2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
35 static const char *_name
= DM_NAME
;
37 static unsigned int major
= 0;
38 static unsigned int _major
= 0;
40 static DEFINE_IDR(_minor_idr
);
42 static DEFINE_SPINLOCK(_minor_lock
);
45 * One of these is allocated per bio.
48 struct mapped_device
*md
;
52 unsigned long start_time
;
53 spinlock_t endio_lock
;
58 * One of these is allocated per target within a bio. Hopefully
59 * this will be simplified out one day.
68 * For request-based dm.
69 * One of these is allocated per request.
71 struct dm_rq_target_io
{
72 struct mapped_device
*md
;
74 struct request
*orig
, clone
;
80 * For request-based dm.
81 * One of these is allocated per bio.
83 struct dm_rq_clone_bio_info
{
85 struct dm_rq_target_io
*tio
;
88 union map_info
*dm_get_mapinfo(struct bio
*bio
)
90 if (bio
&& bio
->bi_private
)
91 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
95 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
97 if (rq
&& rq
->end_io_data
)
98 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
101 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
103 #define MINOR_ALLOCED ((void *)-1)
106 * Bits for the md->flags field.
108 #define DMF_BLOCK_IO_FOR_SUSPEND 0
109 #define DMF_SUSPENDED 1
111 #define DMF_FREEING 3
112 #define DMF_DELETING 4
113 #define DMF_NOFLUSH_SUSPENDING 5
114 #define DMF_MERGE_IS_OPTIONAL 6
117 * Work processed by per-device workqueue.
119 struct mapped_device
{
120 struct rw_semaphore io_lock
;
121 struct mutex suspend_lock
;
128 struct request_queue
*queue
;
130 /* Protect queue and type against concurrent access. */
131 struct mutex type_lock
;
133 struct gendisk
*disk
;
139 * A list of ios that arrived while we were suspended.
142 wait_queue_head_t wait
;
143 struct work_struct work
;
144 struct bio_list deferred
;
145 spinlock_t deferred_lock
;
148 * Processing queue (flush)
150 struct workqueue_struct
*wq
;
153 * The current mapping.
155 struct dm_table
*map
;
158 * io objects are allocated from here.
169 wait_queue_head_t eventq
;
171 struct list_head uevent_list
;
172 spinlock_t uevent_lock
; /* Protect access to uevent_list */
175 * freeze/thaw support require holding onto a super block
177 struct super_block
*frozen_sb
;
178 struct block_device
*bdev
;
180 /* forced geometry settings */
181 struct hd_geometry geometry
;
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn
*saved_make_request_fn
;
189 /* zero-length flush that will be cloned and submitted to targets */
190 struct bio flush_bio
;
194 * For mempools pre-allocation at the table loading time.
196 struct dm_md_mempools
{
203 static struct kmem_cache
*_io_cache
;
204 static struct kmem_cache
*_tio_cache
;
205 static struct kmem_cache
*_rq_tio_cache
;
206 static struct kmem_cache
*_rq_bio_info_cache
;
208 static int __init
local_init(void)
212 /* allocate a slab for the dm_ios */
213 _io_cache
= KMEM_CACHE(dm_io
, 0);
217 /* allocate a slab for the target ios */
218 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
220 goto out_free_io_cache
;
222 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
224 goto out_free_tio_cache
;
226 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
227 if (!_rq_bio_info_cache
)
228 goto out_free_rq_tio_cache
;
230 r
= dm_uevent_init();
232 goto out_free_rq_bio_info_cache
;
235 r
= register_blkdev(_major
, _name
);
237 goto out_uevent_exit
;
246 out_free_rq_bio_info_cache
:
247 kmem_cache_destroy(_rq_bio_info_cache
);
248 out_free_rq_tio_cache
:
249 kmem_cache_destroy(_rq_tio_cache
);
251 kmem_cache_destroy(_tio_cache
);
253 kmem_cache_destroy(_io_cache
);
258 static void local_exit(void)
260 kmem_cache_destroy(_rq_bio_info_cache
);
261 kmem_cache_destroy(_rq_tio_cache
);
262 kmem_cache_destroy(_tio_cache
);
263 kmem_cache_destroy(_io_cache
);
264 unregister_blkdev(_major
, _name
);
269 DMINFO("cleaned up");
272 static int (*_inits
[])(void) __initdata
= {
282 static void (*_exits
[])(void) = {
292 static int __init
dm_init(void)
294 const int count
= ARRAY_SIZE(_inits
);
298 for (i
= 0; i
< count
; i
++) {
313 static void __exit
dm_exit(void)
315 int i
= ARRAY_SIZE(_exits
);
321 * Should be empty by this point.
323 idr_remove_all(&_minor_idr
);
324 idr_destroy(&_minor_idr
);
328 * Block device functions
330 int dm_deleting_md(struct mapped_device
*md
)
332 return test_bit(DMF_DELETING
, &md
->flags
);
335 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
337 struct mapped_device
*md
;
339 spin_lock(&_minor_lock
);
341 md
= bdev
->bd_disk
->private_data
;
345 if (test_bit(DMF_FREEING
, &md
->flags
) ||
346 dm_deleting_md(md
)) {
352 atomic_inc(&md
->open_count
);
355 spin_unlock(&_minor_lock
);
357 return md
? 0 : -ENXIO
;
360 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
362 struct mapped_device
*md
= disk
->private_data
;
364 spin_lock(&_minor_lock
);
366 atomic_dec(&md
->open_count
);
369 spin_unlock(&_minor_lock
);
374 int dm_open_count(struct mapped_device
*md
)
376 return atomic_read(&md
->open_count
);
380 * Guarantees nothing is using the device before it's deleted.
382 int dm_lock_for_deletion(struct mapped_device
*md
)
386 spin_lock(&_minor_lock
);
388 if (dm_open_count(md
))
391 set_bit(DMF_DELETING
, &md
->flags
);
393 spin_unlock(&_minor_lock
);
398 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
400 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
402 return dm_get_geometry(md
, geo
);
405 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
406 unsigned int cmd
, unsigned long arg
)
408 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
409 struct dm_table
*map
= dm_get_live_table(md
);
410 struct dm_target
*tgt
;
413 if (!map
|| !dm_table_get_size(map
))
416 /* We only support devices that have a single target */
417 if (dm_table_get_num_targets(map
) != 1)
420 tgt
= dm_table_get_target(map
, 0);
422 if (dm_suspended_md(md
)) {
427 if (tgt
->type
->ioctl
)
428 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
436 static struct dm_io
*alloc_io(struct mapped_device
*md
)
438 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
441 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
443 mempool_free(io
, md
->io_pool
);
446 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
448 mempool_free(tio
, md
->tio_pool
);
451 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
454 return mempool_alloc(md
->tio_pool
, gfp_mask
);
457 static void free_rq_tio(struct dm_rq_target_io
*tio
)
459 mempool_free(tio
, tio
->md
->tio_pool
);
462 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
464 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
467 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
469 mempool_free(info
, info
->tio
->md
->io_pool
);
472 static int md_in_flight(struct mapped_device
*md
)
474 return atomic_read(&md
->pending
[READ
]) +
475 atomic_read(&md
->pending
[WRITE
]);
478 static void start_io_acct(struct dm_io
*io
)
480 struct mapped_device
*md
= io
->md
;
482 int rw
= bio_data_dir(io
->bio
);
484 io
->start_time
= jiffies
;
486 cpu
= part_stat_lock();
487 part_round_stats(cpu
, &dm_disk(md
)->part0
);
489 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
490 atomic_inc_return(&md
->pending
[rw
]));
493 static void end_io_acct(struct dm_io
*io
)
495 struct mapped_device
*md
= io
->md
;
496 struct bio
*bio
= io
->bio
;
497 unsigned long duration
= jiffies
- io
->start_time
;
499 int rw
= bio_data_dir(bio
);
501 cpu
= part_stat_lock();
502 part_round_stats(cpu
, &dm_disk(md
)->part0
);
503 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
507 * After this is decremented the bio must not be touched if it is
510 pending
= atomic_dec_return(&md
->pending
[rw
]);
511 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
512 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
514 /* nudge anyone waiting on suspend queue */
520 * Add the bio to the list of deferred io.
522 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
526 spin_lock_irqsave(&md
->deferred_lock
, flags
);
527 bio_list_add(&md
->deferred
, bio
);
528 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
529 queue_work(md
->wq
, &md
->work
);
533 * Everyone (including functions in this file), should use this
534 * function to access the md->map field, and make sure they call
535 * dm_table_put() when finished.
537 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
542 read_lock_irqsave(&md
->map_lock
, flags
);
546 read_unlock_irqrestore(&md
->map_lock
, flags
);
552 * Get the geometry associated with a dm device
554 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
562 * Set the geometry of a device.
564 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
566 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
568 if (geo
->start
> sz
) {
569 DMWARN("Start sector is beyond the geometry limits.");
578 /*-----------------------------------------------------------------
580 * A more elegant soln is in the works that uses the queue
581 * merge fn, unfortunately there are a couple of changes to
582 * the block layer that I want to make for this. So in the
583 * interests of getting something for people to use I give
584 * you this clearly demarcated crap.
585 *---------------------------------------------------------------*/
587 static int __noflush_suspending(struct mapped_device
*md
)
589 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
593 * Decrements the number of outstanding ios that a bio has been
594 * cloned into, completing the original io if necc.
596 static void dec_pending(struct dm_io
*io
, int error
)
601 struct mapped_device
*md
= io
->md
;
603 /* Push-back supersedes any I/O errors */
604 if (unlikely(error
)) {
605 spin_lock_irqsave(&io
->endio_lock
, flags
);
606 if (!(io
->error
> 0 && __noflush_suspending(md
)))
608 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
611 if (atomic_dec_and_test(&io
->io_count
)) {
612 if (io
->error
== DM_ENDIO_REQUEUE
) {
614 * Target requested pushing back the I/O.
616 spin_lock_irqsave(&md
->deferred_lock
, flags
);
617 if (__noflush_suspending(md
))
618 bio_list_add_head(&md
->deferred
, io
->bio
);
620 /* noflush suspend was interrupted. */
622 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
625 io_error
= io
->error
;
630 if (io_error
== DM_ENDIO_REQUEUE
)
633 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
635 * Preflush done for flush with data, reissue
638 bio
->bi_rw
&= ~REQ_FLUSH
;
641 /* done with normal IO or empty flush */
642 trace_block_bio_complete(md
->queue
, bio
, io_error
);
643 bio_endio(bio
, io_error
);
648 static void clone_endio(struct bio
*bio
, int error
)
651 struct dm_target_io
*tio
= bio
->bi_private
;
652 struct dm_io
*io
= tio
->io
;
653 struct mapped_device
*md
= tio
->io
->md
;
654 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
656 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
660 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
661 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
663 * error and requeue request are handled
667 else if (r
== DM_ENDIO_INCOMPLETE
)
668 /* The target will handle the io */
671 DMWARN("unimplemented target endio return value: %d", r
);
677 * Store md for cleanup instead of tio which is about to get freed.
679 bio
->bi_private
= md
->bs
;
683 dec_pending(io
, error
);
687 * Partial completion handling for request-based dm
689 static void end_clone_bio(struct bio
*clone
, int error
)
691 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
692 struct dm_rq_target_io
*tio
= info
->tio
;
693 struct bio
*bio
= info
->orig
;
694 unsigned int nr_bytes
= info
->orig
->bi_size
;
700 * An error has already been detected on the request.
701 * Once error occurred, just let clone->end_io() handle
707 * Don't notice the error to the upper layer yet.
708 * The error handling decision is made by the target driver,
709 * when the request is completed.
716 * I/O for the bio successfully completed.
717 * Notice the data completion to the upper layer.
721 * bios are processed from the head of the list.
722 * So the completing bio should always be rq->bio.
723 * If it's not, something wrong is happening.
725 if (tio
->orig
->bio
!= bio
)
726 DMERR("bio completion is going in the middle of the request");
729 * Update the original request.
730 * Do not use blk_end_request() here, because it may complete
731 * the original request before the clone, and break the ordering.
733 blk_update_request(tio
->orig
, 0, nr_bytes
);
737 * Don't touch any member of the md after calling this function because
738 * the md may be freed in dm_put() at the end of this function.
739 * Or do dm_get() before calling this function and dm_put() later.
741 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
743 atomic_dec(&md
->pending
[rw
]);
745 /* nudge anyone waiting on suspend queue */
746 if (!md_in_flight(md
))
750 blk_run_queue(md
->queue
);
753 * dm_put() must be at the end of this function. See the comment above
758 static void free_rq_clone(struct request
*clone
)
760 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
762 blk_rq_unprep_clone(clone
);
767 * Complete the clone and the original request.
768 * Must be called without queue lock.
770 static void dm_end_request(struct request
*clone
, int error
)
772 int rw
= rq_data_dir(clone
);
773 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
774 struct mapped_device
*md
= tio
->md
;
775 struct request
*rq
= tio
->orig
;
777 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
778 rq
->errors
= clone
->errors
;
779 rq
->resid_len
= clone
->resid_len
;
783 * We are using the sense buffer of the original
785 * So setting the length of the sense data is enough.
787 rq
->sense_len
= clone
->sense_len
;
790 free_rq_clone(clone
);
791 blk_end_request_all(rq
, error
);
792 rq_completed(md
, rw
, true);
795 static void dm_unprep_request(struct request
*rq
)
797 struct request
*clone
= rq
->special
;
800 rq
->cmd_flags
&= ~REQ_DONTPREP
;
802 free_rq_clone(clone
);
806 * Requeue the original request of a clone.
808 void dm_requeue_unmapped_request(struct request
*clone
)
810 int rw
= rq_data_dir(clone
);
811 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
812 struct mapped_device
*md
= tio
->md
;
813 struct request
*rq
= tio
->orig
;
814 struct request_queue
*q
= rq
->q
;
817 dm_unprep_request(rq
);
819 spin_lock_irqsave(q
->queue_lock
, flags
);
820 blk_requeue_request(q
, rq
);
821 spin_unlock_irqrestore(q
->queue_lock
, flags
);
823 rq_completed(md
, rw
, 0);
825 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
827 static void __stop_queue(struct request_queue
*q
)
832 static void stop_queue(struct request_queue
*q
)
836 spin_lock_irqsave(q
->queue_lock
, flags
);
838 spin_unlock_irqrestore(q
->queue_lock
, flags
);
841 static void __start_queue(struct request_queue
*q
)
843 if (blk_queue_stopped(q
))
847 static void start_queue(struct request_queue
*q
)
851 spin_lock_irqsave(q
->queue_lock
, flags
);
853 spin_unlock_irqrestore(q
->queue_lock
, flags
);
856 static void dm_done(struct request
*clone
, int error
, bool mapped
)
859 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
860 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
862 if (mapped
&& rq_end_io
)
863 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
866 /* The target wants to complete the I/O */
867 dm_end_request(clone
, r
);
868 else if (r
== DM_ENDIO_INCOMPLETE
)
869 /* The target will handle the I/O */
871 else if (r
== DM_ENDIO_REQUEUE
)
872 /* The target wants to requeue the I/O */
873 dm_requeue_unmapped_request(clone
);
875 DMWARN("unimplemented target endio return value: %d", r
);
881 * Request completion handler for request-based dm
883 static void dm_softirq_done(struct request
*rq
)
886 struct request
*clone
= rq
->completion_data
;
887 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
889 if (rq
->cmd_flags
& REQ_FAILED
)
892 dm_done(clone
, tio
->error
, mapped
);
896 * Complete the clone and the original request with the error status
897 * through softirq context.
899 static void dm_complete_request(struct request
*clone
, int error
)
901 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
902 struct request
*rq
= tio
->orig
;
905 rq
->completion_data
= clone
;
906 blk_complete_request(rq
);
910 * Complete the not-mapped clone and the original request with the error status
911 * through softirq context.
912 * Target's rq_end_io() function isn't called.
913 * This may be used when the target's map_rq() function fails.
915 void dm_kill_unmapped_request(struct request
*clone
, int error
)
917 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
918 struct request
*rq
= tio
->orig
;
920 rq
->cmd_flags
|= REQ_FAILED
;
921 dm_complete_request(clone
, error
);
923 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
926 * Called with the queue lock held
928 static void end_clone_request(struct request
*clone
, int error
)
931 * For just cleaning up the information of the queue in which
932 * the clone was dispatched.
933 * The clone is *NOT* freed actually here because it is alloced from
934 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
936 __blk_put_request(clone
->q
, clone
);
939 * Actual request completion is done in a softirq context which doesn't
940 * hold the queue lock. Otherwise, deadlock could occur because:
941 * - another request may be submitted by the upper level driver
942 * of the stacking during the completion
943 * - the submission which requires queue lock may be done
946 dm_complete_request(clone
, error
);
950 * Return maximum size of I/O possible at the supplied sector up to the current
953 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
955 sector_t target_offset
= dm_target_offset(ti
, sector
);
957 return ti
->len
- target_offset
;
960 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
962 sector_t len
= max_io_len_target_boundary(sector
, ti
);
965 * Does the target need to split even further ?
969 sector_t offset
= dm_target_offset(ti
, sector
);
970 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
979 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
980 struct dm_target_io
*tio
)
984 struct mapped_device
*md
;
986 clone
->bi_end_io
= clone_endio
;
987 clone
->bi_private
= tio
;
990 * Map the clone. If r == 0 we don't need to do
991 * anything, the target has assumed ownership of
994 atomic_inc(&tio
->io
->io_count
);
995 sector
= clone
->bi_sector
;
996 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
997 if (r
== DM_MAPIO_REMAPPED
) {
998 /* the bio has been remapped so dispatch it */
1000 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1001 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1003 generic_make_request(clone
);
1004 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1005 /* error the io and bail out, or requeue it if needed */
1007 dec_pending(tio
->io
, r
);
1009 * Store bio_set for cleanup.
1011 clone
->bi_private
= md
->bs
;
1015 DMWARN("unimplemented target map return value: %d", r
);
1021 struct mapped_device
*md
;
1022 struct dm_table
*map
;
1026 sector_t sector_count
;
1030 static void dm_bio_destructor(struct bio
*bio
)
1032 struct bio_set
*bs
= bio
->bi_private
;
1038 * Creates a little bio that just does part of a bvec.
1040 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1041 unsigned short idx
, unsigned int offset
,
1042 unsigned int len
, struct bio_set
*bs
)
1045 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1047 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1048 clone
->bi_destructor
= dm_bio_destructor
;
1049 *clone
->bi_io_vec
= *bv
;
1051 clone
->bi_sector
= sector
;
1052 clone
->bi_bdev
= bio
->bi_bdev
;
1053 clone
->bi_rw
= bio
->bi_rw
;
1055 clone
->bi_size
= to_bytes(len
);
1056 clone
->bi_io_vec
->bv_offset
= offset
;
1057 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1058 clone
->bi_flags
|= 1 << BIO_CLONED
;
1060 if (bio_integrity(bio
)) {
1061 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1062 bio_integrity_trim(clone
,
1063 bio_sector_offset(bio
, idx
, offset
), len
);
1070 * Creates a bio that consists of range of complete bvecs.
1072 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1073 unsigned short idx
, unsigned short bv_count
,
1074 unsigned int len
, struct bio_set
*bs
)
1078 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1079 __bio_clone(clone
, bio
);
1080 clone
->bi_destructor
= dm_bio_destructor
;
1081 clone
->bi_sector
= sector
;
1082 clone
->bi_idx
= idx
;
1083 clone
->bi_vcnt
= idx
+ bv_count
;
1084 clone
->bi_size
= to_bytes(len
);
1085 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1087 if (bio_integrity(bio
)) {
1088 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1090 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1091 bio_integrity_trim(clone
,
1092 bio_sector_offset(bio
, idx
, 0), len
);
1098 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1099 struct dm_target
*ti
)
1101 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1105 memset(&tio
->info
, 0, sizeof(tio
->info
));
1110 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1111 unsigned request_nr
, sector_t len
)
1113 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1116 tio
->info
.target_request_nr
= request_nr
;
1119 * Discard requests require the bio's inline iovecs be initialized.
1120 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121 * and discard, so no need for concern about wasted bvec allocations.
1123 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1124 __bio_clone(clone
, ci
->bio
);
1125 clone
->bi_destructor
= dm_bio_destructor
;
1127 clone
->bi_sector
= ci
->sector
;
1128 clone
->bi_size
= to_bytes(len
);
1131 __map_bio(ti
, clone
, tio
);
1134 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1135 unsigned num_requests
, sector_t len
)
1137 unsigned request_nr
;
1139 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1140 __issue_target_request(ci
, ti
, request_nr
, len
);
1143 static int __clone_and_map_empty_flush(struct clone_info
*ci
)
1145 unsigned target_nr
= 0;
1146 struct dm_target
*ti
;
1148 BUG_ON(bio_has_data(ci
->bio
));
1149 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1150 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1156 * Perform all io with a single clone.
1158 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1160 struct bio
*clone
, *bio
= ci
->bio
;
1161 struct dm_target_io
*tio
;
1163 tio
= alloc_tio(ci
, ti
);
1164 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1165 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1167 __map_bio(ti
, clone
, tio
);
1168 ci
->sector_count
= 0;
1171 static int __clone_and_map_discard(struct clone_info
*ci
)
1173 struct dm_target
*ti
;
1177 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1178 if (!dm_target_is_valid(ti
))
1182 * Even though the device advertised discard support,
1183 * that does not mean every target supports it, and
1184 * reconfiguration might also have changed that since the
1185 * check was performed.
1187 if (!ti
->num_discard_requests
)
1190 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1192 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1195 } while (ci
->sector_count
-= len
);
1200 static int __clone_and_map(struct clone_info
*ci
)
1202 struct bio
*clone
, *bio
= ci
->bio
;
1203 struct dm_target
*ti
;
1204 sector_t len
= 0, max
;
1205 struct dm_target_io
*tio
;
1207 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1208 return __clone_and_map_discard(ci
);
1210 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1211 if (!dm_target_is_valid(ti
))
1214 max
= max_io_len(ci
->sector
, ti
);
1216 if (ci
->sector_count
<= max
) {
1218 * Optimise for the simple case where we can do all of
1219 * the remaining io with a single clone.
1221 __clone_and_map_simple(ci
, ti
);
1223 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1225 * There are some bvecs that don't span targets.
1226 * Do as many of these as possible.
1229 sector_t remaining
= max
;
1232 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1233 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1235 if (bv_len
> remaining
)
1238 remaining
-= bv_len
;
1242 tio
= alloc_tio(ci
, ti
);
1243 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1245 __map_bio(ti
, clone
, tio
);
1248 ci
->sector_count
-= len
;
1253 * Handle a bvec that must be split between two or more targets.
1255 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1256 sector_t remaining
= to_sector(bv
->bv_len
);
1257 unsigned int offset
= 0;
1261 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1262 if (!dm_target_is_valid(ti
))
1265 max
= max_io_len(ci
->sector
, ti
);
1268 len
= min(remaining
, max
);
1270 tio
= alloc_tio(ci
, ti
);
1271 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1272 bv
->bv_offset
+ offset
, len
,
1275 __map_bio(ti
, clone
, tio
);
1278 ci
->sector_count
-= len
;
1279 offset
+= to_bytes(len
);
1280 } while (remaining
-= len
);
1289 * Split the bio into several clones and submit it to targets.
1291 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1293 struct clone_info ci
;
1296 ci
.map
= dm_get_live_table(md
);
1297 if (unlikely(!ci
.map
)) {
1303 ci
.io
= alloc_io(md
);
1305 atomic_set(&ci
.io
->io_count
, 1);
1308 spin_lock_init(&ci
.io
->endio_lock
);
1309 ci
.sector
= bio
->bi_sector
;
1310 ci
.idx
= bio
->bi_idx
;
1312 start_io_acct(ci
.io
);
1313 if (bio
->bi_rw
& REQ_FLUSH
) {
1314 ci
.bio
= &ci
.md
->flush_bio
;
1315 ci
.sector_count
= 0;
1316 error
= __clone_and_map_empty_flush(&ci
);
1317 /* dec_pending submits any data associated with flush */
1320 ci
.sector_count
= bio_sectors(bio
);
1321 while (ci
.sector_count
&& !error
)
1322 error
= __clone_and_map(&ci
);
1325 /* drop the extra reference count */
1326 dec_pending(ci
.io
, error
);
1327 dm_table_put(ci
.map
);
1329 /*-----------------------------------------------------------------
1331 *---------------------------------------------------------------*/
1333 static int dm_merge_bvec(struct request_queue
*q
,
1334 struct bvec_merge_data
*bvm
,
1335 struct bio_vec
*biovec
)
1337 struct mapped_device
*md
= q
->queuedata
;
1338 struct dm_table
*map
= dm_get_live_table(md
);
1339 struct dm_target
*ti
;
1340 sector_t max_sectors
;
1346 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1347 if (!dm_target_is_valid(ti
))
1351 * Find maximum amount of I/O that won't need splitting
1353 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1354 (sector_t
) BIO_MAX_SECTORS
);
1355 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1360 * merge_bvec_fn() returns number of bytes
1361 * it can accept at this offset
1362 * max is precomputed maximal io size
1364 if (max_size
&& ti
->type
->merge
)
1365 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1367 * If the target doesn't support merge method and some of the devices
1368 * provided their merge_bvec method (we know this by looking at
1369 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370 * entries. So always set max_size to 0, and the code below allows
1373 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1382 * Always allow an entire first page
1384 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1385 max_size
= biovec
->bv_len
;
1391 * The request function that just remaps the bio built up by
1394 static int _dm_request(struct request_queue
*q
, struct bio
*bio
)
1396 int rw
= bio_data_dir(bio
);
1397 struct mapped_device
*md
= q
->queuedata
;
1400 down_read(&md
->io_lock
);
1402 cpu
= part_stat_lock();
1403 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1404 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1407 /* if we're suspended, we have to queue this io for later */
1408 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1409 up_read(&md
->io_lock
);
1411 if (bio_rw(bio
) != READA
)
1418 __split_and_process_bio(md
, bio
);
1419 up_read(&md
->io_lock
);
1423 static int dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1425 struct mapped_device
*md
= q
->queuedata
;
1427 return md
->saved_make_request_fn(q
, bio
); /* call __make_request() */
1430 static int dm_request_based(struct mapped_device
*md
)
1432 return blk_queue_stackable(md
->queue
);
1435 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
1437 struct mapped_device
*md
= q
->queuedata
;
1439 if (dm_request_based(md
))
1440 return dm_make_request(q
, bio
);
1442 return _dm_request(q
, bio
);
1445 void dm_dispatch_request(struct request
*rq
)
1449 if (blk_queue_io_stat(rq
->q
))
1450 rq
->cmd_flags
|= REQ_IO_STAT
;
1452 rq
->start_time
= jiffies
;
1453 r
= blk_insert_cloned_request(rq
->q
, rq
);
1455 dm_complete_request(rq
, r
);
1457 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1459 static void dm_rq_bio_destructor(struct bio
*bio
)
1461 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1462 struct mapped_device
*md
= info
->tio
->md
;
1464 free_bio_info(info
);
1465 bio_free(bio
, md
->bs
);
1468 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1471 struct dm_rq_target_io
*tio
= data
;
1472 struct mapped_device
*md
= tio
->md
;
1473 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1478 info
->orig
= bio_orig
;
1480 bio
->bi_end_io
= end_clone_bio
;
1481 bio
->bi_private
= info
;
1482 bio
->bi_destructor
= dm_rq_bio_destructor
;
1487 static int setup_clone(struct request
*clone
, struct request
*rq
,
1488 struct dm_rq_target_io
*tio
)
1492 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1493 dm_rq_bio_constructor
, tio
);
1497 clone
->cmd
= rq
->cmd
;
1498 clone
->cmd_len
= rq
->cmd_len
;
1499 clone
->sense
= rq
->sense
;
1500 clone
->buffer
= rq
->buffer
;
1501 clone
->end_io
= end_clone_request
;
1502 clone
->end_io_data
= tio
;
1507 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1510 struct request
*clone
;
1511 struct dm_rq_target_io
*tio
;
1513 tio
= alloc_rq_tio(md
, gfp_mask
);
1521 memset(&tio
->info
, 0, sizeof(tio
->info
));
1523 clone
= &tio
->clone
;
1524 if (setup_clone(clone
, rq
, tio
)) {
1534 * Called with the queue lock held.
1536 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1538 struct mapped_device
*md
= q
->queuedata
;
1539 struct request
*clone
;
1541 if (unlikely(rq
->special
)) {
1542 DMWARN("Already has something in rq->special.");
1543 return BLKPREP_KILL
;
1546 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1548 return BLKPREP_DEFER
;
1550 rq
->special
= clone
;
1551 rq
->cmd_flags
|= REQ_DONTPREP
;
1558 * 0 : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1561 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1562 struct mapped_device
*md
)
1564 int r
, requeued
= 0;
1565 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1568 * Hold the md reference here for the in-flight I/O.
1569 * We can't rely on the reference count by device opener,
1570 * because the device may be closed during the request completion
1571 * when all bios are completed.
1572 * See the comment in rq_completed() too.
1577 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1579 case DM_MAPIO_SUBMITTED
:
1580 /* The target has taken the I/O to submit by itself later */
1582 case DM_MAPIO_REMAPPED
:
1583 /* The target has remapped the I/O so dispatch it */
1584 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1585 blk_rq_pos(tio
->orig
));
1586 dm_dispatch_request(clone
);
1588 case DM_MAPIO_REQUEUE
:
1589 /* The target wants to requeue the I/O */
1590 dm_requeue_unmapped_request(clone
);
1595 DMWARN("unimplemented target map return value: %d", r
);
1599 /* The target wants to complete the I/O */
1600 dm_kill_unmapped_request(clone
, r
);
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1611 static void dm_request_fn(struct request_queue
*q
)
1613 struct mapped_device
*md
= q
->queuedata
;
1614 struct dm_table
*map
= dm_get_live_table(md
);
1615 struct dm_target
*ti
;
1616 struct request
*rq
, *clone
;
1620 * For suspend, check blk_queue_stopped() and increment
1621 * ->pending within a single queue_lock not to increment the
1622 * number of in-flight I/Os after the queue is stopped in
1625 while (!blk_queue_stopped(q
)) {
1626 rq
= blk_peek_request(q
);
1630 /* always use block 0 to find the target for flushes for now */
1632 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1633 pos
= blk_rq_pos(rq
);
1635 ti
= dm_table_find_target(map
, pos
);
1636 BUG_ON(!dm_target_is_valid(ti
));
1638 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1641 blk_start_request(rq
);
1642 clone
= rq
->special
;
1643 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1645 spin_unlock(q
->queue_lock
);
1646 if (map_request(ti
, clone
, md
))
1649 BUG_ON(!irqs_disabled());
1650 spin_lock(q
->queue_lock
);
1656 BUG_ON(!irqs_disabled());
1657 spin_lock(q
->queue_lock
);
1660 blk_delay_queue(q
, HZ
/ 10);
1667 int dm_underlying_device_busy(struct request_queue
*q
)
1669 return blk_lld_busy(q
);
1671 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1673 static int dm_lld_busy(struct request_queue
*q
)
1676 struct mapped_device
*md
= q
->queuedata
;
1677 struct dm_table
*map
= dm_get_live_table(md
);
1679 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1682 r
= dm_table_any_busy_target(map
);
1689 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1692 struct mapped_device
*md
= congested_data
;
1693 struct dm_table
*map
;
1695 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1696 map
= dm_get_live_table(md
);
1699 * Request-based dm cares about only own queue for
1700 * the query about congestion status of request_queue
1702 if (dm_request_based(md
))
1703 r
= md
->queue
->backing_dev_info
.state
&
1706 r
= dm_table_any_congested(map
, bdi_bits
);
1715 /*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718 static void free_minor(int minor
)
1720 spin_lock(&_minor_lock
);
1721 idr_remove(&_minor_idr
, minor
);
1722 spin_unlock(&_minor_lock
);
1726 * See if the device with a specific minor # is free.
1728 static int specific_minor(int minor
)
1732 if (minor
>= (1 << MINORBITS
))
1735 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1739 spin_lock(&_minor_lock
);
1741 if (idr_find(&_minor_idr
, minor
)) {
1746 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1751 idr_remove(&_minor_idr
, m
);
1757 spin_unlock(&_minor_lock
);
1761 static int next_free_minor(int *minor
)
1765 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1769 spin_lock(&_minor_lock
);
1771 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1775 if (m
>= (1 << MINORBITS
)) {
1776 idr_remove(&_minor_idr
, m
);
1784 spin_unlock(&_minor_lock
);
1788 static const struct block_device_operations dm_blk_dops
;
1790 static void dm_wq_work(struct work_struct
*work
);
1792 static void dm_init_md_queue(struct mapped_device
*md
)
1795 * Request-based dm devices cannot be stacked on top of bio-based dm
1796 * devices. The type of this dm device has not been decided yet.
1797 * The type is decided at the first table loading time.
1798 * To prevent problematic device stacking, clear the queue flag
1799 * for request stacking support until then.
1801 * This queue is new, so no concurrency on the queue_flags.
1803 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1805 md
->queue
->queuedata
= md
;
1806 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1807 md
->queue
->backing_dev_info
.congested_data
= md
;
1808 blk_queue_make_request(md
->queue
, dm_request
);
1809 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1810 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1814 * Allocate and initialise a blank device with a given minor.
1816 static struct mapped_device
*alloc_dev(int minor
)
1819 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1823 DMWARN("unable to allocate device, out of memory.");
1827 if (!try_module_get(THIS_MODULE
))
1828 goto bad_module_get
;
1830 /* get a minor number for the dev */
1831 if (minor
== DM_ANY_MINOR
)
1832 r
= next_free_minor(&minor
);
1834 r
= specific_minor(minor
);
1838 md
->type
= DM_TYPE_NONE
;
1839 init_rwsem(&md
->io_lock
);
1840 mutex_init(&md
->suspend_lock
);
1841 mutex_init(&md
->type_lock
);
1842 spin_lock_init(&md
->deferred_lock
);
1843 rwlock_init(&md
->map_lock
);
1844 atomic_set(&md
->holders
, 1);
1845 atomic_set(&md
->open_count
, 0);
1846 atomic_set(&md
->event_nr
, 0);
1847 atomic_set(&md
->uevent_seq
, 0);
1848 INIT_LIST_HEAD(&md
->uevent_list
);
1849 spin_lock_init(&md
->uevent_lock
);
1851 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1855 dm_init_md_queue(md
);
1857 md
->disk
= alloc_disk(1);
1861 atomic_set(&md
->pending
[0], 0);
1862 atomic_set(&md
->pending
[1], 0);
1863 init_waitqueue_head(&md
->wait
);
1864 INIT_WORK(&md
->work
, dm_wq_work
);
1865 init_waitqueue_head(&md
->eventq
);
1867 md
->disk
->major
= _major
;
1868 md
->disk
->first_minor
= minor
;
1869 md
->disk
->fops
= &dm_blk_dops
;
1870 md
->disk
->queue
= md
->queue
;
1871 md
->disk
->private_data
= md
;
1872 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1874 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1876 md
->wq
= alloc_workqueue("kdmflush",
1877 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1881 md
->bdev
= bdget_disk(md
->disk
, 0);
1885 bio_init(&md
->flush_bio
);
1886 md
->flush_bio
.bi_bdev
= md
->bdev
;
1887 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1889 /* Populate the mapping, nobody knows we exist yet */
1890 spin_lock(&_minor_lock
);
1891 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1892 spin_unlock(&_minor_lock
);
1894 BUG_ON(old_md
!= MINOR_ALLOCED
);
1899 destroy_workqueue(md
->wq
);
1901 del_gendisk(md
->disk
);
1904 blk_cleanup_queue(md
->queue
);
1908 module_put(THIS_MODULE
);
1914 static void unlock_fs(struct mapped_device
*md
);
1916 static void free_dev(struct mapped_device
*md
)
1918 int minor
= MINOR(disk_devt(md
->disk
));
1922 destroy_workqueue(md
->wq
);
1924 mempool_destroy(md
->tio_pool
);
1926 mempool_destroy(md
->io_pool
);
1928 bioset_free(md
->bs
);
1929 blk_integrity_unregister(md
->disk
);
1930 del_gendisk(md
->disk
);
1933 spin_lock(&_minor_lock
);
1934 md
->disk
->private_data
= NULL
;
1935 spin_unlock(&_minor_lock
);
1938 blk_cleanup_queue(md
->queue
);
1939 module_put(THIS_MODULE
);
1943 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1945 struct dm_md_mempools
*p
;
1947 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1948 /* the md already has necessary mempools */
1951 p
= dm_table_get_md_mempools(t
);
1952 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1954 md
->io_pool
= p
->io_pool
;
1956 md
->tio_pool
= p
->tio_pool
;
1962 /* mempool bind completed, now no need any mempools in the table */
1963 dm_table_free_md_mempools(t
);
1967 * Bind a table to the device.
1969 static void event_callback(void *context
)
1971 unsigned long flags
;
1973 struct mapped_device
*md
= (struct mapped_device
*) context
;
1975 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1976 list_splice_init(&md
->uevent_list
, &uevents
);
1977 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1979 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1981 atomic_inc(&md
->event_nr
);
1982 wake_up(&md
->eventq
);
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1988 static void __set_size(struct mapped_device
*md
, sector_t size
)
1990 set_capacity(md
->disk
, size
);
1992 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2002 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2004 struct mapped_device
*dev_md
;
2006 if (!q
->merge_bvec_fn
)
2009 if (q
->make_request_fn
== dm_request
) {
2010 dev_md
= q
->queuedata
;
2011 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2018 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2019 struct dm_dev
*dev
, sector_t start
,
2020 sector_t len
, void *data
)
2022 struct block_device
*bdev
= dev
->bdev
;
2023 struct request_queue
*q
= bdev_get_queue(bdev
);
2025 return dm_queue_merge_is_compulsory(q
);
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2032 static int dm_table_merge_is_optional(struct dm_table
*table
)
2035 struct dm_target
*ti
;
2037 while (i
< dm_table_get_num_targets(table
)) {
2038 ti
= dm_table_get_target(table
, i
++);
2040 if (ti
->type
->iterate_devices
&&
2041 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2049 * Returns old map, which caller must destroy.
2051 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2052 struct queue_limits
*limits
)
2054 struct dm_table
*old_map
;
2055 struct request_queue
*q
= md
->queue
;
2057 unsigned long flags
;
2058 int merge_is_optional
;
2060 size
= dm_table_get_size(t
);
2063 * Wipe any geometry if the size of the table changed.
2065 if (size
!= get_capacity(md
->disk
))
2066 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2068 __set_size(md
, size
);
2070 dm_table_event_callback(t
, event_callback
, md
);
2073 * The queue hasn't been stopped yet, if the old table type wasn't
2074 * for request-based during suspension. So stop it to prevent
2075 * I/O mapping before resume.
2076 * This must be done before setting the queue restrictions,
2077 * because request-based dm may be run just after the setting.
2079 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2082 __bind_mempools(md
, t
);
2084 merge_is_optional
= dm_table_merge_is_optional(t
);
2086 write_lock_irqsave(&md
->map_lock
, flags
);
2089 dm_table_set_restrictions(t
, q
, limits
);
2090 if (merge_is_optional
)
2091 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2093 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2094 write_unlock_irqrestore(&md
->map_lock
, flags
);
2100 * Returns unbound table for the caller to free.
2102 static struct dm_table
*__unbind(struct mapped_device
*md
)
2104 struct dm_table
*map
= md
->map
;
2105 unsigned long flags
;
2110 dm_table_event_callback(map
, NULL
, NULL
);
2111 write_lock_irqsave(&md
->map_lock
, flags
);
2113 write_unlock_irqrestore(&md
->map_lock
, flags
);
2119 * Constructor for a new device.
2121 int dm_create(int minor
, struct mapped_device
**result
)
2123 struct mapped_device
*md
;
2125 md
= alloc_dev(minor
);
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2139 void dm_lock_md_type(struct mapped_device
*md
)
2141 mutex_lock(&md
->type_lock
);
2144 void dm_unlock_md_type(struct mapped_device
*md
)
2146 mutex_unlock(&md
->type_lock
);
2149 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2154 unsigned dm_get_md_type(struct mapped_device
*md
)
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2162 static int dm_init_request_based_queue(struct mapped_device
*md
)
2164 struct request_queue
*q
= NULL
;
2166 if (md
->queue
->elevator
)
2169 /* Fully initialize the queue */
2170 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2175 md
->saved_make_request_fn
= md
->queue
->make_request_fn
;
2176 dm_init_md_queue(md
);
2177 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2178 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2179 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2181 elv_register_queue(md
->queue
);
2187 * Setup the DM device's queue based on md's type
2189 int dm_setup_md_queue(struct mapped_device
*md
)
2191 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2192 !dm_init_request_based_queue(md
)) {
2193 DMWARN("Cannot initialize queue for request-based mapped device");
2200 static struct mapped_device
*dm_find_md(dev_t dev
)
2202 struct mapped_device
*md
;
2203 unsigned minor
= MINOR(dev
);
2205 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2208 spin_lock(&_minor_lock
);
2210 md
= idr_find(&_minor_idr
, minor
);
2211 if (md
&& (md
== MINOR_ALLOCED
||
2212 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2213 dm_deleting_md(md
) ||
2214 test_bit(DMF_FREEING
, &md
->flags
))) {
2220 spin_unlock(&_minor_lock
);
2225 struct mapped_device
*dm_get_md(dev_t dev
)
2227 struct mapped_device
*md
= dm_find_md(dev
);
2235 void *dm_get_mdptr(struct mapped_device
*md
)
2237 return md
->interface_ptr
;
2240 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2242 md
->interface_ptr
= ptr
;
2245 void dm_get(struct mapped_device
*md
)
2247 atomic_inc(&md
->holders
);
2248 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2251 const char *dm_device_name(struct mapped_device
*md
)
2255 EXPORT_SYMBOL_GPL(dm_device_name
);
2257 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2259 struct dm_table
*map
;
2263 spin_lock(&_minor_lock
);
2264 map
= dm_get_live_table(md
);
2265 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2266 set_bit(DMF_FREEING
, &md
->flags
);
2267 spin_unlock(&_minor_lock
);
2269 if (!dm_suspended_md(md
)) {
2270 dm_table_presuspend_targets(map
);
2271 dm_table_postsuspend_targets(map
);
2275 * Rare, but there may be I/O requests still going to complete,
2276 * for example. Wait for all references to disappear.
2277 * No one should increment the reference count of the mapped_device,
2278 * after the mapped_device state becomes DMF_FREEING.
2281 while (atomic_read(&md
->holders
))
2283 else if (atomic_read(&md
->holders
))
2284 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 dm_device_name(md
), atomic_read(&md
->holders
));
2289 dm_table_destroy(__unbind(md
));
2293 void dm_destroy(struct mapped_device
*md
)
2295 __dm_destroy(md
, true);
2298 void dm_destroy_immediate(struct mapped_device
*md
)
2300 __dm_destroy(md
, false);
2303 void dm_put(struct mapped_device
*md
)
2305 atomic_dec(&md
->holders
);
2307 EXPORT_SYMBOL_GPL(dm_put
);
2309 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2312 DECLARE_WAITQUEUE(wait
, current
);
2314 add_wait_queue(&md
->wait
, &wait
);
2317 set_current_state(interruptible
);
2320 if (!md_in_flight(md
))
2323 if (interruptible
== TASK_INTERRUPTIBLE
&&
2324 signal_pending(current
)) {
2331 set_current_state(TASK_RUNNING
);
2333 remove_wait_queue(&md
->wait
, &wait
);
2339 * Process the deferred bios
2341 static void dm_wq_work(struct work_struct
*work
)
2343 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2347 down_read(&md
->io_lock
);
2349 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2350 spin_lock_irq(&md
->deferred_lock
);
2351 c
= bio_list_pop(&md
->deferred
);
2352 spin_unlock_irq(&md
->deferred_lock
);
2357 up_read(&md
->io_lock
);
2359 if (dm_request_based(md
))
2360 generic_make_request(c
);
2362 __split_and_process_bio(md
, c
);
2364 down_read(&md
->io_lock
);
2367 up_read(&md
->io_lock
);
2370 static void dm_queue_flush(struct mapped_device
*md
)
2372 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2373 smp_mb__after_clear_bit();
2374 queue_work(md
->wq
, &md
->work
);
2378 * Swap in a new table, returning the old one for the caller to destroy.
2380 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2382 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2383 struct queue_limits limits
;
2386 mutex_lock(&md
->suspend_lock
);
2388 /* device must be suspended */
2389 if (!dm_suspended_md(md
))
2392 r
= dm_calculate_queue_limits(table
, &limits
);
2398 map
= __bind(md
, table
, &limits
);
2401 mutex_unlock(&md
->suspend_lock
);
2406 * Functions to lock and unlock any filesystem running on the
2409 static int lock_fs(struct mapped_device
*md
)
2413 WARN_ON(md
->frozen_sb
);
2415 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2416 if (IS_ERR(md
->frozen_sb
)) {
2417 r
= PTR_ERR(md
->frozen_sb
);
2418 md
->frozen_sb
= NULL
;
2422 set_bit(DMF_FROZEN
, &md
->flags
);
2427 static void unlock_fs(struct mapped_device
*md
)
2429 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2432 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2433 md
->frozen_sb
= NULL
;
2434 clear_bit(DMF_FROZEN
, &md
->flags
);
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2445 * Suspend mechanism in request-based dm.
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2451 * To abort suspend, start the request_queue.
2453 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2455 struct dm_table
*map
= NULL
;
2457 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2458 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2460 mutex_lock(&md
->suspend_lock
);
2462 if (dm_suspended_md(md
)) {
2467 map
= dm_get_live_table(md
);
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2474 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2476 /* This does not get reverted if there's an error later. */
2477 dm_table_presuspend_targets(map
);
2480 * Flush I/O to the device.
2481 * Any I/O submitted after lock_fs() may not be flushed.
2482 * noflush takes precedence over do_lockfs.
2483 * (lock_fs() flushes I/Os and waits for them to complete.)
2485 if (!noflush
&& do_lockfs
) {
2492 * Here we must make sure that no processes are submitting requests
2493 * to target drivers i.e. no one may be executing
2494 * __split_and_process_bio. This is called from dm_request and
2497 * To get all processes out of __split_and_process_bio in dm_request,
2498 * we take the write lock. To prevent any process from reentering
2499 * __split_and_process_bio from dm_request and quiesce the thread
2500 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501 * flush_workqueue(md->wq).
2503 down_write(&md
->io_lock
);
2504 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2505 up_write(&md
->io_lock
);
2508 * Stop md->queue before flushing md->wq in case request-based
2509 * dm defers requests to md->wq from md->queue.
2511 if (dm_request_based(md
))
2512 stop_queue(md
->queue
);
2514 flush_workqueue(md
->wq
);
2517 * At this point no more requests are entering target request routines.
2518 * We call dm_wait_for_completion to wait for all existing requests
2521 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2523 down_write(&md
->io_lock
);
2525 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2526 up_write(&md
->io_lock
);
2528 /* were we interrupted ? */
2532 if (dm_request_based(md
))
2533 start_queue(md
->queue
);
2536 goto out
; /* pushback list is already flushed, so skip flush */
2540 * If dm_wait_for_completion returned 0, the device is completely
2541 * quiescent now. There is no request-processing activity. All new
2542 * requests are being added to md->deferred list.
2545 set_bit(DMF_SUSPENDED
, &md
->flags
);
2547 dm_table_postsuspend_targets(map
);
2553 mutex_unlock(&md
->suspend_lock
);
2557 int dm_resume(struct mapped_device
*md
)
2560 struct dm_table
*map
= NULL
;
2562 mutex_lock(&md
->suspend_lock
);
2563 if (!dm_suspended_md(md
))
2566 map
= dm_get_live_table(md
);
2567 if (!map
|| !dm_table_get_size(map
))
2570 r
= dm_table_resume_targets(map
);
2577 * Flushing deferred I/Os must be done after targets are resumed
2578 * so that mapping of targets can work correctly.
2579 * Request-based dm is queueing the deferred I/Os in its request_queue.
2581 if (dm_request_based(md
))
2582 start_queue(md
->queue
);
2586 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2591 mutex_unlock(&md
->suspend_lock
);
2596 /*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2602 char udev_cookie
[DM_COOKIE_LENGTH
];
2603 char *envp
[] = { udev_cookie
, NULL
};
2606 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2608 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2609 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2610 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2615 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2617 return atomic_add_return(1, &md
->uevent_seq
);
2620 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2622 return atomic_read(&md
->event_nr
);
2625 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2627 return wait_event_interruptible(md
->eventq
,
2628 (event_nr
!= atomic_read(&md
->event_nr
)));
2631 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2633 unsigned long flags
;
2635 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2636 list_add(elist
, &md
->uevent_list
);
2637 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2641 * The gendisk is only valid as long as you have a reference
2644 struct gendisk
*dm_disk(struct mapped_device
*md
)
2649 struct kobject
*dm_kobject(struct mapped_device
*md
)
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2658 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2660 struct mapped_device
*md
;
2662 md
= container_of(kobj
, struct mapped_device
, kobj
);
2663 if (&md
->kobj
!= kobj
)
2666 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2674 int dm_suspended_md(struct mapped_device
*md
)
2676 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2679 int dm_suspended(struct dm_target
*ti
)
2681 return dm_suspended_md(dm_table_get_md(ti
->table
));
2683 EXPORT_SYMBOL_GPL(dm_suspended
);
2685 int dm_noflush_suspending(struct dm_target
*ti
)
2687 return __noflush_suspending(dm_table_get_md(ti
->table
));
2689 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2691 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
)
2693 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2694 unsigned int pool_size
= (type
== DM_TYPE_BIO_BASED
) ? 16 : MIN_IOS
;
2699 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2700 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2701 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2702 if (!pools
->io_pool
)
2703 goto free_pools_and_out
;
2705 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2706 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2707 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2708 if (!pools
->tio_pool
)
2709 goto free_io_pool_and_out
;
2711 pools
->bs
= bioset_create(pool_size
, 0);
2713 goto free_tio_pool_and_out
;
2715 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2716 goto free_bioset_and_out
;
2720 free_bioset_and_out
:
2721 bioset_free(pools
->bs
);
2723 free_tio_pool_and_out
:
2724 mempool_destroy(pools
->tio_pool
);
2726 free_io_pool_and_out
:
2727 mempool_destroy(pools
->io_pool
);
2735 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2741 mempool_destroy(pools
->io_pool
);
2743 if (pools
->tio_pool
)
2744 mempool_destroy(pools
->tio_pool
);
2747 bioset_free(pools
->bs
);
2752 static const struct block_device_operations dm_blk_dops
= {
2753 .open
= dm_blk_open
,
2754 .release
= dm_blk_close
,
2755 .ioctl
= dm_blk_ioctl
,
2756 .getgeo
= dm_blk_getgeo
,
2757 .owner
= THIS_MODULE
2760 EXPORT_SYMBOL(dm_get_mapinfo
);
2765 module_init(dm_init
);
2766 module_exit(dm_exit
);
2768 module_param(major
, uint
, 0);
2769 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2770 MODULE_DESCRIPTION(DM_NAME
" driver");
2771 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772 MODULE_LICENSE("GPL");