batman,rcu: convert call_rcu(gw_node_free_rcu) to kfree_rcu
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blobc2ed7c95ce870a13e86cf4771ae8d07ff9563ce3
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
277 static void init_once(void *foo)
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
281 inode_init_once(&ei->vfs_inode);
284 static int init_inodecache(void)
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
305 * sockfs_dname() is called from d_path().
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
324 static struct vfsmount *sock_mnt __read_mostly;
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
333 * Obtains the first available file descriptor and sets it up for use.
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
365 path.mnt = mntget(sock_mnt);
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
385 *f = file;
386 return fd;
389 int sock_map_fd(struct socket *sock, int flags)
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
397 return fd;
399 EXPORT_SYMBOL(sock_map_fd);
401 static struct socket *sock_from_file(struct file *file, int *err)
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
406 *err = -ENOTSOCK;
407 return NULL;
411 * sockfd_lookup - Go from a file number to its socket slot
412 * @fd: file handle
413 * @err: pointer to an error code return
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
420 * On a success the socket object pointer is returned.
423 struct socket *sockfd_lookup(int fd, int *err)
425 struct file *file;
426 struct socket *sock;
428 file = fget(fd);
429 if (!file) {
430 *err = -EBADF;
431 return NULL;
434 sock = sock_from_file(file, err);
435 if (!sock)
436 fput(file);
437 return sock;
439 EXPORT_SYMBOL(sockfd_lookup);
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
443 struct file *file;
444 struct socket *sock;
446 *err = -EBADF;
447 file = fget_light(fd, fput_needed);
448 if (file) {
449 sock = sock_from_file(file, err);
450 if (sock)
451 return sock;
452 fput_light(file, *fput_needed);
454 return NULL;
458 * sock_alloc - allocate a socket
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
462 * NULL is returned.
465 static struct socket *sock_alloc(void)
467 struct inode *inode;
468 struct socket *sock;
470 inode = new_inode(sock_mnt->mnt_sb);
471 if (!inode)
472 return NULL;
474 sock = SOCKET_I(inode);
476 kmemcheck_annotate_bitfield(sock, type);
477 inode->i_ino = get_next_ino();
478 inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 inode->i_uid = current_fsuid();
480 inode->i_gid = current_fsgid();
482 percpu_add(sockets_in_use, 1);
483 return sock;
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
494 return -ENXIO;
497 const struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500 .llseek = noop_llseek,
504 * sock_release - close a socket
505 * @sock: socket to close
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
512 void sock_release(struct socket *sock)
514 if (sock->ops) {
515 struct module *owner = sock->ops->owner;
517 sock->ops->release(sock);
518 sock->ops = NULL;
519 module_put(owner);
522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 printk(KERN_ERR "sock_release: fasync list not empty!\n");
525 percpu_sub(sockets_in_use, 1);
526 if (!sock->file) {
527 iput(SOCK_INODE(sock));
528 return;
530 sock->file = NULL;
532 EXPORT_SYMBOL(sock_release);
534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
536 *tx_flags = 0;
537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
538 *tx_flags |= SKBTX_HW_TSTAMP;
539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
540 *tx_flags |= SKBTX_SW_TSTAMP;
541 return 0;
543 EXPORT_SYMBOL(sock_tx_timestamp);
545 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
546 struct msghdr *msg, size_t size)
548 struct sock_iocb *si = kiocb_to_siocb(iocb);
549 int err;
551 sock_update_classid(sock->sk);
553 si->sock = sock;
554 si->scm = NULL;
555 si->msg = msg;
556 si->size = size;
558 err = security_socket_sendmsg(sock, msg, size);
559 if (err)
560 return err;
562 return sock->ops->sendmsg(iocb, sock, msg, size);
565 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
567 struct kiocb iocb;
568 struct sock_iocb siocb;
569 int ret;
571 init_sync_kiocb(&iocb, NULL);
572 iocb.private = &siocb;
573 ret = __sock_sendmsg(&iocb, sock, msg, size);
574 if (-EIOCBQUEUED == ret)
575 ret = wait_on_sync_kiocb(&iocb);
576 return ret;
578 EXPORT_SYMBOL(sock_sendmsg);
580 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
581 struct kvec *vec, size_t num, size_t size)
583 mm_segment_t oldfs = get_fs();
584 int result;
586 set_fs(KERNEL_DS);
588 * the following is safe, since for compiler definitions of kvec and
589 * iovec are identical, yielding the same in-core layout and alignment
591 msg->msg_iov = (struct iovec *)vec;
592 msg->msg_iovlen = num;
593 result = sock_sendmsg(sock, msg, size);
594 set_fs(oldfs);
595 return result;
597 EXPORT_SYMBOL(kernel_sendmsg);
599 static int ktime2ts(ktime_t kt, struct timespec *ts)
601 if (kt.tv64) {
602 *ts = ktime_to_timespec(kt);
603 return 1;
604 } else {
605 return 0;
610 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
612 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
613 struct sk_buff *skb)
615 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
616 struct timespec ts[3];
617 int empty = 1;
618 struct skb_shared_hwtstamps *shhwtstamps =
619 skb_hwtstamps(skb);
621 /* Race occurred between timestamp enabling and packet
622 receiving. Fill in the current time for now. */
623 if (need_software_tstamp && skb->tstamp.tv64 == 0)
624 __net_timestamp(skb);
626 if (need_software_tstamp) {
627 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
628 struct timeval tv;
629 skb_get_timestamp(skb, &tv);
630 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
631 sizeof(tv), &tv);
632 } else {
633 skb_get_timestampns(skb, &ts[0]);
634 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
635 sizeof(ts[0]), &ts[0]);
640 memset(ts, 0, sizeof(ts));
641 if (skb->tstamp.tv64 &&
642 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
643 skb_get_timestampns(skb, ts + 0);
644 empty = 0;
646 if (shhwtstamps) {
647 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
648 ktime2ts(shhwtstamps->syststamp, ts + 1))
649 empty = 0;
650 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
651 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
652 empty = 0;
654 if (!empty)
655 put_cmsg(msg, SOL_SOCKET,
656 SCM_TIMESTAMPING, sizeof(ts), &ts);
658 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
660 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
661 struct sk_buff *skb)
663 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
664 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
665 sizeof(__u32), &skb->dropcount);
668 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
669 struct sk_buff *skb)
671 sock_recv_timestamp(msg, sk, skb);
672 sock_recv_drops(msg, sk, skb);
674 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
676 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
677 struct msghdr *msg, size_t size, int flags)
679 struct sock_iocb *si = kiocb_to_siocb(iocb);
681 sock_update_classid(sock->sk);
683 si->sock = sock;
684 si->scm = NULL;
685 si->msg = msg;
686 si->size = size;
687 si->flags = flags;
689 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
692 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
693 struct msghdr *msg, size_t size, int flags)
695 int err = security_socket_recvmsg(sock, msg, size, flags);
697 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
700 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
701 size_t size, int flags)
703 struct kiocb iocb;
704 struct sock_iocb siocb;
705 int ret;
707 init_sync_kiocb(&iocb, NULL);
708 iocb.private = &siocb;
709 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
710 if (-EIOCBQUEUED == ret)
711 ret = wait_on_sync_kiocb(&iocb);
712 return ret;
714 EXPORT_SYMBOL(sock_recvmsg);
716 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
717 size_t size, int flags)
719 struct kiocb iocb;
720 struct sock_iocb siocb;
721 int ret;
723 init_sync_kiocb(&iocb, NULL);
724 iocb.private = &siocb;
725 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
726 if (-EIOCBQUEUED == ret)
727 ret = wait_on_sync_kiocb(&iocb);
728 return ret;
732 * kernel_recvmsg - Receive a message from a socket (kernel space)
733 * @sock: The socket to receive the message from
734 * @msg: Received message
735 * @vec: Input s/g array for message data
736 * @num: Size of input s/g array
737 * @size: Number of bytes to read
738 * @flags: Message flags (MSG_DONTWAIT, etc...)
740 * On return the msg structure contains the scatter/gather array passed in the
741 * vec argument. The array is modified so that it consists of the unfilled
742 * portion of the original array.
744 * The returned value is the total number of bytes received, or an error.
746 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
747 struct kvec *vec, size_t num, size_t size, int flags)
749 mm_segment_t oldfs = get_fs();
750 int result;
752 set_fs(KERNEL_DS);
754 * the following is safe, since for compiler definitions of kvec and
755 * iovec are identical, yielding the same in-core layout and alignment
757 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
758 result = sock_recvmsg(sock, msg, size, flags);
759 set_fs(oldfs);
760 return result;
762 EXPORT_SYMBOL(kernel_recvmsg);
764 static void sock_aio_dtor(struct kiocb *iocb)
766 kfree(iocb->private);
769 static ssize_t sock_sendpage(struct file *file, struct page *page,
770 int offset, size_t size, loff_t *ppos, int more)
772 struct socket *sock;
773 int flags;
775 sock = file->private_data;
777 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
778 if (more)
779 flags |= MSG_MORE;
781 return kernel_sendpage(sock, page, offset, size, flags);
784 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
785 struct pipe_inode_info *pipe, size_t len,
786 unsigned int flags)
788 struct socket *sock = file->private_data;
790 if (unlikely(!sock->ops->splice_read))
791 return -EINVAL;
793 sock_update_classid(sock->sk);
795 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
798 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
799 struct sock_iocb *siocb)
801 if (!is_sync_kiocb(iocb)) {
802 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
803 if (!siocb)
804 return NULL;
805 iocb->ki_dtor = sock_aio_dtor;
808 siocb->kiocb = iocb;
809 iocb->private = siocb;
810 return siocb;
813 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
814 struct file *file, const struct iovec *iov,
815 unsigned long nr_segs)
817 struct socket *sock = file->private_data;
818 size_t size = 0;
819 int i;
821 for (i = 0; i < nr_segs; i++)
822 size += iov[i].iov_len;
824 msg->msg_name = NULL;
825 msg->msg_namelen = 0;
826 msg->msg_control = NULL;
827 msg->msg_controllen = 0;
828 msg->msg_iov = (struct iovec *)iov;
829 msg->msg_iovlen = nr_segs;
830 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
832 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
835 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
836 unsigned long nr_segs, loff_t pos)
838 struct sock_iocb siocb, *x;
840 if (pos != 0)
841 return -ESPIPE;
843 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
844 return 0;
847 x = alloc_sock_iocb(iocb, &siocb);
848 if (!x)
849 return -ENOMEM;
850 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
853 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
854 struct file *file, const struct iovec *iov,
855 unsigned long nr_segs)
857 struct socket *sock = file->private_data;
858 size_t size = 0;
859 int i;
861 for (i = 0; i < nr_segs; i++)
862 size += iov[i].iov_len;
864 msg->msg_name = NULL;
865 msg->msg_namelen = 0;
866 msg->msg_control = NULL;
867 msg->msg_controllen = 0;
868 msg->msg_iov = (struct iovec *)iov;
869 msg->msg_iovlen = nr_segs;
870 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871 if (sock->type == SOCK_SEQPACKET)
872 msg->msg_flags |= MSG_EOR;
874 return __sock_sendmsg(iocb, sock, msg, size);
877 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
878 unsigned long nr_segs, loff_t pos)
880 struct sock_iocb siocb, *x;
882 if (pos != 0)
883 return -ESPIPE;
885 x = alloc_sock_iocb(iocb, &siocb);
886 if (!x)
887 return -ENOMEM;
889 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
893 * Atomic setting of ioctl hooks to avoid race
894 * with module unload.
897 static DEFINE_MUTEX(br_ioctl_mutex);
898 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
900 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
902 mutex_lock(&br_ioctl_mutex);
903 br_ioctl_hook = hook;
904 mutex_unlock(&br_ioctl_mutex);
906 EXPORT_SYMBOL(brioctl_set);
908 static DEFINE_MUTEX(vlan_ioctl_mutex);
909 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
911 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
913 mutex_lock(&vlan_ioctl_mutex);
914 vlan_ioctl_hook = hook;
915 mutex_unlock(&vlan_ioctl_mutex);
917 EXPORT_SYMBOL(vlan_ioctl_set);
919 static DEFINE_MUTEX(dlci_ioctl_mutex);
920 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
922 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
924 mutex_lock(&dlci_ioctl_mutex);
925 dlci_ioctl_hook = hook;
926 mutex_unlock(&dlci_ioctl_mutex);
928 EXPORT_SYMBOL(dlci_ioctl_set);
930 static long sock_do_ioctl(struct net *net, struct socket *sock,
931 unsigned int cmd, unsigned long arg)
933 int err;
934 void __user *argp = (void __user *)arg;
936 err = sock->ops->ioctl(sock, cmd, arg);
939 * If this ioctl is unknown try to hand it down
940 * to the NIC driver.
942 if (err == -ENOIOCTLCMD)
943 err = dev_ioctl(net, cmd, argp);
945 return err;
949 * With an ioctl, arg may well be a user mode pointer, but we don't know
950 * what to do with it - that's up to the protocol still.
953 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
955 struct socket *sock;
956 struct sock *sk;
957 void __user *argp = (void __user *)arg;
958 int pid, err;
959 struct net *net;
961 sock = file->private_data;
962 sk = sock->sk;
963 net = sock_net(sk);
964 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
965 err = dev_ioctl(net, cmd, argp);
966 } else
967 #ifdef CONFIG_WEXT_CORE
968 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
969 err = dev_ioctl(net, cmd, argp);
970 } else
971 #endif
972 switch (cmd) {
973 case FIOSETOWN:
974 case SIOCSPGRP:
975 err = -EFAULT;
976 if (get_user(pid, (int __user *)argp))
977 break;
978 err = f_setown(sock->file, pid, 1);
979 break;
980 case FIOGETOWN:
981 case SIOCGPGRP:
982 err = put_user(f_getown(sock->file),
983 (int __user *)argp);
984 break;
985 case SIOCGIFBR:
986 case SIOCSIFBR:
987 case SIOCBRADDBR:
988 case SIOCBRDELBR:
989 err = -ENOPKG;
990 if (!br_ioctl_hook)
991 request_module("bridge");
993 mutex_lock(&br_ioctl_mutex);
994 if (br_ioctl_hook)
995 err = br_ioctl_hook(net, cmd, argp);
996 mutex_unlock(&br_ioctl_mutex);
997 break;
998 case SIOCGIFVLAN:
999 case SIOCSIFVLAN:
1000 err = -ENOPKG;
1001 if (!vlan_ioctl_hook)
1002 request_module("8021q");
1004 mutex_lock(&vlan_ioctl_mutex);
1005 if (vlan_ioctl_hook)
1006 err = vlan_ioctl_hook(net, argp);
1007 mutex_unlock(&vlan_ioctl_mutex);
1008 break;
1009 case SIOCADDDLCI:
1010 case SIOCDELDLCI:
1011 err = -ENOPKG;
1012 if (!dlci_ioctl_hook)
1013 request_module("dlci");
1015 mutex_lock(&dlci_ioctl_mutex);
1016 if (dlci_ioctl_hook)
1017 err = dlci_ioctl_hook(cmd, argp);
1018 mutex_unlock(&dlci_ioctl_mutex);
1019 break;
1020 default:
1021 err = sock_do_ioctl(net, sock, cmd, arg);
1022 break;
1024 return err;
1027 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1029 int err;
1030 struct socket *sock = NULL;
1032 err = security_socket_create(family, type, protocol, 1);
1033 if (err)
1034 goto out;
1036 sock = sock_alloc();
1037 if (!sock) {
1038 err = -ENOMEM;
1039 goto out;
1042 sock->type = type;
1043 err = security_socket_post_create(sock, family, type, protocol, 1);
1044 if (err)
1045 goto out_release;
1047 out:
1048 *res = sock;
1049 return err;
1050 out_release:
1051 sock_release(sock);
1052 sock = NULL;
1053 goto out;
1055 EXPORT_SYMBOL(sock_create_lite);
1057 /* No kernel lock held - perfect */
1058 static unsigned int sock_poll(struct file *file, poll_table *wait)
1060 struct socket *sock;
1063 * We can't return errors to poll, so it's either yes or no.
1065 sock = file->private_data;
1066 return sock->ops->poll(file, sock, wait);
1069 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1071 struct socket *sock = file->private_data;
1073 return sock->ops->mmap(file, sock, vma);
1076 static int sock_close(struct inode *inode, struct file *filp)
1079 * It was possible the inode is NULL we were
1080 * closing an unfinished socket.
1083 if (!inode) {
1084 printk(KERN_DEBUG "sock_close: NULL inode\n");
1085 return 0;
1087 sock_release(SOCKET_I(inode));
1088 return 0;
1092 * Update the socket async list
1094 * Fasync_list locking strategy.
1096 * 1. fasync_list is modified only under process context socket lock
1097 * i.e. under semaphore.
1098 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1099 * or under socket lock
1102 static int sock_fasync(int fd, struct file *filp, int on)
1104 struct socket *sock = filp->private_data;
1105 struct sock *sk = sock->sk;
1106 struct socket_wq *wq;
1108 if (sk == NULL)
1109 return -EINVAL;
1111 lock_sock(sk);
1112 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1113 fasync_helper(fd, filp, on, &wq->fasync_list);
1115 if (!wq->fasync_list)
1116 sock_reset_flag(sk, SOCK_FASYNC);
1117 else
1118 sock_set_flag(sk, SOCK_FASYNC);
1120 release_sock(sk);
1121 return 0;
1124 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1126 int sock_wake_async(struct socket *sock, int how, int band)
1128 struct socket_wq *wq;
1130 if (!sock)
1131 return -1;
1132 rcu_read_lock();
1133 wq = rcu_dereference(sock->wq);
1134 if (!wq || !wq->fasync_list) {
1135 rcu_read_unlock();
1136 return -1;
1138 switch (how) {
1139 case SOCK_WAKE_WAITD:
1140 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1141 break;
1142 goto call_kill;
1143 case SOCK_WAKE_SPACE:
1144 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1145 break;
1146 /* fall through */
1147 case SOCK_WAKE_IO:
1148 call_kill:
1149 kill_fasync(&wq->fasync_list, SIGIO, band);
1150 break;
1151 case SOCK_WAKE_URG:
1152 kill_fasync(&wq->fasync_list, SIGURG, band);
1154 rcu_read_unlock();
1155 return 0;
1157 EXPORT_SYMBOL(sock_wake_async);
1159 int __sock_create(struct net *net, int family, int type, int protocol,
1160 struct socket **res, int kern)
1162 int err;
1163 struct socket *sock;
1164 const struct net_proto_family *pf;
1167 * Check protocol is in range
1169 if (family < 0 || family >= NPROTO)
1170 return -EAFNOSUPPORT;
1171 if (type < 0 || type >= SOCK_MAX)
1172 return -EINVAL;
1174 /* Compatibility.
1176 This uglymoron is moved from INET layer to here to avoid
1177 deadlock in module load.
1179 if (family == PF_INET && type == SOCK_PACKET) {
1180 static int warned;
1181 if (!warned) {
1182 warned = 1;
1183 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1184 current->comm);
1186 family = PF_PACKET;
1189 err = security_socket_create(family, type, protocol, kern);
1190 if (err)
1191 return err;
1194 * Allocate the socket and allow the family to set things up. if
1195 * the protocol is 0, the family is instructed to select an appropriate
1196 * default.
1198 sock = sock_alloc();
1199 if (!sock) {
1200 if (net_ratelimit())
1201 printk(KERN_WARNING "socket: no more sockets\n");
1202 return -ENFILE; /* Not exactly a match, but its the
1203 closest posix thing */
1206 sock->type = type;
1208 #ifdef CONFIG_MODULES
1209 /* Attempt to load a protocol module if the find failed.
1211 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1212 * requested real, full-featured networking support upon configuration.
1213 * Otherwise module support will break!
1215 if (rcu_access_pointer(net_families[family]) == NULL)
1216 request_module("net-pf-%d", family);
1217 #endif
1219 rcu_read_lock();
1220 pf = rcu_dereference(net_families[family]);
1221 err = -EAFNOSUPPORT;
1222 if (!pf)
1223 goto out_release;
1226 * We will call the ->create function, that possibly is in a loadable
1227 * module, so we have to bump that loadable module refcnt first.
1229 if (!try_module_get(pf->owner))
1230 goto out_release;
1232 /* Now protected by module ref count */
1233 rcu_read_unlock();
1235 err = pf->create(net, sock, protocol, kern);
1236 if (err < 0)
1237 goto out_module_put;
1240 * Now to bump the refcnt of the [loadable] module that owns this
1241 * socket at sock_release time we decrement its refcnt.
1243 if (!try_module_get(sock->ops->owner))
1244 goto out_module_busy;
1247 * Now that we're done with the ->create function, the [loadable]
1248 * module can have its refcnt decremented
1250 module_put(pf->owner);
1251 err = security_socket_post_create(sock, family, type, protocol, kern);
1252 if (err)
1253 goto out_sock_release;
1254 *res = sock;
1256 return 0;
1258 out_module_busy:
1259 err = -EAFNOSUPPORT;
1260 out_module_put:
1261 sock->ops = NULL;
1262 module_put(pf->owner);
1263 out_sock_release:
1264 sock_release(sock);
1265 return err;
1267 out_release:
1268 rcu_read_unlock();
1269 goto out_sock_release;
1271 EXPORT_SYMBOL(__sock_create);
1273 int sock_create(int family, int type, int protocol, struct socket **res)
1275 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1277 EXPORT_SYMBOL(sock_create);
1279 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1281 return __sock_create(&init_net, family, type, protocol, res, 1);
1283 EXPORT_SYMBOL(sock_create_kern);
1285 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1287 int retval;
1288 struct socket *sock;
1289 int flags;
1291 /* Check the SOCK_* constants for consistency. */
1292 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1293 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1294 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1295 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1297 flags = type & ~SOCK_TYPE_MASK;
1298 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1299 return -EINVAL;
1300 type &= SOCK_TYPE_MASK;
1302 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1303 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305 retval = sock_create(family, type, protocol, &sock);
1306 if (retval < 0)
1307 goto out;
1309 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1310 if (retval < 0)
1311 goto out_release;
1313 out:
1314 /* It may be already another descriptor 8) Not kernel problem. */
1315 return retval;
1317 out_release:
1318 sock_release(sock);
1319 return retval;
1323 * Create a pair of connected sockets.
1326 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1327 int __user *, usockvec)
1329 struct socket *sock1, *sock2;
1330 int fd1, fd2, err;
1331 struct file *newfile1, *newfile2;
1332 int flags;
1334 flags = type & ~SOCK_TYPE_MASK;
1335 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1336 return -EINVAL;
1337 type &= SOCK_TYPE_MASK;
1339 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1340 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343 * Obtain the first socket and check if the underlying protocol
1344 * supports the socketpair call.
1347 err = sock_create(family, type, protocol, &sock1);
1348 if (err < 0)
1349 goto out;
1351 err = sock_create(family, type, protocol, &sock2);
1352 if (err < 0)
1353 goto out_release_1;
1355 err = sock1->ops->socketpair(sock1, sock2);
1356 if (err < 0)
1357 goto out_release_both;
1359 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1360 if (unlikely(fd1 < 0)) {
1361 err = fd1;
1362 goto out_release_both;
1365 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1366 if (unlikely(fd2 < 0)) {
1367 err = fd2;
1368 fput(newfile1);
1369 put_unused_fd(fd1);
1370 sock_release(sock2);
1371 goto out;
1374 audit_fd_pair(fd1, fd2);
1375 fd_install(fd1, newfile1);
1376 fd_install(fd2, newfile2);
1377 /* fd1 and fd2 may be already another descriptors.
1378 * Not kernel problem.
1381 err = put_user(fd1, &usockvec[0]);
1382 if (!err)
1383 err = put_user(fd2, &usockvec[1]);
1384 if (!err)
1385 return 0;
1387 sys_close(fd2);
1388 sys_close(fd1);
1389 return err;
1391 out_release_both:
1392 sock_release(sock2);
1393 out_release_1:
1394 sock_release(sock1);
1395 out:
1396 return err;
1400 * Bind a name to a socket. Nothing much to do here since it's
1401 * the protocol's responsibility to handle the local address.
1403 * We move the socket address to kernel space before we call
1404 * the protocol layer (having also checked the address is ok).
1407 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1409 struct socket *sock;
1410 struct sockaddr_storage address;
1411 int err, fput_needed;
1413 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1414 if (sock) {
1415 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1416 if (err >= 0) {
1417 err = security_socket_bind(sock,
1418 (struct sockaddr *)&address,
1419 addrlen);
1420 if (!err)
1421 err = sock->ops->bind(sock,
1422 (struct sockaddr *)
1423 &address, addrlen);
1425 fput_light(sock->file, fput_needed);
1427 return err;
1431 * Perform a listen. Basically, we allow the protocol to do anything
1432 * necessary for a listen, and if that works, we mark the socket as
1433 * ready for listening.
1436 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1438 struct socket *sock;
1439 int err, fput_needed;
1440 int somaxconn;
1442 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1443 if (sock) {
1444 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1445 if ((unsigned)backlog > somaxconn)
1446 backlog = somaxconn;
1448 err = security_socket_listen(sock, backlog);
1449 if (!err)
1450 err = sock->ops->listen(sock, backlog);
1452 fput_light(sock->file, fput_needed);
1454 return err;
1458 * For accept, we attempt to create a new socket, set up the link
1459 * with the client, wake up the client, then return the new
1460 * connected fd. We collect the address of the connector in kernel
1461 * space and move it to user at the very end. This is unclean because
1462 * we open the socket then return an error.
1464 * 1003.1g adds the ability to recvmsg() to query connection pending
1465 * status to recvmsg. We need to add that support in a way thats
1466 * clean when we restucture accept also.
1469 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1470 int __user *, upeer_addrlen, int, flags)
1472 struct socket *sock, *newsock;
1473 struct file *newfile;
1474 int err, len, newfd, fput_needed;
1475 struct sockaddr_storage address;
1477 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1478 return -EINVAL;
1480 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1481 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1483 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 if (!sock)
1485 goto out;
1487 err = -ENFILE;
1488 newsock = sock_alloc();
1489 if (!newsock)
1490 goto out_put;
1492 newsock->type = sock->type;
1493 newsock->ops = sock->ops;
1496 * We don't need try_module_get here, as the listening socket (sock)
1497 * has the protocol module (sock->ops->owner) held.
1499 __module_get(newsock->ops->owner);
1501 newfd = sock_alloc_file(newsock, &newfile, flags);
1502 if (unlikely(newfd < 0)) {
1503 err = newfd;
1504 sock_release(newsock);
1505 goto out_put;
1508 err = security_socket_accept(sock, newsock);
1509 if (err)
1510 goto out_fd;
1512 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1513 if (err < 0)
1514 goto out_fd;
1516 if (upeer_sockaddr) {
1517 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1518 &len, 2) < 0) {
1519 err = -ECONNABORTED;
1520 goto out_fd;
1522 err = move_addr_to_user((struct sockaddr *)&address,
1523 len, upeer_sockaddr, upeer_addrlen);
1524 if (err < 0)
1525 goto out_fd;
1528 /* File flags are not inherited via accept() unlike another OSes. */
1530 fd_install(newfd, newfile);
1531 err = newfd;
1533 out_put:
1534 fput_light(sock->file, fput_needed);
1535 out:
1536 return err;
1537 out_fd:
1538 fput(newfile);
1539 put_unused_fd(newfd);
1540 goto out_put;
1543 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1544 int __user *, upeer_addrlen)
1546 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1550 * Attempt to connect to a socket with the server address. The address
1551 * is in user space so we verify it is OK and move it to kernel space.
1553 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1554 * break bindings
1556 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1557 * other SEQPACKET protocols that take time to connect() as it doesn't
1558 * include the -EINPROGRESS status for such sockets.
1561 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1562 int, addrlen)
1564 struct socket *sock;
1565 struct sockaddr_storage address;
1566 int err, fput_needed;
1568 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1569 if (!sock)
1570 goto out;
1571 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1572 if (err < 0)
1573 goto out_put;
1575 err =
1576 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1577 if (err)
1578 goto out_put;
1580 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1581 sock->file->f_flags);
1582 out_put:
1583 fput_light(sock->file, fput_needed);
1584 out:
1585 return err;
1589 * Get the local address ('name') of a socket object. Move the obtained
1590 * name to user space.
1593 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1594 int __user *, usockaddr_len)
1596 struct socket *sock;
1597 struct sockaddr_storage address;
1598 int len, err, fput_needed;
1600 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 if (!sock)
1602 goto out;
1604 err = security_socket_getsockname(sock);
1605 if (err)
1606 goto out_put;
1608 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1609 if (err)
1610 goto out_put;
1611 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1613 out_put:
1614 fput_light(sock->file, fput_needed);
1615 out:
1616 return err;
1620 * Get the remote address ('name') of a socket object. Move the obtained
1621 * name to user space.
1624 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1625 int __user *, usockaddr_len)
1627 struct socket *sock;
1628 struct sockaddr_storage address;
1629 int len, err, fput_needed;
1631 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1632 if (sock != NULL) {
1633 err = security_socket_getpeername(sock);
1634 if (err) {
1635 fput_light(sock->file, fput_needed);
1636 return err;
1639 err =
1640 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1642 if (!err)
1643 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1644 usockaddr_len);
1645 fput_light(sock->file, fput_needed);
1647 return err;
1651 * Send a datagram to a given address. We move the address into kernel
1652 * space and check the user space data area is readable before invoking
1653 * the protocol.
1656 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1657 unsigned, flags, struct sockaddr __user *, addr,
1658 int, addr_len)
1660 struct socket *sock;
1661 struct sockaddr_storage address;
1662 int err;
1663 struct msghdr msg;
1664 struct iovec iov;
1665 int fput_needed;
1667 if (len > INT_MAX)
1668 len = INT_MAX;
1669 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 if (!sock)
1671 goto out;
1673 iov.iov_base = buff;
1674 iov.iov_len = len;
1675 msg.msg_name = NULL;
1676 msg.msg_iov = &iov;
1677 msg.msg_iovlen = 1;
1678 msg.msg_control = NULL;
1679 msg.msg_controllen = 0;
1680 msg.msg_namelen = 0;
1681 if (addr) {
1682 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1683 if (err < 0)
1684 goto out_put;
1685 msg.msg_name = (struct sockaddr *)&address;
1686 msg.msg_namelen = addr_len;
1688 if (sock->file->f_flags & O_NONBLOCK)
1689 flags |= MSG_DONTWAIT;
1690 msg.msg_flags = flags;
1691 err = sock_sendmsg(sock, &msg, len);
1693 out_put:
1694 fput_light(sock->file, fput_needed);
1695 out:
1696 return err;
1700 * Send a datagram down a socket.
1703 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1704 unsigned, flags)
1706 return sys_sendto(fd, buff, len, flags, NULL, 0);
1710 * Receive a frame from the socket and optionally record the address of the
1711 * sender. We verify the buffers are writable and if needed move the
1712 * sender address from kernel to user space.
1715 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1716 unsigned, flags, struct sockaddr __user *, addr,
1717 int __user *, addr_len)
1719 struct socket *sock;
1720 struct iovec iov;
1721 struct msghdr msg;
1722 struct sockaddr_storage address;
1723 int err, err2;
1724 int fput_needed;
1726 if (size > INT_MAX)
1727 size = INT_MAX;
1728 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 if (!sock)
1730 goto out;
1732 msg.msg_control = NULL;
1733 msg.msg_controllen = 0;
1734 msg.msg_iovlen = 1;
1735 msg.msg_iov = &iov;
1736 iov.iov_len = size;
1737 iov.iov_base = ubuf;
1738 msg.msg_name = (struct sockaddr *)&address;
1739 msg.msg_namelen = sizeof(address);
1740 if (sock->file->f_flags & O_NONBLOCK)
1741 flags |= MSG_DONTWAIT;
1742 err = sock_recvmsg(sock, &msg, size, flags);
1744 if (err >= 0 && addr != NULL) {
1745 err2 = move_addr_to_user((struct sockaddr *)&address,
1746 msg.msg_namelen, addr, addr_len);
1747 if (err2 < 0)
1748 err = err2;
1751 fput_light(sock->file, fput_needed);
1752 out:
1753 return err;
1757 * Receive a datagram from a socket.
1760 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1761 unsigned flags)
1763 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1767 * Set a socket option. Because we don't know the option lengths we have
1768 * to pass the user mode parameter for the protocols to sort out.
1771 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1772 char __user *, optval, int, optlen)
1774 int err, fput_needed;
1775 struct socket *sock;
1777 if (optlen < 0)
1778 return -EINVAL;
1780 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 if (sock != NULL) {
1782 err = security_socket_setsockopt(sock, level, optname);
1783 if (err)
1784 goto out_put;
1786 if (level == SOL_SOCKET)
1787 err =
1788 sock_setsockopt(sock, level, optname, optval,
1789 optlen);
1790 else
1791 err =
1792 sock->ops->setsockopt(sock, level, optname, optval,
1793 optlen);
1794 out_put:
1795 fput_light(sock->file, fput_needed);
1797 return err;
1801 * Get a socket option. Because we don't know the option lengths we have
1802 * to pass a user mode parameter for the protocols to sort out.
1805 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1806 char __user *, optval, int __user *, optlen)
1808 int err, fput_needed;
1809 struct socket *sock;
1811 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1812 if (sock != NULL) {
1813 err = security_socket_getsockopt(sock, level, optname);
1814 if (err)
1815 goto out_put;
1817 if (level == SOL_SOCKET)
1818 err =
1819 sock_getsockopt(sock, level, optname, optval,
1820 optlen);
1821 else
1822 err =
1823 sock->ops->getsockopt(sock, level, optname, optval,
1824 optlen);
1825 out_put:
1826 fput_light(sock->file, fput_needed);
1828 return err;
1832 * Shutdown a socket.
1835 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1837 int err, fput_needed;
1838 struct socket *sock;
1840 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1841 if (sock != NULL) {
1842 err = security_socket_shutdown(sock, how);
1843 if (!err)
1844 err = sock->ops->shutdown(sock, how);
1845 fput_light(sock->file, fput_needed);
1847 return err;
1850 /* A couple of helpful macros for getting the address of the 32/64 bit
1851 * fields which are the same type (int / unsigned) on our platforms.
1853 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1854 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1855 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1858 * BSD sendmsg interface
1861 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1863 struct compat_msghdr __user *msg_compat =
1864 (struct compat_msghdr __user *)msg;
1865 struct socket *sock;
1866 struct sockaddr_storage address;
1867 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1868 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1869 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1870 /* 20 is size of ipv6_pktinfo */
1871 unsigned char *ctl_buf = ctl;
1872 struct msghdr msg_sys;
1873 int err, ctl_len, iov_size, total_len;
1874 int fput_needed;
1876 err = -EFAULT;
1877 if (MSG_CMSG_COMPAT & flags) {
1878 if (get_compat_msghdr(&msg_sys, msg_compat))
1879 return -EFAULT;
1880 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1881 return -EFAULT;
1883 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1884 if (!sock)
1885 goto out;
1887 /* do not move before msg_sys is valid */
1888 err = -EMSGSIZE;
1889 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1890 goto out_put;
1892 /* Check whether to allocate the iovec area */
1893 err = -ENOMEM;
1894 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1895 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1896 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1897 if (!iov)
1898 goto out_put;
1901 /* This will also move the address data into kernel space */
1902 if (MSG_CMSG_COMPAT & flags) {
1903 err = verify_compat_iovec(&msg_sys, iov,
1904 (struct sockaddr *)&address,
1905 VERIFY_READ);
1906 } else
1907 err = verify_iovec(&msg_sys, iov,
1908 (struct sockaddr *)&address,
1909 VERIFY_READ);
1910 if (err < 0)
1911 goto out_freeiov;
1912 total_len = err;
1914 err = -ENOBUFS;
1916 if (msg_sys.msg_controllen > INT_MAX)
1917 goto out_freeiov;
1918 ctl_len = msg_sys.msg_controllen;
1919 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1920 err =
1921 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1922 sizeof(ctl));
1923 if (err)
1924 goto out_freeiov;
1925 ctl_buf = msg_sys.msg_control;
1926 ctl_len = msg_sys.msg_controllen;
1927 } else if (ctl_len) {
1928 if (ctl_len > sizeof(ctl)) {
1929 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1930 if (ctl_buf == NULL)
1931 goto out_freeiov;
1933 err = -EFAULT;
1935 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1936 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1937 * checking falls down on this.
1939 if (copy_from_user(ctl_buf,
1940 (void __user __force *)msg_sys.msg_control,
1941 ctl_len))
1942 goto out_freectl;
1943 msg_sys.msg_control = ctl_buf;
1945 msg_sys.msg_flags = flags;
1947 if (sock->file->f_flags & O_NONBLOCK)
1948 msg_sys.msg_flags |= MSG_DONTWAIT;
1949 err = sock_sendmsg(sock, &msg_sys, total_len);
1951 out_freectl:
1952 if (ctl_buf != ctl)
1953 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1954 out_freeiov:
1955 if (iov != iovstack)
1956 sock_kfree_s(sock->sk, iov, iov_size);
1957 out_put:
1958 fput_light(sock->file, fput_needed);
1959 out:
1960 return err;
1963 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1964 struct msghdr *msg_sys, unsigned flags, int nosec)
1966 struct compat_msghdr __user *msg_compat =
1967 (struct compat_msghdr __user *)msg;
1968 struct iovec iovstack[UIO_FASTIOV];
1969 struct iovec *iov = iovstack;
1970 unsigned long cmsg_ptr;
1971 int err, iov_size, total_len, len;
1973 /* kernel mode address */
1974 struct sockaddr_storage addr;
1976 /* user mode address pointers */
1977 struct sockaddr __user *uaddr;
1978 int __user *uaddr_len;
1980 if (MSG_CMSG_COMPAT & flags) {
1981 if (get_compat_msghdr(msg_sys, msg_compat))
1982 return -EFAULT;
1983 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1984 return -EFAULT;
1986 err = -EMSGSIZE;
1987 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1988 goto out;
1990 /* Check whether to allocate the iovec area */
1991 err = -ENOMEM;
1992 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1993 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1994 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1995 if (!iov)
1996 goto out;
2000 * Save the user-mode address (verify_iovec will change the
2001 * kernel msghdr to use the kernel address space)
2004 uaddr = (__force void __user *)msg_sys->msg_name;
2005 uaddr_len = COMPAT_NAMELEN(msg);
2006 if (MSG_CMSG_COMPAT & flags) {
2007 err = verify_compat_iovec(msg_sys, iov,
2008 (struct sockaddr *)&addr,
2009 VERIFY_WRITE);
2010 } else
2011 err = verify_iovec(msg_sys, iov,
2012 (struct sockaddr *)&addr,
2013 VERIFY_WRITE);
2014 if (err < 0)
2015 goto out_freeiov;
2016 total_len = err;
2018 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2019 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2021 if (sock->file->f_flags & O_NONBLOCK)
2022 flags |= MSG_DONTWAIT;
2023 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2024 total_len, flags);
2025 if (err < 0)
2026 goto out_freeiov;
2027 len = err;
2029 if (uaddr != NULL) {
2030 err = move_addr_to_user((struct sockaddr *)&addr,
2031 msg_sys->msg_namelen, uaddr,
2032 uaddr_len);
2033 if (err < 0)
2034 goto out_freeiov;
2036 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2037 COMPAT_FLAGS(msg));
2038 if (err)
2039 goto out_freeiov;
2040 if (MSG_CMSG_COMPAT & flags)
2041 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2042 &msg_compat->msg_controllen);
2043 else
2044 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2045 &msg->msg_controllen);
2046 if (err)
2047 goto out_freeiov;
2048 err = len;
2050 out_freeiov:
2051 if (iov != iovstack)
2052 sock_kfree_s(sock->sk, iov, iov_size);
2053 out:
2054 return err;
2058 * BSD recvmsg interface
2061 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2062 unsigned int, flags)
2064 int fput_needed, err;
2065 struct msghdr msg_sys;
2066 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2068 if (!sock)
2069 goto out;
2071 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2073 fput_light(sock->file, fput_needed);
2074 out:
2075 return err;
2079 * Linux recvmmsg interface
2082 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2083 unsigned int flags, struct timespec *timeout)
2085 int fput_needed, err, datagrams;
2086 struct socket *sock;
2087 struct mmsghdr __user *entry;
2088 struct compat_mmsghdr __user *compat_entry;
2089 struct msghdr msg_sys;
2090 struct timespec end_time;
2092 if (timeout &&
2093 poll_select_set_timeout(&end_time, timeout->tv_sec,
2094 timeout->tv_nsec))
2095 return -EINVAL;
2097 datagrams = 0;
2099 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2100 if (!sock)
2101 return err;
2103 err = sock_error(sock->sk);
2104 if (err)
2105 goto out_put;
2107 entry = mmsg;
2108 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2110 while (datagrams < vlen) {
2112 * No need to ask LSM for more than the first datagram.
2114 if (MSG_CMSG_COMPAT & flags) {
2115 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2116 &msg_sys, flags, datagrams);
2117 if (err < 0)
2118 break;
2119 err = __put_user(err, &compat_entry->msg_len);
2120 ++compat_entry;
2121 } else {
2122 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2123 &msg_sys, flags, datagrams);
2124 if (err < 0)
2125 break;
2126 err = put_user(err, &entry->msg_len);
2127 ++entry;
2130 if (err)
2131 break;
2132 ++datagrams;
2134 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2135 if (flags & MSG_WAITFORONE)
2136 flags |= MSG_DONTWAIT;
2138 if (timeout) {
2139 ktime_get_ts(timeout);
2140 *timeout = timespec_sub(end_time, *timeout);
2141 if (timeout->tv_sec < 0) {
2142 timeout->tv_sec = timeout->tv_nsec = 0;
2143 break;
2146 /* Timeout, return less than vlen datagrams */
2147 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2148 break;
2151 /* Out of band data, return right away */
2152 if (msg_sys.msg_flags & MSG_OOB)
2153 break;
2156 out_put:
2157 fput_light(sock->file, fput_needed);
2159 if (err == 0)
2160 return datagrams;
2162 if (datagrams != 0) {
2164 * We may return less entries than requested (vlen) if the
2165 * sock is non block and there aren't enough datagrams...
2167 if (err != -EAGAIN) {
2169 * ... or if recvmsg returns an error after we
2170 * received some datagrams, where we record the
2171 * error to return on the next call or if the
2172 * app asks about it using getsockopt(SO_ERROR).
2174 sock->sk->sk_err = -err;
2177 return datagrams;
2180 return err;
2183 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2184 unsigned int, vlen, unsigned int, flags,
2185 struct timespec __user *, timeout)
2187 int datagrams;
2188 struct timespec timeout_sys;
2190 if (!timeout)
2191 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2193 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2194 return -EFAULT;
2196 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2198 if (datagrams > 0 &&
2199 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2200 datagrams = -EFAULT;
2202 return datagrams;
2205 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2206 /* Argument list sizes for sys_socketcall */
2207 #define AL(x) ((x) * sizeof(unsigned long))
2208 static const unsigned char nargs[20] = {
2209 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2210 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2211 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2212 AL(4), AL(5)
2215 #undef AL
2218 * System call vectors.
2220 * Argument checking cleaned up. Saved 20% in size.
2221 * This function doesn't need to set the kernel lock because
2222 * it is set by the callees.
2225 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2227 unsigned long a[6];
2228 unsigned long a0, a1;
2229 int err;
2230 unsigned int len;
2232 if (call < 1 || call > SYS_RECVMMSG)
2233 return -EINVAL;
2235 len = nargs[call];
2236 if (len > sizeof(a))
2237 return -EINVAL;
2239 /* copy_from_user should be SMP safe. */
2240 if (copy_from_user(a, args, len))
2241 return -EFAULT;
2243 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2245 a0 = a[0];
2246 a1 = a[1];
2248 switch (call) {
2249 case SYS_SOCKET:
2250 err = sys_socket(a0, a1, a[2]);
2251 break;
2252 case SYS_BIND:
2253 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2254 break;
2255 case SYS_CONNECT:
2256 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2257 break;
2258 case SYS_LISTEN:
2259 err = sys_listen(a0, a1);
2260 break;
2261 case SYS_ACCEPT:
2262 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2263 (int __user *)a[2], 0);
2264 break;
2265 case SYS_GETSOCKNAME:
2266 err =
2267 sys_getsockname(a0, (struct sockaddr __user *)a1,
2268 (int __user *)a[2]);
2269 break;
2270 case SYS_GETPEERNAME:
2271 err =
2272 sys_getpeername(a0, (struct sockaddr __user *)a1,
2273 (int __user *)a[2]);
2274 break;
2275 case SYS_SOCKETPAIR:
2276 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2277 break;
2278 case SYS_SEND:
2279 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2280 break;
2281 case SYS_SENDTO:
2282 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2283 (struct sockaddr __user *)a[4], a[5]);
2284 break;
2285 case SYS_RECV:
2286 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2287 break;
2288 case SYS_RECVFROM:
2289 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2290 (struct sockaddr __user *)a[4],
2291 (int __user *)a[5]);
2292 break;
2293 case SYS_SHUTDOWN:
2294 err = sys_shutdown(a0, a1);
2295 break;
2296 case SYS_SETSOCKOPT:
2297 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2298 break;
2299 case SYS_GETSOCKOPT:
2300 err =
2301 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2302 (int __user *)a[4]);
2303 break;
2304 case SYS_SENDMSG:
2305 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2306 break;
2307 case SYS_RECVMSG:
2308 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2309 break;
2310 case SYS_RECVMMSG:
2311 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2312 (struct timespec __user *)a[4]);
2313 break;
2314 case SYS_ACCEPT4:
2315 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2316 (int __user *)a[2], a[3]);
2317 break;
2318 default:
2319 err = -EINVAL;
2320 break;
2322 return err;
2325 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2328 * sock_register - add a socket protocol handler
2329 * @ops: description of protocol
2331 * This function is called by a protocol handler that wants to
2332 * advertise its address family, and have it linked into the
2333 * socket interface. The value ops->family coresponds to the
2334 * socket system call protocol family.
2336 int sock_register(const struct net_proto_family *ops)
2338 int err;
2340 if (ops->family >= NPROTO) {
2341 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2342 NPROTO);
2343 return -ENOBUFS;
2346 spin_lock(&net_family_lock);
2347 if (rcu_dereference_protected(net_families[ops->family],
2348 lockdep_is_held(&net_family_lock)))
2349 err = -EEXIST;
2350 else {
2351 rcu_assign_pointer(net_families[ops->family], ops);
2352 err = 0;
2354 spin_unlock(&net_family_lock);
2356 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2357 return err;
2359 EXPORT_SYMBOL(sock_register);
2362 * sock_unregister - remove a protocol handler
2363 * @family: protocol family to remove
2365 * This function is called by a protocol handler that wants to
2366 * remove its address family, and have it unlinked from the
2367 * new socket creation.
2369 * If protocol handler is a module, then it can use module reference
2370 * counts to protect against new references. If protocol handler is not
2371 * a module then it needs to provide its own protection in
2372 * the ops->create routine.
2374 void sock_unregister(int family)
2376 BUG_ON(family < 0 || family >= NPROTO);
2378 spin_lock(&net_family_lock);
2379 rcu_assign_pointer(net_families[family], NULL);
2380 spin_unlock(&net_family_lock);
2382 synchronize_rcu();
2384 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2386 EXPORT_SYMBOL(sock_unregister);
2388 static int __init sock_init(void)
2390 int err;
2393 * Initialize sock SLAB cache.
2396 sk_init();
2399 * Initialize skbuff SLAB cache
2401 skb_init();
2404 * Initialize the protocols module.
2407 init_inodecache();
2409 err = register_filesystem(&sock_fs_type);
2410 if (err)
2411 goto out_fs;
2412 sock_mnt = kern_mount(&sock_fs_type);
2413 if (IS_ERR(sock_mnt)) {
2414 err = PTR_ERR(sock_mnt);
2415 goto out_mount;
2418 /* The real protocol initialization is performed in later initcalls.
2421 #ifdef CONFIG_NETFILTER
2422 netfilter_init();
2423 #endif
2425 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2426 skb_timestamping_init();
2427 #endif
2429 out:
2430 return err;
2432 out_mount:
2433 unregister_filesystem(&sock_fs_type);
2434 out_fs:
2435 goto out;
2438 core_initcall(sock_init); /* early initcall */
2440 #ifdef CONFIG_PROC_FS
2441 void socket_seq_show(struct seq_file *seq)
2443 int cpu;
2444 int counter = 0;
2446 for_each_possible_cpu(cpu)
2447 counter += per_cpu(sockets_in_use, cpu);
2449 /* It can be negative, by the way. 8) */
2450 if (counter < 0)
2451 counter = 0;
2453 seq_printf(seq, "sockets: used %d\n", counter);
2455 #endif /* CONFIG_PROC_FS */
2457 #ifdef CONFIG_COMPAT
2458 static int do_siocgstamp(struct net *net, struct socket *sock,
2459 unsigned int cmd, struct compat_timeval __user *up)
2461 mm_segment_t old_fs = get_fs();
2462 struct timeval ktv;
2463 int err;
2465 set_fs(KERNEL_DS);
2466 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2467 set_fs(old_fs);
2468 if (!err) {
2469 err = put_user(ktv.tv_sec, &up->tv_sec);
2470 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2472 return err;
2475 static int do_siocgstampns(struct net *net, struct socket *sock,
2476 unsigned int cmd, struct compat_timespec __user *up)
2478 mm_segment_t old_fs = get_fs();
2479 struct timespec kts;
2480 int err;
2482 set_fs(KERNEL_DS);
2483 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2484 set_fs(old_fs);
2485 if (!err) {
2486 err = put_user(kts.tv_sec, &up->tv_sec);
2487 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2489 return err;
2492 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2494 struct ifreq __user *uifr;
2495 int err;
2497 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2498 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2499 return -EFAULT;
2501 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2502 if (err)
2503 return err;
2505 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2506 return -EFAULT;
2508 return 0;
2511 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2513 struct compat_ifconf ifc32;
2514 struct ifconf ifc;
2515 struct ifconf __user *uifc;
2516 struct compat_ifreq __user *ifr32;
2517 struct ifreq __user *ifr;
2518 unsigned int i, j;
2519 int err;
2521 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2522 return -EFAULT;
2524 if (ifc32.ifcbuf == 0) {
2525 ifc32.ifc_len = 0;
2526 ifc.ifc_len = 0;
2527 ifc.ifc_req = NULL;
2528 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2529 } else {
2530 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2531 sizeof(struct ifreq);
2532 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2533 ifc.ifc_len = len;
2534 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2535 ifr32 = compat_ptr(ifc32.ifcbuf);
2536 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2537 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2538 return -EFAULT;
2539 ifr++;
2540 ifr32++;
2543 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2544 return -EFAULT;
2546 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2547 if (err)
2548 return err;
2550 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2551 return -EFAULT;
2553 ifr = ifc.ifc_req;
2554 ifr32 = compat_ptr(ifc32.ifcbuf);
2555 for (i = 0, j = 0;
2556 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2557 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2558 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2559 return -EFAULT;
2560 ifr32++;
2561 ifr++;
2564 if (ifc32.ifcbuf == 0) {
2565 /* Translate from 64-bit structure multiple to
2566 * a 32-bit one.
2568 i = ifc.ifc_len;
2569 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2570 ifc32.ifc_len = i;
2571 } else {
2572 ifc32.ifc_len = i;
2574 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2575 return -EFAULT;
2577 return 0;
2580 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2582 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2583 bool convert_in = false, convert_out = false;
2584 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2585 struct ethtool_rxnfc __user *rxnfc;
2586 struct ifreq __user *ifr;
2587 u32 rule_cnt = 0, actual_rule_cnt;
2588 u32 ethcmd;
2589 u32 data;
2590 int ret;
2592 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2593 return -EFAULT;
2595 compat_rxnfc = compat_ptr(data);
2597 if (get_user(ethcmd, &compat_rxnfc->cmd))
2598 return -EFAULT;
2600 /* Most ethtool structures are defined without padding.
2601 * Unfortunately struct ethtool_rxnfc is an exception.
2603 switch (ethcmd) {
2604 default:
2605 break;
2606 case ETHTOOL_GRXCLSRLALL:
2607 /* Buffer size is variable */
2608 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2609 return -EFAULT;
2610 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2611 return -ENOMEM;
2612 buf_size += rule_cnt * sizeof(u32);
2613 /* fall through */
2614 case ETHTOOL_GRXRINGS:
2615 case ETHTOOL_GRXCLSRLCNT:
2616 case ETHTOOL_GRXCLSRULE:
2617 convert_out = true;
2618 /* fall through */
2619 case ETHTOOL_SRXCLSRLDEL:
2620 case ETHTOOL_SRXCLSRLINS:
2621 buf_size += sizeof(struct ethtool_rxnfc);
2622 convert_in = true;
2623 break;
2626 ifr = compat_alloc_user_space(buf_size);
2627 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2629 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2630 return -EFAULT;
2632 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2633 &ifr->ifr_ifru.ifru_data))
2634 return -EFAULT;
2636 if (convert_in) {
2637 /* We expect there to be holes between fs.m_u and
2638 * fs.ring_cookie and at the end of fs, but nowhere else.
2640 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_u) +
2641 sizeof(compat_rxnfc->fs.m_u) !=
2642 offsetof(struct ethtool_rxnfc, fs.m_u) +
2643 sizeof(rxnfc->fs.m_u));
2644 BUILD_BUG_ON(
2645 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2646 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2647 offsetof(struct ethtool_rxnfc, fs.location) -
2648 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2650 if (copy_in_user(rxnfc, compat_rxnfc,
2651 (void *)(&rxnfc->fs.m_u + 1) -
2652 (void *)rxnfc) ||
2653 copy_in_user(&rxnfc->fs.ring_cookie,
2654 &compat_rxnfc->fs.ring_cookie,
2655 (void *)(&rxnfc->fs.location + 1) -
2656 (void *)&rxnfc->fs.ring_cookie) ||
2657 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2658 sizeof(rxnfc->rule_cnt)))
2659 return -EFAULT;
2662 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2663 if (ret)
2664 return ret;
2666 if (convert_out) {
2667 if (copy_in_user(compat_rxnfc, rxnfc,
2668 (const void *)(&rxnfc->fs.m_u + 1) -
2669 (const void *)rxnfc) ||
2670 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2671 &rxnfc->fs.ring_cookie,
2672 (const void *)(&rxnfc->fs.location + 1) -
2673 (const void *)&rxnfc->fs.ring_cookie) ||
2674 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2675 sizeof(rxnfc->rule_cnt)))
2676 return -EFAULT;
2678 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2679 /* As an optimisation, we only copy the actual
2680 * number of rules that the underlying
2681 * function returned. Since Mallory might
2682 * change the rule count in user memory, we
2683 * check that it is less than the rule count
2684 * originally given (as the user buffer size),
2685 * which has been range-checked.
2687 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2688 return -EFAULT;
2689 if (actual_rule_cnt < rule_cnt)
2690 rule_cnt = actual_rule_cnt;
2691 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2692 &rxnfc->rule_locs[0],
2693 rule_cnt * sizeof(u32)))
2694 return -EFAULT;
2698 return 0;
2701 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2703 void __user *uptr;
2704 compat_uptr_t uptr32;
2705 struct ifreq __user *uifr;
2707 uifr = compat_alloc_user_space(sizeof(*uifr));
2708 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2709 return -EFAULT;
2711 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2712 return -EFAULT;
2714 uptr = compat_ptr(uptr32);
2716 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2717 return -EFAULT;
2719 return dev_ioctl(net, SIOCWANDEV, uifr);
2722 static int bond_ioctl(struct net *net, unsigned int cmd,
2723 struct compat_ifreq __user *ifr32)
2725 struct ifreq kifr;
2726 struct ifreq __user *uifr;
2727 mm_segment_t old_fs;
2728 int err;
2729 u32 data;
2730 void __user *datap;
2732 switch (cmd) {
2733 case SIOCBONDENSLAVE:
2734 case SIOCBONDRELEASE:
2735 case SIOCBONDSETHWADDR:
2736 case SIOCBONDCHANGEACTIVE:
2737 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2738 return -EFAULT;
2740 old_fs = get_fs();
2741 set_fs(KERNEL_DS);
2742 err = dev_ioctl(net, cmd,
2743 (struct ifreq __user __force *) &kifr);
2744 set_fs(old_fs);
2746 return err;
2747 case SIOCBONDSLAVEINFOQUERY:
2748 case SIOCBONDINFOQUERY:
2749 uifr = compat_alloc_user_space(sizeof(*uifr));
2750 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2751 return -EFAULT;
2753 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2754 return -EFAULT;
2756 datap = compat_ptr(data);
2757 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2758 return -EFAULT;
2760 return dev_ioctl(net, cmd, uifr);
2761 default:
2762 return -EINVAL;
2766 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2767 struct compat_ifreq __user *u_ifreq32)
2769 struct ifreq __user *u_ifreq64;
2770 char tmp_buf[IFNAMSIZ];
2771 void __user *data64;
2772 u32 data32;
2774 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2775 IFNAMSIZ))
2776 return -EFAULT;
2777 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2778 return -EFAULT;
2779 data64 = compat_ptr(data32);
2781 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2783 /* Don't check these user accesses, just let that get trapped
2784 * in the ioctl handler instead.
2786 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2787 IFNAMSIZ))
2788 return -EFAULT;
2789 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2790 return -EFAULT;
2792 return dev_ioctl(net, cmd, u_ifreq64);
2795 static int dev_ifsioc(struct net *net, struct socket *sock,
2796 unsigned int cmd, struct compat_ifreq __user *uifr32)
2798 struct ifreq __user *uifr;
2799 int err;
2801 uifr = compat_alloc_user_space(sizeof(*uifr));
2802 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2803 return -EFAULT;
2805 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2807 if (!err) {
2808 switch (cmd) {
2809 case SIOCGIFFLAGS:
2810 case SIOCGIFMETRIC:
2811 case SIOCGIFMTU:
2812 case SIOCGIFMEM:
2813 case SIOCGIFHWADDR:
2814 case SIOCGIFINDEX:
2815 case SIOCGIFADDR:
2816 case SIOCGIFBRDADDR:
2817 case SIOCGIFDSTADDR:
2818 case SIOCGIFNETMASK:
2819 case SIOCGIFPFLAGS:
2820 case SIOCGIFTXQLEN:
2821 case SIOCGMIIPHY:
2822 case SIOCGMIIREG:
2823 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2824 err = -EFAULT;
2825 break;
2828 return err;
2831 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2832 struct compat_ifreq __user *uifr32)
2834 struct ifreq ifr;
2835 struct compat_ifmap __user *uifmap32;
2836 mm_segment_t old_fs;
2837 int err;
2839 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2840 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2841 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2842 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2843 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2844 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2845 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2846 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2847 if (err)
2848 return -EFAULT;
2850 old_fs = get_fs();
2851 set_fs(KERNEL_DS);
2852 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2853 set_fs(old_fs);
2855 if (cmd == SIOCGIFMAP && !err) {
2856 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2857 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2858 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2859 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2860 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2861 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2862 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2863 if (err)
2864 err = -EFAULT;
2866 return err;
2869 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2871 void __user *uptr;
2872 compat_uptr_t uptr32;
2873 struct ifreq __user *uifr;
2875 uifr = compat_alloc_user_space(sizeof(*uifr));
2876 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2877 return -EFAULT;
2879 if (get_user(uptr32, &uifr32->ifr_data))
2880 return -EFAULT;
2882 uptr = compat_ptr(uptr32);
2884 if (put_user(uptr, &uifr->ifr_data))
2885 return -EFAULT;
2887 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2890 struct rtentry32 {
2891 u32 rt_pad1;
2892 struct sockaddr rt_dst; /* target address */
2893 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2894 struct sockaddr rt_genmask; /* target network mask (IP) */
2895 unsigned short rt_flags;
2896 short rt_pad2;
2897 u32 rt_pad3;
2898 unsigned char rt_tos;
2899 unsigned char rt_class;
2900 short rt_pad4;
2901 short rt_metric; /* +1 for binary compatibility! */
2902 /* char * */ u32 rt_dev; /* forcing the device at add */
2903 u32 rt_mtu; /* per route MTU/Window */
2904 u32 rt_window; /* Window clamping */
2905 unsigned short rt_irtt; /* Initial RTT */
2908 struct in6_rtmsg32 {
2909 struct in6_addr rtmsg_dst;
2910 struct in6_addr rtmsg_src;
2911 struct in6_addr rtmsg_gateway;
2912 u32 rtmsg_type;
2913 u16 rtmsg_dst_len;
2914 u16 rtmsg_src_len;
2915 u32 rtmsg_metric;
2916 u32 rtmsg_info;
2917 u32 rtmsg_flags;
2918 s32 rtmsg_ifindex;
2921 static int routing_ioctl(struct net *net, struct socket *sock,
2922 unsigned int cmd, void __user *argp)
2924 int ret;
2925 void *r = NULL;
2926 struct in6_rtmsg r6;
2927 struct rtentry r4;
2928 char devname[16];
2929 u32 rtdev;
2930 mm_segment_t old_fs = get_fs();
2932 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2933 struct in6_rtmsg32 __user *ur6 = argp;
2934 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2935 3 * sizeof(struct in6_addr));
2936 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2937 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2938 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2939 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2940 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2941 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2942 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2944 r = (void *) &r6;
2945 } else { /* ipv4 */
2946 struct rtentry32 __user *ur4 = argp;
2947 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2948 3 * sizeof(struct sockaddr));
2949 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2950 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2951 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2952 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2953 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2954 ret |= __get_user(rtdev, &(ur4->rt_dev));
2955 if (rtdev) {
2956 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2957 r4.rt_dev = (char __user __force *)devname;
2958 devname[15] = 0;
2959 } else
2960 r4.rt_dev = NULL;
2962 r = (void *) &r4;
2965 if (ret) {
2966 ret = -EFAULT;
2967 goto out;
2970 set_fs(KERNEL_DS);
2971 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2972 set_fs(old_fs);
2974 out:
2975 return ret;
2978 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2979 * for some operations; this forces use of the newer bridge-utils that
2980 * use compatible ioctls
2982 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2984 compat_ulong_t tmp;
2986 if (get_user(tmp, argp))
2987 return -EFAULT;
2988 if (tmp == BRCTL_GET_VERSION)
2989 return BRCTL_VERSION + 1;
2990 return -EINVAL;
2993 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2994 unsigned int cmd, unsigned long arg)
2996 void __user *argp = compat_ptr(arg);
2997 struct sock *sk = sock->sk;
2998 struct net *net = sock_net(sk);
3000 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3001 return siocdevprivate_ioctl(net, cmd, argp);
3003 switch (cmd) {
3004 case SIOCSIFBR:
3005 case SIOCGIFBR:
3006 return old_bridge_ioctl(argp);
3007 case SIOCGIFNAME:
3008 return dev_ifname32(net, argp);
3009 case SIOCGIFCONF:
3010 return dev_ifconf(net, argp);
3011 case SIOCETHTOOL:
3012 return ethtool_ioctl(net, argp);
3013 case SIOCWANDEV:
3014 return compat_siocwandev(net, argp);
3015 case SIOCGIFMAP:
3016 case SIOCSIFMAP:
3017 return compat_sioc_ifmap(net, cmd, argp);
3018 case SIOCBONDENSLAVE:
3019 case SIOCBONDRELEASE:
3020 case SIOCBONDSETHWADDR:
3021 case SIOCBONDSLAVEINFOQUERY:
3022 case SIOCBONDINFOQUERY:
3023 case SIOCBONDCHANGEACTIVE:
3024 return bond_ioctl(net, cmd, argp);
3025 case SIOCADDRT:
3026 case SIOCDELRT:
3027 return routing_ioctl(net, sock, cmd, argp);
3028 case SIOCGSTAMP:
3029 return do_siocgstamp(net, sock, cmd, argp);
3030 case SIOCGSTAMPNS:
3031 return do_siocgstampns(net, sock, cmd, argp);
3032 case SIOCSHWTSTAMP:
3033 return compat_siocshwtstamp(net, argp);
3035 case FIOSETOWN:
3036 case SIOCSPGRP:
3037 case FIOGETOWN:
3038 case SIOCGPGRP:
3039 case SIOCBRADDBR:
3040 case SIOCBRDELBR:
3041 case SIOCGIFVLAN:
3042 case SIOCSIFVLAN:
3043 case SIOCADDDLCI:
3044 case SIOCDELDLCI:
3045 return sock_ioctl(file, cmd, arg);
3047 case SIOCGIFFLAGS:
3048 case SIOCSIFFLAGS:
3049 case SIOCGIFMETRIC:
3050 case SIOCSIFMETRIC:
3051 case SIOCGIFMTU:
3052 case SIOCSIFMTU:
3053 case SIOCGIFMEM:
3054 case SIOCSIFMEM:
3055 case SIOCGIFHWADDR:
3056 case SIOCSIFHWADDR:
3057 case SIOCADDMULTI:
3058 case SIOCDELMULTI:
3059 case SIOCGIFINDEX:
3060 case SIOCGIFADDR:
3061 case SIOCSIFADDR:
3062 case SIOCSIFHWBROADCAST:
3063 case SIOCDIFADDR:
3064 case SIOCGIFBRDADDR:
3065 case SIOCSIFBRDADDR:
3066 case SIOCGIFDSTADDR:
3067 case SIOCSIFDSTADDR:
3068 case SIOCGIFNETMASK:
3069 case SIOCSIFNETMASK:
3070 case SIOCSIFPFLAGS:
3071 case SIOCGIFPFLAGS:
3072 case SIOCGIFTXQLEN:
3073 case SIOCSIFTXQLEN:
3074 case SIOCBRADDIF:
3075 case SIOCBRDELIF:
3076 case SIOCSIFNAME:
3077 case SIOCGMIIPHY:
3078 case SIOCGMIIREG:
3079 case SIOCSMIIREG:
3080 return dev_ifsioc(net, sock, cmd, argp);
3082 case SIOCSARP:
3083 case SIOCGARP:
3084 case SIOCDARP:
3085 case SIOCATMARK:
3086 return sock_do_ioctl(net, sock, cmd, arg);
3089 /* Prevent warning from compat_sys_ioctl, these always
3090 * result in -EINVAL in the native case anyway. */
3091 switch (cmd) {
3092 case SIOCRTMSG:
3093 case SIOCGIFCOUNT:
3094 case SIOCSRARP:
3095 case SIOCGRARP:
3096 case SIOCDRARP:
3097 case SIOCSIFLINK:
3098 case SIOCGIFSLAVE:
3099 case SIOCSIFSLAVE:
3100 return -EINVAL;
3103 return -ENOIOCTLCMD;
3106 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3107 unsigned long arg)
3109 struct socket *sock = file->private_data;
3110 int ret = -ENOIOCTLCMD;
3111 struct sock *sk;
3112 struct net *net;
3114 sk = sock->sk;
3115 net = sock_net(sk);
3117 if (sock->ops->compat_ioctl)
3118 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3120 if (ret == -ENOIOCTLCMD &&
3121 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3122 ret = compat_wext_handle_ioctl(net, cmd, arg);
3124 if (ret == -ENOIOCTLCMD)
3125 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3127 return ret;
3129 #endif
3131 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3133 return sock->ops->bind(sock, addr, addrlen);
3135 EXPORT_SYMBOL(kernel_bind);
3137 int kernel_listen(struct socket *sock, int backlog)
3139 return sock->ops->listen(sock, backlog);
3141 EXPORT_SYMBOL(kernel_listen);
3143 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3145 struct sock *sk = sock->sk;
3146 int err;
3148 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3149 newsock);
3150 if (err < 0)
3151 goto done;
3153 err = sock->ops->accept(sock, *newsock, flags);
3154 if (err < 0) {
3155 sock_release(*newsock);
3156 *newsock = NULL;
3157 goto done;
3160 (*newsock)->ops = sock->ops;
3161 __module_get((*newsock)->ops->owner);
3163 done:
3164 return err;
3166 EXPORT_SYMBOL(kernel_accept);
3168 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3169 int flags)
3171 return sock->ops->connect(sock, addr, addrlen, flags);
3173 EXPORT_SYMBOL(kernel_connect);
3175 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3176 int *addrlen)
3178 return sock->ops->getname(sock, addr, addrlen, 0);
3180 EXPORT_SYMBOL(kernel_getsockname);
3182 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3183 int *addrlen)
3185 return sock->ops->getname(sock, addr, addrlen, 1);
3187 EXPORT_SYMBOL(kernel_getpeername);
3189 int kernel_getsockopt(struct socket *sock, int level, int optname,
3190 char *optval, int *optlen)
3192 mm_segment_t oldfs = get_fs();
3193 char __user *uoptval;
3194 int __user *uoptlen;
3195 int err;
3197 uoptval = (char __user __force *) optval;
3198 uoptlen = (int __user __force *) optlen;
3200 set_fs(KERNEL_DS);
3201 if (level == SOL_SOCKET)
3202 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3203 else
3204 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3205 uoptlen);
3206 set_fs(oldfs);
3207 return err;
3209 EXPORT_SYMBOL(kernel_getsockopt);
3211 int kernel_setsockopt(struct socket *sock, int level, int optname,
3212 char *optval, unsigned int optlen)
3214 mm_segment_t oldfs = get_fs();
3215 char __user *uoptval;
3216 int err;
3218 uoptval = (char __user __force *) optval;
3220 set_fs(KERNEL_DS);
3221 if (level == SOL_SOCKET)
3222 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3223 else
3224 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3225 optlen);
3226 set_fs(oldfs);
3227 return err;
3229 EXPORT_SYMBOL(kernel_setsockopt);
3231 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3232 size_t size, int flags)
3234 sock_update_classid(sock->sk);
3236 if (sock->ops->sendpage)
3237 return sock->ops->sendpage(sock, page, offset, size, flags);
3239 return sock_no_sendpage(sock, page, offset, size, flags);
3241 EXPORT_SYMBOL(kernel_sendpage);
3243 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3245 mm_segment_t oldfs = get_fs();
3246 int err;
3248 set_fs(KERNEL_DS);
3249 err = sock->ops->ioctl(sock, cmd, arg);
3250 set_fs(oldfs);
3252 return err;
3254 EXPORT_SYMBOL(kernel_sock_ioctl);
3256 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3258 return sock->ops->shutdown(sock, how);
3260 EXPORT_SYMBOL(kernel_sock_shutdown);