 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
3284 host
->private_data
= host_priv
;
3285 host
->flags
|= hflags
;
3287 pci_set_master(pdev
);
3288 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
3291 devres_remove_group(&pdev
->dev
, NULL
);
3293 devres_release_group(&pdev
->dev
, NULL
);
3297 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3299 #endif /* CONFIG_PCI */
3300 #endif /* CONFIG_ATA_BMDMA */
3303 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3304 * @ap: Port to initialize
3306 * Called on port allocation to initialize SFF/BMDMA specific
3312 void ata_sff_port_init(struct ata_port
*ap
)
3314 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3315 ap
->ctl
= ATA_DEVCTL_OBS
;
3316 ap
->last_ctl
= 0xFF;
3319 int __init
ata_sff_init(void)
3321 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_RESCUER
, WQ_MAX_ACTIVE
);
3328 void __exit
ata_sff_exit(void)
3330 destroy_workqueue(ata_sff_wq
);