Btrfs: make sure not to return overlapping extents to fiemap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent_io.c
blob9fcb5ede6b722f962a3099f77dde2f643e055ca4
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
30 #define BUFFER_LRU_MAX 64
32 struct tree_entry {
33 u64 start;
34 u64 end;
35 struct rb_node rb_node;
38 struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
43 /* tells writepage not to lock the state bits for this range
44 * it still does the unlocking
46 unsigned int extent_locked:1;
48 /* tells the submit_bio code to use a WRITE_SYNC */
49 unsigned int sync_io:1;
52 int __init extent_io_init(void)
54 extent_state_cache = kmem_cache_create("extent_state",
55 sizeof(struct extent_state), 0,
56 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 if (!extent_state_cache)
58 return -ENOMEM;
60 extent_buffer_cache = kmem_cache_create("extent_buffers",
61 sizeof(struct extent_buffer), 0,
62 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 if (!extent_buffer_cache)
64 goto free_state_cache;
65 return 0;
67 free_state_cache:
68 kmem_cache_destroy(extent_state_cache);
69 return -ENOMEM;
72 void extent_io_exit(void)
74 struct extent_state *state;
75 struct extent_buffer *eb;
77 while (!list_empty(&states)) {
78 state = list_entry(states.next, struct extent_state, leak_list);
79 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 "state %lu in tree %p refs %d\n",
81 (unsigned long long)state->start,
82 (unsigned long long)state->end,
83 state->state, state->tree, atomic_read(&state->refs));
84 list_del(&state->leak_list);
85 kmem_cache_free(extent_state_cache, state);
89 while (!list_empty(&buffers)) {
90 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 "refs %d\n", (unsigned long long)eb->start,
93 eb->len, atomic_read(&eb->refs));
94 list_del(&eb->leak_list);
95 kmem_cache_free(extent_buffer_cache, eb);
97 if (extent_state_cache)
98 kmem_cache_destroy(extent_state_cache);
99 if (extent_buffer_cache)
100 kmem_cache_destroy(extent_buffer_cache);
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 struct address_space *mapping, gfp_t mask)
106 tree->state = RB_ROOT;
107 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108 tree->ops = NULL;
109 tree->dirty_bytes = 0;
110 spin_lock_init(&tree->lock);
111 spin_lock_init(&tree->buffer_lock);
112 tree->mapping = mapping;
115 static struct extent_state *alloc_extent_state(gfp_t mask)
117 struct extent_state *state;
118 #if LEAK_DEBUG
119 unsigned long flags;
120 #endif
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #if LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
138 void free_extent_state(struct extent_state *state)
140 if (!state)
141 return;
142 if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144 unsigned long flags;
145 #endif
146 WARN_ON(state->tree);
147 #if LEAK_DEBUG
148 spin_lock_irqsave(&leak_lock, flags);
149 list_del(&state->leak_list);
150 spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152 kmem_cache_free(extent_state_cache, state);
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 struct rb_node *node)
159 struct rb_node **p = &root->rb_node;
160 struct rb_node *parent = NULL;
161 struct tree_entry *entry;
163 while (*p) {
164 parent = *p;
165 entry = rb_entry(parent, struct tree_entry, rb_node);
167 if (offset < entry->start)
168 p = &(*p)->rb_left;
169 else if (offset > entry->end)
170 p = &(*p)->rb_right;
171 else
172 return parent;
175 entry = rb_entry(node, struct tree_entry, rb_node);
176 rb_link_node(node, parent, p);
177 rb_insert_color(node, root);
178 return NULL;
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 struct rb_node **prev_ret,
183 struct rb_node **next_ret)
185 struct rb_root *root = &tree->state;
186 struct rb_node *n = root->rb_node;
187 struct rb_node *prev = NULL;
188 struct rb_node *orig_prev = NULL;
189 struct tree_entry *entry;
190 struct tree_entry *prev_entry = NULL;
192 while (n) {
193 entry = rb_entry(n, struct tree_entry, rb_node);
194 prev = n;
195 prev_entry = entry;
197 if (offset < entry->start)
198 n = n->rb_left;
199 else if (offset > entry->end)
200 n = n->rb_right;
201 else
202 return n;
205 if (prev_ret) {
206 orig_prev = prev;
207 while (prev && offset > prev_entry->end) {
208 prev = rb_next(prev);
209 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 *prev_ret = prev;
212 prev = orig_prev;
215 if (next_ret) {
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 while (prev && offset < prev_entry->start) {
218 prev = rb_prev(prev);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 *next_ret = prev;
223 return NULL;
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227 u64 offset)
229 struct rb_node *prev = NULL;
230 struct rb_node *ret;
232 ret = __etree_search(tree, offset, &prev, NULL);
233 if (!ret)
234 return prev;
235 return ret;
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 struct extent_state *other)
241 if (tree->ops && tree->ops->merge_extent_hook)
242 tree->ops->merge_extent_hook(tree->mapping->host, new,
243 other);
247 * utility function to look for merge candidates inside a given range.
248 * Any extents with matching state are merged together into a single
249 * extent in the tree. Extents with EXTENT_IO in their state field
250 * are not merged because the end_io handlers need to be able to do
251 * operations on them without sleeping (or doing allocations/splits).
253 * This should be called with the tree lock held.
255 static int merge_state(struct extent_io_tree *tree,
256 struct extent_state *state)
258 struct extent_state *other;
259 struct rb_node *other_node;
261 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262 return 0;
264 other_node = rb_prev(&state->rb_node);
265 if (other_node) {
266 other = rb_entry(other_node, struct extent_state, rb_node);
267 if (other->end == state->start - 1 &&
268 other->state == state->state) {
269 merge_cb(tree, state, other);
270 state->start = other->start;
271 other->tree = NULL;
272 rb_erase(&other->rb_node, &tree->state);
273 free_extent_state(other);
276 other_node = rb_next(&state->rb_node);
277 if (other_node) {
278 other = rb_entry(other_node, struct extent_state, rb_node);
279 if (other->start == state->end + 1 &&
280 other->state == state->state) {
281 merge_cb(tree, state, other);
282 other->start = state->start;
283 state->tree = NULL;
284 rb_erase(&state->rb_node, &tree->state);
285 free_extent_state(state);
286 state = NULL;
290 return 0;
293 static int set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
296 if (tree->ops && tree->ops->set_bit_hook) {
297 return tree->ops->set_bit_hook(tree->mapping->host,
298 state, bits);
301 return 0;
304 static void clear_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
307 if (tree->ops && tree->ops->clear_bit_hook)
308 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
321 static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
323 int *bits)
325 struct rb_node *node;
326 int bits_to_set = *bits & ~EXTENT_CTLBITS;
327 int ret;
329 if (end < start) {
330 printk(KERN_ERR "btrfs end < start %llu %llu\n",
331 (unsigned long long)end,
332 (unsigned long long)start);
333 WARN_ON(1);
335 state->start = start;
336 state->end = end;
337 ret = set_state_cb(tree, state, bits);
338 if (ret)
339 return ret;
341 if (bits_to_set & EXTENT_DIRTY)
342 tree->dirty_bytes += end - start + 1;
343 state->state |= bits_to_set;
344 node = tree_insert(&tree->state, end, &state->rb_node);
345 if (node) {
346 struct extent_state *found;
347 found = rb_entry(node, struct extent_state, rb_node);
348 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349 "%llu %llu\n", (unsigned long long)found->start,
350 (unsigned long long)found->end,
351 (unsigned long long)start, (unsigned long long)end);
352 free_extent_state(state);
353 return -EEXIST;
355 state->tree = tree;
356 merge_state(tree, state);
357 return 0;
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
361 u64 split)
363 if (tree->ops && tree->ops->split_extent_hook)
364 return tree->ops->split_extent_hook(tree->mapping->host,
365 orig, split);
366 return 0;
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
374 * Before calling,
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
380 * The tree locks are not taken by this function. They need to be held
381 * by the caller.
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
386 struct rb_node *node;
388 split_cb(tree, orig, split);
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
393 orig->start = split;
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 if (node) {
397 free_extent_state(prealloc);
398 return -EEXIST;
400 prealloc->tree = tree;
401 return 0;
405 * utility function to clear some bits in an extent state struct.
406 * it will optionally wake up any one waiting on this state (wake == 1), or
407 * forcibly remove the state from the tree (delete == 1).
409 * If no bits are set on the state struct after clearing things, the
410 * struct is freed and removed from the tree
412 static int clear_state_bit(struct extent_io_tree *tree,
413 struct extent_state *state,
414 int *bits, int wake)
416 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417 int ret = state->state & bits_to_clear;
419 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420 u64 range = state->end - state->start + 1;
421 WARN_ON(range > tree->dirty_bytes);
422 tree->dirty_bytes -= range;
424 clear_state_cb(tree, state, bits);
425 state->state &= ~bits_to_clear;
426 if (wake)
427 wake_up(&state->wq);
428 if (state->state == 0) {
429 if (state->tree) {
430 rb_erase(&state->rb_node, &tree->state);
431 state->tree = NULL;
432 free_extent_state(state);
433 } else {
434 WARN_ON(1);
436 } else {
437 merge_state(tree, state);
439 return ret;
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
450 * the range [start, end] is inclusive.
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
458 gfp_t mask)
460 struct extent_state *state;
461 struct extent_state *cached;
462 struct extent_state *prealloc = NULL;
463 struct rb_node *next_node;
464 struct rb_node *node;
465 u64 last_end;
466 int err;
467 int set = 0;
468 int clear = 0;
470 if (delete)
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 clear = 1;
476 again:
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
479 if (!prealloc)
480 return -ENOMEM;
483 spin_lock(&tree->lock);
484 if (cached_state) {
485 cached = *cached_state;
487 if (clear) {
488 *cached_state = NULL;
489 cached_state = NULL;
492 if (cached && cached->tree && cached->start == start) {
493 if (clear)
494 atomic_dec(&cached->refs);
495 state = cached;
496 goto hit_next;
498 if (clear)
499 free_extent_state(cached);
502 * this search will find the extents that end after
503 * our range starts
505 node = tree_search(tree, start);
506 if (!node)
507 goto out;
508 state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513 last_end = state->end;
516 * | ---- desired range ---- |
517 * | state | or
518 * | ------------- state -------------- |
520 * We need to split the extent we found, and may flip
521 * bits on second half.
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
531 if (state->start < start) {
532 if (!prealloc)
533 prealloc = alloc_extent_state(GFP_ATOMIC);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
536 prealloc = NULL;
537 if (err)
538 goto out;
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
542 goto out;
543 start = last_end + 1;
545 goto search_again;
548 * | ---- desired range ---- |
549 * | state |
550 * We need to split the extent, and clear the bit
551 * on the first half
553 if (state->start <= end && state->end > end) {
554 if (!prealloc)
555 prealloc = alloc_extent_state(GFP_ATOMIC);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
558 if (wake)
559 wake_up(&state->wq);
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
563 prealloc = NULL;
564 goto out;
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
569 else
570 next_node = NULL;
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
578 rb_node);
579 if (state->start == start)
580 goto hit_next;
582 goto search_again;
584 out:
585 spin_unlock(&tree->lock);
586 if (prealloc)
587 free_extent_state(prealloc);
589 return set;
591 search_again:
592 if (start > end)
593 goto out;
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
596 cond_resched();
597 goto again;
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
605 DEFINE_WAIT(wait);
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
608 schedule();
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
611 return 0;
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621 struct extent_state *state;
622 struct rb_node *node;
624 spin_lock(&tree->lock);
625 again:
626 while (1) {
628 * this search will find all the extents that end after
629 * our range starts
631 node = tree_search(tree, start);
632 if (!node)
633 break;
635 state = rb_entry(node, struct extent_state, rb_node);
637 if (state->start > end)
638 goto out;
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
645 goto again;
647 start = state->end + 1;
649 if (start > end)
650 break;
652 if (need_resched()) {
653 spin_unlock(&tree->lock);
654 cond_resched();
655 spin_lock(&tree->lock);
658 out:
659 spin_unlock(&tree->lock);
660 return 0;
663 static int set_state_bits(struct extent_io_tree *tree,
664 struct extent_state *state,
665 int *bits)
667 int ret;
668 int bits_to_set = *bits & ~EXTENT_CTLBITS;
670 ret = set_state_cb(tree, state, bits);
671 if (ret)
672 return ret;
673 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674 u64 range = state->end - state->start + 1;
675 tree->dirty_bytes += range;
677 state->state |= bits_to_set;
679 return 0;
682 static void cache_state(struct extent_state *state,
683 struct extent_state **cached_ptr)
685 if (cached_ptr && !(*cached_ptr)) {
686 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687 *cached_ptr = state;
688 atomic_inc(&state->refs);
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
701 * [start, end] is inclusive This takes the tree lock.
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state, gfp_t mask)
708 struct extent_state *state;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 int err = 0;
712 u64 last_start;
713 u64 last_end;
715 bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
719 if (!prealloc)
720 return -ENOMEM;
723 spin_lock(&tree->lock);
724 if (cached_state && *cached_state) {
725 state = *cached_state;
726 if (state->start == start && state->tree) {
727 node = &state->rb_node;
728 goto hit_next;
732 * this search will find all the extents that end after
733 * our range starts.
735 node = tree_search(tree, start);
736 if (!node) {
737 err = insert_state(tree, prealloc, start, end, &bits);
738 prealloc = NULL;
739 BUG_ON(err == -EEXIST);
740 goto out;
742 state = rb_entry(node, struct extent_state, rb_node);
743 hit_next:
744 last_start = state->start;
745 last_end = state->end;
748 * | ---- desired range ---- |
749 * | state |
751 * Just lock what we found and keep going
753 if (state->start == start && state->end <= end) {
754 struct rb_node *next_node;
755 if (state->state & exclusive_bits) {
756 *failed_start = state->start;
757 err = -EEXIST;
758 goto out;
761 err = set_state_bits(tree, state, &bits);
762 if (err)
763 goto out;
765 cache_state(state, cached_state);
766 merge_state(tree, state);
767 if (last_end == (u64)-1)
768 goto out;
770 start = last_end + 1;
771 if (start < end && prealloc && !need_resched()) {
772 next_node = rb_next(node);
773 if (next_node) {
774 state = rb_entry(next_node, struct extent_state,
775 rb_node);
776 if (state->start == start)
777 goto hit_next;
780 goto search_again;
784 * | ---- desired range ---- |
785 * | state |
786 * or
787 * | ------------- state -------------- |
789 * We need to split the extent we found, and may flip bits on
790 * second half.
792 * If the extent we found extends past our
793 * range, we just split and search again. It'll get split
794 * again the next time though.
796 * If the extent we found is inside our range, we set the
797 * desired bit on it.
799 if (state->start < start) {
800 if (state->state & exclusive_bits) {
801 *failed_start = start;
802 err = -EEXIST;
803 goto out;
805 err = split_state(tree, state, prealloc, start);
806 BUG_ON(err == -EEXIST);
807 prealloc = NULL;
808 if (err)
809 goto out;
810 if (state->end <= end) {
811 err = set_state_bits(tree, state, &bits);
812 if (err)
813 goto out;
814 cache_state(state, cached_state);
815 merge_state(tree, state);
816 if (last_end == (u64)-1)
817 goto out;
818 start = last_end + 1;
820 goto search_again;
823 * | ---- desired range ---- |
824 * | state | or | state |
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
829 if (state->start > start) {
830 u64 this_end;
831 if (end < last_start)
832 this_end = end;
833 else
834 this_end = last_start - 1;
835 err = insert_state(tree, prealloc, start, this_end,
836 &bits);
837 BUG_ON(err == -EEXIST);
838 if (err) {
839 prealloc = NULL;
840 goto out;
842 cache_state(prealloc, cached_state);
843 prealloc = NULL;
844 start = this_end + 1;
845 goto search_again;
848 * | ---- desired range ---- |
849 * | state |
850 * We need to split the extent, and set the bit
851 * on the first half
853 if (state->start <= end && state->end > end) {
854 if (state->state & exclusive_bits) {
855 *failed_start = start;
856 err = -EEXIST;
857 goto out;
859 err = split_state(tree, state, prealloc, end + 1);
860 BUG_ON(err == -EEXIST);
862 err = set_state_bits(tree, prealloc, &bits);
863 if (err) {
864 prealloc = NULL;
865 goto out;
867 cache_state(prealloc, cached_state);
868 merge_state(tree, prealloc);
869 prealloc = NULL;
870 goto out;
873 goto search_again;
875 out:
876 spin_unlock(&tree->lock);
877 if (prealloc)
878 free_extent_state(prealloc);
880 return err;
882 search_again:
883 if (start > end)
884 goto out;
885 spin_unlock(&tree->lock);
886 if (mask & __GFP_WAIT)
887 cond_resched();
888 goto again;
891 /* wrappers around set/clear extent bit */
892 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
893 gfp_t mask)
895 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
896 NULL, mask);
899 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
900 int bits, gfp_t mask)
902 return set_extent_bit(tree, start, end, bits, 0, NULL,
903 NULL, mask);
906 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
907 int bits, gfp_t mask)
909 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
912 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
913 struct extent_state **cached_state, gfp_t mask)
915 return set_extent_bit(tree, start, end,
916 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
917 0, NULL, cached_state, mask);
920 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
921 gfp_t mask)
923 return clear_extent_bit(tree, start, end,
924 EXTENT_DIRTY | EXTENT_DELALLOC |
925 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
928 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
929 gfp_t mask)
931 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
932 NULL, mask);
935 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
936 gfp_t mask)
938 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
939 NULL, mask);
942 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
943 gfp_t mask)
945 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
946 NULL, mask);
949 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
950 u64 end, struct extent_state **cached_state,
951 gfp_t mask)
953 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
954 cached_state, mask);
957 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
959 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
963 * either insert or lock state struct between start and end use mask to tell
964 * us if waiting is desired.
966 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
967 int bits, struct extent_state **cached_state, gfp_t mask)
969 int err;
970 u64 failed_start;
971 while (1) {
972 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
973 EXTENT_LOCKED, &failed_start,
974 cached_state, mask);
975 if (err == -EEXIST && (mask & __GFP_WAIT)) {
976 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
977 start = failed_start;
978 } else {
979 break;
981 WARN_ON(start > end);
983 return err;
986 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
988 return lock_extent_bits(tree, start, end, 0, NULL, mask);
991 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
992 gfp_t mask)
994 int err;
995 u64 failed_start;
997 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
998 &failed_start, NULL, mask);
999 if (err == -EEXIST) {
1000 if (failed_start > start)
1001 clear_extent_bit(tree, start, failed_start - 1,
1002 EXTENT_LOCKED, 1, 0, NULL, mask);
1003 return 0;
1005 return 1;
1008 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009 struct extent_state **cached, gfp_t mask)
1011 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1012 mask);
1015 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1016 gfp_t mask)
1018 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1019 mask);
1023 * helper function to set pages and extents in the tree dirty
1025 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1027 unsigned long index = start >> PAGE_CACHE_SHIFT;
1028 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1029 struct page *page;
1031 while (index <= end_index) {
1032 page = find_get_page(tree->mapping, index);
1033 BUG_ON(!page);
1034 __set_page_dirty_nobuffers(page);
1035 page_cache_release(page);
1036 index++;
1038 return 0;
1042 * helper function to set both pages and extents in the tree writeback
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1046 unsigned long index = start >> PAGE_CACHE_SHIFT;
1047 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048 struct page *page;
1050 while (index <= end_index) {
1051 page = find_get_page(tree->mapping, index);
1052 BUG_ON(!page);
1053 set_page_writeback(page);
1054 page_cache_release(page);
1055 index++;
1057 return 0;
1061 * find the first offset in the io tree with 'bits' set. zero is
1062 * returned if we find something, and *start_ret and *end_ret are
1063 * set to reflect the state struct that was found.
1065 * If nothing was found, 1 is returned, < 0 on error
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068 u64 *start_ret, u64 *end_ret, int bits)
1070 struct rb_node *node;
1071 struct extent_state *state;
1072 int ret = 1;
1074 spin_lock(&tree->lock);
1076 * this search will find all the extents that end after
1077 * our range starts.
1079 node = tree_search(tree, start);
1080 if (!node)
1081 goto out;
1083 while (1) {
1084 state = rb_entry(node, struct extent_state, rb_node);
1085 if (state->end >= start && (state->state & bits)) {
1086 *start_ret = state->start;
1087 *end_ret = state->end;
1088 ret = 0;
1089 break;
1091 node = rb_next(node);
1092 if (!node)
1093 break;
1095 out:
1096 spin_unlock(&tree->lock);
1097 return ret;
1100 /* find the first state struct with 'bits' set after 'start', and
1101 * return it. tree->lock must be held. NULL will returned if
1102 * nothing was found after 'start'
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105 u64 start, int bits)
1107 struct rb_node *node;
1108 struct extent_state *state;
1111 * this search will find all the extents that end after
1112 * our range starts.
1114 node = tree_search(tree, start);
1115 if (!node)
1116 goto out;
1118 while (1) {
1119 state = rb_entry(node, struct extent_state, rb_node);
1120 if (state->end >= start && (state->state & bits))
1121 return state;
1123 node = rb_next(node);
1124 if (!node)
1125 break;
1127 out:
1128 return NULL;
1132 * find a contiguous range of bytes in the file marked as delalloc, not
1133 * more than 'max_bytes'. start and end are used to return the range,
1135 * 1 is returned if we find something, 0 if nothing was in the tree
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138 u64 *start, u64 *end, u64 max_bytes,
1139 struct extent_state **cached_state)
1141 struct rb_node *node;
1142 struct extent_state *state;
1143 u64 cur_start = *start;
1144 u64 found = 0;
1145 u64 total_bytes = 0;
1147 spin_lock(&tree->lock);
1150 * this search will find all the extents that end after
1151 * our range starts.
1153 node = tree_search(tree, cur_start);
1154 if (!node) {
1155 if (!found)
1156 *end = (u64)-1;
1157 goto out;
1160 while (1) {
1161 state = rb_entry(node, struct extent_state, rb_node);
1162 if (found && (state->start != cur_start ||
1163 (state->state & EXTENT_BOUNDARY))) {
1164 goto out;
1166 if (!(state->state & EXTENT_DELALLOC)) {
1167 if (!found)
1168 *end = state->end;
1169 goto out;
1171 if (!found) {
1172 *start = state->start;
1173 *cached_state = state;
1174 atomic_inc(&state->refs);
1176 found++;
1177 *end = state->end;
1178 cur_start = state->end + 1;
1179 node = rb_next(node);
1180 if (!node)
1181 break;
1182 total_bytes += state->end - state->start + 1;
1183 if (total_bytes >= max_bytes)
1184 break;
1186 out:
1187 spin_unlock(&tree->lock);
1188 return found;
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192 struct page *locked_page,
1193 u64 start, u64 end)
1195 int ret;
1196 struct page *pages[16];
1197 unsigned long index = start >> PAGE_CACHE_SHIFT;
1198 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199 unsigned long nr_pages = end_index - index + 1;
1200 int i;
1202 if (index == locked_page->index && end_index == index)
1203 return 0;
1205 while (nr_pages > 0) {
1206 ret = find_get_pages_contig(inode->i_mapping, index,
1207 min_t(unsigned long, nr_pages,
1208 ARRAY_SIZE(pages)), pages);
1209 for (i = 0; i < ret; i++) {
1210 if (pages[i] != locked_page)
1211 unlock_page(pages[i]);
1212 page_cache_release(pages[i]);
1214 nr_pages -= ret;
1215 index += ret;
1216 cond_resched();
1218 return 0;
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222 struct page *locked_page,
1223 u64 delalloc_start,
1224 u64 delalloc_end)
1226 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227 unsigned long start_index = index;
1228 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229 unsigned long pages_locked = 0;
1230 struct page *pages[16];
1231 unsigned long nrpages;
1232 int ret;
1233 int i;
1235 /* the caller is responsible for locking the start index */
1236 if (index == locked_page->index && index == end_index)
1237 return 0;
1239 /* skip the page at the start index */
1240 nrpages = end_index - index + 1;
1241 while (nrpages > 0) {
1242 ret = find_get_pages_contig(inode->i_mapping, index,
1243 min_t(unsigned long,
1244 nrpages, ARRAY_SIZE(pages)), pages);
1245 if (ret == 0) {
1246 ret = -EAGAIN;
1247 goto done;
1249 /* now we have an array of pages, lock them all */
1250 for (i = 0; i < ret; i++) {
1252 * the caller is taking responsibility for
1253 * locked_page
1255 if (pages[i] != locked_page) {
1256 lock_page(pages[i]);
1257 if (!PageDirty(pages[i]) ||
1258 pages[i]->mapping != inode->i_mapping) {
1259 ret = -EAGAIN;
1260 unlock_page(pages[i]);
1261 page_cache_release(pages[i]);
1262 goto done;
1265 page_cache_release(pages[i]);
1266 pages_locked++;
1268 nrpages -= ret;
1269 index += ret;
1270 cond_resched();
1272 ret = 0;
1273 done:
1274 if (ret && pages_locked) {
1275 __unlock_for_delalloc(inode, locked_page,
1276 delalloc_start,
1277 ((u64)(start_index + pages_locked - 1)) <<
1278 PAGE_CACHE_SHIFT);
1280 return ret;
1284 * find a contiguous range of bytes in the file marked as delalloc, not
1285 * more than 'max_bytes'. start and end are used to return the range,
1287 * 1 is returned if we find something, 0 if nothing was in the tree
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290 struct extent_io_tree *tree,
1291 struct page *locked_page,
1292 u64 *start, u64 *end,
1293 u64 max_bytes)
1295 u64 delalloc_start;
1296 u64 delalloc_end;
1297 u64 found;
1298 struct extent_state *cached_state = NULL;
1299 int ret;
1300 int loops = 0;
1302 again:
1303 /* step one, find a bunch of delalloc bytes starting at start */
1304 delalloc_start = *start;
1305 delalloc_end = 0;
1306 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307 max_bytes, &cached_state);
1308 if (!found || delalloc_end <= *start) {
1309 *start = delalloc_start;
1310 *end = delalloc_end;
1311 free_extent_state(cached_state);
1312 return found;
1316 * start comes from the offset of locked_page. We have to lock
1317 * pages in order, so we can't process delalloc bytes before
1318 * locked_page
1320 if (delalloc_start < *start)
1321 delalloc_start = *start;
1324 * make sure to limit the number of pages we try to lock down
1325 * if we're looping.
1327 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1330 /* step two, lock all the pages after the page that has start */
1331 ret = lock_delalloc_pages(inode, locked_page,
1332 delalloc_start, delalloc_end);
1333 if (ret == -EAGAIN) {
1334 /* some of the pages are gone, lets avoid looping by
1335 * shortening the size of the delalloc range we're searching
1337 free_extent_state(cached_state);
1338 if (!loops) {
1339 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340 max_bytes = PAGE_CACHE_SIZE - offset;
1341 loops = 1;
1342 goto again;
1343 } else {
1344 found = 0;
1345 goto out_failed;
1348 BUG_ON(ret);
1350 /* step three, lock the state bits for the whole range */
1351 lock_extent_bits(tree, delalloc_start, delalloc_end,
1352 0, &cached_state, GFP_NOFS);
1354 /* then test to make sure it is all still delalloc */
1355 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356 EXTENT_DELALLOC, 1, cached_state);
1357 if (!ret) {
1358 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359 &cached_state, GFP_NOFS);
1360 __unlock_for_delalloc(inode, locked_page,
1361 delalloc_start, delalloc_end);
1362 cond_resched();
1363 goto again;
1365 free_extent_state(cached_state);
1366 *start = delalloc_start;
1367 *end = delalloc_end;
1368 out_failed:
1369 return found;
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373 struct extent_io_tree *tree,
1374 u64 start, u64 end, struct page *locked_page,
1375 unsigned long op)
1377 int ret;
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1382 int i;
1383 int clear_bits = 0;
1385 if (op & EXTENT_CLEAR_UNLOCK)
1386 clear_bits |= EXTENT_LOCKED;
1387 if (op & EXTENT_CLEAR_DIRTY)
1388 clear_bits |= EXTENT_DIRTY;
1390 if (op & EXTENT_CLEAR_DELALLOC)
1391 clear_bits |= EXTENT_DELALLOC;
1393 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396 EXTENT_SET_PRIVATE2)))
1397 return 0;
1399 while (nr_pages > 0) {
1400 ret = find_get_pages_contig(inode->i_mapping, index,
1401 min_t(unsigned long,
1402 nr_pages, ARRAY_SIZE(pages)), pages);
1403 for (i = 0; i < ret; i++) {
1405 if (op & EXTENT_SET_PRIVATE2)
1406 SetPagePrivate2(pages[i]);
1408 if (pages[i] == locked_page) {
1409 page_cache_release(pages[i]);
1410 continue;
1412 if (op & EXTENT_CLEAR_DIRTY)
1413 clear_page_dirty_for_io(pages[i]);
1414 if (op & EXTENT_SET_WRITEBACK)
1415 set_page_writeback(pages[i]);
1416 if (op & EXTENT_END_WRITEBACK)
1417 end_page_writeback(pages[i]);
1418 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419 unlock_page(pages[i]);
1420 page_cache_release(pages[i]);
1422 nr_pages -= ret;
1423 index += ret;
1424 cond_resched();
1426 return 0;
1430 * count the number of bytes in the tree that have a given bit(s)
1431 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1432 * cached. The total number found is returned.
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435 u64 *start, u64 search_end, u64 max_bytes,
1436 unsigned long bits, int contig)
1438 struct rb_node *node;
1439 struct extent_state *state;
1440 u64 cur_start = *start;
1441 u64 total_bytes = 0;
1442 u64 last = 0;
1443 int found = 0;
1445 if (search_end <= cur_start) {
1446 WARN_ON(1);
1447 return 0;
1450 spin_lock(&tree->lock);
1451 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1452 total_bytes = tree->dirty_bytes;
1453 goto out;
1456 * this search will find all the extents that end after
1457 * our range starts.
1459 node = tree_search(tree, cur_start);
1460 if (!node)
1461 goto out;
1463 while (1) {
1464 state = rb_entry(node, struct extent_state, rb_node);
1465 if (state->start > search_end)
1466 break;
1467 if (contig && found && state->start > last + 1)
1468 break;
1469 if (state->end >= cur_start && (state->state & bits) == bits) {
1470 total_bytes += min(search_end, state->end) + 1 -
1471 max(cur_start, state->start);
1472 if (total_bytes >= max_bytes)
1473 break;
1474 if (!found) {
1475 *start = state->start;
1476 found = 1;
1478 last = state->end;
1479 } else if (contig && found) {
1480 break;
1482 node = rb_next(node);
1483 if (!node)
1484 break;
1486 out:
1487 spin_unlock(&tree->lock);
1488 return total_bytes;
1492 * set the private field for a given byte offset in the tree. If there isn't
1493 * an extent_state there already, this does nothing.
1495 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1497 struct rb_node *node;
1498 struct extent_state *state;
1499 int ret = 0;
1501 spin_lock(&tree->lock);
1503 * this search will find all the extents that end after
1504 * our range starts.
1506 node = tree_search(tree, start);
1507 if (!node) {
1508 ret = -ENOENT;
1509 goto out;
1511 state = rb_entry(node, struct extent_state, rb_node);
1512 if (state->start != start) {
1513 ret = -ENOENT;
1514 goto out;
1516 state->private = private;
1517 out:
1518 spin_unlock(&tree->lock);
1519 return ret;
1522 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1524 struct rb_node *node;
1525 struct extent_state *state;
1526 int ret = 0;
1528 spin_lock(&tree->lock);
1530 * this search will find all the extents that end after
1531 * our range starts.
1533 node = tree_search(tree, start);
1534 if (!node) {
1535 ret = -ENOENT;
1536 goto out;
1538 state = rb_entry(node, struct extent_state, rb_node);
1539 if (state->start != start) {
1540 ret = -ENOENT;
1541 goto out;
1543 *private = state->private;
1544 out:
1545 spin_unlock(&tree->lock);
1546 return ret;
1550 * searches a range in the state tree for a given mask.
1551 * If 'filled' == 1, this returns 1 only if every extent in the tree
1552 * has the bits set. Otherwise, 1 is returned if any bit in the
1553 * range is found set.
1555 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1556 int bits, int filled, struct extent_state *cached)
1558 struct extent_state *state = NULL;
1559 struct rb_node *node;
1560 int bitset = 0;
1562 spin_lock(&tree->lock);
1563 if (cached && cached->tree && cached->start == start)
1564 node = &cached->rb_node;
1565 else
1566 node = tree_search(tree, start);
1567 while (node && start <= end) {
1568 state = rb_entry(node, struct extent_state, rb_node);
1570 if (filled && state->start > start) {
1571 bitset = 0;
1572 break;
1575 if (state->start > end)
1576 break;
1578 if (state->state & bits) {
1579 bitset = 1;
1580 if (!filled)
1581 break;
1582 } else if (filled) {
1583 bitset = 0;
1584 break;
1587 if (state->end == (u64)-1)
1588 break;
1590 start = state->end + 1;
1591 if (start > end)
1592 break;
1593 node = rb_next(node);
1594 if (!node) {
1595 if (filled)
1596 bitset = 0;
1597 break;
1600 spin_unlock(&tree->lock);
1601 return bitset;
1605 * helper function to set a given page up to date if all the
1606 * extents in the tree for that page are up to date
1608 static int check_page_uptodate(struct extent_io_tree *tree,
1609 struct page *page)
1611 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1612 u64 end = start + PAGE_CACHE_SIZE - 1;
1613 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1614 SetPageUptodate(page);
1615 return 0;
1619 * helper function to unlock a page if all the extents in the tree
1620 * for that page are unlocked
1622 static int check_page_locked(struct extent_io_tree *tree,
1623 struct page *page)
1625 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1626 u64 end = start + PAGE_CACHE_SIZE - 1;
1627 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1628 unlock_page(page);
1629 return 0;
1633 * helper function to end page writeback if all the extents
1634 * in the tree for that page are done with writeback
1636 static int check_page_writeback(struct extent_io_tree *tree,
1637 struct page *page)
1639 end_page_writeback(page);
1640 return 0;
1643 /* lots and lots of room for performance fixes in the end_bio funcs */
1646 * after a writepage IO is done, we need to:
1647 * clear the uptodate bits on error
1648 * clear the writeback bits in the extent tree for this IO
1649 * end_page_writeback if the page has no more pending IO
1651 * Scheduling is not allowed, so the extent state tree is expected
1652 * to have one and only one object corresponding to this IO.
1654 static void end_bio_extent_writepage(struct bio *bio, int err)
1656 int uptodate = err == 0;
1657 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1658 struct extent_io_tree *tree;
1659 u64 start;
1660 u64 end;
1661 int whole_page;
1662 int ret;
1664 do {
1665 struct page *page = bvec->bv_page;
1666 tree = &BTRFS_I(page->mapping->host)->io_tree;
1668 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1669 bvec->bv_offset;
1670 end = start + bvec->bv_len - 1;
1672 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1673 whole_page = 1;
1674 else
1675 whole_page = 0;
1677 if (--bvec >= bio->bi_io_vec)
1678 prefetchw(&bvec->bv_page->flags);
1679 if (tree->ops && tree->ops->writepage_end_io_hook) {
1680 ret = tree->ops->writepage_end_io_hook(page, start,
1681 end, NULL, uptodate);
1682 if (ret)
1683 uptodate = 0;
1686 if (!uptodate && tree->ops &&
1687 tree->ops->writepage_io_failed_hook) {
1688 ret = tree->ops->writepage_io_failed_hook(bio, page,
1689 start, end, NULL);
1690 if (ret == 0) {
1691 uptodate = (err == 0);
1692 continue;
1696 if (!uptodate) {
1697 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1698 ClearPageUptodate(page);
1699 SetPageError(page);
1702 if (whole_page)
1703 end_page_writeback(page);
1704 else
1705 check_page_writeback(tree, page);
1706 } while (bvec >= bio->bi_io_vec);
1708 bio_put(bio);
1712 * after a readpage IO is done, we need to:
1713 * clear the uptodate bits on error
1714 * set the uptodate bits if things worked
1715 * set the page up to date if all extents in the tree are uptodate
1716 * clear the lock bit in the extent tree
1717 * unlock the page if there are no other extents locked for it
1719 * Scheduling is not allowed, so the extent state tree is expected
1720 * to have one and only one object corresponding to this IO.
1722 static void end_bio_extent_readpage(struct bio *bio, int err)
1724 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1725 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1726 struct bio_vec *bvec = bio->bi_io_vec;
1727 struct extent_io_tree *tree;
1728 u64 start;
1729 u64 end;
1730 int whole_page;
1731 int ret;
1733 if (err)
1734 uptodate = 0;
1736 do {
1737 struct page *page = bvec->bv_page;
1738 tree = &BTRFS_I(page->mapping->host)->io_tree;
1740 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1741 bvec->bv_offset;
1742 end = start + bvec->bv_len - 1;
1744 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1745 whole_page = 1;
1746 else
1747 whole_page = 0;
1749 if (++bvec <= bvec_end)
1750 prefetchw(&bvec->bv_page->flags);
1752 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1753 ret = tree->ops->readpage_end_io_hook(page, start, end,
1754 NULL);
1755 if (ret)
1756 uptodate = 0;
1758 if (!uptodate && tree->ops &&
1759 tree->ops->readpage_io_failed_hook) {
1760 ret = tree->ops->readpage_io_failed_hook(bio, page,
1761 start, end, NULL);
1762 if (ret == 0) {
1763 uptodate =
1764 test_bit(BIO_UPTODATE, &bio->bi_flags);
1765 if (err)
1766 uptodate = 0;
1767 continue;
1771 if (uptodate) {
1772 set_extent_uptodate(tree, start, end,
1773 GFP_ATOMIC);
1775 unlock_extent(tree, start, end, GFP_ATOMIC);
1777 if (whole_page) {
1778 if (uptodate) {
1779 SetPageUptodate(page);
1780 } else {
1781 ClearPageUptodate(page);
1782 SetPageError(page);
1784 unlock_page(page);
1785 } else {
1786 if (uptodate) {
1787 check_page_uptodate(tree, page);
1788 } else {
1789 ClearPageUptodate(page);
1790 SetPageError(page);
1792 check_page_locked(tree, page);
1794 } while (bvec <= bvec_end);
1796 bio_put(bio);
1800 * IO done from prepare_write is pretty simple, we just unlock
1801 * the structs in the extent tree when done, and set the uptodate bits
1802 * as appropriate.
1804 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1806 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1807 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1808 struct extent_io_tree *tree;
1809 u64 start;
1810 u64 end;
1812 do {
1813 struct page *page = bvec->bv_page;
1814 tree = &BTRFS_I(page->mapping->host)->io_tree;
1816 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1817 bvec->bv_offset;
1818 end = start + bvec->bv_len - 1;
1820 if (--bvec >= bio->bi_io_vec)
1821 prefetchw(&bvec->bv_page->flags);
1823 if (uptodate) {
1824 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1825 } else {
1826 ClearPageUptodate(page);
1827 SetPageError(page);
1830 unlock_extent(tree, start, end, GFP_ATOMIC);
1832 } while (bvec >= bio->bi_io_vec);
1834 bio_put(bio);
1837 struct bio *
1838 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1839 gfp_t gfp_flags)
1841 struct bio *bio;
1843 bio = bio_alloc(gfp_flags, nr_vecs);
1845 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1846 while (!bio && (nr_vecs /= 2))
1847 bio = bio_alloc(gfp_flags, nr_vecs);
1850 if (bio) {
1851 bio->bi_size = 0;
1852 bio->bi_bdev = bdev;
1853 bio->bi_sector = first_sector;
1855 return bio;
1858 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1859 unsigned long bio_flags)
1861 int ret = 0;
1862 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1863 struct page *page = bvec->bv_page;
1864 struct extent_io_tree *tree = bio->bi_private;
1865 u64 start;
1867 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1869 bio->bi_private = NULL;
1871 bio_get(bio);
1873 if (tree->ops && tree->ops->submit_bio_hook)
1874 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1875 mirror_num, bio_flags, start);
1876 else
1877 submit_bio(rw, bio);
1878 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1879 ret = -EOPNOTSUPP;
1880 bio_put(bio);
1881 return ret;
1884 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1885 struct page *page, sector_t sector,
1886 size_t size, unsigned long offset,
1887 struct block_device *bdev,
1888 struct bio **bio_ret,
1889 unsigned long max_pages,
1890 bio_end_io_t end_io_func,
1891 int mirror_num,
1892 unsigned long prev_bio_flags,
1893 unsigned long bio_flags)
1895 int ret = 0;
1896 struct bio *bio;
1897 int nr;
1898 int contig = 0;
1899 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1900 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1901 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1903 if (bio_ret && *bio_ret) {
1904 bio = *bio_ret;
1905 if (old_compressed)
1906 contig = bio->bi_sector == sector;
1907 else
1908 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1909 sector;
1911 if (prev_bio_flags != bio_flags || !contig ||
1912 (tree->ops && tree->ops->merge_bio_hook &&
1913 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1914 bio_flags)) ||
1915 bio_add_page(bio, page, page_size, offset) < page_size) {
1916 ret = submit_one_bio(rw, bio, mirror_num,
1917 prev_bio_flags);
1918 bio = NULL;
1919 } else {
1920 return 0;
1923 if (this_compressed)
1924 nr = BIO_MAX_PAGES;
1925 else
1926 nr = bio_get_nr_vecs(bdev);
1928 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1929 if (!bio)
1930 return -ENOMEM;
1932 bio_add_page(bio, page, page_size, offset);
1933 bio->bi_end_io = end_io_func;
1934 bio->bi_private = tree;
1936 if (bio_ret)
1937 *bio_ret = bio;
1938 else
1939 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1941 return ret;
1944 void set_page_extent_mapped(struct page *page)
1946 if (!PagePrivate(page)) {
1947 SetPagePrivate(page);
1948 page_cache_get(page);
1949 set_page_private(page, EXTENT_PAGE_PRIVATE);
1953 static void set_page_extent_head(struct page *page, unsigned long len)
1955 WARN_ON(!PagePrivate(page));
1956 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1960 * basic readpage implementation. Locked extent state structs are inserted
1961 * into the tree that are removed when the IO is done (by the end_io
1962 * handlers)
1964 static int __extent_read_full_page(struct extent_io_tree *tree,
1965 struct page *page,
1966 get_extent_t *get_extent,
1967 struct bio **bio, int mirror_num,
1968 unsigned long *bio_flags)
1970 struct inode *inode = page->mapping->host;
1971 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1972 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1973 u64 end;
1974 u64 cur = start;
1975 u64 extent_offset;
1976 u64 last_byte = i_size_read(inode);
1977 u64 block_start;
1978 u64 cur_end;
1979 sector_t sector;
1980 struct extent_map *em;
1981 struct block_device *bdev;
1982 struct btrfs_ordered_extent *ordered;
1983 int ret;
1984 int nr = 0;
1985 size_t page_offset = 0;
1986 size_t iosize;
1987 size_t disk_io_size;
1988 size_t blocksize = inode->i_sb->s_blocksize;
1989 unsigned long this_bio_flag = 0;
1991 set_page_extent_mapped(page);
1993 end = page_end;
1994 while (1) {
1995 lock_extent(tree, start, end, GFP_NOFS);
1996 ordered = btrfs_lookup_ordered_extent(inode, start);
1997 if (!ordered)
1998 break;
1999 unlock_extent(tree, start, end, GFP_NOFS);
2000 btrfs_start_ordered_extent(inode, ordered, 1);
2001 btrfs_put_ordered_extent(ordered);
2004 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2005 char *userpage;
2006 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2008 if (zero_offset) {
2009 iosize = PAGE_CACHE_SIZE - zero_offset;
2010 userpage = kmap_atomic(page, KM_USER0);
2011 memset(userpage + zero_offset, 0, iosize);
2012 flush_dcache_page(page);
2013 kunmap_atomic(userpage, KM_USER0);
2016 while (cur <= end) {
2017 if (cur >= last_byte) {
2018 char *userpage;
2019 iosize = PAGE_CACHE_SIZE - page_offset;
2020 userpage = kmap_atomic(page, KM_USER0);
2021 memset(userpage + page_offset, 0, iosize);
2022 flush_dcache_page(page);
2023 kunmap_atomic(userpage, KM_USER0);
2024 set_extent_uptodate(tree, cur, cur + iosize - 1,
2025 GFP_NOFS);
2026 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2027 break;
2029 em = get_extent(inode, page, page_offset, cur,
2030 end - cur + 1, 0);
2031 if (IS_ERR(em) || !em) {
2032 SetPageError(page);
2033 unlock_extent(tree, cur, end, GFP_NOFS);
2034 break;
2036 extent_offset = cur - em->start;
2037 BUG_ON(extent_map_end(em) <= cur);
2038 BUG_ON(end < cur);
2040 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2041 this_bio_flag = EXTENT_BIO_COMPRESSED;
2042 extent_set_compress_type(&this_bio_flag,
2043 em->compress_type);
2046 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2047 cur_end = min(extent_map_end(em) - 1, end);
2048 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2049 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2050 disk_io_size = em->block_len;
2051 sector = em->block_start >> 9;
2052 } else {
2053 sector = (em->block_start + extent_offset) >> 9;
2054 disk_io_size = iosize;
2056 bdev = em->bdev;
2057 block_start = em->block_start;
2058 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2059 block_start = EXTENT_MAP_HOLE;
2060 free_extent_map(em);
2061 em = NULL;
2063 /* we've found a hole, just zero and go on */
2064 if (block_start == EXTENT_MAP_HOLE) {
2065 char *userpage;
2066 userpage = kmap_atomic(page, KM_USER0);
2067 memset(userpage + page_offset, 0, iosize);
2068 flush_dcache_page(page);
2069 kunmap_atomic(userpage, KM_USER0);
2071 set_extent_uptodate(tree, cur, cur + iosize - 1,
2072 GFP_NOFS);
2073 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2074 cur = cur + iosize;
2075 page_offset += iosize;
2076 continue;
2078 /* the get_extent function already copied into the page */
2079 if (test_range_bit(tree, cur, cur_end,
2080 EXTENT_UPTODATE, 1, NULL)) {
2081 check_page_uptodate(tree, page);
2082 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2083 cur = cur + iosize;
2084 page_offset += iosize;
2085 continue;
2087 /* we have an inline extent but it didn't get marked up
2088 * to date. Error out
2090 if (block_start == EXTENT_MAP_INLINE) {
2091 SetPageError(page);
2092 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2093 cur = cur + iosize;
2094 page_offset += iosize;
2095 continue;
2098 ret = 0;
2099 if (tree->ops && tree->ops->readpage_io_hook) {
2100 ret = tree->ops->readpage_io_hook(page, cur,
2101 cur + iosize - 1);
2103 if (!ret) {
2104 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2105 pnr -= page->index;
2106 ret = submit_extent_page(READ, tree, page,
2107 sector, disk_io_size, page_offset,
2108 bdev, bio, pnr,
2109 end_bio_extent_readpage, mirror_num,
2110 *bio_flags,
2111 this_bio_flag);
2112 nr++;
2113 *bio_flags = this_bio_flag;
2115 if (ret)
2116 SetPageError(page);
2117 cur = cur + iosize;
2118 page_offset += iosize;
2120 if (!nr) {
2121 if (!PageError(page))
2122 SetPageUptodate(page);
2123 unlock_page(page);
2125 return 0;
2128 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2129 get_extent_t *get_extent)
2131 struct bio *bio = NULL;
2132 unsigned long bio_flags = 0;
2133 int ret;
2135 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2136 &bio_flags);
2137 if (bio)
2138 ret = submit_one_bio(READ, bio, 0, bio_flags);
2139 return ret;
2142 static noinline void update_nr_written(struct page *page,
2143 struct writeback_control *wbc,
2144 unsigned long nr_written)
2146 wbc->nr_to_write -= nr_written;
2147 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2148 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2149 page->mapping->writeback_index = page->index + nr_written;
2153 * the writepage semantics are similar to regular writepage. extent
2154 * records are inserted to lock ranges in the tree, and as dirty areas
2155 * are found, they are marked writeback. Then the lock bits are removed
2156 * and the end_io handler clears the writeback ranges
2158 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2159 void *data)
2161 struct inode *inode = page->mapping->host;
2162 struct extent_page_data *epd = data;
2163 struct extent_io_tree *tree = epd->tree;
2164 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2165 u64 delalloc_start;
2166 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2167 u64 end;
2168 u64 cur = start;
2169 u64 extent_offset;
2170 u64 last_byte = i_size_read(inode);
2171 u64 block_start;
2172 u64 iosize;
2173 sector_t sector;
2174 struct extent_state *cached_state = NULL;
2175 struct extent_map *em;
2176 struct block_device *bdev;
2177 int ret;
2178 int nr = 0;
2179 size_t pg_offset = 0;
2180 size_t blocksize;
2181 loff_t i_size = i_size_read(inode);
2182 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2183 u64 nr_delalloc;
2184 u64 delalloc_end;
2185 int page_started;
2186 int compressed;
2187 int write_flags;
2188 unsigned long nr_written = 0;
2190 if (wbc->sync_mode == WB_SYNC_ALL)
2191 write_flags = WRITE_SYNC_PLUG;
2192 else
2193 write_flags = WRITE;
2195 WARN_ON(!PageLocked(page));
2196 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2197 if (page->index > end_index ||
2198 (page->index == end_index && !pg_offset)) {
2199 page->mapping->a_ops->invalidatepage(page, 0);
2200 unlock_page(page);
2201 return 0;
2204 if (page->index == end_index) {
2205 char *userpage;
2207 userpage = kmap_atomic(page, KM_USER0);
2208 memset(userpage + pg_offset, 0,
2209 PAGE_CACHE_SIZE - pg_offset);
2210 kunmap_atomic(userpage, KM_USER0);
2211 flush_dcache_page(page);
2213 pg_offset = 0;
2215 set_page_extent_mapped(page);
2217 delalloc_start = start;
2218 delalloc_end = 0;
2219 page_started = 0;
2220 if (!epd->extent_locked) {
2221 u64 delalloc_to_write = 0;
2223 * make sure the wbc mapping index is at least updated
2224 * to this page.
2226 update_nr_written(page, wbc, 0);
2228 while (delalloc_end < page_end) {
2229 nr_delalloc = find_lock_delalloc_range(inode, tree,
2230 page,
2231 &delalloc_start,
2232 &delalloc_end,
2233 128 * 1024 * 1024);
2234 if (nr_delalloc == 0) {
2235 delalloc_start = delalloc_end + 1;
2236 continue;
2238 tree->ops->fill_delalloc(inode, page, delalloc_start,
2239 delalloc_end, &page_started,
2240 &nr_written);
2242 * delalloc_end is already one less than the total
2243 * length, so we don't subtract one from
2244 * PAGE_CACHE_SIZE
2246 delalloc_to_write += (delalloc_end - delalloc_start +
2247 PAGE_CACHE_SIZE) >>
2248 PAGE_CACHE_SHIFT;
2249 delalloc_start = delalloc_end + 1;
2251 if (wbc->nr_to_write < delalloc_to_write) {
2252 int thresh = 8192;
2254 if (delalloc_to_write < thresh * 2)
2255 thresh = delalloc_to_write;
2256 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2257 thresh);
2260 /* did the fill delalloc function already unlock and start
2261 * the IO?
2263 if (page_started) {
2264 ret = 0;
2266 * we've unlocked the page, so we can't update
2267 * the mapping's writeback index, just update
2268 * nr_to_write.
2270 wbc->nr_to_write -= nr_written;
2271 goto done_unlocked;
2274 if (tree->ops && tree->ops->writepage_start_hook) {
2275 ret = tree->ops->writepage_start_hook(page, start,
2276 page_end);
2277 if (ret == -EAGAIN) {
2278 redirty_page_for_writepage(wbc, page);
2279 update_nr_written(page, wbc, nr_written);
2280 unlock_page(page);
2281 ret = 0;
2282 goto done_unlocked;
2287 * we don't want to touch the inode after unlocking the page,
2288 * so we update the mapping writeback index now
2290 update_nr_written(page, wbc, nr_written + 1);
2292 end = page_end;
2293 if (last_byte <= start) {
2294 if (tree->ops && tree->ops->writepage_end_io_hook)
2295 tree->ops->writepage_end_io_hook(page, start,
2296 page_end, NULL, 1);
2297 goto done;
2300 blocksize = inode->i_sb->s_blocksize;
2302 while (cur <= end) {
2303 if (cur >= last_byte) {
2304 if (tree->ops && tree->ops->writepage_end_io_hook)
2305 tree->ops->writepage_end_io_hook(page, cur,
2306 page_end, NULL, 1);
2307 break;
2309 em = epd->get_extent(inode, page, pg_offset, cur,
2310 end - cur + 1, 1);
2311 if (IS_ERR(em) || !em) {
2312 SetPageError(page);
2313 break;
2316 extent_offset = cur - em->start;
2317 BUG_ON(extent_map_end(em) <= cur);
2318 BUG_ON(end < cur);
2319 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2320 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2321 sector = (em->block_start + extent_offset) >> 9;
2322 bdev = em->bdev;
2323 block_start = em->block_start;
2324 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2325 free_extent_map(em);
2326 em = NULL;
2329 * compressed and inline extents are written through other
2330 * paths in the FS
2332 if (compressed || block_start == EXTENT_MAP_HOLE ||
2333 block_start == EXTENT_MAP_INLINE) {
2335 * end_io notification does not happen here for
2336 * compressed extents
2338 if (!compressed && tree->ops &&
2339 tree->ops->writepage_end_io_hook)
2340 tree->ops->writepage_end_io_hook(page, cur,
2341 cur + iosize - 1,
2342 NULL, 1);
2343 else if (compressed) {
2344 /* we don't want to end_page_writeback on
2345 * a compressed extent. this happens
2346 * elsewhere
2348 nr++;
2351 cur += iosize;
2352 pg_offset += iosize;
2353 continue;
2355 /* leave this out until we have a page_mkwrite call */
2356 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2357 EXTENT_DIRTY, 0, NULL)) {
2358 cur = cur + iosize;
2359 pg_offset += iosize;
2360 continue;
2363 if (tree->ops && tree->ops->writepage_io_hook) {
2364 ret = tree->ops->writepage_io_hook(page, cur,
2365 cur + iosize - 1);
2366 } else {
2367 ret = 0;
2369 if (ret) {
2370 SetPageError(page);
2371 } else {
2372 unsigned long max_nr = end_index + 1;
2374 set_range_writeback(tree, cur, cur + iosize - 1);
2375 if (!PageWriteback(page)) {
2376 printk(KERN_ERR "btrfs warning page %lu not "
2377 "writeback, cur %llu end %llu\n",
2378 page->index, (unsigned long long)cur,
2379 (unsigned long long)end);
2382 ret = submit_extent_page(write_flags, tree, page,
2383 sector, iosize, pg_offset,
2384 bdev, &epd->bio, max_nr,
2385 end_bio_extent_writepage,
2386 0, 0, 0);
2387 if (ret)
2388 SetPageError(page);
2390 cur = cur + iosize;
2391 pg_offset += iosize;
2392 nr++;
2394 done:
2395 if (nr == 0) {
2396 /* make sure the mapping tag for page dirty gets cleared */
2397 set_page_writeback(page);
2398 end_page_writeback(page);
2400 unlock_page(page);
2402 done_unlocked:
2404 /* drop our reference on any cached states */
2405 free_extent_state(cached_state);
2406 return 0;
2410 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2411 * @mapping: address space structure to write
2412 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2413 * @writepage: function called for each page
2414 * @data: data passed to writepage function
2416 * If a page is already under I/O, write_cache_pages() skips it, even
2417 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2418 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2419 * and msync() need to guarantee that all the data which was dirty at the time
2420 * the call was made get new I/O started against them. If wbc->sync_mode is
2421 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2422 * existing IO to complete.
2424 static int extent_write_cache_pages(struct extent_io_tree *tree,
2425 struct address_space *mapping,
2426 struct writeback_control *wbc,
2427 writepage_t writepage, void *data,
2428 void (*flush_fn)(void *))
2430 int ret = 0;
2431 int done = 0;
2432 int nr_to_write_done = 0;
2433 struct pagevec pvec;
2434 int nr_pages;
2435 pgoff_t index;
2436 pgoff_t end; /* Inclusive */
2437 int scanned = 0;
2439 pagevec_init(&pvec, 0);
2440 if (wbc->range_cyclic) {
2441 index = mapping->writeback_index; /* Start from prev offset */
2442 end = -1;
2443 } else {
2444 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2445 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2446 scanned = 1;
2448 retry:
2449 while (!done && !nr_to_write_done && (index <= end) &&
2450 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2451 PAGECACHE_TAG_DIRTY, min(end - index,
2452 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2453 unsigned i;
2455 scanned = 1;
2456 for (i = 0; i < nr_pages; i++) {
2457 struct page *page = pvec.pages[i];
2460 * At this point we hold neither mapping->tree_lock nor
2461 * lock on the page itself: the page may be truncated or
2462 * invalidated (changing page->mapping to NULL), or even
2463 * swizzled back from swapper_space to tmpfs file
2464 * mapping
2466 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2467 tree->ops->write_cache_pages_lock_hook(page);
2468 else
2469 lock_page(page);
2471 if (unlikely(page->mapping != mapping)) {
2472 unlock_page(page);
2473 continue;
2476 if (!wbc->range_cyclic && page->index > end) {
2477 done = 1;
2478 unlock_page(page);
2479 continue;
2482 if (wbc->sync_mode != WB_SYNC_NONE) {
2483 if (PageWriteback(page))
2484 flush_fn(data);
2485 wait_on_page_writeback(page);
2488 if (PageWriteback(page) ||
2489 !clear_page_dirty_for_io(page)) {
2490 unlock_page(page);
2491 continue;
2494 ret = (*writepage)(page, wbc, data);
2496 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2497 unlock_page(page);
2498 ret = 0;
2500 if (ret)
2501 done = 1;
2504 * the filesystem may choose to bump up nr_to_write.
2505 * We have to make sure to honor the new nr_to_write
2506 * at any time
2508 nr_to_write_done = wbc->nr_to_write <= 0;
2510 pagevec_release(&pvec);
2511 cond_resched();
2513 if (!scanned && !done) {
2515 * We hit the last page and there is more work to be done: wrap
2516 * back to the start of the file
2518 scanned = 1;
2519 index = 0;
2520 goto retry;
2522 return ret;
2525 static void flush_epd_write_bio(struct extent_page_data *epd)
2527 if (epd->bio) {
2528 if (epd->sync_io)
2529 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2530 else
2531 submit_one_bio(WRITE, epd->bio, 0, 0);
2532 epd->bio = NULL;
2536 static noinline void flush_write_bio(void *data)
2538 struct extent_page_data *epd = data;
2539 flush_epd_write_bio(epd);
2542 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2543 get_extent_t *get_extent,
2544 struct writeback_control *wbc)
2546 int ret;
2547 struct address_space *mapping = page->mapping;
2548 struct extent_page_data epd = {
2549 .bio = NULL,
2550 .tree = tree,
2551 .get_extent = get_extent,
2552 .extent_locked = 0,
2553 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2555 struct writeback_control wbc_writepages = {
2556 .sync_mode = wbc->sync_mode,
2557 .older_than_this = NULL,
2558 .nr_to_write = 64,
2559 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2560 .range_end = (loff_t)-1,
2563 ret = __extent_writepage(page, wbc, &epd);
2565 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2566 __extent_writepage, &epd, flush_write_bio);
2567 flush_epd_write_bio(&epd);
2568 return ret;
2571 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2572 u64 start, u64 end, get_extent_t *get_extent,
2573 int mode)
2575 int ret = 0;
2576 struct address_space *mapping = inode->i_mapping;
2577 struct page *page;
2578 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2579 PAGE_CACHE_SHIFT;
2581 struct extent_page_data epd = {
2582 .bio = NULL,
2583 .tree = tree,
2584 .get_extent = get_extent,
2585 .extent_locked = 1,
2586 .sync_io = mode == WB_SYNC_ALL,
2588 struct writeback_control wbc_writepages = {
2589 .sync_mode = mode,
2590 .older_than_this = NULL,
2591 .nr_to_write = nr_pages * 2,
2592 .range_start = start,
2593 .range_end = end + 1,
2596 while (start <= end) {
2597 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2598 if (clear_page_dirty_for_io(page))
2599 ret = __extent_writepage(page, &wbc_writepages, &epd);
2600 else {
2601 if (tree->ops && tree->ops->writepage_end_io_hook)
2602 tree->ops->writepage_end_io_hook(page, start,
2603 start + PAGE_CACHE_SIZE - 1,
2604 NULL, 1);
2605 unlock_page(page);
2607 page_cache_release(page);
2608 start += PAGE_CACHE_SIZE;
2611 flush_epd_write_bio(&epd);
2612 return ret;
2615 int extent_writepages(struct extent_io_tree *tree,
2616 struct address_space *mapping,
2617 get_extent_t *get_extent,
2618 struct writeback_control *wbc)
2620 int ret = 0;
2621 struct extent_page_data epd = {
2622 .bio = NULL,
2623 .tree = tree,
2624 .get_extent = get_extent,
2625 .extent_locked = 0,
2626 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2629 ret = extent_write_cache_pages(tree, mapping, wbc,
2630 __extent_writepage, &epd,
2631 flush_write_bio);
2632 flush_epd_write_bio(&epd);
2633 return ret;
2636 int extent_readpages(struct extent_io_tree *tree,
2637 struct address_space *mapping,
2638 struct list_head *pages, unsigned nr_pages,
2639 get_extent_t get_extent)
2641 struct bio *bio = NULL;
2642 unsigned page_idx;
2643 unsigned long bio_flags = 0;
2645 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2646 struct page *page = list_entry(pages->prev, struct page, lru);
2648 prefetchw(&page->flags);
2649 list_del(&page->lru);
2650 if (!add_to_page_cache_lru(page, mapping,
2651 page->index, GFP_KERNEL)) {
2652 __extent_read_full_page(tree, page, get_extent,
2653 &bio, 0, &bio_flags);
2655 page_cache_release(page);
2657 BUG_ON(!list_empty(pages));
2658 if (bio)
2659 submit_one_bio(READ, bio, 0, bio_flags);
2660 return 0;
2664 * basic invalidatepage code, this waits on any locked or writeback
2665 * ranges corresponding to the page, and then deletes any extent state
2666 * records from the tree
2668 int extent_invalidatepage(struct extent_io_tree *tree,
2669 struct page *page, unsigned long offset)
2671 struct extent_state *cached_state = NULL;
2672 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2673 u64 end = start + PAGE_CACHE_SIZE - 1;
2674 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2676 start += (offset + blocksize - 1) & ~(blocksize - 1);
2677 if (start > end)
2678 return 0;
2680 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2681 wait_on_page_writeback(page);
2682 clear_extent_bit(tree, start, end,
2683 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2684 EXTENT_DO_ACCOUNTING,
2685 1, 1, &cached_state, GFP_NOFS);
2686 return 0;
2690 * simple commit_write call, set_range_dirty is used to mark both
2691 * the pages and the extent records as dirty
2693 int extent_commit_write(struct extent_io_tree *tree,
2694 struct inode *inode, struct page *page,
2695 unsigned from, unsigned to)
2697 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2699 set_page_extent_mapped(page);
2700 set_page_dirty(page);
2702 if (pos > inode->i_size) {
2703 i_size_write(inode, pos);
2704 mark_inode_dirty(inode);
2706 return 0;
2709 int extent_prepare_write(struct extent_io_tree *tree,
2710 struct inode *inode, struct page *page,
2711 unsigned from, unsigned to, get_extent_t *get_extent)
2713 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2714 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2715 u64 block_start;
2716 u64 orig_block_start;
2717 u64 block_end;
2718 u64 cur_end;
2719 struct extent_map *em;
2720 unsigned blocksize = 1 << inode->i_blkbits;
2721 size_t page_offset = 0;
2722 size_t block_off_start;
2723 size_t block_off_end;
2724 int err = 0;
2725 int iocount = 0;
2726 int ret = 0;
2727 int isnew;
2729 set_page_extent_mapped(page);
2731 block_start = (page_start + from) & ~((u64)blocksize - 1);
2732 block_end = (page_start + to - 1) | (blocksize - 1);
2733 orig_block_start = block_start;
2735 lock_extent(tree, page_start, page_end, GFP_NOFS);
2736 while (block_start <= block_end) {
2737 em = get_extent(inode, page, page_offset, block_start,
2738 block_end - block_start + 1, 1);
2739 if (IS_ERR(em) || !em)
2740 goto err;
2742 cur_end = min(block_end, extent_map_end(em) - 1);
2743 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2744 block_off_end = block_off_start + blocksize;
2745 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2747 if (!PageUptodate(page) && isnew &&
2748 (block_off_end > to || block_off_start < from)) {
2749 void *kaddr;
2751 kaddr = kmap_atomic(page, KM_USER0);
2752 if (block_off_end > to)
2753 memset(kaddr + to, 0, block_off_end - to);
2754 if (block_off_start < from)
2755 memset(kaddr + block_off_start, 0,
2756 from - block_off_start);
2757 flush_dcache_page(page);
2758 kunmap_atomic(kaddr, KM_USER0);
2760 if ((em->block_start != EXTENT_MAP_HOLE &&
2761 em->block_start != EXTENT_MAP_INLINE) &&
2762 !isnew && !PageUptodate(page) &&
2763 (block_off_end > to || block_off_start < from) &&
2764 !test_range_bit(tree, block_start, cur_end,
2765 EXTENT_UPTODATE, 1, NULL)) {
2766 u64 sector;
2767 u64 extent_offset = block_start - em->start;
2768 size_t iosize;
2769 sector = (em->block_start + extent_offset) >> 9;
2770 iosize = (cur_end - block_start + blocksize) &
2771 ~((u64)blocksize - 1);
2773 * we've already got the extent locked, but we
2774 * need to split the state such that our end_bio
2775 * handler can clear the lock.
2777 set_extent_bit(tree, block_start,
2778 block_start + iosize - 1,
2779 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2780 ret = submit_extent_page(READ, tree, page,
2781 sector, iosize, page_offset, em->bdev,
2782 NULL, 1,
2783 end_bio_extent_preparewrite, 0,
2784 0, 0);
2785 if (ret && !err)
2786 err = ret;
2787 iocount++;
2788 block_start = block_start + iosize;
2789 } else {
2790 set_extent_uptodate(tree, block_start, cur_end,
2791 GFP_NOFS);
2792 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2793 block_start = cur_end + 1;
2795 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2796 free_extent_map(em);
2798 if (iocount) {
2799 wait_extent_bit(tree, orig_block_start,
2800 block_end, EXTENT_LOCKED);
2802 check_page_uptodate(tree, page);
2803 err:
2804 /* FIXME, zero out newly allocated blocks on error */
2805 return err;
2809 * a helper for releasepage, this tests for areas of the page that
2810 * are locked or under IO and drops the related state bits if it is safe
2811 * to drop the page.
2813 int try_release_extent_state(struct extent_map_tree *map,
2814 struct extent_io_tree *tree, struct page *page,
2815 gfp_t mask)
2817 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2818 u64 end = start + PAGE_CACHE_SIZE - 1;
2819 int ret = 1;
2821 if (test_range_bit(tree, start, end,
2822 EXTENT_IOBITS, 0, NULL))
2823 ret = 0;
2824 else {
2825 if ((mask & GFP_NOFS) == GFP_NOFS)
2826 mask = GFP_NOFS;
2828 * at this point we can safely clear everything except the
2829 * locked bit and the nodatasum bit
2831 ret = clear_extent_bit(tree, start, end,
2832 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2833 0, 0, NULL, mask);
2835 /* if clear_extent_bit failed for enomem reasons,
2836 * we can't allow the release to continue.
2838 if (ret < 0)
2839 ret = 0;
2840 else
2841 ret = 1;
2843 return ret;
2847 * a helper for releasepage. As long as there are no locked extents
2848 * in the range corresponding to the page, both state records and extent
2849 * map records are removed
2851 int try_release_extent_mapping(struct extent_map_tree *map,
2852 struct extent_io_tree *tree, struct page *page,
2853 gfp_t mask)
2855 struct extent_map *em;
2856 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2857 u64 end = start + PAGE_CACHE_SIZE - 1;
2859 if ((mask & __GFP_WAIT) &&
2860 page->mapping->host->i_size > 16 * 1024 * 1024) {
2861 u64 len;
2862 while (start <= end) {
2863 len = end - start + 1;
2864 write_lock(&map->lock);
2865 em = lookup_extent_mapping(map, start, len);
2866 if (!em || IS_ERR(em)) {
2867 write_unlock(&map->lock);
2868 break;
2870 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2871 em->start != start) {
2872 write_unlock(&map->lock);
2873 free_extent_map(em);
2874 break;
2876 if (!test_range_bit(tree, em->start,
2877 extent_map_end(em) - 1,
2878 EXTENT_LOCKED | EXTENT_WRITEBACK,
2879 0, NULL)) {
2880 remove_extent_mapping(map, em);
2881 /* once for the rb tree */
2882 free_extent_map(em);
2884 start = extent_map_end(em);
2885 write_unlock(&map->lock);
2887 /* once for us */
2888 free_extent_map(em);
2891 return try_release_extent_state(map, tree, page, mask);
2894 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2895 get_extent_t *get_extent)
2897 struct inode *inode = mapping->host;
2898 struct extent_state *cached_state = NULL;
2899 u64 start = iblock << inode->i_blkbits;
2900 sector_t sector = 0;
2901 size_t blksize = (1 << inode->i_blkbits);
2902 struct extent_map *em;
2904 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2905 0, &cached_state, GFP_NOFS);
2906 em = get_extent(inode, NULL, 0, start, blksize, 0);
2907 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2908 start + blksize - 1, &cached_state, GFP_NOFS);
2909 if (!em || IS_ERR(em))
2910 return 0;
2912 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2913 goto out;
2915 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2916 out:
2917 free_extent_map(em);
2918 return sector;
2922 * helper function for fiemap, which doesn't want to see any holes.
2923 * This maps until we find something past 'last'
2925 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2926 u64 offset,
2927 u64 last,
2928 get_extent_t *get_extent)
2930 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2931 struct extent_map *em;
2932 u64 len;
2934 if (offset >= last)
2935 return NULL;
2937 while(1) {
2938 len = last - offset;
2939 if (len == 0)
2940 break;
2941 len = (len + sectorsize - 1) & ~(sectorsize - 1);
2942 em = get_extent(inode, NULL, 0, offset, len, 0);
2943 if (!em || IS_ERR(em))
2944 return em;
2946 /* if this isn't a hole return it */
2947 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2948 em->block_start != EXTENT_MAP_HOLE) {
2949 return em;
2952 /* this is a hole, advance to the next extent */
2953 offset = extent_map_end(em);
2954 free_extent_map(em);
2955 if (offset >= last)
2956 break;
2958 return NULL;
2961 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2962 __u64 start, __u64 len, get_extent_t *get_extent)
2964 int ret = 0;
2965 u64 off = start;
2966 u64 max = start + len;
2967 u32 flags = 0;
2968 u32 found_type;
2969 u64 last;
2970 u64 last_for_get_extent = 0;
2971 u64 disko = 0;
2972 u64 isize = i_size_read(inode);
2973 struct btrfs_key found_key;
2974 struct extent_map *em = NULL;
2975 struct extent_state *cached_state = NULL;
2976 struct btrfs_path *path;
2977 struct btrfs_file_extent_item *item;
2978 int end = 0;
2979 u64 em_start = 0;
2980 u64 em_len = 0;
2981 u64 em_end = 0;
2982 unsigned long emflags;
2984 if (len == 0)
2985 return -EINVAL;
2987 path = btrfs_alloc_path();
2988 if (!path)
2989 return -ENOMEM;
2990 path->leave_spinning = 1;
2993 * lookup the last file extent. We're not using i_size here
2994 * because there might be preallocation past i_size
2996 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2997 path, inode->i_ino, -1, 0);
2998 if (ret < 0) {
2999 btrfs_free_path(path);
3000 return ret;
3002 WARN_ON(!ret);
3003 path->slots[0]--;
3004 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3005 struct btrfs_file_extent_item);
3006 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3007 found_type = btrfs_key_type(&found_key);
3009 /* No extents, but there might be delalloc bits */
3010 if (found_key.objectid != inode->i_ino ||
3011 found_type != BTRFS_EXTENT_DATA_KEY) {
3012 /* have to trust i_size as the end */
3013 last = (u64)-1;
3014 last_for_get_extent = isize;
3015 } else {
3017 * remember the start of the last extent. There are a
3018 * bunch of different factors that go into the length of the
3019 * extent, so its much less complex to remember where it started
3021 last = found_key.offset;
3022 last_for_get_extent = last + 1;
3024 btrfs_free_path(path);
3027 * we might have some extents allocated but more delalloc past those
3028 * extents. so, we trust isize unless the start of the last extent is
3029 * beyond isize
3031 if (last < isize) {
3032 last = (u64)-1;
3033 last_for_get_extent = isize;
3036 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3037 &cached_state, GFP_NOFS);
3039 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3040 get_extent);
3041 if (!em)
3042 goto out;
3043 if (IS_ERR(em)) {
3044 ret = PTR_ERR(em);
3045 goto out;
3048 while (!end) {
3049 u64 offset_in_extent;
3051 /* break if the extent we found is outside the range */
3052 if (em->start >= max || extent_map_end(em) < off)
3053 break;
3056 * get_extent may return an extent that starts before our
3057 * requested range. We have to make sure the ranges
3058 * we return to fiemap always move forward and don't
3059 * overlap, so adjust the offsets here
3061 em_start = max(em->start, off);
3064 * record the offset from the start of the extent
3065 * for adjusting the disk offset below
3067 offset_in_extent = em_start - em->start;
3068 em_end = extent_map_end(em);
3069 em_len = em_end - em_start;
3070 emflags = em->flags;
3071 disko = 0;
3072 flags = 0;
3075 * bump off for our next call to get_extent
3077 off = extent_map_end(em);
3078 if (off >= max)
3079 end = 1;
3081 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3082 end = 1;
3083 flags |= FIEMAP_EXTENT_LAST;
3084 } else if (em->block_start == EXTENT_MAP_INLINE) {
3085 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3086 FIEMAP_EXTENT_NOT_ALIGNED);
3087 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3088 flags |= (FIEMAP_EXTENT_DELALLOC |
3089 FIEMAP_EXTENT_UNKNOWN);
3090 } else {
3091 disko = em->block_start + offset_in_extent;
3093 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3094 flags |= FIEMAP_EXTENT_ENCODED;
3096 free_extent_map(em);
3097 em = NULL;
3098 if ((em_start >= last) || em_len == (u64)-1 ||
3099 (last == (u64)-1 && isize <= em_end)) {
3100 flags |= FIEMAP_EXTENT_LAST;
3101 end = 1;
3104 /* now scan forward to see if this is really the last extent. */
3105 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3106 get_extent);
3107 if (IS_ERR(em)) {
3108 ret = PTR_ERR(em);
3109 goto out;
3111 if (!em) {
3112 flags |= FIEMAP_EXTENT_LAST;
3113 end = 1;
3115 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3116 em_len, flags);
3117 if (ret)
3118 goto out_free;
3120 out_free:
3121 free_extent_map(em);
3122 out:
3123 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3124 &cached_state, GFP_NOFS);
3125 return ret;
3128 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3129 unsigned long i)
3131 struct page *p;
3132 struct address_space *mapping;
3134 if (i == 0)
3135 return eb->first_page;
3136 i += eb->start >> PAGE_CACHE_SHIFT;
3137 mapping = eb->first_page->mapping;
3138 if (!mapping)
3139 return NULL;
3142 * extent_buffer_page is only called after pinning the page
3143 * by increasing the reference count. So we know the page must
3144 * be in the radix tree.
3146 rcu_read_lock();
3147 p = radix_tree_lookup(&mapping->page_tree, i);
3148 rcu_read_unlock();
3150 return p;
3153 static inline unsigned long num_extent_pages(u64 start, u64 len)
3155 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3156 (start >> PAGE_CACHE_SHIFT);
3159 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3160 u64 start,
3161 unsigned long len,
3162 gfp_t mask)
3164 struct extent_buffer *eb = NULL;
3165 #if LEAK_DEBUG
3166 unsigned long flags;
3167 #endif
3169 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3170 if (eb == NULL)
3171 return NULL;
3172 eb->start = start;
3173 eb->len = len;
3174 spin_lock_init(&eb->lock);
3175 init_waitqueue_head(&eb->lock_wq);
3176 INIT_RCU_HEAD(&eb->rcu_head);
3178 #if LEAK_DEBUG
3179 spin_lock_irqsave(&leak_lock, flags);
3180 list_add(&eb->leak_list, &buffers);
3181 spin_unlock_irqrestore(&leak_lock, flags);
3182 #endif
3183 atomic_set(&eb->refs, 1);
3185 return eb;
3188 static void __free_extent_buffer(struct extent_buffer *eb)
3190 #if LEAK_DEBUG
3191 unsigned long flags;
3192 spin_lock_irqsave(&leak_lock, flags);
3193 list_del(&eb->leak_list);
3194 spin_unlock_irqrestore(&leak_lock, flags);
3195 #endif
3196 kmem_cache_free(extent_buffer_cache, eb);
3200 * Helper for releasing extent buffer page.
3202 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3203 unsigned long start_idx)
3205 unsigned long index;
3206 struct page *page;
3208 if (!eb->first_page)
3209 return;
3211 index = num_extent_pages(eb->start, eb->len);
3212 if (start_idx >= index)
3213 return;
3215 do {
3216 index--;
3217 page = extent_buffer_page(eb, index);
3218 if (page)
3219 page_cache_release(page);
3220 } while (index != start_idx);
3224 * Helper for releasing the extent buffer.
3226 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3228 btrfs_release_extent_buffer_page(eb, 0);
3229 __free_extent_buffer(eb);
3232 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3233 u64 start, unsigned long len,
3234 struct page *page0,
3235 gfp_t mask)
3237 unsigned long num_pages = num_extent_pages(start, len);
3238 unsigned long i;
3239 unsigned long index = start >> PAGE_CACHE_SHIFT;
3240 struct extent_buffer *eb;
3241 struct extent_buffer *exists = NULL;
3242 struct page *p;
3243 struct address_space *mapping = tree->mapping;
3244 int uptodate = 1;
3245 int ret;
3247 rcu_read_lock();
3248 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3249 if (eb && atomic_inc_not_zero(&eb->refs)) {
3250 rcu_read_unlock();
3251 mark_page_accessed(eb->first_page);
3252 return eb;
3254 rcu_read_unlock();
3256 eb = __alloc_extent_buffer(tree, start, len, mask);
3257 if (!eb)
3258 return NULL;
3260 if (page0) {
3261 eb->first_page = page0;
3262 i = 1;
3263 index++;
3264 page_cache_get(page0);
3265 mark_page_accessed(page0);
3266 set_page_extent_mapped(page0);
3267 set_page_extent_head(page0, len);
3268 uptodate = PageUptodate(page0);
3269 } else {
3270 i = 0;
3272 for (; i < num_pages; i++, index++) {
3273 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3274 if (!p) {
3275 WARN_ON(1);
3276 goto free_eb;
3278 set_page_extent_mapped(p);
3279 mark_page_accessed(p);
3280 if (i == 0) {
3281 eb->first_page = p;
3282 set_page_extent_head(p, len);
3283 } else {
3284 set_page_private(p, EXTENT_PAGE_PRIVATE);
3286 if (!PageUptodate(p))
3287 uptodate = 0;
3290 * see below about how we avoid a nasty race with release page
3291 * and why we unlock later
3293 if (i != 0)
3294 unlock_page(p);
3296 if (uptodate)
3297 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3299 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3300 if (ret)
3301 goto free_eb;
3303 spin_lock(&tree->buffer_lock);
3304 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3305 if (ret == -EEXIST) {
3306 exists = radix_tree_lookup(&tree->buffer,
3307 start >> PAGE_CACHE_SHIFT);
3308 /* add one reference for the caller */
3309 atomic_inc(&exists->refs);
3310 spin_unlock(&tree->buffer_lock);
3311 radix_tree_preload_end();
3312 goto free_eb;
3314 /* add one reference for the tree */
3315 atomic_inc(&eb->refs);
3316 spin_unlock(&tree->buffer_lock);
3317 radix_tree_preload_end();
3320 * there is a race where release page may have
3321 * tried to find this extent buffer in the radix
3322 * but failed. It will tell the VM it is safe to
3323 * reclaim the, and it will clear the page private bit.
3324 * We must make sure to set the page private bit properly
3325 * after the extent buffer is in the radix tree so
3326 * it doesn't get lost
3328 set_page_extent_mapped(eb->first_page);
3329 set_page_extent_head(eb->first_page, eb->len);
3330 if (!page0)
3331 unlock_page(eb->first_page);
3332 return eb;
3334 free_eb:
3335 if (eb->first_page && !page0)
3336 unlock_page(eb->first_page);
3338 if (!atomic_dec_and_test(&eb->refs))
3339 return exists;
3340 btrfs_release_extent_buffer(eb);
3341 return exists;
3344 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3345 u64 start, unsigned long len,
3346 gfp_t mask)
3348 struct extent_buffer *eb;
3350 rcu_read_lock();
3351 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3352 if (eb && atomic_inc_not_zero(&eb->refs)) {
3353 rcu_read_unlock();
3354 mark_page_accessed(eb->first_page);
3355 return eb;
3357 rcu_read_unlock();
3359 return NULL;
3362 void free_extent_buffer(struct extent_buffer *eb)
3364 if (!eb)
3365 return;
3367 if (!atomic_dec_and_test(&eb->refs))
3368 return;
3370 WARN_ON(1);
3373 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3374 struct extent_buffer *eb)
3376 unsigned long i;
3377 unsigned long num_pages;
3378 struct page *page;
3380 num_pages = num_extent_pages(eb->start, eb->len);
3382 for (i = 0; i < num_pages; i++) {
3383 page = extent_buffer_page(eb, i);
3384 if (!PageDirty(page))
3385 continue;
3387 lock_page(page);
3388 WARN_ON(!PagePrivate(page));
3390 set_page_extent_mapped(page);
3391 if (i == 0)
3392 set_page_extent_head(page, eb->len);
3394 clear_page_dirty_for_io(page);
3395 spin_lock_irq(&page->mapping->tree_lock);
3396 if (!PageDirty(page)) {
3397 radix_tree_tag_clear(&page->mapping->page_tree,
3398 page_index(page),
3399 PAGECACHE_TAG_DIRTY);
3401 spin_unlock_irq(&page->mapping->tree_lock);
3402 unlock_page(page);
3404 return 0;
3407 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3408 struct extent_buffer *eb)
3410 return wait_on_extent_writeback(tree, eb->start,
3411 eb->start + eb->len - 1);
3414 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3415 struct extent_buffer *eb)
3417 unsigned long i;
3418 unsigned long num_pages;
3419 int was_dirty = 0;
3421 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3422 num_pages = num_extent_pages(eb->start, eb->len);
3423 for (i = 0; i < num_pages; i++)
3424 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3425 return was_dirty;
3428 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3429 struct extent_buffer *eb,
3430 struct extent_state **cached_state)
3432 unsigned long i;
3433 struct page *page;
3434 unsigned long num_pages;
3436 num_pages = num_extent_pages(eb->start, eb->len);
3437 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3439 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3440 cached_state, GFP_NOFS);
3441 for (i = 0; i < num_pages; i++) {
3442 page = extent_buffer_page(eb, i);
3443 if (page)
3444 ClearPageUptodate(page);
3446 return 0;
3449 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3450 struct extent_buffer *eb)
3452 unsigned long i;
3453 struct page *page;
3454 unsigned long num_pages;
3456 num_pages = num_extent_pages(eb->start, eb->len);
3458 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3459 GFP_NOFS);
3460 for (i = 0; i < num_pages; i++) {
3461 page = extent_buffer_page(eb, i);
3462 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3463 ((i == num_pages - 1) &&
3464 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3465 check_page_uptodate(tree, page);
3466 continue;
3468 SetPageUptodate(page);
3470 return 0;
3473 int extent_range_uptodate(struct extent_io_tree *tree,
3474 u64 start, u64 end)
3476 struct page *page;
3477 int ret;
3478 int pg_uptodate = 1;
3479 int uptodate;
3480 unsigned long index;
3482 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3483 if (ret)
3484 return 1;
3485 while (start <= end) {
3486 index = start >> PAGE_CACHE_SHIFT;
3487 page = find_get_page(tree->mapping, index);
3488 uptodate = PageUptodate(page);
3489 page_cache_release(page);
3490 if (!uptodate) {
3491 pg_uptodate = 0;
3492 break;
3494 start += PAGE_CACHE_SIZE;
3496 return pg_uptodate;
3499 int extent_buffer_uptodate(struct extent_io_tree *tree,
3500 struct extent_buffer *eb,
3501 struct extent_state *cached_state)
3503 int ret = 0;
3504 unsigned long num_pages;
3505 unsigned long i;
3506 struct page *page;
3507 int pg_uptodate = 1;
3509 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3510 return 1;
3512 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3513 EXTENT_UPTODATE, 1, cached_state);
3514 if (ret)
3515 return ret;
3517 num_pages = num_extent_pages(eb->start, eb->len);
3518 for (i = 0; i < num_pages; i++) {
3519 page = extent_buffer_page(eb, i);
3520 if (!PageUptodate(page)) {
3521 pg_uptodate = 0;
3522 break;
3525 return pg_uptodate;
3528 int read_extent_buffer_pages(struct extent_io_tree *tree,
3529 struct extent_buffer *eb,
3530 u64 start, int wait,
3531 get_extent_t *get_extent, int mirror_num)
3533 unsigned long i;
3534 unsigned long start_i;
3535 struct page *page;
3536 int err;
3537 int ret = 0;
3538 int locked_pages = 0;
3539 int all_uptodate = 1;
3540 int inc_all_pages = 0;
3541 unsigned long num_pages;
3542 struct bio *bio = NULL;
3543 unsigned long bio_flags = 0;
3545 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3546 return 0;
3548 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3549 EXTENT_UPTODATE, 1, NULL)) {
3550 return 0;
3553 if (start) {
3554 WARN_ON(start < eb->start);
3555 start_i = (start >> PAGE_CACHE_SHIFT) -
3556 (eb->start >> PAGE_CACHE_SHIFT);
3557 } else {
3558 start_i = 0;
3561 num_pages = num_extent_pages(eb->start, eb->len);
3562 for (i = start_i; i < num_pages; i++) {
3563 page = extent_buffer_page(eb, i);
3564 if (!wait) {
3565 if (!trylock_page(page))
3566 goto unlock_exit;
3567 } else {
3568 lock_page(page);
3570 locked_pages++;
3571 if (!PageUptodate(page))
3572 all_uptodate = 0;
3574 if (all_uptodate) {
3575 if (start_i == 0)
3576 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3577 goto unlock_exit;
3580 for (i = start_i; i < num_pages; i++) {
3581 page = extent_buffer_page(eb, i);
3583 WARN_ON(!PagePrivate(page));
3585 set_page_extent_mapped(page);
3586 if (i == 0)
3587 set_page_extent_head(page, eb->len);
3589 if (inc_all_pages)
3590 page_cache_get(page);
3591 if (!PageUptodate(page)) {
3592 if (start_i == 0)
3593 inc_all_pages = 1;
3594 ClearPageError(page);
3595 err = __extent_read_full_page(tree, page,
3596 get_extent, &bio,
3597 mirror_num, &bio_flags);
3598 if (err)
3599 ret = err;
3600 } else {
3601 unlock_page(page);
3605 if (bio)
3606 submit_one_bio(READ, bio, mirror_num, bio_flags);
3608 if (ret || !wait)
3609 return ret;
3611 for (i = start_i; i < num_pages; i++) {
3612 page = extent_buffer_page(eb, i);
3613 wait_on_page_locked(page);
3614 if (!PageUptodate(page))
3615 ret = -EIO;
3618 if (!ret)
3619 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3620 return ret;
3622 unlock_exit:
3623 i = start_i;
3624 while (locked_pages > 0) {
3625 page = extent_buffer_page(eb, i);
3626 i++;
3627 unlock_page(page);
3628 locked_pages--;
3630 return ret;
3633 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3634 unsigned long start,
3635 unsigned long len)
3637 size_t cur;
3638 size_t offset;
3639 struct page *page;
3640 char *kaddr;
3641 char *dst = (char *)dstv;
3642 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3643 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3645 WARN_ON(start > eb->len);
3646 WARN_ON(start + len > eb->start + eb->len);
3648 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3650 while (len > 0) {
3651 page = extent_buffer_page(eb, i);
3653 cur = min(len, (PAGE_CACHE_SIZE - offset));
3654 kaddr = kmap_atomic(page, KM_USER1);
3655 memcpy(dst, kaddr + offset, cur);
3656 kunmap_atomic(kaddr, KM_USER1);
3658 dst += cur;
3659 len -= cur;
3660 offset = 0;
3661 i++;
3665 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3666 unsigned long min_len, char **token, char **map,
3667 unsigned long *map_start,
3668 unsigned long *map_len, int km)
3670 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3671 char *kaddr;
3672 struct page *p;
3673 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3674 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3675 unsigned long end_i = (start_offset + start + min_len - 1) >>
3676 PAGE_CACHE_SHIFT;
3678 if (i != end_i)
3679 return -EINVAL;
3681 if (i == 0) {
3682 offset = start_offset;
3683 *map_start = 0;
3684 } else {
3685 offset = 0;
3686 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3689 if (start + min_len > eb->len) {
3690 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3691 "wanted %lu %lu\n", (unsigned long long)eb->start,
3692 eb->len, start, min_len);
3693 WARN_ON(1);
3696 p = extent_buffer_page(eb, i);
3697 kaddr = kmap_atomic(p, km);
3698 *token = kaddr;
3699 *map = kaddr + offset;
3700 *map_len = PAGE_CACHE_SIZE - offset;
3701 return 0;
3704 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3705 unsigned long min_len,
3706 char **token, char **map,
3707 unsigned long *map_start,
3708 unsigned long *map_len, int km)
3710 int err;
3711 int save = 0;
3712 if (eb->map_token) {
3713 unmap_extent_buffer(eb, eb->map_token, km);
3714 eb->map_token = NULL;
3715 save = 1;
3717 err = map_private_extent_buffer(eb, start, min_len, token, map,
3718 map_start, map_len, km);
3719 if (!err && save) {
3720 eb->map_token = *token;
3721 eb->kaddr = *map;
3722 eb->map_start = *map_start;
3723 eb->map_len = *map_len;
3725 return err;
3728 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3730 kunmap_atomic(token, km);
3733 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3734 unsigned long start,
3735 unsigned long len)
3737 size_t cur;
3738 size_t offset;
3739 struct page *page;
3740 char *kaddr;
3741 char *ptr = (char *)ptrv;
3742 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3743 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3744 int ret = 0;
3746 WARN_ON(start > eb->len);
3747 WARN_ON(start + len > eb->start + eb->len);
3749 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3751 while (len > 0) {
3752 page = extent_buffer_page(eb, i);
3754 cur = min(len, (PAGE_CACHE_SIZE - offset));
3756 kaddr = kmap_atomic(page, KM_USER0);
3757 ret = memcmp(ptr, kaddr + offset, cur);
3758 kunmap_atomic(kaddr, KM_USER0);
3759 if (ret)
3760 break;
3762 ptr += cur;
3763 len -= cur;
3764 offset = 0;
3765 i++;
3767 return ret;
3770 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3771 unsigned long start, unsigned long len)
3773 size_t cur;
3774 size_t offset;
3775 struct page *page;
3776 char *kaddr;
3777 char *src = (char *)srcv;
3778 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3779 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3781 WARN_ON(start > eb->len);
3782 WARN_ON(start + len > eb->start + eb->len);
3784 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3786 while (len > 0) {
3787 page = extent_buffer_page(eb, i);
3788 WARN_ON(!PageUptodate(page));
3790 cur = min(len, PAGE_CACHE_SIZE - offset);
3791 kaddr = kmap_atomic(page, KM_USER1);
3792 memcpy(kaddr + offset, src, cur);
3793 kunmap_atomic(kaddr, KM_USER1);
3795 src += cur;
3796 len -= cur;
3797 offset = 0;
3798 i++;
3802 void memset_extent_buffer(struct extent_buffer *eb, char c,
3803 unsigned long start, unsigned long len)
3805 size_t cur;
3806 size_t offset;
3807 struct page *page;
3808 char *kaddr;
3809 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3810 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3812 WARN_ON(start > eb->len);
3813 WARN_ON(start + len > eb->start + eb->len);
3815 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3817 while (len > 0) {
3818 page = extent_buffer_page(eb, i);
3819 WARN_ON(!PageUptodate(page));
3821 cur = min(len, PAGE_CACHE_SIZE - offset);
3822 kaddr = kmap_atomic(page, KM_USER0);
3823 memset(kaddr + offset, c, cur);
3824 kunmap_atomic(kaddr, KM_USER0);
3826 len -= cur;
3827 offset = 0;
3828 i++;
3832 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3833 unsigned long dst_offset, unsigned long src_offset,
3834 unsigned long len)
3836 u64 dst_len = dst->len;
3837 size_t cur;
3838 size_t offset;
3839 struct page *page;
3840 char *kaddr;
3841 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3842 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3844 WARN_ON(src->len != dst_len);
3846 offset = (start_offset + dst_offset) &
3847 ((unsigned long)PAGE_CACHE_SIZE - 1);
3849 while (len > 0) {
3850 page = extent_buffer_page(dst, i);
3851 WARN_ON(!PageUptodate(page));
3853 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3855 kaddr = kmap_atomic(page, KM_USER0);
3856 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3857 kunmap_atomic(kaddr, KM_USER0);
3859 src_offset += cur;
3860 len -= cur;
3861 offset = 0;
3862 i++;
3866 static void move_pages(struct page *dst_page, struct page *src_page,
3867 unsigned long dst_off, unsigned long src_off,
3868 unsigned long len)
3870 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3871 if (dst_page == src_page) {
3872 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3873 } else {
3874 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3875 char *p = dst_kaddr + dst_off + len;
3876 char *s = src_kaddr + src_off + len;
3878 while (len--)
3879 *--p = *--s;
3881 kunmap_atomic(src_kaddr, KM_USER1);
3883 kunmap_atomic(dst_kaddr, KM_USER0);
3886 static void copy_pages(struct page *dst_page, struct page *src_page,
3887 unsigned long dst_off, unsigned long src_off,
3888 unsigned long len)
3890 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3891 char *src_kaddr;
3893 if (dst_page != src_page)
3894 src_kaddr = kmap_atomic(src_page, KM_USER1);
3895 else
3896 src_kaddr = dst_kaddr;
3898 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3899 kunmap_atomic(dst_kaddr, KM_USER0);
3900 if (dst_page != src_page)
3901 kunmap_atomic(src_kaddr, KM_USER1);
3904 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3905 unsigned long src_offset, unsigned long len)
3907 size_t cur;
3908 size_t dst_off_in_page;
3909 size_t src_off_in_page;
3910 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3911 unsigned long dst_i;
3912 unsigned long src_i;
3914 if (src_offset + len > dst->len) {
3915 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3916 "len %lu dst len %lu\n", src_offset, len, dst->len);
3917 BUG_ON(1);
3919 if (dst_offset + len > dst->len) {
3920 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3921 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3922 BUG_ON(1);
3925 while (len > 0) {
3926 dst_off_in_page = (start_offset + dst_offset) &
3927 ((unsigned long)PAGE_CACHE_SIZE - 1);
3928 src_off_in_page = (start_offset + src_offset) &
3929 ((unsigned long)PAGE_CACHE_SIZE - 1);
3931 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3932 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3934 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3935 src_off_in_page));
3936 cur = min_t(unsigned long, cur,
3937 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3939 copy_pages(extent_buffer_page(dst, dst_i),
3940 extent_buffer_page(dst, src_i),
3941 dst_off_in_page, src_off_in_page, cur);
3943 src_offset += cur;
3944 dst_offset += cur;
3945 len -= cur;
3949 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3950 unsigned long src_offset, unsigned long len)
3952 size_t cur;
3953 size_t dst_off_in_page;
3954 size_t src_off_in_page;
3955 unsigned long dst_end = dst_offset + len - 1;
3956 unsigned long src_end = src_offset + len - 1;
3957 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3958 unsigned long dst_i;
3959 unsigned long src_i;
3961 if (src_offset + len > dst->len) {
3962 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3963 "len %lu len %lu\n", src_offset, len, dst->len);
3964 BUG_ON(1);
3966 if (dst_offset + len > dst->len) {
3967 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3968 "len %lu len %lu\n", dst_offset, len, dst->len);
3969 BUG_ON(1);
3971 if (dst_offset < src_offset) {
3972 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3973 return;
3975 while (len > 0) {
3976 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3977 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3979 dst_off_in_page = (start_offset + dst_end) &
3980 ((unsigned long)PAGE_CACHE_SIZE - 1);
3981 src_off_in_page = (start_offset + src_end) &
3982 ((unsigned long)PAGE_CACHE_SIZE - 1);
3984 cur = min_t(unsigned long, len, src_off_in_page + 1);
3985 cur = min(cur, dst_off_in_page + 1);
3986 move_pages(extent_buffer_page(dst, dst_i),
3987 extent_buffer_page(dst, src_i),
3988 dst_off_in_page - cur + 1,
3989 src_off_in_page - cur + 1, cur);
3991 dst_end -= cur;
3992 src_end -= cur;
3993 len -= cur;
3997 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3999 struct extent_buffer *eb =
4000 container_of(head, struct extent_buffer, rcu_head);
4002 btrfs_release_extent_buffer(eb);
4005 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4007 u64 start = page_offset(page);
4008 struct extent_buffer *eb;
4009 int ret = 1;
4011 spin_lock(&tree->buffer_lock);
4012 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4013 if (!eb) {
4014 spin_unlock(&tree->buffer_lock);
4015 return ret;
4018 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4019 ret = 0;
4020 goto out;
4024 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4025 * Or go back.
4027 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4028 ret = 0;
4029 goto out;
4032 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4033 out:
4034 spin_unlock(&tree->buffer_lock);
4036 /* at this point we can safely release the extent buffer */
4037 if (atomic_read(&eb->refs) == 0)
4038 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4039 return ret;