2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
28 static struct kmem_cache
*delayed_node_cache
;
30 int __init
btrfs_delayed_inode_init(void)
32 delayed_node_cache
= kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node
),
35 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
37 if (!delayed_node_cache
)
42 void btrfs_delayed_inode_exit(void)
44 if (delayed_node_cache
)
45 kmem_cache_destroy(delayed_node_cache
);
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node
*delayed_node
,
50 struct btrfs_root
*root
, u64 inode_id
)
52 delayed_node
->root
= root
;
53 delayed_node
->inode_id
= inode_id
;
54 atomic_set(&delayed_node
->refs
, 0);
55 delayed_node
->count
= 0;
56 delayed_node
->in_list
= 0;
57 delayed_node
->inode_dirty
= 0;
58 delayed_node
->ins_root
= RB_ROOT
;
59 delayed_node
->del_root
= RB_ROOT
;
60 mutex_init(&delayed_node
->mutex
);
61 delayed_node
->index_cnt
= 0;
62 INIT_LIST_HEAD(&delayed_node
->n_list
);
63 INIT_LIST_HEAD(&delayed_node
->p_list
);
64 delayed_node
->bytes_reserved
= 0;
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item
*item1
,
69 struct btrfs_delayed_item
*item2
)
71 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
72 item1
->key
.objectid
== item2
->key
.objectid
&&
73 item1
->key
.type
== item2
->key
.type
&&
74 item1
->key
.offset
+ 1 == item2
->key
.offset
)
79 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
80 struct btrfs_root
*root
)
82 return root
->fs_info
->delayed_root
;
85 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
87 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
88 struct btrfs_root
*root
= btrfs_inode
->root
;
89 u64 ino
= btrfs_ino(inode
);
90 struct btrfs_delayed_node
*node
;
92 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
94 atomic_inc(&node
->refs
);
98 spin_lock(&root
->inode_lock
);
99 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
101 if (btrfs_inode
->delayed_node
) {
102 atomic_inc(&node
->refs
); /* can be accessed */
103 BUG_ON(btrfs_inode
->delayed_node
!= node
);
104 spin_unlock(&root
->inode_lock
);
107 btrfs_inode
->delayed_node
= node
;
108 atomic_inc(&node
->refs
); /* can be accessed */
109 atomic_inc(&node
->refs
); /* cached in the inode */
110 spin_unlock(&root
->inode_lock
);
113 spin_unlock(&root
->inode_lock
);
118 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
121 struct btrfs_delayed_node
*node
;
122 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
123 struct btrfs_root
*root
= btrfs_inode
->root
;
124 u64 ino
= btrfs_ino(inode
);
128 node
= btrfs_get_delayed_node(inode
);
132 node
= kmem_cache_alloc(delayed_node_cache
, GFP_NOFS
);
134 return ERR_PTR(-ENOMEM
);
135 btrfs_init_delayed_node(node
, root
, ino
);
137 atomic_inc(&node
->refs
); /* cached in the btrfs inode */
138 atomic_inc(&node
->refs
); /* can be accessed */
140 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
142 kmem_cache_free(delayed_node_cache
, node
);
146 spin_lock(&root
->inode_lock
);
147 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
148 if (ret
== -EEXIST
) {
149 kmem_cache_free(delayed_node_cache
, node
);
150 spin_unlock(&root
->inode_lock
);
151 radix_tree_preload_end();
154 btrfs_inode
->delayed_node
= node
;
155 spin_unlock(&root
->inode_lock
);
156 radix_tree_preload_end();
162 * Call it when holding delayed_node->mutex
164 * If mod = 1, add this node into the prepared list.
166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
167 struct btrfs_delayed_node
*node
,
170 spin_lock(&root
->lock
);
172 if (!list_empty(&node
->p_list
))
173 list_move_tail(&node
->p_list
, &root
->prepare_list
);
175 list_add_tail(&node
->p_list
, &root
->prepare_list
);
177 list_add_tail(&node
->n_list
, &root
->node_list
);
178 list_add_tail(&node
->p_list
, &root
->prepare_list
);
179 atomic_inc(&node
->refs
); /* inserted into list */
183 spin_unlock(&root
->lock
);
186 /* Call it when holding delayed_node->mutex */
187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
188 struct btrfs_delayed_node
*node
)
190 spin_lock(&root
->lock
);
193 atomic_dec(&node
->refs
); /* not in the list */
194 list_del_init(&node
->n_list
);
195 if (!list_empty(&node
->p_list
))
196 list_del_init(&node
->p_list
);
199 spin_unlock(&root
->lock
);
202 struct btrfs_delayed_node
*btrfs_first_delayed_node(
203 struct btrfs_delayed_root
*delayed_root
)
206 struct btrfs_delayed_node
*node
= NULL
;
208 spin_lock(&delayed_root
->lock
);
209 if (list_empty(&delayed_root
->node_list
))
212 p
= delayed_root
->node_list
.next
;
213 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
214 atomic_inc(&node
->refs
);
216 spin_unlock(&delayed_root
->lock
);
221 struct btrfs_delayed_node
*btrfs_next_delayed_node(
222 struct btrfs_delayed_node
*node
)
224 struct btrfs_delayed_root
*delayed_root
;
226 struct btrfs_delayed_node
*next
= NULL
;
228 delayed_root
= node
->root
->fs_info
->delayed_root
;
229 spin_lock(&delayed_root
->lock
);
230 if (!node
->in_list
) { /* not in the list */
231 if (list_empty(&delayed_root
->node_list
))
233 p
= delayed_root
->node_list
.next
;
234 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
237 p
= node
->n_list
.next
;
239 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
240 atomic_inc(&next
->refs
);
242 spin_unlock(&delayed_root
->lock
);
247 static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node
*delayed_node
,
251 struct btrfs_delayed_root
*delayed_root
;
256 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
258 mutex_lock(&delayed_node
->mutex
);
259 if (delayed_node
->count
)
260 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
262 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
263 mutex_unlock(&delayed_node
->mutex
);
265 if (atomic_dec_and_test(&delayed_node
->refs
)) {
266 struct btrfs_root
*root
= delayed_node
->root
;
267 spin_lock(&root
->inode_lock
);
268 if (atomic_read(&delayed_node
->refs
) == 0) {
269 radix_tree_delete(&root
->delayed_nodes_tree
,
270 delayed_node
->inode_id
);
271 kmem_cache_free(delayed_node_cache
, delayed_node
);
273 spin_unlock(&root
->inode_lock
);
277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
279 __btrfs_release_delayed_node(node
, 0);
282 struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root
*delayed_root
)
286 struct btrfs_delayed_node
*node
= NULL
;
288 spin_lock(&delayed_root
->lock
);
289 if (list_empty(&delayed_root
->prepare_list
))
292 p
= delayed_root
->prepare_list
.next
;
294 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
295 atomic_inc(&node
->refs
);
297 spin_unlock(&delayed_root
->lock
);
302 static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node
*node
)
305 __btrfs_release_delayed_node(node
, 1);
308 struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
310 struct btrfs_delayed_item
*item
;
311 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
313 item
->data_len
= data_len
;
314 item
->ins_or_del
= 0;
315 item
->bytes_reserved
= 0;
316 item
->delayed_node
= NULL
;
317 atomic_set(&item
->refs
, 1);
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
329 * Note: if we don't find the right item, we will return the prev item and
332 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
333 struct rb_root
*root
,
334 struct btrfs_key
*key
,
335 struct btrfs_delayed_item
**prev
,
336 struct btrfs_delayed_item
**next
)
338 struct rb_node
*node
, *prev_node
= NULL
;
339 struct btrfs_delayed_item
*delayed_item
= NULL
;
342 node
= root
->rb_node
;
345 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
348 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
350 node
= node
->rb_right
;
352 node
= node
->rb_left
;
361 *prev
= delayed_item
;
362 else if ((node
= rb_prev(prev_node
)) != NULL
) {
363 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
373 *next
= delayed_item
;
374 else if ((node
= rb_next(prev_node
)) != NULL
) {
375 *next
= rb_entry(node
, struct btrfs_delayed_item
,
383 struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node
*delayed_node
,
385 struct btrfs_key
*key
)
387 struct btrfs_delayed_item
*item
;
389 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
394 struct btrfs_delayed_item
*__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node
*delayed_node
,
396 struct btrfs_key
*key
)
398 struct btrfs_delayed_item
*item
;
400 item
= __btrfs_lookup_delayed_item(&delayed_node
->del_root
, key
,
405 struct btrfs_delayed_item
*__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node
*delayed_node
,
407 struct btrfs_key
*key
)
409 struct btrfs_delayed_item
*item
, *next
;
411 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
419 struct btrfs_delayed_item
*__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node
*delayed_node
,
421 struct btrfs_key
*key
)
423 struct btrfs_delayed_item
*item
, *next
;
425 item
= __btrfs_lookup_delayed_item(&delayed_node
->del_root
, key
,
433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
434 struct btrfs_delayed_item
*ins
,
437 struct rb_node
**p
, *node
;
438 struct rb_node
*parent_node
= NULL
;
439 struct rb_root
*root
;
440 struct btrfs_delayed_item
*item
;
443 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
444 root
= &delayed_node
->ins_root
;
445 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
446 root
= &delayed_node
->del_root
;
450 node
= &ins
->rb_node
;
454 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
457 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
466 rb_link_node(node
, parent_node
, p
);
467 rb_insert_color(node
, root
);
468 ins
->delayed_node
= delayed_node
;
469 ins
->ins_or_del
= action
;
471 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
472 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
473 ins
->key
.offset
>= delayed_node
->index_cnt
)
474 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
476 delayed_node
->count
++;
477 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
482 struct btrfs_delayed_item
*item
)
484 return __btrfs_add_delayed_item(node
, item
,
485 BTRFS_DELAYED_INSERTION_ITEM
);
488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
489 struct btrfs_delayed_item
*item
)
491 return __btrfs_add_delayed_item(node
, item
,
492 BTRFS_DELAYED_DELETION_ITEM
);
495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
497 struct rb_root
*root
;
498 struct btrfs_delayed_root
*delayed_root
;
500 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
502 BUG_ON(!delayed_root
);
503 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
504 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
506 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
507 root
= &delayed_item
->delayed_node
->ins_root
;
509 root
= &delayed_item
->delayed_node
->del_root
;
511 rb_erase(&delayed_item
->rb_node
, root
);
512 delayed_item
->delayed_node
->count
--;
513 atomic_dec(&delayed_root
->items
);
514 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
&&
515 waitqueue_active(&delayed_root
->wait
))
516 wake_up(&delayed_root
->wait
);
519 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
522 __btrfs_remove_delayed_item(item
);
523 if (atomic_dec_and_test(&item
->refs
))
528 struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node
*delayed_node
)
532 struct btrfs_delayed_item
*item
= NULL
;
534 p
= rb_first(&delayed_node
->ins_root
);
536 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
541 struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node
*delayed_node
)
545 struct btrfs_delayed_item
*item
= NULL
;
547 p
= rb_first(&delayed_node
->del_root
);
549 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
554 struct btrfs_delayed_item
*__btrfs_next_delayed_item(
555 struct btrfs_delayed_item
*item
)
558 struct btrfs_delayed_item
*next
= NULL
;
560 p
= rb_next(&item
->rb_node
);
562 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
567 static inline struct btrfs_root
*btrfs_get_fs_root(struct btrfs_root
*root
,
570 struct btrfs_key root_key
;
572 if (root
->objectid
== root_id
)
575 root_key
.objectid
= root_id
;
576 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
577 root_key
.offset
= (u64
)-1;
578 return btrfs_read_fs_root_no_name(root
->fs_info
, &root_key
);
581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
582 struct btrfs_root
*root
,
583 struct btrfs_delayed_item
*item
)
585 struct btrfs_block_rsv
*src_rsv
;
586 struct btrfs_block_rsv
*dst_rsv
;
590 if (!trans
->bytes_reserved
)
593 src_rsv
= trans
->block_rsv
;
594 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
596 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
597 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
599 item
->bytes_reserved
= num_bytes
;
604 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
605 struct btrfs_delayed_item
*item
)
607 struct btrfs_block_rsv
*rsv
;
609 if (!item
->bytes_reserved
)
612 rsv
= &root
->fs_info
->delayed_block_rsv
;
613 btrfs_block_rsv_release(root
, rsv
,
614 item
->bytes_reserved
);
617 static int btrfs_delayed_inode_reserve_metadata(
618 struct btrfs_trans_handle
*trans
,
619 struct btrfs_root
*root
,
621 struct btrfs_delayed_node
*node
)
623 struct btrfs_block_rsv
*src_rsv
;
624 struct btrfs_block_rsv
*dst_rsv
;
629 src_rsv
= trans
->block_rsv
;
630 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
632 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
635 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
636 * which doesn't reserve space for speed. This is a problem since we
637 * still need to reserve space for this update, so try to reserve the
640 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
641 * we're accounted for.
643 if (!trans
->bytes_reserved
&&
644 src_rsv
!= &root
->fs_info
->delalloc_block_rsv
) {
645 ret
= btrfs_block_rsv_add_noflush(root
, dst_rsv
, num_bytes
);
647 * Since we're under a transaction reserve_metadata_bytes could
648 * try to commit the transaction which will make it return
649 * EAGAIN to make us stop the transaction we have, so return
650 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
655 node
->bytes_reserved
= num_bytes
;
657 } else if (src_rsv
== &root
->fs_info
->delalloc_block_rsv
) {
658 spin_lock(&BTRFS_I(inode
)->lock
);
659 if (BTRFS_I(inode
)->delalloc_meta_reserved
) {
660 BTRFS_I(inode
)->delalloc_meta_reserved
= 0;
661 spin_unlock(&BTRFS_I(inode
)->lock
);
665 spin_unlock(&BTRFS_I(inode
)->lock
);
667 /* Ok we didn't have space pre-reserved. This shouldn't happen
668 * too often but it can happen if we do delalloc to an existing
669 * inode which gets dirtied because of the time update, and then
670 * isn't touched again until after the transaction commits and
671 * then we try to write out the data. First try to be nice and
672 * reserve something strictly for us. If not be a pain and try
673 * to steal from the delalloc block rsv.
675 ret
= btrfs_block_rsv_add_noflush(root
, dst_rsv
, num_bytes
);
679 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
684 * Ok this is a problem, let's just steal from the global rsv
685 * since this really shouldn't happen that often.
688 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->global_block_rsv
,
694 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
698 * Migrate only takes a reservation, it doesn't touch the size of the
699 * block_rsv. This is to simplify people who don't normally have things
700 * migrated from their block rsv. If they go to release their
701 * reservation, that will decrease the size as well, so if migrate
702 * reduced size we'd end up with a negative size. But for the
703 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
704 * but we could in fact do this reserve/migrate dance several times
705 * between the time we did the original reservation and we'd clean it
706 * up. So to take care of this, release the space for the meta
707 * reservation here. I think it may be time for a documentation page on
708 * how block rsvs. work.
711 node
->bytes_reserved
= num_bytes
;
714 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
719 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
720 struct btrfs_delayed_node
*node
)
722 struct btrfs_block_rsv
*rsv
;
724 if (!node
->bytes_reserved
)
727 rsv
= &root
->fs_info
->delayed_block_rsv
;
728 btrfs_block_rsv_release(root
, rsv
,
729 node
->bytes_reserved
);
730 node
->bytes_reserved
= 0;
734 * This helper will insert some continuous items into the same leaf according
735 * to the free space of the leaf.
737 static int btrfs_batch_insert_items(struct btrfs_trans_handle
*trans
,
738 struct btrfs_root
*root
,
739 struct btrfs_path
*path
,
740 struct btrfs_delayed_item
*item
)
742 struct btrfs_delayed_item
*curr
, *next
;
744 int total_data_size
= 0, total_size
= 0;
745 struct extent_buffer
*leaf
;
747 struct btrfs_key
*keys
;
749 struct list_head head
;
755 BUG_ON(!path
->nodes
[0]);
757 leaf
= path
->nodes
[0];
758 free_space
= btrfs_leaf_free_space(root
, leaf
);
759 INIT_LIST_HEAD(&head
);
765 * count the number of the continuous items that we can insert in batch
767 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
769 total_data_size
+= next
->data_len
;
770 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
771 list_add_tail(&next
->tree_list
, &head
);
775 next
= __btrfs_next_delayed_item(curr
);
779 if (!btrfs_is_continuous_delayed_item(curr
, next
))
789 * we need allocate some memory space, but it might cause the task
790 * to sleep, so we set all locked nodes in the path to blocking locks
793 btrfs_set_path_blocking(path
);
795 keys
= kmalloc(sizeof(struct btrfs_key
) * nitems
, GFP_NOFS
);
801 data_size
= kmalloc(sizeof(u32
) * nitems
, GFP_NOFS
);
807 /* get keys of all the delayed items */
809 list_for_each_entry(next
, &head
, tree_list
) {
811 data_size
[i
] = next
->data_len
;
815 /* reset all the locked nodes in the patch to spinning locks. */
816 btrfs_clear_path_blocking(path
, NULL
, 0);
818 /* insert the keys of the items */
819 ret
= setup_items_for_insert(trans
, root
, path
, keys
, data_size
,
820 total_data_size
, total_size
, nitems
);
824 /* insert the dir index items */
825 slot
= path
->slots
[0];
826 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
827 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
828 write_extent_buffer(leaf
, &curr
->data
,
829 (unsigned long)data_ptr
,
833 btrfs_delayed_item_release_metadata(root
, curr
);
835 list_del(&curr
->tree_list
);
836 btrfs_release_delayed_item(curr
);
847 * This helper can just do simple insertion that needn't extend item for new
848 * data, such as directory name index insertion, inode insertion.
850 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
851 struct btrfs_root
*root
,
852 struct btrfs_path
*path
,
853 struct btrfs_delayed_item
*delayed_item
)
855 struct extent_buffer
*leaf
;
856 struct btrfs_item
*item
;
860 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
861 delayed_item
->data_len
);
862 if (ret
< 0 && ret
!= -EEXIST
)
865 leaf
= path
->nodes
[0];
867 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
868 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
870 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
871 delayed_item
->data_len
);
872 btrfs_mark_buffer_dirty(leaf
);
874 btrfs_delayed_item_release_metadata(root
, delayed_item
);
879 * we insert an item first, then if there are some continuous items, we try
880 * to insert those items into the same leaf.
882 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
883 struct btrfs_path
*path
,
884 struct btrfs_root
*root
,
885 struct btrfs_delayed_node
*node
)
887 struct btrfs_delayed_item
*curr
, *prev
;
891 mutex_lock(&node
->mutex
);
892 curr
= __btrfs_first_delayed_insertion_item(node
);
896 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
898 btrfs_release_path(path
);
903 curr
= __btrfs_next_delayed_item(prev
);
904 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
905 /* insert the continuous items into the same leaf */
907 btrfs_batch_insert_items(trans
, root
, path
, curr
);
909 btrfs_release_delayed_item(prev
);
910 btrfs_mark_buffer_dirty(path
->nodes
[0]);
912 btrfs_release_path(path
);
913 mutex_unlock(&node
->mutex
);
917 mutex_unlock(&node
->mutex
);
921 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
922 struct btrfs_root
*root
,
923 struct btrfs_path
*path
,
924 struct btrfs_delayed_item
*item
)
926 struct btrfs_delayed_item
*curr
, *next
;
927 struct extent_buffer
*leaf
;
928 struct btrfs_key key
;
929 struct list_head head
;
930 int nitems
, i
, last_item
;
933 BUG_ON(!path
->nodes
[0]);
935 leaf
= path
->nodes
[0];
938 last_item
= btrfs_header_nritems(leaf
) - 1;
940 return -ENOENT
; /* FIXME: Is errno suitable? */
943 INIT_LIST_HEAD(&head
);
944 btrfs_item_key_to_cpu(leaf
, &key
, i
);
947 * count the number of the dir index items that we can delete in batch
949 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
950 list_add_tail(&next
->tree_list
, &head
);
954 next
= __btrfs_next_delayed_item(curr
);
958 if (!btrfs_is_continuous_delayed_item(curr
, next
))
964 btrfs_item_key_to_cpu(leaf
, &key
, i
);
970 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
974 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
975 btrfs_delayed_item_release_metadata(root
, curr
);
976 list_del(&curr
->tree_list
);
977 btrfs_release_delayed_item(curr
);
984 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
985 struct btrfs_path
*path
,
986 struct btrfs_root
*root
,
987 struct btrfs_delayed_node
*node
)
989 struct btrfs_delayed_item
*curr
, *prev
;
993 mutex_lock(&node
->mutex
);
994 curr
= __btrfs_first_delayed_deletion_item(node
);
998 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
1003 * can't find the item which the node points to, so this node
1004 * is invalid, just drop it.
1007 curr
= __btrfs_next_delayed_item(prev
);
1008 btrfs_release_delayed_item(prev
);
1010 btrfs_release_path(path
);
1017 btrfs_batch_delete_items(trans
, root
, path
, curr
);
1018 btrfs_release_path(path
);
1019 mutex_unlock(&node
->mutex
);
1023 btrfs_release_path(path
);
1024 mutex_unlock(&node
->mutex
);
1028 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
1030 struct btrfs_delayed_root
*delayed_root
;
1032 if (delayed_node
&& delayed_node
->inode_dirty
) {
1033 BUG_ON(!delayed_node
->root
);
1034 delayed_node
->inode_dirty
= 0;
1035 delayed_node
->count
--;
1037 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1038 atomic_dec(&delayed_root
->items
);
1039 if (atomic_read(&delayed_root
->items
) <
1040 BTRFS_DELAYED_BACKGROUND
&&
1041 waitqueue_active(&delayed_root
->wait
))
1042 wake_up(&delayed_root
->wait
);
1046 static int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1047 struct btrfs_root
*root
,
1048 struct btrfs_path
*path
,
1049 struct btrfs_delayed_node
*node
)
1051 struct btrfs_key key
;
1052 struct btrfs_inode_item
*inode_item
;
1053 struct extent_buffer
*leaf
;
1056 mutex_lock(&node
->mutex
);
1057 if (!node
->inode_dirty
) {
1058 mutex_unlock(&node
->mutex
);
1062 key
.objectid
= node
->inode_id
;
1063 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
1065 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, 1);
1067 btrfs_release_path(path
);
1068 mutex_unlock(&node
->mutex
);
1070 } else if (ret
< 0) {
1071 mutex_unlock(&node
->mutex
);
1075 btrfs_unlock_up_safe(path
, 1);
1076 leaf
= path
->nodes
[0];
1077 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1078 struct btrfs_inode_item
);
1079 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1080 sizeof(struct btrfs_inode_item
));
1081 btrfs_mark_buffer_dirty(leaf
);
1082 btrfs_release_path(path
);
1084 btrfs_delayed_inode_release_metadata(root
, node
);
1085 btrfs_release_delayed_inode(node
);
1086 mutex_unlock(&node
->mutex
);
1091 /* Called when committing the transaction. */
1092 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1093 struct btrfs_root
*root
)
1095 struct btrfs_delayed_root
*delayed_root
;
1096 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1097 struct btrfs_path
*path
;
1098 struct btrfs_block_rsv
*block_rsv
;
1101 path
= btrfs_alloc_path();
1104 path
->leave_spinning
= 1;
1106 block_rsv
= trans
->block_rsv
;
1107 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1109 delayed_root
= btrfs_get_delayed_root(root
);
1111 curr_node
= btrfs_first_delayed_node(delayed_root
);
1113 root
= curr_node
->root
;
1114 ret
= btrfs_insert_delayed_items(trans
, path
, root
,
1117 ret
= btrfs_delete_delayed_items(trans
, path
, root
,
1120 ret
= btrfs_update_delayed_inode(trans
, root
, path
,
1123 btrfs_release_delayed_node(curr_node
);
1127 prev_node
= curr_node
;
1128 curr_node
= btrfs_next_delayed_node(curr_node
);
1129 btrfs_release_delayed_node(prev_node
);
1132 btrfs_free_path(path
);
1133 trans
->block_rsv
= block_rsv
;
1137 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1138 struct btrfs_delayed_node
*node
)
1140 struct btrfs_path
*path
;
1141 struct btrfs_block_rsv
*block_rsv
;
1144 path
= btrfs_alloc_path();
1147 path
->leave_spinning
= 1;
1149 block_rsv
= trans
->block_rsv
;
1150 trans
->block_rsv
= &node
->root
->fs_info
->delayed_block_rsv
;
1152 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1154 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1156 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1157 btrfs_free_path(path
);
1159 trans
->block_rsv
= block_rsv
;
1163 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1164 struct inode
*inode
)
1166 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1172 mutex_lock(&delayed_node
->mutex
);
1173 if (!delayed_node
->count
) {
1174 mutex_unlock(&delayed_node
->mutex
);
1175 btrfs_release_delayed_node(delayed_node
);
1178 mutex_unlock(&delayed_node
->mutex
);
1180 ret
= __btrfs_commit_inode_delayed_items(trans
, delayed_node
);
1181 btrfs_release_delayed_node(delayed_node
);
1185 void btrfs_remove_delayed_node(struct inode
*inode
)
1187 struct btrfs_delayed_node
*delayed_node
;
1189 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1193 BTRFS_I(inode
)->delayed_node
= NULL
;
1194 btrfs_release_delayed_node(delayed_node
);
1197 struct btrfs_async_delayed_node
{
1198 struct btrfs_root
*root
;
1199 struct btrfs_delayed_node
*delayed_node
;
1200 struct btrfs_work work
;
1203 static void btrfs_async_run_delayed_node_done(struct btrfs_work
*work
)
1205 struct btrfs_async_delayed_node
*async_node
;
1206 struct btrfs_trans_handle
*trans
;
1207 struct btrfs_path
*path
;
1208 struct btrfs_delayed_node
*delayed_node
= NULL
;
1209 struct btrfs_root
*root
;
1210 struct btrfs_block_rsv
*block_rsv
;
1211 unsigned long nr
= 0;
1212 int need_requeue
= 0;
1215 async_node
= container_of(work
, struct btrfs_async_delayed_node
, work
);
1217 path
= btrfs_alloc_path();
1220 path
->leave_spinning
= 1;
1222 delayed_node
= async_node
->delayed_node
;
1223 root
= delayed_node
->root
;
1225 trans
= btrfs_join_transaction(root
);
1229 block_rsv
= trans
->block_rsv
;
1230 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1232 ret
= btrfs_insert_delayed_items(trans
, path
, root
, delayed_node
);
1234 ret
= btrfs_delete_delayed_items(trans
, path
, root
,
1238 btrfs_update_delayed_inode(trans
, root
, path
, delayed_node
);
1241 * Maybe new delayed items have been inserted, so we need requeue
1242 * the work. Besides that, we must dequeue the empty delayed nodes
1243 * to avoid the race between delayed items balance and the worker.
1244 * The race like this:
1245 * Task1 Worker thread
1246 * count == 0, needn't requeue
1247 * also needn't insert the
1248 * delayed node into prepare
1250 * add lots of delayed items
1251 * queue the delayed node
1252 * already in the list,
1253 * and not in the prepare
1254 * list, it means the delayed
1255 * node is being dealt with
1257 * do delayed items balance
1258 * the delayed node is being
1259 * dealt with by the worker
1261 * the worker goto idle.
1262 * Task1 will sleep until the transaction is commited.
1264 mutex_lock(&delayed_node
->mutex
);
1265 if (delayed_node
->count
)
1268 btrfs_dequeue_delayed_node(root
->fs_info
->delayed_root
,
1270 mutex_unlock(&delayed_node
->mutex
);
1272 nr
= trans
->blocks_used
;
1274 trans
->block_rsv
= block_rsv
;
1275 btrfs_end_transaction_dmeta(trans
, root
);
1276 __btrfs_btree_balance_dirty(root
, nr
);
1278 btrfs_free_path(path
);
1281 btrfs_requeue_work(&async_node
->work
);
1283 btrfs_release_prepared_delayed_node(delayed_node
);
1288 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1289 struct btrfs_root
*root
, int all
)
1291 struct btrfs_async_delayed_node
*async_node
;
1292 struct btrfs_delayed_node
*curr
;
1296 curr
= btrfs_first_prepared_delayed_node(delayed_root
);
1300 async_node
= kmalloc(sizeof(*async_node
), GFP_NOFS
);
1302 btrfs_release_prepared_delayed_node(curr
);
1306 async_node
->root
= root
;
1307 async_node
->delayed_node
= curr
;
1309 async_node
->work
.func
= btrfs_async_run_delayed_node_done
;
1310 async_node
->work
.flags
= 0;
1312 btrfs_queue_worker(&root
->fs_info
->delayed_workers
, &async_node
->work
);
1315 if (all
|| count
< 4)
1321 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1323 struct btrfs_delayed_root
*delayed_root
;
1324 delayed_root
= btrfs_get_delayed_root(root
);
1325 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1328 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1330 struct btrfs_delayed_root
*delayed_root
;
1332 delayed_root
= btrfs_get_delayed_root(root
);
1334 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1337 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1339 ret
= btrfs_wq_run_delayed_node(delayed_root
, root
, 1);
1343 wait_event_interruptible_timeout(
1345 (atomic_read(&delayed_root
->items
) <
1346 BTRFS_DELAYED_BACKGROUND
),
1351 btrfs_wq_run_delayed_node(delayed_root
, root
, 0);
1354 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1355 struct btrfs_root
*root
, const char *name
,
1356 int name_len
, struct inode
*dir
,
1357 struct btrfs_disk_key
*disk_key
, u8 type
,
1360 struct btrfs_delayed_node
*delayed_node
;
1361 struct btrfs_delayed_item
*delayed_item
;
1362 struct btrfs_dir_item
*dir_item
;
1365 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1366 if (IS_ERR(delayed_node
))
1367 return PTR_ERR(delayed_node
);
1369 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1370 if (!delayed_item
) {
1375 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1377 * we have reserved enough space when we start a new transaction,
1378 * so reserving metadata failure is impossible
1382 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1383 btrfs_set_key_type(&delayed_item
->key
, BTRFS_DIR_INDEX_KEY
);
1384 delayed_item
->key
.offset
= index
;
1386 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1387 dir_item
->location
= *disk_key
;
1388 dir_item
->transid
= cpu_to_le64(trans
->transid
);
1389 dir_item
->data_len
= 0;
1390 dir_item
->name_len
= cpu_to_le16(name_len
);
1391 dir_item
->type
= type
;
1392 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1394 mutex_lock(&delayed_node
->mutex
);
1395 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1396 if (unlikely(ret
)) {
1397 printk(KERN_ERR
"err add delayed dir index item(name: %s) into "
1398 "the insertion tree of the delayed node"
1399 "(root id: %llu, inode id: %llu, errno: %d)\n",
1401 (unsigned long long)delayed_node
->root
->objectid
,
1402 (unsigned long long)delayed_node
->inode_id
,
1406 mutex_unlock(&delayed_node
->mutex
);
1409 btrfs_release_delayed_node(delayed_node
);
1413 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1414 struct btrfs_delayed_node
*node
,
1415 struct btrfs_key
*key
)
1417 struct btrfs_delayed_item
*item
;
1419 mutex_lock(&node
->mutex
);
1420 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1422 mutex_unlock(&node
->mutex
);
1426 btrfs_delayed_item_release_metadata(root
, item
);
1427 btrfs_release_delayed_item(item
);
1428 mutex_unlock(&node
->mutex
);
1432 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1433 struct btrfs_root
*root
, struct inode
*dir
,
1436 struct btrfs_delayed_node
*node
;
1437 struct btrfs_delayed_item
*item
;
1438 struct btrfs_key item_key
;
1441 node
= btrfs_get_or_create_delayed_node(dir
);
1443 return PTR_ERR(node
);
1445 item_key
.objectid
= btrfs_ino(dir
);
1446 btrfs_set_key_type(&item_key
, BTRFS_DIR_INDEX_KEY
);
1447 item_key
.offset
= index
;
1449 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1453 item
= btrfs_alloc_delayed_item(0);
1459 item
->key
= item_key
;
1461 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1463 * we have reserved enough space when we start a new transaction,
1464 * so reserving metadata failure is impossible.
1468 mutex_lock(&node
->mutex
);
1469 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1470 if (unlikely(ret
)) {
1471 printk(KERN_ERR
"err add delayed dir index item(index: %llu) "
1472 "into the deletion tree of the delayed node"
1473 "(root id: %llu, inode id: %llu, errno: %d)\n",
1474 (unsigned long long)index
,
1475 (unsigned long long)node
->root
->objectid
,
1476 (unsigned long long)node
->inode_id
,
1480 mutex_unlock(&node
->mutex
);
1482 btrfs_release_delayed_node(node
);
1486 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1488 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1494 * Since we have held i_mutex of this directory, it is impossible that
1495 * a new directory index is added into the delayed node and index_cnt
1496 * is updated now. So we needn't lock the delayed node.
1498 if (!delayed_node
->index_cnt
) {
1499 btrfs_release_delayed_node(delayed_node
);
1503 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1504 btrfs_release_delayed_node(delayed_node
);
1508 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1509 struct list_head
*del_list
)
1511 struct btrfs_delayed_node
*delayed_node
;
1512 struct btrfs_delayed_item
*item
;
1514 delayed_node
= btrfs_get_delayed_node(inode
);
1518 mutex_lock(&delayed_node
->mutex
);
1519 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1521 atomic_inc(&item
->refs
);
1522 list_add_tail(&item
->readdir_list
, ins_list
);
1523 item
= __btrfs_next_delayed_item(item
);
1526 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1528 atomic_inc(&item
->refs
);
1529 list_add_tail(&item
->readdir_list
, del_list
);
1530 item
= __btrfs_next_delayed_item(item
);
1532 mutex_unlock(&delayed_node
->mutex
);
1534 * This delayed node is still cached in the btrfs inode, so refs
1535 * must be > 1 now, and we needn't check it is going to be freed
1538 * Besides that, this function is used to read dir, we do not
1539 * insert/delete delayed items in this period. So we also needn't
1540 * requeue or dequeue this delayed node.
1542 atomic_dec(&delayed_node
->refs
);
1545 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1546 struct list_head
*del_list
)
1548 struct btrfs_delayed_item
*curr
, *next
;
1550 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1551 list_del(&curr
->readdir_list
);
1552 if (atomic_dec_and_test(&curr
->refs
))
1556 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1557 list_del(&curr
->readdir_list
);
1558 if (atomic_dec_and_test(&curr
->refs
))
1563 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1566 struct btrfs_delayed_item
*curr
, *next
;
1569 if (list_empty(del_list
))
1572 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1573 if (curr
->key
.offset
> index
)
1576 list_del(&curr
->readdir_list
);
1577 ret
= (curr
->key
.offset
== index
);
1579 if (atomic_dec_and_test(&curr
->refs
))
1591 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1594 int btrfs_readdir_delayed_dir_index(struct file
*filp
, void *dirent
,
1596 struct list_head
*ins_list
)
1598 struct btrfs_dir_item
*di
;
1599 struct btrfs_delayed_item
*curr
, *next
;
1600 struct btrfs_key location
;
1604 unsigned char d_type
;
1606 if (list_empty(ins_list
))
1610 * Changing the data of the delayed item is impossible. So
1611 * we needn't lock them. And we have held i_mutex of the
1612 * directory, nobody can delete any directory indexes now.
1614 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1615 list_del(&curr
->readdir_list
);
1617 if (curr
->key
.offset
< filp
->f_pos
) {
1618 if (atomic_dec_and_test(&curr
->refs
))
1623 filp
->f_pos
= curr
->key
.offset
;
1625 di
= (struct btrfs_dir_item
*)curr
->data
;
1626 name
= (char *)(di
+ 1);
1627 name_len
= le16_to_cpu(di
->name_len
);
1629 d_type
= btrfs_filetype_table
[di
->type
];
1630 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1632 over
= filldir(dirent
, name
, name_len
, curr
->key
.offset
,
1633 location
.objectid
, d_type
);
1635 if (atomic_dec_and_test(&curr
->refs
))
1644 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation
, struct btrfs_inode_item
,
1646 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence
, struct btrfs_inode_item
,
1648 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid
, struct btrfs_inode_item
,
1650 BTRFS_SETGET_STACK_FUNCS(stack_inode_size
, struct btrfs_inode_item
, size
, 64);
1651 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes
, struct btrfs_inode_item
,
1653 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group
, struct btrfs_inode_item
,
1655 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink
, struct btrfs_inode_item
, nlink
, 32);
1656 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid
, struct btrfs_inode_item
, uid
, 32);
1657 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid
, struct btrfs_inode_item
, gid
, 32);
1658 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode
, struct btrfs_inode_item
, mode
, 32);
1659 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev
, struct btrfs_inode_item
, rdev
, 64);
1660 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags
, struct btrfs_inode_item
, flags
, 64);
1662 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec
, struct btrfs_timespec
, sec
, 64);
1663 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec
, struct btrfs_timespec
, nsec
, 32);
1665 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1666 struct btrfs_inode_item
*inode_item
,
1667 struct inode
*inode
)
1669 btrfs_set_stack_inode_uid(inode_item
, inode
->i_uid
);
1670 btrfs_set_stack_inode_gid(inode_item
, inode
->i_gid
);
1671 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1672 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1673 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1674 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1675 btrfs_set_stack_inode_generation(inode_item
,
1676 BTRFS_I(inode
)->generation
);
1677 btrfs_set_stack_inode_sequence(inode_item
, BTRFS_I(inode
)->sequence
);
1678 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1679 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1680 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1681 btrfs_set_stack_inode_block_group(inode_item
, 0);
1683 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item
),
1684 inode
->i_atime
.tv_sec
);
1685 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item
),
1686 inode
->i_atime
.tv_nsec
);
1688 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item
),
1689 inode
->i_mtime
.tv_sec
);
1690 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item
),
1691 inode
->i_mtime
.tv_nsec
);
1693 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item
),
1694 inode
->i_ctime
.tv_sec
);
1695 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item
),
1696 inode
->i_ctime
.tv_nsec
);
1699 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1701 struct btrfs_delayed_node
*delayed_node
;
1702 struct btrfs_inode_item
*inode_item
;
1703 struct btrfs_timespec
*tspec
;
1705 delayed_node
= btrfs_get_delayed_node(inode
);
1709 mutex_lock(&delayed_node
->mutex
);
1710 if (!delayed_node
->inode_dirty
) {
1711 mutex_unlock(&delayed_node
->mutex
);
1712 btrfs_release_delayed_node(delayed_node
);
1716 inode_item
= &delayed_node
->inode_item
;
1718 inode
->i_uid
= btrfs_stack_inode_uid(inode_item
);
1719 inode
->i_gid
= btrfs_stack_inode_gid(inode_item
);
1720 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1721 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1722 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1723 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1724 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1725 BTRFS_I(inode
)->sequence
= btrfs_stack_inode_sequence(inode_item
);
1727 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1728 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1730 tspec
= btrfs_inode_atime(inode_item
);
1731 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1732 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1734 tspec
= btrfs_inode_mtime(inode_item
);
1735 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1736 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1738 tspec
= btrfs_inode_ctime(inode_item
);
1739 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1740 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1742 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1743 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1745 mutex_unlock(&delayed_node
->mutex
);
1746 btrfs_release_delayed_node(delayed_node
);
1750 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1751 struct btrfs_root
*root
, struct inode
*inode
)
1753 struct btrfs_delayed_node
*delayed_node
;
1756 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1757 if (IS_ERR(delayed_node
))
1758 return PTR_ERR(delayed_node
);
1760 mutex_lock(&delayed_node
->mutex
);
1761 if (delayed_node
->inode_dirty
) {
1762 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1766 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1771 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1772 delayed_node
->inode_dirty
= 1;
1773 delayed_node
->count
++;
1774 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1776 mutex_unlock(&delayed_node
->mutex
);
1777 btrfs_release_delayed_node(delayed_node
);
1781 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1783 struct btrfs_root
*root
= delayed_node
->root
;
1784 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1786 mutex_lock(&delayed_node
->mutex
);
1787 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1789 btrfs_delayed_item_release_metadata(root
, curr_item
);
1790 prev_item
= curr_item
;
1791 curr_item
= __btrfs_next_delayed_item(prev_item
);
1792 btrfs_release_delayed_item(prev_item
);
1795 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1797 btrfs_delayed_item_release_metadata(root
, curr_item
);
1798 prev_item
= curr_item
;
1799 curr_item
= __btrfs_next_delayed_item(prev_item
);
1800 btrfs_release_delayed_item(prev_item
);
1803 if (delayed_node
->inode_dirty
) {
1804 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1805 btrfs_release_delayed_inode(delayed_node
);
1807 mutex_unlock(&delayed_node
->mutex
);
1810 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1812 struct btrfs_delayed_node
*delayed_node
;
1814 delayed_node
= btrfs_get_delayed_node(inode
);
1818 __btrfs_kill_delayed_node(delayed_node
);
1819 btrfs_release_delayed_node(delayed_node
);
1822 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1825 struct btrfs_delayed_node
*delayed_nodes
[8];
1829 spin_lock(&root
->inode_lock
);
1830 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1831 (void **)delayed_nodes
, inode_id
,
1832 ARRAY_SIZE(delayed_nodes
));
1834 spin_unlock(&root
->inode_lock
);
1838 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1840 for (i
= 0; i
< n
; i
++)
1841 atomic_inc(&delayed_nodes
[i
]->refs
);
1842 spin_unlock(&root
->inode_lock
);
1844 for (i
= 0; i
< n
; i
++) {
1845 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1846 btrfs_release_delayed_node(delayed_nodes
[i
]);