staging: smbfs building fix
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blobc62efcb959c73fc458367d811c576e634fb49634
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 struct core_name {
70 char *corename;
71 int used, size;
73 static atomic_t call_count = ATOMIC_INIT(1);
75 /* The maximal length of core_pattern is also specified in sysctl.c */
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
82 if (!fmt)
83 return -EINVAL;
84 write_lock(&binfmt_lock);
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
87 write_unlock(&binfmt_lock);
88 return 0;
91 EXPORT_SYMBOL(__register_binfmt);
93 void unregister_binfmt(struct linux_binfmt * fmt)
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
100 EXPORT_SYMBOL(unregister_binfmt);
102 static inline void put_binfmt(struct linux_binfmt * fmt)
104 module_put(fmt->module);
108 * Note that a shared library must be both readable and executable due to
109 * security reasons.
111 * Also note that we take the address to load from from the file itself.
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
115 struct file *file;
116 char *tmp = getname(library);
117 int error = PTR_ERR(tmp);
119 if (IS_ERR(tmp))
120 goto out;
122 file = do_filp_open(AT_FDCWD, tmp,
123 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
124 MAY_READ | MAY_EXEC | MAY_OPEN);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
130 error = -EINVAL;
131 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
132 goto exit;
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
138 fsnotify_open(file);
140 error = -ENOEXEC;
141 if(file->f_op) {
142 struct linux_binfmt * fmt;
144 read_lock(&binfmt_lock);
145 list_for_each_entry(fmt, &formats, lh) {
146 if (!fmt->load_shlib)
147 continue;
148 if (!try_module_get(fmt->module))
149 continue;
150 read_unlock(&binfmt_lock);
151 error = fmt->load_shlib(file);
152 read_lock(&binfmt_lock);
153 put_binfmt(fmt);
154 if (error != -ENOEXEC)
155 break;
157 read_unlock(&binfmt_lock);
159 exit:
160 fput(file);
161 out:
162 return error;
165 #ifdef CONFIG_MMU
167 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
172 if (!mm || !diff)
173 return;
175 bprm->vma_pages = pages;
177 #ifdef SPLIT_RSS_COUNTING
178 add_mm_counter(mm, MM_ANONPAGES, diff);
179 #else
180 spin_lock(&mm->page_table_lock);
181 add_mm_counter(mm, MM_ANONPAGES, diff);
182 spin_unlock(&mm->page_table_lock);
183 #endif
186 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
187 int write)
189 struct page *page;
190 int ret;
192 #ifdef CONFIG_STACK_GROWSUP
193 if (write) {
194 ret = expand_stack_downwards(bprm->vma, pos);
195 if (ret < 0)
196 return NULL;
198 #endif
199 ret = get_user_pages(current, bprm->mm, pos,
200 1, write, 1, &page, NULL);
201 if (ret <= 0)
202 return NULL;
204 if (write) {
205 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
206 struct rlimit *rlim;
208 acct_arg_size(bprm, size / PAGE_SIZE);
211 * We've historically supported up to 32 pages (ARG_MAX)
212 * of argument strings even with small stacks
214 if (size <= ARG_MAX)
215 return page;
218 * Limit to 1/4-th the stack size for the argv+env strings.
219 * This ensures that:
220 * - the remaining binfmt code will not run out of stack space,
221 * - the program will have a reasonable amount of stack left
222 * to work from.
224 rlim = current->signal->rlim;
225 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
226 put_page(page);
227 return NULL;
231 return page;
234 static void put_arg_page(struct page *page)
236 put_page(page);
239 static void free_arg_page(struct linux_binprm *bprm, int i)
243 static void free_arg_pages(struct linux_binprm *bprm)
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 struct page *page)
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 static int __bprm_mm_init(struct linux_binprm *bprm)
255 int err;
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
259 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
260 if (!vma)
261 return -ENOMEM;
263 down_write(&mm->mmap_sem);
264 vma->vm_mm = mm;
267 * Place the stack at the largest stack address the architecture
268 * supports. Later, we'll move this to an appropriate place. We don't
269 * use STACK_TOP because that can depend on attributes which aren't
270 * configured yet.
272 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
273 vma->vm_end = STACK_TOP_MAX;
274 vma->vm_start = vma->vm_end - PAGE_SIZE;
275 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
276 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277 INIT_LIST_HEAD(&vma->anon_vma_chain);
279 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
280 if (err)
281 goto err;
283 err = insert_vm_struct(mm, vma);
284 if (err)
285 goto err;
287 mm->stack_vm = mm->total_vm = 1;
288 up_write(&mm->mmap_sem);
289 bprm->p = vma->vm_end - sizeof(void *);
290 return 0;
291 err:
292 up_write(&mm->mmap_sem);
293 bprm->vma = NULL;
294 kmem_cache_free(vm_area_cachep, vma);
295 return err;
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
300 return len <= MAX_ARG_STRLEN;
303 #else
305 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
309 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 int write)
312 struct page *page;
314 page = bprm->page[pos / PAGE_SIZE];
315 if (!page && write) {
316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 if (!page)
318 return NULL;
319 bprm->page[pos / PAGE_SIZE] = page;
322 return page;
325 static void put_arg_page(struct page *page)
329 static void free_arg_page(struct linux_binprm *bprm, int i)
331 if (bprm->page[i]) {
332 __free_page(bprm->page[i]);
333 bprm->page[i] = NULL;
337 static void free_arg_pages(struct linux_binprm *bprm)
339 int i;
341 for (i = 0; i < MAX_ARG_PAGES; i++)
342 free_arg_page(bprm, i);
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 struct page *page)
350 static int __bprm_mm_init(struct linux_binprm *bprm)
352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 return 0;
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
358 return len <= bprm->p;
361 #endif /* CONFIG_MMU */
364 * Create a new mm_struct and populate it with a temporary stack
365 * vm_area_struct. We don't have enough context at this point to set the stack
366 * flags, permissions, and offset, so we use temporary values. We'll update
367 * them later in setup_arg_pages().
369 int bprm_mm_init(struct linux_binprm *bprm)
371 int err;
372 struct mm_struct *mm = NULL;
374 bprm->mm = mm = mm_alloc();
375 err = -ENOMEM;
376 if (!mm)
377 goto err;
379 err = init_new_context(current, mm);
380 if (err)
381 goto err;
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
387 return 0;
389 err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
395 return err;
399 * count() counts the number of strings in array ARGV.
401 static int count(const char __user * const __user * argv, int max)
403 int i = 0;
405 if (argv != NULL) {
406 for (;;) {
407 const char __user * p;
409 if (get_user(p, argv))
410 return -EFAULT;
411 if (!p)
412 break;
413 argv++;
414 if (i++ >= max)
415 return -E2BIG;
417 if (fatal_signal_pending(current))
418 return -ERESTARTNOHAND;
419 cond_resched();
422 return i;
426 * 'copy_strings()' copies argument/environment strings from the old
427 * processes's memory to the new process's stack. The call to get_user_pages()
428 * ensures the destination page is created and not swapped out.
430 static int copy_strings(int argc, const char __user *const __user *argv,
431 struct linux_binprm *bprm)
433 struct page *kmapped_page = NULL;
434 char *kaddr = NULL;
435 unsigned long kpos = 0;
436 int ret;
438 while (argc-- > 0) {
439 const char __user *str;
440 int len;
441 unsigned long pos;
443 if (get_user(str, argv+argc) ||
444 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
445 ret = -EFAULT;
446 goto out;
449 if (!valid_arg_len(bprm, len)) {
450 ret = -E2BIG;
451 goto out;
454 /* We're going to work our way backwords. */
455 pos = bprm->p;
456 str += len;
457 bprm->p -= len;
459 while (len > 0) {
460 int offset, bytes_to_copy;
462 if (fatal_signal_pending(current)) {
463 ret = -ERESTARTNOHAND;
464 goto out;
466 cond_resched();
468 offset = pos % PAGE_SIZE;
469 if (offset == 0)
470 offset = PAGE_SIZE;
472 bytes_to_copy = offset;
473 if (bytes_to_copy > len)
474 bytes_to_copy = len;
476 offset -= bytes_to_copy;
477 pos -= bytes_to_copy;
478 str -= bytes_to_copy;
479 len -= bytes_to_copy;
481 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
482 struct page *page;
484 page = get_arg_page(bprm, pos, 1);
485 if (!page) {
486 ret = -E2BIG;
487 goto out;
490 if (kmapped_page) {
491 flush_kernel_dcache_page(kmapped_page);
492 kunmap(kmapped_page);
493 put_arg_page(kmapped_page);
495 kmapped_page = page;
496 kaddr = kmap(kmapped_page);
497 kpos = pos & PAGE_MASK;
498 flush_arg_page(bprm, kpos, kmapped_page);
500 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
501 ret = -EFAULT;
502 goto out;
506 ret = 0;
507 out:
508 if (kmapped_page) {
509 flush_kernel_dcache_page(kmapped_page);
510 kunmap(kmapped_page);
511 put_arg_page(kmapped_page);
513 return ret;
517 * Like copy_strings, but get argv and its values from kernel memory.
519 int copy_strings_kernel(int argc, const char *const *argv,
520 struct linux_binprm *bprm)
522 int r;
523 mm_segment_t oldfs = get_fs();
524 set_fs(KERNEL_DS);
525 r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
526 set_fs(oldfs);
527 return r;
529 EXPORT_SYMBOL(copy_strings_kernel);
531 #ifdef CONFIG_MMU
534 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
535 * the binfmt code determines where the new stack should reside, we shift it to
536 * its final location. The process proceeds as follows:
538 * 1) Use shift to calculate the new vma endpoints.
539 * 2) Extend vma to cover both the old and new ranges. This ensures the
540 * arguments passed to subsequent functions are consistent.
541 * 3) Move vma's page tables to the new range.
542 * 4) Free up any cleared pgd range.
543 * 5) Shrink the vma to cover only the new range.
545 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
547 struct mm_struct *mm = vma->vm_mm;
548 unsigned long old_start = vma->vm_start;
549 unsigned long old_end = vma->vm_end;
550 unsigned long length = old_end - old_start;
551 unsigned long new_start = old_start - shift;
552 unsigned long new_end = old_end - shift;
553 struct mmu_gather *tlb;
555 BUG_ON(new_start > new_end);
558 * ensure there are no vmas between where we want to go
559 * and where we are
561 if (vma != find_vma(mm, new_start))
562 return -EFAULT;
565 * cover the whole range: [new_start, old_end)
567 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
568 return -ENOMEM;
571 * move the page tables downwards, on failure we rely on
572 * process cleanup to remove whatever mess we made.
574 if (length != move_page_tables(vma, old_start,
575 vma, new_start, length))
576 return -ENOMEM;
578 lru_add_drain();
579 tlb = tlb_gather_mmu(mm, 0);
580 if (new_end > old_start) {
582 * when the old and new regions overlap clear from new_end.
584 free_pgd_range(tlb, new_end, old_end, new_end,
585 vma->vm_next ? vma->vm_next->vm_start : 0);
586 } else {
588 * otherwise, clean from old_start; this is done to not touch
589 * the address space in [new_end, old_start) some architectures
590 * have constraints on va-space that make this illegal (IA64) -
591 * for the others its just a little faster.
593 free_pgd_range(tlb, old_start, old_end, new_end,
594 vma->vm_next ? vma->vm_next->vm_start : 0);
596 tlb_finish_mmu(tlb, new_end, old_end);
599 * Shrink the vma to just the new range. Always succeeds.
601 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
603 return 0;
607 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
608 * the stack is optionally relocated, and some extra space is added.
610 int setup_arg_pages(struct linux_binprm *bprm,
611 unsigned long stack_top,
612 int executable_stack)
614 unsigned long ret;
615 unsigned long stack_shift;
616 struct mm_struct *mm = current->mm;
617 struct vm_area_struct *vma = bprm->vma;
618 struct vm_area_struct *prev = NULL;
619 unsigned long vm_flags;
620 unsigned long stack_base;
621 unsigned long stack_size;
622 unsigned long stack_expand;
623 unsigned long rlim_stack;
625 #ifdef CONFIG_STACK_GROWSUP
626 /* Limit stack size to 1GB */
627 stack_base = rlimit_max(RLIMIT_STACK);
628 if (stack_base > (1 << 30))
629 stack_base = 1 << 30;
631 /* Make sure we didn't let the argument array grow too large. */
632 if (vma->vm_end - vma->vm_start > stack_base)
633 return -ENOMEM;
635 stack_base = PAGE_ALIGN(stack_top - stack_base);
637 stack_shift = vma->vm_start - stack_base;
638 mm->arg_start = bprm->p - stack_shift;
639 bprm->p = vma->vm_end - stack_shift;
640 #else
641 stack_top = arch_align_stack(stack_top);
642 stack_top = PAGE_ALIGN(stack_top);
644 if (unlikely(stack_top < mmap_min_addr) ||
645 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
646 return -ENOMEM;
648 stack_shift = vma->vm_end - stack_top;
650 bprm->p -= stack_shift;
651 mm->arg_start = bprm->p;
652 #endif
654 if (bprm->loader)
655 bprm->loader -= stack_shift;
656 bprm->exec -= stack_shift;
658 down_write(&mm->mmap_sem);
659 vm_flags = VM_STACK_FLAGS;
662 * Adjust stack execute permissions; explicitly enable for
663 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
664 * (arch default) otherwise.
666 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
667 vm_flags |= VM_EXEC;
668 else if (executable_stack == EXSTACK_DISABLE_X)
669 vm_flags &= ~VM_EXEC;
670 vm_flags |= mm->def_flags;
671 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
673 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
674 vm_flags);
675 if (ret)
676 goto out_unlock;
677 BUG_ON(prev != vma);
679 /* Move stack pages down in memory. */
680 if (stack_shift) {
681 ret = shift_arg_pages(vma, stack_shift);
682 if (ret)
683 goto out_unlock;
686 /* mprotect_fixup is overkill to remove the temporary stack flags */
687 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
689 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
690 stack_size = vma->vm_end - vma->vm_start;
692 * Align this down to a page boundary as expand_stack
693 * will align it up.
695 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
696 #ifdef CONFIG_STACK_GROWSUP
697 if (stack_size + stack_expand > rlim_stack)
698 stack_base = vma->vm_start + rlim_stack;
699 else
700 stack_base = vma->vm_end + stack_expand;
701 #else
702 if (stack_size + stack_expand > rlim_stack)
703 stack_base = vma->vm_end - rlim_stack;
704 else
705 stack_base = vma->vm_start - stack_expand;
706 #endif
707 current->mm->start_stack = bprm->p;
708 ret = expand_stack(vma, stack_base);
709 if (ret)
710 ret = -EFAULT;
712 out_unlock:
713 up_write(&mm->mmap_sem);
714 return ret;
716 EXPORT_SYMBOL(setup_arg_pages);
718 #endif /* CONFIG_MMU */
720 struct file *open_exec(const char *name)
722 struct file *file;
723 int err;
725 file = do_filp_open(AT_FDCWD, name,
726 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
727 MAY_EXEC | MAY_OPEN);
728 if (IS_ERR(file))
729 goto out;
731 err = -EACCES;
732 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
733 goto exit;
735 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
736 goto exit;
738 fsnotify_open(file);
740 err = deny_write_access(file);
741 if (err)
742 goto exit;
744 out:
745 return file;
747 exit:
748 fput(file);
749 return ERR_PTR(err);
751 EXPORT_SYMBOL(open_exec);
753 int kernel_read(struct file *file, loff_t offset,
754 char *addr, unsigned long count)
756 mm_segment_t old_fs;
757 loff_t pos = offset;
758 int result;
760 old_fs = get_fs();
761 set_fs(get_ds());
762 /* The cast to a user pointer is valid due to the set_fs() */
763 result = vfs_read(file, (void __user *)addr, count, &pos);
764 set_fs(old_fs);
765 return result;
768 EXPORT_SYMBOL(kernel_read);
770 static int exec_mmap(struct mm_struct *mm)
772 struct task_struct *tsk;
773 struct mm_struct * old_mm, *active_mm;
775 /* Notify parent that we're no longer interested in the old VM */
776 tsk = current;
777 old_mm = current->mm;
778 sync_mm_rss(tsk, old_mm);
779 mm_release(tsk, old_mm);
781 if (old_mm) {
783 * Make sure that if there is a core dump in progress
784 * for the old mm, we get out and die instead of going
785 * through with the exec. We must hold mmap_sem around
786 * checking core_state and changing tsk->mm.
788 down_read(&old_mm->mmap_sem);
789 if (unlikely(old_mm->core_state)) {
790 up_read(&old_mm->mmap_sem);
791 return -EINTR;
794 task_lock(tsk);
795 active_mm = tsk->active_mm;
796 tsk->mm = mm;
797 tsk->active_mm = mm;
798 activate_mm(active_mm, mm);
799 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
800 atomic_dec(&old_mm->oom_disable_count);
801 atomic_inc(&tsk->mm->oom_disable_count);
803 task_unlock(tsk);
804 arch_pick_mmap_layout(mm);
805 if (old_mm) {
806 up_read(&old_mm->mmap_sem);
807 BUG_ON(active_mm != old_mm);
808 mm_update_next_owner(old_mm);
809 mmput(old_mm);
810 return 0;
812 mmdrop(active_mm);
813 return 0;
817 * This function makes sure the current process has its own signal table,
818 * so that flush_signal_handlers can later reset the handlers without
819 * disturbing other processes. (Other processes might share the signal
820 * table via the CLONE_SIGHAND option to clone().)
822 static int de_thread(struct task_struct *tsk)
824 struct signal_struct *sig = tsk->signal;
825 struct sighand_struct *oldsighand = tsk->sighand;
826 spinlock_t *lock = &oldsighand->siglock;
828 if (thread_group_empty(tsk))
829 goto no_thread_group;
832 * Kill all other threads in the thread group.
834 spin_lock_irq(lock);
835 if (signal_group_exit(sig)) {
837 * Another group action in progress, just
838 * return so that the signal is processed.
840 spin_unlock_irq(lock);
841 return -EAGAIN;
844 sig->group_exit_task = tsk;
845 sig->notify_count = zap_other_threads(tsk);
846 if (!thread_group_leader(tsk))
847 sig->notify_count--;
849 while (sig->notify_count) {
850 __set_current_state(TASK_UNINTERRUPTIBLE);
851 spin_unlock_irq(lock);
852 schedule();
853 spin_lock_irq(lock);
855 spin_unlock_irq(lock);
858 * At this point all other threads have exited, all we have to
859 * do is to wait for the thread group leader to become inactive,
860 * and to assume its PID:
862 if (!thread_group_leader(tsk)) {
863 struct task_struct *leader = tsk->group_leader;
865 sig->notify_count = -1; /* for exit_notify() */
866 for (;;) {
867 write_lock_irq(&tasklist_lock);
868 if (likely(leader->exit_state))
869 break;
870 __set_current_state(TASK_UNINTERRUPTIBLE);
871 write_unlock_irq(&tasklist_lock);
872 schedule();
876 * The only record we have of the real-time age of a
877 * process, regardless of execs it's done, is start_time.
878 * All the past CPU time is accumulated in signal_struct
879 * from sister threads now dead. But in this non-leader
880 * exec, nothing survives from the original leader thread,
881 * whose birth marks the true age of this process now.
882 * When we take on its identity by switching to its PID, we
883 * also take its birthdate (always earlier than our own).
885 tsk->start_time = leader->start_time;
887 BUG_ON(!same_thread_group(leader, tsk));
888 BUG_ON(has_group_leader_pid(tsk));
890 * An exec() starts a new thread group with the
891 * TGID of the previous thread group. Rehash the
892 * two threads with a switched PID, and release
893 * the former thread group leader:
896 /* Become a process group leader with the old leader's pid.
897 * The old leader becomes a thread of the this thread group.
898 * Note: The old leader also uses this pid until release_task
899 * is called. Odd but simple and correct.
901 detach_pid(tsk, PIDTYPE_PID);
902 tsk->pid = leader->pid;
903 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
904 transfer_pid(leader, tsk, PIDTYPE_PGID);
905 transfer_pid(leader, tsk, PIDTYPE_SID);
907 list_replace_rcu(&leader->tasks, &tsk->tasks);
908 list_replace_init(&leader->sibling, &tsk->sibling);
910 tsk->group_leader = tsk;
911 leader->group_leader = tsk;
913 tsk->exit_signal = SIGCHLD;
915 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
916 leader->exit_state = EXIT_DEAD;
917 write_unlock_irq(&tasklist_lock);
919 release_task(leader);
922 sig->group_exit_task = NULL;
923 sig->notify_count = 0;
925 no_thread_group:
926 if (current->mm)
927 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
929 exit_itimers(sig);
930 flush_itimer_signals();
932 if (atomic_read(&oldsighand->count) != 1) {
933 struct sighand_struct *newsighand;
935 * This ->sighand is shared with the CLONE_SIGHAND
936 * but not CLONE_THREAD task, switch to the new one.
938 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
939 if (!newsighand)
940 return -ENOMEM;
942 atomic_set(&newsighand->count, 1);
943 memcpy(newsighand->action, oldsighand->action,
944 sizeof(newsighand->action));
946 write_lock_irq(&tasklist_lock);
947 spin_lock(&oldsighand->siglock);
948 rcu_assign_pointer(tsk->sighand, newsighand);
949 spin_unlock(&oldsighand->siglock);
950 write_unlock_irq(&tasklist_lock);
952 __cleanup_sighand(oldsighand);
955 BUG_ON(!thread_group_leader(tsk));
956 return 0;
960 * These functions flushes out all traces of the currently running executable
961 * so that a new one can be started
963 static void flush_old_files(struct files_struct * files)
965 long j = -1;
966 struct fdtable *fdt;
968 spin_lock(&files->file_lock);
969 for (;;) {
970 unsigned long set, i;
972 j++;
973 i = j * __NFDBITS;
974 fdt = files_fdtable(files);
975 if (i >= fdt->max_fds)
976 break;
977 set = fdt->close_on_exec->fds_bits[j];
978 if (!set)
979 continue;
980 fdt->close_on_exec->fds_bits[j] = 0;
981 spin_unlock(&files->file_lock);
982 for ( ; set ; i++,set >>= 1) {
983 if (set & 1) {
984 sys_close(i);
987 spin_lock(&files->file_lock);
990 spin_unlock(&files->file_lock);
993 char *get_task_comm(char *buf, struct task_struct *tsk)
995 /* buf must be at least sizeof(tsk->comm) in size */
996 task_lock(tsk);
997 strncpy(buf, tsk->comm, sizeof(tsk->comm));
998 task_unlock(tsk);
999 return buf;
1002 void set_task_comm(struct task_struct *tsk, char *buf)
1004 task_lock(tsk);
1007 * Threads may access current->comm without holding
1008 * the task lock, so write the string carefully.
1009 * Readers without a lock may see incomplete new
1010 * names but are safe from non-terminating string reads.
1012 memset(tsk->comm, 0, TASK_COMM_LEN);
1013 wmb();
1014 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1015 task_unlock(tsk);
1016 perf_event_comm(tsk);
1019 int flush_old_exec(struct linux_binprm * bprm)
1021 int retval;
1024 * Make sure we have a private signal table and that
1025 * we are unassociated from the previous thread group.
1027 retval = de_thread(current);
1028 if (retval)
1029 goto out;
1031 set_mm_exe_file(bprm->mm, bprm->file);
1034 * Release all of the old mmap stuff
1036 acct_arg_size(bprm, 0);
1037 retval = exec_mmap(bprm->mm);
1038 if (retval)
1039 goto out;
1041 bprm->mm = NULL; /* We're using it now */
1043 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1044 flush_thread();
1045 current->personality &= ~bprm->per_clear;
1047 return 0;
1049 out:
1050 return retval;
1052 EXPORT_SYMBOL(flush_old_exec);
1054 void setup_new_exec(struct linux_binprm * bprm)
1056 int i, ch;
1057 const char *name;
1058 char tcomm[sizeof(current->comm)];
1060 arch_pick_mmap_layout(current->mm);
1062 /* This is the point of no return */
1063 current->sas_ss_sp = current->sas_ss_size = 0;
1065 if (current_euid() == current_uid() && current_egid() == current_gid())
1066 set_dumpable(current->mm, 1);
1067 else
1068 set_dumpable(current->mm, suid_dumpable);
1070 name = bprm->filename;
1072 /* Copies the binary name from after last slash */
1073 for (i=0; (ch = *(name++)) != '\0';) {
1074 if (ch == '/')
1075 i = 0; /* overwrite what we wrote */
1076 else
1077 if (i < (sizeof(tcomm) - 1))
1078 tcomm[i++] = ch;
1080 tcomm[i] = '\0';
1081 set_task_comm(current, tcomm);
1083 /* Set the new mm task size. We have to do that late because it may
1084 * depend on TIF_32BIT which is only updated in flush_thread() on
1085 * some architectures like powerpc
1087 current->mm->task_size = TASK_SIZE;
1089 /* install the new credentials */
1090 if (bprm->cred->uid != current_euid() ||
1091 bprm->cred->gid != current_egid()) {
1092 current->pdeath_signal = 0;
1093 } else if (file_permission(bprm->file, MAY_READ) ||
1094 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1095 set_dumpable(current->mm, suid_dumpable);
1099 * Flush performance counters when crossing a
1100 * security domain:
1102 if (!get_dumpable(current->mm))
1103 perf_event_exit_task(current);
1105 /* An exec changes our domain. We are no longer part of the thread
1106 group */
1108 current->self_exec_id++;
1110 flush_signal_handlers(current, 0);
1111 flush_old_files(current->files);
1113 EXPORT_SYMBOL(setup_new_exec);
1116 * Prepare credentials and lock ->cred_guard_mutex.
1117 * install_exec_creds() commits the new creds and drops the lock.
1118 * Or, if exec fails before, free_bprm() should release ->cred and
1119 * and unlock.
1121 int prepare_bprm_creds(struct linux_binprm *bprm)
1123 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1124 return -ERESTARTNOINTR;
1126 bprm->cred = prepare_exec_creds();
1127 if (likely(bprm->cred))
1128 return 0;
1130 mutex_unlock(&current->signal->cred_guard_mutex);
1131 return -ENOMEM;
1134 void free_bprm(struct linux_binprm *bprm)
1136 free_arg_pages(bprm);
1137 if (bprm->cred) {
1138 mutex_unlock(&current->signal->cred_guard_mutex);
1139 abort_creds(bprm->cred);
1141 kfree(bprm);
1145 * install the new credentials for this executable
1147 void install_exec_creds(struct linux_binprm *bprm)
1149 security_bprm_committing_creds(bprm);
1151 commit_creds(bprm->cred);
1152 bprm->cred = NULL;
1154 * cred_guard_mutex must be held at least to this point to prevent
1155 * ptrace_attach() from altering our determination of the task's
1156 * credentials; any time after this it may be unlocked.
1158 security_bprm_committed_creds(bprm);
1159 mutex_unlock(&current->signal->cred_guard_mutex);
1161 EXPORT_SYMBOL(install_exec_creds);
1164 * determine how safe it is to execute the proposed program
1165 * - the caller must hold ->cred_guard_mutex to protect against
1166 * PTRACE_ATTACH
1168 int check_unsafe_exec(struct linux_binprm *bprm)
1170 struct task_struct *p = current, *t;
1171 unsigned n_fs;
1172 int res = 0;
1174 bprm->unsafe = tracehook_unsafe_exec(p);
1176 n_fs = 1;
1177 spin_lock(&p->fs->lock);
1178 rcu_read_lock();
1179 for (t = next_thread(p); t != p; t = next_thread(t)) {
1180 if (t->fs == p->fs)
1181 n_fs++;
1183 rcu_read_unlock();
1185 if (p->fs->users > n_fs) {
1186 bprm->unsafe |= LSM_UNSAFE_SHARE;
1187 } else {
1188 res = -EAGAIN;
1189 if (!p->fs->in_exec) {
1190 p->fs->in_exec = 1;
1191 res = 1;
1194 spin_unlock(&p->fs->lock);
1196 return res;
1200 * Fill the binprm structure from the inode.
1201 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1203 * This may be called multiple times for binary chains (scripts for example).
1205 int prepare_binprm(struct linux_binprm *bprm)
1207 umode_t mode;
1208 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1209 int retval;
1211 mode = inode->i_mode;
1212 if (bprm->file->f_op == NULL)
1213 return -EACCES;
1215 /* clear any previous set[ug]id data from a previous binary */
1216 bprm->cred->euid = current_euid();
1217 bprm->cred->egid = current_egid();
1219 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1220 /* Set-uid? */
1221 if (mode & S_ISUID) {
1222 bprm->per_clear |= PER_CLEAR_ON_SETID;
1223 bprm->cred->euid = inode->i_uid;
1226 /* Set-gid? */
1228 * If setgid is set but no group execute bit then this
1229 * is a candidate for mandatory locking, not a setgid
1230 * executable.
1232 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1233 bprm->per_clear |= PER_CLEAR_ON_SETID;
1234 bprm->cred->egid = inode->i_gid;
1238 /* fill in binprm security blob */
1239 retval = security_bprm_set_creds(bprm);
1240 if (retval)
1241 return retval;
1242 bprm->cred_prepared = 1;
1244 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1245 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1248 EXPORT_SYMBOL(prepare_binprm);
1251 * Arguments are '\0' separated strings found at the location bprm->p
1252 * points to; chop off the first by relocating brpm->p to right after
1253 * the first '\0' encountered.
1255 int remove_arg_zero(struct linux_binprm *bprm)
1257 int ret = 0;
1258 unsigned long offset;
1259 char *kaddr;
1260 struct page *page;
1262 if (!bprm->argc)
1263 return 0;
1265 do {
1266 offset = bprm->p & ~PAGE_MASK;
1267 page = get_arg_page(bprm, bprm->p, 0);
1268 if (!page) {
1269 ret = -EFAULT;
1270 goto out;
1272 kaddr = kmap_atomic(page, KM_USER0);
1274 for (; offset < PAGE_SIZE && kaddr[offset];
1275 offset++, bprm->p++)
1278 kunmap_atomic(kaddr, KM_USER0);
1279 put_arg_page(page);
1281 if (offset == PAGE_SIZE)
1282 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1283 } while (offset == PAGE_SIZE);
1285 bprm->p++;
1286 bprm->argc--;
1287 ret = 0;
1289 out:
1290 return ret;
1292 EXPORT_SYMBOL(remove_arg_zero);
1295 * cycle the list of binary formats handler, until one recognizes the image
1297 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1299 unsigned int depth = bprm->recursion_depth;
1300 int try,retval;
1301 struct linux_binfmt *fmt;
1303 retval = security_bprm_check(bprm);
1304 if (retval)
1305 return retval;
1307 /* kernel module loader fixup */
1308 /* so we don't try to load run modprobe in kernel space. */
1309 set_fs(USER_DS);
1311 retval = audit_bprm(bprm);
1312 if (retval)
1313 return retval;
1315 retval = -ENOENT;
1316 for (try=0; try<2; try++) {
1317 read_lock(&binfmt_lock);
1318 list_for_each_entry(fmt, &formats, lh) {
1319 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1320 if (!fn)
1321 continue;
1322 if (!try_module_get(fmt->module))
1323 continue;
1324 read_unlock(&binfmt_lock);
1325 retval = fn(bprm, regs);
1327 * Restore the depth counter to its starting value
1328 * in this call, so we don't have to rely on every
1329 * load_binary function to restore it on return.
1331 bprm->recursion_depth = depth;
1332 if (retval >= 0) {
1333 if (depth == 0)
1334 tracehook_report_exec(fmt, bprm, regs);
1335 put_binfmt(fmt);
1336 allow_write_access(bprm->file);
1337 if (bprm->file)
1338 fput(bprm->file);
1339 bprm->file = NULL;
1340 current->did_exec = 1;
1341 proc_exec_connector(current);
1342 return retval;
1344 read_lock(&binfmt_lock);
1345 put_binfmt(fmt);
1346 if (retval != -ENOEXEC || bprm->mm == NULL)
1347 break;
1348 if (!bprm->file) {
1349 read_unlock(&binfmt_lock);
1350 return retval;
1353 read_unlock(&binfmt_lock);
1354 if (retval != -ENOEXEC || bprm->mm == NULL) {
1355 break;
1356 #ifdef CONFIG_MODULES
1357 } else {
1358 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1359 if (printable(bprm->buf[0]) &&
1360 printable(bprm->buf[1]) &&
1361 printable(bprm->buf[2]) &&
1362 printable(bprm->buf[3]))
1363 break; /* -ENOEXEC */
1364 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1365 #endif
1368 return retval;
1371 EXPORT_SYMBOL(search_binary_handler);
1374 * sys_execve() executes a new program.
1376 int do_execve(const char * filename,
1377 const char __user *const __user *argv,
1378 const char __user *const __user *envp,
1379 struct pt_regs * regs)
1381 struct linux_binprm *bprm;
1382 struct file *file;
1383 struct files_struct *displaced;
1384 bool clear_in_exec;
1385 int retval;
1387 retval = unshare_files(&displaced);
1388 if (retval)
1389 goto out_ret;
1391 retval = -ENOMEM;
1392 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1393 if (!bprm)
1394 goto out_files;
1396 retval = prepare_bprm_creds(bprm);
1397 if (retval)
1398 goto out_free;
1400 retval = check_unsafe_exec(bprm);
1401 if (retval < 0)
1402 goto out_free;
1403 clear_in_exec = retval;
1404 current->in_execve = 1;
1406 file = open_exec(filename);
1407 retval = PTR_ERR(file);
1408 if (IS_ERR(file))
1409 goto out_unmark;
1411 sched_exec();
1413 bprm->file = file;
1414 bprm->filename = filename;
1415 bprm->interp = filename;
1417 retval = bprm_mm_init(bprm);
1418 if (retval)
1419 goto out_file;
1421 bprm->argc = count(argv, MAX_ARG_STRINGS);
1422 if ((retval = bprm->argc) < 0)
1423 goto out;
1425 bprm->envc = count(envp, MAX_ARG_STRINGS);
1426 if ((retval = bprm->envc) < 0)
1427 goto out;
1429 retval = prepare_binprm(bprm);
1430 if (retval < 0)
1431 goto out;
1433 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1434 if (retval < 0)
1435 goto out;
1437 bprm->exec = bprm->p;
1438 retval = copy_strings(bprm->envc, envp, bprm);
1439 if (retval < 0)
1440 goto out;
1442 retval = copy_strings(bprm->argc, argv, bprm);
1443 if (retval < 0)
1444 goto out;
1446 retval = search_binary_handler(bprm,regs);
1447 if (retval < 0)
1448 goto out;
1450 /* execve succeeded */
1451 current->fs->in_exec = 0;
1452 current->in_execve = 0;
1453 acct_update_integrals(current);
1454 free_bprm(bprm);
1455 if (displaced)
1456 put_files_struct(displaced);
1457 return retval;
1459 out:
1460 if (bprm->mm) {
1461 acct_arg_size(bprm, 0);
1462 mmput(bprm->mm);
1465 out_file:
1466 if (bprm->file) {
1467 allow_write_access(bprm->file);
1468 fput(bprm->file);
1471 out_unmark:
1472 if (clear_in_exec)
1473 current->fs->in_exec = 0;
1474 current->in_execve = 0;
1476 out_free:
1477 free_bprm(bprm);
1479 out_files:
1480 if (displaced)
1481 reset_files_struct(displaced);
1482 out_ret:
1483 return retval;
1486 void set_binfmt(struct linux_binfmt *new)
1488 struct mm_struct *mm = current->mm;
1490 if (mm->binfmt)
1491 module_put(mm->binfmt->module);
1493 mm->binfmt = new;
1494 if (new)
1495 __module_get(new->module);
1498 EXPORT_SYMBOL(set_binfmt);
1500 static int expand_corename(struct core_name *cn)
1502 char *old_corename = cn->corename;
1504 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1505 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1507 if (!cn->corename) {
1508 kfree(old_corename);
1509 return -ENOMEM;
1512 return 0;
1515 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1517 char *cur;
1518 int need;
1519 int ret;
1520 va_list arg;
1522 va_start(arg, fmt);
1523 need = vsnprintf(NULL, 0, fmt, arg);
1524 va_end(arg);
1526 if (likely(need < cn->size - cn->used - 1))
1527 goto out_printf;
1529 ret = expand_corename(cn);
1530 if (ret)
1531 goto expand_fail;
1533 out_printf:
1534 cur = cn->corename + cn->used;
1535 va_start(arg, fmt);
1536 vsnprintf(cur, need + 1, fmt, arg);
1537 va_end(arg);
1538 cn->used += need;
1539 return 0;
1541 expand_fail:
1542 return ret;
1545 /* format_corename will inspect the pattern parameter, and output a
1546 * name into corename, which must have space for at least
1547 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1549 static int format_corename(struct core_name *cn, long signr)
1551 const struct cred *cred = current_cred();
1552 const char *pat_ptr = core_pattern;
1553 int ispipe = (*pat_ptr == '|');
1554 int pid_in_pattern = 0;
1555 int err = 0;
1557 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1558 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1559 cn->used = 0;
1561 if (!cn->corename)
1562 return -ENOMEM;
1564 /* Repeat as long as we have more pattern to process and more output
1565 space */
1566 while (*pat_ptr) {
1567 if (*pat_ptr != '%') {
1568 if (*pat_ptr == 0)
1569 goto out;
1570 err = cn_printf(cn, "%c", *pat_ptr++);
1571 } else {
1572 switch (*++pat_ptr) {
1573 /* single % at the end, drop that */
1574 case 0:
1575 goto out;
1576 /* Double percent, output one percent */
1577 case '%':
1578 err = cn_printf(cn, "%c", '%');
1579 break;
1580 /* pid */
1581 case 'p':
1582 pid_in_pattern = 1;
1583 err = cn_printf(cn, "%d",
1584 task_tgid_vnr(current));
1585 break;
1586 /* uid */
1587 case 'u':
1588 err = cn_printf(cn, "%d", cred->uid);
1589 break;
1590 /* gid */
1591 case 'g':
1592 err = cn_printf(cn, "%d", cred->gid);
1593 break;
1594 /* signal that caused the coredump */
1595 case 's':
1596 err = cn_printf(cn, "%ld", signr);
1597 break;
1598 /* UNIX time of coredump */
1599 case 't': {
1600 struct timeval tv;
1601 do_gettimeofday(&tv);
1602 err = cn_printf(cn, "%lu", tv.tv_sec);
1603 break;
1605 /* hostname */
1606 case 'h':
1607 down_read(&uts_sem);
1608 err = cn_printf(cn, "%s",
1609 utsname()->nodename);
1610 up_read(&uts_sem);
1611 break;
1612 /* executable */
1613 case 'e':
1614 err = cn_printf(cn, "%s", current->comm);
1615 break;
1616 /* core limit size */
1617 case 'c':
1618 err = cn_printf(cn, "%lu",
1619 rlimit(RLIMIT_CORE));
1620 break;
1621 default:
1622 break;
1624 ++pat_ptr;
1627 if (err)
1628 return err;
1631 /* Backward compatibility with core_uses_pid:
1633 * If core_pattern does not include a %p (as is the default)
1634 * and core_uses_pid is set, then .%pid will be appended to
1635 * the filename. Do not do this for piped commands. */
1636 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1637 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1638 if (err)
1639 return err;
1641 out:
1642 return ispipe;
1645 static int zap_process(struct task_struct *start, int exit_code)
1647 struct task_struct *t;
1648 int nr = 0;
1650 start->signal->flags = SIGNAL_GROUP_EXIT;
1651 start->signal->group_exit_code = exit_code;
1652 start->signal->group_stop_count = 0;
1654 t = start;
1655 do {
1656 if (t != current && t->mm) {
1657 sigaddset(&t->pending.signal, SIGKILL);
1658 signal_wake_up(t, 1);
1659 nr++;
1661 } while_each_thread(start, t);
1663 return nr;
1666 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1667 struct core_state *core_state, int exit_code)
1669 struct task_struct *g, *p;
1670 unsigned long flags;
1671 int nr = -EAGAIN;
1673 spin_lock_irq(&tsk->sighand->siglock);
1674 if (!signal_group_exit(tsk->signal)) {
1675 mm->core_state = core_state;
1676 nr = zap_process(tsk, exit_code);
1678 spin_unlock_irq(&tsk->sighand->siglock);
1679 if (unlikely(nr < 0))
1680 return nr;
1682 if (atomic_read(&mm->mm_users) == nr + 1)
1683 goto done;
1685 * We should find and kill all tasks which use this mm, and we should
1686 * count them correctly into ->nr_threads. We don't take tasklist
1687 * lock, but this is safe wrt:
1689 * fork:
1690 * None of sub-threads can fork after zap_process(leader). All
1691 * processes which were created before this point should be
1692 * visible to zap_threads() because copy_process() adds the new
1693 * process to the tail of init_task.tasks list, and lock/unlock
1694 * of ->siglock provides a memory barrier.
1696 * do_exit:
1697 * The caller holds mm->mmap_sem. This means that the task which
1698 * uses this mm can't pass exit_mm(), so it can't exit or clear
1699 * its ->mm.
1701 * de_thread:
1702 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1703 * we must see either old or new leader, this does not matter.
1704 * However, it can change p->sighand, so lock_task_sighand(p)
1705 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1706 * it can't fail.
1708 * Note also that "g" can be the old leader with ->mm == NULL
1709 * and already unhashed and thus removed from ->thread_group.
1710 * This is OK, __unhash_process()->list_del_rcu() does not
1711 * clear the ->next pointer, we will find the new leader via
1712 * next_thread().
1714 rcu_read_lock();
1715 for_each_process(g) {
1716 if (g == tsk->group_leader)
1717 continue;
1718 if (g->flags & PF_KTHREAD)
1719 continue;
1720 p = g;
1721 do {
1722 if (p->mm) {
1723 if (unlikely(p->mm == mm)) {
1724 lock_task_sighand(p, &flags);
1725 nr += zap_process(p, exit_code);
1726 unlock_task_sighand(p, &flags);
1728 break;
1730 } while_each_thread(g, p);
1732 rcu_read_unlock();
1733 done:
1734 atomic_set(&core_state->nr_threads, nr);
1735 return nr;
1738 static int coredump_wait(int exit_code, struct core_state *core_state)
1740 struct task_struct *tsk = current;
1741 struct mm_struct *mm = tsk->mm;
1742 struct completion *vfork_done;
1743 int core_waiters = -EBUSY;
1745 init_completion(&core_state->startup);
1746 core_state->dumper.task = tsk;
1747 core_state->dumper.next = NULL;
1749 down_write(&mm->mmap_sem);
1750 if (!mm->core_state)
1751 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1752 up_write(&mm->mmap_sem);
1754 if (unlikely(core_waiters < 0))
1755 goto fail;
1758 * Make sure nobody is waiting for us to release the VM,
1759 * otherwise we can deadlock when we wait on each other
1761 vfork_done = tsk->vfork_done;
1762 if (vfork_done) {
1763 tsk->vfork_done = NULL;
1764 complete(vfork_done);
1767 if (core_waiters)
1768 wait_for_completion(&core_state->startup);
1769 fail:
1770 return core_waiters;
1773 static void coredump_finish(struct mm_struct *mm)
1775 struct core_thread *curr, *next;
1776 struct task_struct *task;
1778 next = mm->core_state->dumper.next;
1779 while ((curr = next) != NULL) {
1780 next = curr->next;
1781 task = curr->task;
1783 * see exit_mm(), curr->task must not see
1784 * ->task == NULL before we read ->next.
1786 smp_mb();
1787 curr->task = NULL;
1788 wake_up_process(task);
1791 mm->core_state = NULL;
1795 * set_dumpable converts traditional three-value dumpable to two flags and
1796 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1797 * these bits are not changed atomically. So get_dumpable can observe the
1798 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1799 * return either old dumpable or new one by paying attention to the order of
1800 * modifying the bits.
1802 * dumpable | mm->flags (binary)
1803 * old new | initial interim final
1804 * ---------+-----------------------
1805 * 0 1 | 00 01 01
1806 * 0 2 | 00 10(*) 11
1807 * 1 0 | 01 00 00
1808 * 1 2 | 01 11 11
1809 * 2 0 | 11 10(*) 00
1810 * 2 1 | 11 11 01
1812 * (*) get_dumpable regards interim value of 10 as 11.
1814 void set_dumpable(struct mm_struct *mm, int value)
1816 switch (value) {
1817 case 0:
1818 clear_bit(MMF_DUMPABLE, &mm->flags);
1819 smp_wmb();
1820 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1821 break;
1822 case 1:
1823 set_bit(MMF_DUMPABLE, &mm->flags);
1824 smp_wmb();
1825 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1826 break;
1827 case 2:
1828 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1829 smp_wmb();
1830 set_bit(MMF_DUMPABLE, &mm->flags);
1831 break;
1835 static int __get_dumpable(unsigned long mm_flags)
1837 int ret;
1839 ret = mm_flags & MMF_DUMPABLE_MASK;
1840 return (ret >= 2) ? 2 : ret;
1843 int get_dumpable(struct mm_struct *mm)
1845 return __get_dumpable(mm->flags);
1848 static void wait_for_dump_helpers(struct file *file)
1850 struct pipe_inode_info *pipe;
1852 pipe = file->f_path.dentry->d_inode->i_pipe;
1854 pipe_lock(pipe);
1855 pipe->readers++;
1856 pipe->writers--;
1858 while ((pipe->readers > 1) && (!signal_pending(current))) {
1859 wake_up_interruptible_sync(&pipe->wait);
1860 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1861 pipe_wait(pipe);
1864 pipe->readers--;
1865 pipe->writers++;
1866 pipe_unlock(pipe);
1872 * uhm_pipe_setup
1873 * helper function to customize the process used
1874 * to collect the core in userspace. Specifically
1875 * it sets up a pipe and installs it as fd 0 (stdin)
1876 * for the process. Returns 0 on success, or
1877 * PTR_ERR on failure.
1878 * Note that it also sets the core limit to 1. This
1879 * is a special value that we use to trap recursive
1880 * core dumps
1882 static int umh_pipe_setup(struct subprocess_info *info)
1884 struct file *rp, *wp;
1885 struct fdtable *fdt;
1886 struct coredump_params *cp = (struct coredump_params *)info->data;
1887 struct files_struct *cf = current->files;
1889 wp = create_write_pipe(0);
1890 if (IS_ERR(wp))
1891 return PTR_ERR(wp);
1893 rp = create_read_pipe(wp, 0);
1894 if (IS_ERR(rp)) {
1895 free_write_pipe(wp);
1896 return PTR_ERR(rp);
1899 cp->file = wp;
1901 sys_close(0);
1902 fd_install(0, rp);
1903 spin_lock(&cf->file_lock);
1904 fdt = files_fdtable(cf);
1905 FD_SET(0, fdt->open_fds);
1906 FD_CLR(0, fdt->close_on_exec);
1907 spin_unlock(&cf->file_lock);
1909 /* and disallow core files too */
1910 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1912 return 0;
1915 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1917 struct core_state core_state;
1918 struct core_name cn;
1919 struct mm_struct *mm = current->mm;
1920 struct linux_binfmt * binfmt;
1921 const struct cred *old_cred;
1922 struct cred *cred;
1923 int retval = 0;
1924 int flag = 0;
1925 int ispipe;
1926 static atomic_t core_dump_count = ATOMIC_INIT(0);
1927 struct coredump_params cprm = {
1928 .signr = signr,
1929 .regs = regs,
1930 .limit = rlimit(RLIMIT_CORE),
1932 * We must use the same mm->flags while dumping core to avoid
1933 * inconsistency of bit flags, since this flag is not protected
1934 * by any locks.
1936 .mm_flags = mm->flags,
1939 audit_core_dumps(signr);
1941 binfmt = mm->binfmt;
1942 if (!binfmt || !binfmt->core_dump)
1943 goto fail;
1944 if (!__get_dumpable(cprm.mm_flags))
1945 goto fail;
1947 cred = prepare_creds();
1948 if (!cred)
1949 goto fail;
1951 * We cannot trust fsuid as being the "true" uid of the
1952 * process nor do we know its entire history. We only know it
1953 * was tainted so we dump it as root in mode 2.
1955 if (__get_dumpable(cprm.mm_flags) == 2) {
1956 /* Setuid core dump mode */
1957 flag = O_EXCL; /* Stop rewrite attacks */
1958 cred->fsuid = 0; /* Dump root private */
1961 retval = coredump_wait(exit_code, &core_state);
1962 if (retval < 0)
1963 goto fail_creds;
1965 old_cred = override_creds(cred);
1968 * Clear any false indication of pending signals that might
1969 * be seen by the filesystem code called to write the core file.
1971 clear_thread_flag(TIF_SIGPENDING);
1973 ispipe = format_corename(&cn, signr);
1975 if (ispipe == -ENOMEM) {
1976 printk(KERN_WARNING "format_corename failed\n");
1977 printk(KERN_WARNING "Aborting core\n");
1978 goto fail_corename;
1981 if (ispipe) {
1982 int dump_count;
1983 char **helper_argv;
1985 if (cprm.limit == 1) {
1987 * Normally core limits are irrelevant to pipes, since
1988 * we're not writing to the file system, but we use
1989 * cprm.limit of 1 here as a speacial value. Any
1990 * non-1 limit gets set to RLIM_INFINITY below, but
1991 * a limit of 0 skips the dump. This is a consistent
1992 * way to catch recursive crashes. We can still crash
1993 * if the core_pattern binary sets RLIM_CORE = !1
1994 * but it runs as root, and can do lots of stupid things
1995 * Note that we use task_tgid_vnr here to grab the pid
1996 * of the process group leader. That way we get the
1997 * right pid if a thread in a multi-threaded
1998 * core_pattern process dies.
2000 printk(KERN_WARNING
2001 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2002 task_tgid_vnr(current), current->comm);
2003 printk(KERN_WARNING "Aborting core\n");
2004 goto fail_unlock;
2006 cprm.limit = RLIM_INFINITY;
2008 dump_count = atomic_inc_return(&core_dump_count);
2009 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2010 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2011 task_tgid_vnr(current), current->comm);
2012 printk(KERN_WARNING "Skipping core dump\n");
2013 goto fail_dropcount;
2016 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2017 if (!helper_argv) {
2018 printk(KERN_WARNING "%s failed to allocate memory\n",
2019 __func__);
2020 goto fail_dropcount;
2023 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2024 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2025 NULL, &cprm);
2026 argv_free(helper_argv);
2027 if (retval) {
2028 printk(KERN_INFO "Core dump to %s pipe failed\n",
2029 cn.corename);
2030 goto close_fail;
2032 } else {
2033 struct inode *inode;
2035 if (cprm.limit < binfmt->min_coredump)
2036 goto fail_unlock;
2038 cprm.file = filp_open(cn.corename,
2039 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2040 0600);
2041 if (IS_ERR(cprm.file))
2042 goto fail_unlock;
2044 inode = cprm.file->f_path.dentry->d_inode;
2045 if (inode->i_nlink > 1)
2046 goto close_fail;
2047 if (d_unhashed(cprm.file->f_path.dentry))
2048 goto close_fail;
2050 * AK: actually i see no reason to not allow this for named
2051 * pipes etc, but keep the previous behaviour for now.
2053 if (!S_ISREG(inode->i_mode))
2054 goto close_fail;
2056 * Dont allow local users get cute and trick others to coredump
2057 * into their pre-created files.
2059 if (inode->i_uid != current_fsuid())
2060 goto close_fail;
2061 if (!cprm.file->f_op || !cprm.file->f_op->write)
2062 goto close_fail;
2063 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2064 goto close_fail;
2067 retval = binfmt->core_dump(&cprm);
2068 if (retval)
2069 current->signal->group_exit_code |= 0x80;
2071 if (ispipe && core_pipe_limit)
2072 wait_for_dump_helpers(cprm.file);
2073 close_fail:
2074 if (cprm.file)
2075 filp_close(cprm.file, NULL);
2076 fail_dropcount:
2077 if (ispipe)
2078 atomic_dec(&core_dump_count);
2079 fail_unlock:
2080 kfree(cn.corename);
2081 fail_corename:
2082 coredump_finish(mm);
2083 revert_creds(old_cred);
2084 fail_creds:
2085 put_cred(cred);
2086 fail:
2087 return;
2091 * Core dumping helper functions. These are the only things you should
2092 * do on a core-file: use only these functions to write out all the
2093 * necessary info.
2095 int dump_write(struct file *file, const void *addr, int nr)
2097 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2099 EXPORT_SYMBOL(dump_write);
2101 int dump_seek(struct file *file, loff_t off)
2103 int ret = 1;
2105 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2106 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2107 return 0;
2108 } else {
2109 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2111 if (!buf)
2112 return 0;
2113 while (off > 0) {
2114 unsigned long n = off;
2116 if (n > PAGE_SIZE)
2117 n = PAGE_SIZE;
2118 if (!dump_write(file, buf, n)) {
2119 ret = 0;
2120 break;
2122 off -= n;
2124 free_page((unsigned long)buf);
2126 return ret;
2128 EXPORT_SYMBOL(dump_seek);