net: convert core to skb paged frag APIs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blobb2e262ed3963cafe6a8d6379a790540b6ca788f4
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/if_tunnel.h>
137 #include <linux/if_pppox.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
204 static inline void dev_base_seq_inc(struct net *net)
206 while (++net->dev_base_seq == 0);
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 static inline void rps_lock(struct softnet_data *sd)
222 #ifdef CONFIG_RPS
223 spin_lock(&sd->input_pkt_queue.lock);
224 #endif
227 static inline void rps_unlock(struct softnet_data *sd)
229 #ifdef CONFIG_RPS
230 spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
237 struct net *net = dev_net(dev);
239 ASSERT_RTNL();
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
248 dev_base_seq_inc(net);
250 return 0;
253 /* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
256 static void unlist_netdevice(struct net_device *dev)
258 ASSERT_RTNL();
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
267 dev_base_seq_inc(dev_net(dev));
271 * Our notifier list
274 static RAW_NOTIFIER_HEAD(netdev_chain);
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 #ifdef CONFIG_LOCKDEP
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
289 static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
330 int i;
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
334 return i;
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
342 int i;
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 int i;
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
358 #else
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
366 #endif
368 /*******************************************************************************
370 Protocol management and registration routines
372 *******************************************************************************/
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
377 * here.
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
387 * --ANK (980803)
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
392 if (pt->type == htons(ETH_P_ALL))
393 return &ptype_all;
394 else
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
411 void dev_add_pack(struct packet_type *pt)
413 struct list_head *head = ptype_head(pt);
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
419 EXPORT_SYMBOL(dev_add_pack);
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
434 void __dev_remove_pack(struct packet_type *pt)
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
439 spin_lock(&ptype_lock);
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
448 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
449 out:
450 spin_unlock(&ptype_lock);
452 EXPORT_SYMBOL(__dev_remove_pack);
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
466 void dev_remove_pack(struct packet_type *pt)
468 __dev_remove_pack(pt);
470 synchronize_net();
472 EXPORT_SYMBOL(dev_remove_pack);
474 /******************************************************************************
476 Device Boot-time Settings Routines
478 *******************************************************************************/
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
494 struct netdev_boot_setup *s;
495 int i;
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
519 int netdev_boot_setup_check(struct net_device *dev)
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
534 return 0;
536 EXPORT_SYMBOL(netdev_boot_setup_check);
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
549 unsigned long netdev_boot_base(const char *prefix, int unit)
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
555 sprintf(name, "%s%d", prefix, unit);
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
571 * Saves at boot time configured settings for any netdevice.
573 int __init netdev_boot_setup(char *str)
575 int ints[5];
576 struct ifmap map;
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
597 __setup("netdev=", netdev_boot_setup);
599 /*******************************************************************************
601 Device Interface Subroutines
603 *******************************************************************************/
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
625 return dev;
627 return NULL;
629 EXPORT_SYMBOL(__dev_get_by_name);
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
651 return dev;
653 return NULL;
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
671 struct net_device *dev;
673 rcu_read_lock();
674 dev = dev_get_by_name_rcu(net, name);
675 if (dev)
676 dev_hold(dev);
677 rcu_read_unlock();
678 return dev;
680 EXPORT_SYMBOL(dev_get_by_name);
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
691 * or @dev_base_lock.
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
702 return dev;
704 return NULL;
706 EXPORT_SYMBOL(__dev_get_by_index);
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
727 return dev;
729 return NULL;
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
747 struct net_device *dev;
749 rcu_read_lock();
750 dev = dev_get_by_index_rcu(net, ifindex);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
756 EXPORT_SYMBOL(dev_get_by_index);
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 const char *ha)
775 struct net_device *dev;
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
780 return dev;
782 return NULL;
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 struct net_device *dev;
790 ASSERT_RTNL();
791 for_each_netdev(net, dev)
792 if (dev->type == type)
793 return dev;
795 return NULL;
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
801 struct net_device *dev, *ret = NULL;
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
806 dev_hold(dev);
807 ret = dev;
808 break;
810 rcu_read_unlock();
811 return ret;
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 unsigned short mask)
829 struct net_device *dev, *ret;
831 ret = NULL;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
834 ret = dev;
835 break;
838 return ret;
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
843 * dev_valid_name - check if name is okay for network device
844 * @name: name string
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
848 * whitespace.
850 int dev_valid_name(const char *name)
852 if (*name == '\0')
853 return 0;
854 if (strlen(name) >= IFNAMSIZ)
855 return 0;
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
857 return 0;
859 while (*name) {
860 if (*name == '/' || isspace(*name))
861 return 0;
862 name++;
864 return 1;
866 EXPORT_SYMBOL(dev_valid_name);
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
878 * duplicates.
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
885 int i = 0;
886 const char *p;
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
891 p = strnchr(name, IFNAMSIZ-1, '%');
892 if (p) {
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
896 * characters.
898 if (p[1] != 'd' || strchr(p + 2, '%'))
899 return -EINVAL;
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 if (!inuse)
904 return -ENOMEM;
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
908 continue;
909 if (i < 0 || i >= max_netdevices)
910 continue;
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
915 set_bit(i, inuse);
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
922 if (buf != name)
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
925 return i;
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
931 return -ENFILE;
935 * dev_alloc_name - allocate a name for a device
936 * @dev: device
937 * @name: name format string
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
943 * duplicates.
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
948 int dev_alloc_name(struct net_device *dev, const char *name)
950 char buf[IFNAMSIZ];
951 struct net *net;
952 int ret;
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 ret = __dev_alloc_name(net, name, buf);
957 if (ret >= 0)
958 strlcpy(dev->name, buf, IFNAMSIZ);
959 return ret;
961 EXPORT_SYMBOL(dev_alloc_name);
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
965 struct net *net;
967 BUG_ON(!dev_net(dev));
968 net = dev_net(dev);
970 if (!dev_valid_name(name))
971 return -EINVAL;
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
976 return -EEXIST;
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
980 return 0;
984 * dev_change_name - change name of a device
985 * @dev: device
986 * @newname: name (or format string) must be at least IFNAMSIZ
988 * Change name of a device, can pass format strings "eth%d".
989 * for wildcarding.
991 int dev_change_name(struct net_device *dev, const char *newname)
993 char oldname[IFNAMSIZ];
994 int err = 0;
995 int ret;
996 struct net *net;
998 ASSERT_RTNL();
999 BUG_ON(!dev_net(dev));
1001 net = dev_net(dev);
1002 if (dev->flags & IFF_UP)
1003 return -EBUSY;
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 return 0;
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1010 err = dev_get_valid_name(dev, newname);
1011 if (err < 0)
1012 return err;
1014 rollback:
1015 ret = device_rename(&dev->dev, dev->name);
1016 if (ret) {
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 return ret;
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1025 synchronize_rcu();
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1034 if (ret) {
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1036 if (err >= 0) {
1037 err = ret;
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1039 goto rollback;
1040 } else {
1041 printk(KERN_ERR
1042 "%s: name change rollback failed: %d.\n",
1043 dev->name, ret);
1047 return err;
1051 * dev_set_alias - change ifalias of a device
1052 * @dev: device
1053 * @alias: name up to IFALIASZ
1054 * @len: limit of bytes to copy from info
1056 * Set ifalias for a device,
1058 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1060 ASSERT_RTNL();
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1070 return 0;
1073 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!dev->ifalias)
1075 return -ENOMEM;
1077 strlcpy(dev->ifalias, alias, len+1);
1078 return len;
1083 * netdev_features_change - device changes features
1084 * @dev: device to cause notification
1086 * Called to indicate a device has changed features.
1088 void netdev_features_change(struct net_device *dev)
1090 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 EXPORT_SYMBOL(netdev_features_change);
1095 * netdev_state_change - device changes state
1096 * @dev: device to cause notification
1098 * Called to indicate a device has changed state. This function calls
1099 * the notifier chains for netdev_chain and sends a NEWLINK message
1100 * to the routing socket.
1102 void netdev_state_change(struct net_device *dev)
1104 if (dev->flags & IFF_UP) {
1105 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1106 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1109 EXPORT_SYMBOL(netdev_state_change);
1111 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 return call_netdevice_notifiers(event, dev);
1115 EXPORT_SYMBOL(netdev_bonding_change);
1118 * dev_load - load a network module
1119 * @net: the applicable net namespace
1120 * @name: name of interface
1122 * If a network interface is not present and the process has suitable
1123 * privileges this function loads the module. If module loading is not
1124 * available in this kernel then it becomes a nop.
1127 void dev_load(struct net *net, const char *name)
1129 struct net_device *dev;
1130 int no_module;
1132 rcu_read_lock();
1133 dev = dev_get_by_name_rcu(net, name);
1134 rcu_read_unlock();
1136 no_module = !dev;
1137 if (no_module && capable(CAP_NET_ADMIN))
1138 no_module = request_module("netdev-%s", name);
1139 if (no_module && capable(CAP_SYS_MODULE)) {
1140 if (!request_module("%s", name))
1141 pr_err("Loading kernel module for a network device "
1142 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1143 "instead\n", name);
1146 EXPORT_SYMBOL(dev_load);
1148 static int __dev_open(struct net_device *dev)
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1153 ASSERT_RTNL();
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1163 set_bit(__LINK_STATE_START, &dev->state);
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1180 return ret;
1184 * dev_open - prepare an interface for use.
1185 * @dev: device to open
1187 * Takes a device from down to up state. The device's private open
1188 * function is invoked and then the multicast lists are loaded. Finally
1189 * the device is moved into the up state and a %NETDEV_UP message is
1190 * sent to the netdev notifier chain.
1192 * Calling this function on an active interface is a nop. On a failure
1193 * a negative errno code is returned.
1195 int dev_open(struct net_device *dev)
1197 int ret;
1199 if (dev->flags & IFF_UP)
1200 return 0;
1202 ret = __dev_open(dev);
1203 if (ret < 0)
1204 return ret;
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1207 call_netdevice_notifiers(NETDEV_UP, dev);
1209 return ret;
1211 EXPORT_SYMBOL(dev_open);
1213 static int __dev_close_many(struct list_head *head)
1215 struct net_device *dev;
1217 ASSERT_RTNL();
1218 might_sleep();
1220 list_for_each_entry(dev, head, unreg_list) {
1221 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223 clear_bit(__LINK_STATE_START, &dev->state);
1225 /* Synchronize to scheduled poll. We cannot touch poll list, it
1226 * can be even on different cpu. So just clear netif_running().
1228 * dev->stop() will invoke napi_disable() on all of it's
1229 * napi_struct instances on this device.
1231 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1234 dev_deactivate_many(head);
1236 list_for_each_entry(dev, head, unreg_list) {
1237 const struct net_device_ops *ops = dev->netdev_ops;
1240 * Call the device specific close. This cannot fail.
1241 * Only if device is UP
1243 * We allow it to be called even after a DETACH hot-plug
1244 * event.
1246 if (ops->ndo_stop)
1247 ops->ndo_stop(dev);
1249 dev->flags &= ~IFF_UP;
1250 net_dmaengine_put();
1253 return 0;
1256 static int __dev_close(struct net_device *dev)
1258 int retval;
1259 LIST_HEAD(single);
1261 list_add(&dev->unreg_list, &single);
1262 retval = __dev_close_many(&single);
1263 list_del(&single);
1264 return retval;
1267 static int dev_close_many(struct list_head *head)
1269 struct net_device *dev, *tmp;
1270 LIST_HEAD(tmp_list);
1272 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1273 if (!(dev->flags & IFF_UP))
1274 list_move(&dev->unreg_list, &tmp_list);
1276 __dev_close_many(head);
1278 list_for_each_entry(dev, head, unreg_list) {
1279 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1280 call_netdevice_notifiers(NETDEV_DOWN, dev);
1283 /* rollback_registered_many needs the complete original list */
1284 list_splice(&tmp_list, head);
1285 return 0;
1289 * dev_close - shutdown an interface.
1290 * @dev: device to shutdown
1292 * This function moves an active device into down state. A
1293 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1294 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1295 * chain.
1297 int dev_close(struct net_device *dev)
1299 if (dev->flags & IFF_UP) {
1300 LIST_HEAD(single);
1302 list_add(&dev->unreg_list, &single);
1303 dev_close_many(&single);
1304 list_del(&single);
1306 return 0;
1308 EXPORT_SYMBOL(dev_close);
1312 * dev_disable_lro - disable Large Receive Offload on a device
1313 * @dev: device
1315 * Disable Large Receive Offload (LRO) on a net device. Must be
1316 * called under RTNL. This is needed if received packets may be
1317 * forwarded to another interface.
1319 void dev_disable_lro(struct net_device *dev)
1321 u32 flags;
1324 * If we're trying to disable lro on a vlan device
1325 * use the underlying physical device instead
1327 if (is_vlan_dev(dev))
1328 dev = vlan_dev_real_dev(dev);
1330 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1331 flags = dev->ethtool_ops->get_flags(dev);
1332 else
1333 flags = ethtool_op_get_flags(dev);
1335 if (!(flags & ETH_FLAG_LRO))
1336 return;
1338 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1339 if (unlikely(dev->features & NETIF_F_LRO))
1340 netdev_WARN(dev, "failed to disable LRO!\n");
1342 EXPORT_SYMBOL(dev_disable_lro);
1345 static int dev_boot_phase = 1;
1348 * register_netdevice_notifier - register a network notifier block
1349 * @nb: notifier
1351 * Register a notifier to be called when network device events occur.
1352 * The notifier passed is linked into the kernel structures and must
1353 * not be reused until it has been unregistered. A negative errno code
1354 * is returned on a failure.
1356 * When registered all registration and up events are replayed
1357 * to the new notifier to allow device to have a race free
1358 * view of the network device list.
1361 int register_netdevice_notifier(struct notifier_block *nb)
1363 struct net_device *dev;
1364 struct net_device *last;
1365 struct net *net;
1366 int err;
1368 rtnl_lock();
1369 err = raw_notifier_chain_register(&netdev_chain, nb);
1370 if (err)
1371 goto unlock;
1372 if (dev_boot_phase)
1373 goto unlock;
1374 for_each_net(net) {
1375 for_each_netdev(net, dev) {
1376 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1377 err = notifier_to_errno(err);
1378 if (err)
1379 goto rollback;
1381 if (!(dev->flags & IFF_UP))
1382 continue;
1384 nb->notifier_call(nb, NETDEV_UP, dev);
1388 unlock:
1389 rtnl_unlock();
1390 return err;
1392 rollback:
1393 last = dev;
1394 for_each_net(net) {
1395 for_each_netdev(net, dev) {
1396 if (dev == last)
1397 break;
1399 if (dev->flags & IFF_UP) {
1400 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1401 nb->notifier_call(nb, NETDEV_DOWN, dev);
1403 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1404 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1408 raw_notifier_chain_unregister(&netdev_chain, nb);
1409 goto unlock;
1411 EXPORT_SYMBOL(register_netdevice_notifier);
1414 * unregister_netdevice_notifier - unregister a network notifier block
1415 * @nb: notifier
1417 * Unregister a notifier previously registered by
1418 * register_netdevice_notifier(). The notifier is unlinked into the
1419 * kernel structures and may then be reused. A negative errno code
1420 * is returned on a failure.
1423 int unregister_netdevice_notifier(struct notifier_block *nb)
1425 int err;
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 rtnl_unlock();
1430 return err;
1432 EXPORT_SYMBOL(unregister_netdevice_notifier);
1435 * call_netdevice_notifiers - call all network notifier blocks
1436 * @val: value passed unmodified to notifier function
1437 * @dev: net_device pointer passed unmodified to notifier function
1439 * Call all network notifier blocks. Parameters and return value
1440 * are as for raw_notifier_call_chain().
1443 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1445 ASSERT_RTNL();
1446 return raw_notifier_call_chain(&netdev_chain, val, dev);
1448 EXPORT_SYMBOL(call_netdevice_notifiers);
1450 /* When > 0 there are consumers of rx skb time stamps */
1451 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1453 void net_enable_timestamp(void)
1455 atomic_inc(&netstamp_needed);
1457 EXPORT_SYMBOL(net_enable_timestamp);
1459 void net_disable_timestamp(void)
1461 atomic_dec(&netstamp_needed);
1463 EXPORT_SYMBOL(net_disable_timestamp);
1465 static inline void net_timestamp_set(struct sk_buff *skb)
1467 if (atomic_read(&netstamp_needed))
1468 __net_timestamp(skb);
1469 else
1470 skb->tstamp.tv64 = 0;
1473 static inline void net_timestamp_check(struct sk_buff *skb)
1475 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1476 __net_timestamp(skb);
1479 static inline bool is_skb_forwardable(struct net_device *dev,
1480 struct sk_buff *skb)
1482 unsigned int len;
1484 if (!(dev->flags & IFF_UP))
1485 return false;
1487 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1488 if (skb->len <= len)
1489 return true;
1491 /* if TSO is enabled, we don't care about the length as the packet
1492 * could be forwarded without being segmented before
1494 if (skb_is_gso(skb))
1495 return true;
1497 return false;
1501 * dev_forward_skb - loopback an skb to another netif
1503 * @dev: destination network device
1504 * @skb: buffer to forward
1506 * return values:
1507 * NET_RX_SUCCESS (no congestion)
1508 * NET_RX_DROP (packet was dropped, but freed)
1510 * dev_forward_skb can be used for injecting an skb from the
1511 * start_xmit function of one device into the receive queue
1512 * of another device.
1514 * The receiving device may be in another namespace, so
1515 * we have to clear all information in the skb that could
1516 * impact namespace isolation.
1518 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1520 skb_orphan(skb);
1521 nf_reset(skb);
1523 if (unlikely(!is_skb_forwardable(dev, skb))) {
1524 atomic_long_inc(&dev->rx_dropped);
1525 kfree_skb(skb);
1526 return NET_RX_DROP;
1528 skb_set_dev(skb, dev);
1529 skb->tstamp.tv64 = 0;
1530 skb->pkt_type = PACKET_HOST;
1531 skb->protocol = eth_type_trans(skb, dev);
1532 return netif_rx(skb);
1534 EXPORT_SYMBOL_GPL(dev_forward_skb);
1536 static inline int deliver_skb(struct sk_buff *skb,
1537 struct packet_type *pt_prev,
1538 struct net_device *orig_dev)
1540 atomic_inc(&skb->users);
1541 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1545 * Support routine. Sends outgoing frames to any network
1546 * taps currently in use.
1549 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1551 struct packet_type *ptype;
1552 struct sk_buff *skb2 = NULL;
1553 struct packet_type *pt_prev = NULL;
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1557 /* Never send packets back to the socket
1558 * they originated from - MvS (miquels@drinkel.ow.org)
1560 if ((ptype->dev == dev || !ptype->dev) &&
1561 (ptype->af_packet_priv == NULL ||
1562 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1563 if (pt_prev) {
1564 deliver_skb(skb2, pt_prev, skb->dev);
1565 pt_prev = ptype;
1566 continue;
1569 skb2 = skb_clone(skb, GFP_ATOMIC);
1570 if (!skb2)
1571 break;
1573 net_timestamp_set(skb2);
1575 /* skb->nh should be correctly
1576 set by sender, so that the second statement is
1577 just protection against buggy protocols.
1579 skb_reset_mac_header(skb2);
1581 if (skb_network_header(skb2) < skb2->data ||
1582 skb2->network_header > skb2->tail) {
1583 if (net_ratelimit())
1584 printk(KERN_CRIT "protocol %04x is "
1585 "buggy, dev %s\n",
1586 ntohs(skb2->protocol),
1587 dev->name);
1588 skb_reset_network_header(skb2);
1591 skb2->transport_header = skb2->network_header;
1592 skb2->pkt_type = PACKET_OUTGOING;
1593 pt_prev = ptype;
1596 if (pt_prev)
1597 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1598 rcu_read_unlock();
1601 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1602 * @dev: Network device
1603 * @txq: number of queues available
1605 * If real_num_tx_queues is changed the tc mappings may no longer be
1606 * valid. To resolve this verify the tc mapping remains valid and if
1607 * not NULL the mapping. With no priorities mapping to this
1608 * offset/count pair it will no longer be used. In the worst case TC0
1609 * is invalid nothing can be done so disable priority mappings. If is
1610 * expected that drivers will fix this mapping if they can before
1611 * calling netif_set_real_num_tx_queues.
1613 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1615 int i;
1616 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1618 /* If TC0 is invalidated disable TC mapping */
1619 if (tc->offset + tc->count > txq) {
1620 pr_warning("Number of in use tx queues changed "
1621 "invalidating tc mappings. Priority "
1622 "traffic classification disabled!\n");
1623 dev->num_tc = 0;
1624 return;
1627 /* Invalidated prio to tc mappings set to TC0 */
1628 for (i = 1; i < TC_BITMASK + 1; i++) {
1629 int q = netdev_get_prio_tc_map(dev, i);
1631 tc = &dev->tc_to_txq[q];
1632 if (tc->offset + tc->count > txq) {
1633 pr_warning("Number of in use tx queues "
1634 "changed. Priority %i to tc "
1635 "mapping %i is no longer valid "
1636 "setting map to 0\n",
1637 i, q);
1638 netdev_set_prio_tc_map(dev, i, 0);
1644 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1645 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1647 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1649 int rc;
1651 if (txq < 1 || txq > dev->num_tx_queues)
1652 return -EINVAL;
1654 if (dev->reg_state == NETREG_REGISTERED ||
1655 dev->reg_state == NETREG_UNREGISTERING) {
1656 ASSERT_RTNL();
1658 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1659 txq);
1660 if (rc)
1661 return rc;
1663 if (dev->num_tc)
1664 netif_setup_tc(dev, txq);
1666 if (txq < dev->real_num_tx_queues)
1667 qdisc_reset_all_tx_gt(dev, txq);
1670 dev->real_num_tx_queues = txq;
1671 return 0;
1673 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1675 #ifdef CONFIG_RPS
1677 * netif_set_real_num_rx_queues - set actual number of RX queues used
1678 * @dev: Network device
1679 * @rxq: Actual number of RX queues
1681 * This must be called either with the rtnl_lock held or before
1682 * registration of the net device. Returns 0 on success, or a
1683 * negative error code. If called before registration, it always
1684 * succeeds.
1686 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1688 int rc;
1690 if (rxq < 1 || rxq > dev->num_rx_queues)
1691 return -EINVAL;
1693 if (dev->reg_state == NETREG_REGISTERED) {
1694 ASSERT_RTNL();
1696 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1697 rxq);
1698 if (rc)
1699 return rc;
1702 dev->real_num_rx_queues = rxq;
1703 return 0;
1705 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1706 #endif
1708 static inline void __netif_reschedule(struct Qdisc *q)
1710 struct softnet_data *sd;
1711 unsigned long flags;
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 q->next_sched = NULL;
1716 *sd->output_queue_tailp = q;
1717 sd->output_queue_tailp = &q->next_sched;
1718 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1719 local_irq_restore(flags);
1722 void __netif_schedule(struct Qdisc *q)
1724 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1725 __netif_reschedule(q);
1727 EXPORT_SYMBOL(__netif_schedule);
1729 void dev_kfree_skb_irq(struct sk_buff *skb)
1731 if (atomic_dec_and_test(&skb->users)) {
1732 struct softnet_data *sd;
1733 unsigned long flags;
1735 local_irq_save(flags);
1736 sd = &__get_cpu_var(softnet_data);
1737 skb->next = sd->completion_queue;
1738 sd->completion_queue = skb;
1739 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1740 local_irq_restore(flags);
1743 EXPORT_SYMBOL(dev_kfree_skb_irq);
1745 void dev_kfree_skb_any(struct sk_buff *skb)
1747 if (in_irq() || irqs_disabled())
1748 dev_kfree_skb_irq(skb);
1749 else
1750 dev_kfree_skb(skb);
1752 EXPORT_SYMBOL(dev_kfree_skb_any);
1756 * netif_device_detach - mark device as removed
1757 * @dev: network device
1759 * Mark device as removed from system and therefore no longer available.
1761 void netif_device_detach(struct net_device *dev)
1763 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1764 netif_running(dev)) {
1765 netif_tx_stop_all_queues(dev);
1768 EXPORT_SYMBOL(netif_device_detach);
1771 * netif_device_attach - mark device as attached
1772 * @dev: network device
1774 * Mark device as attached from system and restart if needed.
1776 void netif_device_attach(struct net_device *dev)
1778 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1779 netif_running(dev)) {
1780 netif_tx_wake_all_queues(dev);
1781 __netdev_watchdog_up(dev);
1784 EXPORT_SYMBOL(netif_device_attach);
1787 * skb_dev_set -- assign a new device to a buffer
1788 * @skb: buffer for the new device
1789 * @dev: network device
1791 * If an skb is owned by a device already, we have to reset
1792 * all data private to the namespace a device belongs to
1793 * before assigning it a new device.
1795 #ifdef CONFIG_NET_NS
1796 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1798 skb_dst_drop(skb);
1799 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1800 secpath_reset(skb);
1801 nf_reset(skb);
1802 skb_init_secmark(skb);
1803 skb->mark = 0;
1804 skb->priority = 0;
1805 skb->nf_trace = 0;
1806 skb->ipvs_property = 0;
1807 #ifdef CONFIG_NET_SCHED
1808 skb->tc_index = 0;
1809 #endif
1811 skb->dev = dev;
1813 EXPORT_SYMBOL(skb_set_dev);
1814 #endif /* CONFIG_NET_NS */
1817 * Invalidate hardware checksum when packet is to be mangled, and
1818 * complete checksum manually on outgoing path.
1820 int skb_checksum_help(struct sk_buff *skb)
1822 __wsum csum;
1823 int ret = 0, offset;
1825 if (skb->ip_summed == CHECKSUM_COMPLETE)
1826 goto out_set_summed;
1828 if (unlikely(skb_shinfo(skb)->gso_size)) {
1829 /* Let GSO fix up the checksum. */
1830 goto out_set_summed;
1833 offset = skb_checksum_start_offset(skb);
1834 BUG_ON(offset >= skb_headlen(skb));
1835 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1837 offset += skb->csum_offset;
1838 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1840 if (skb_cloned(skb) &&
1841 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1842 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1843 if (ret)
1844 goto out;
1847 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1848 out_set_summed:
1849 skb->ip_summed = CHECKSUM_NONE;
1850 out:
1851 return ret;
1853 EXPORT_SYMBOL(skb_checksum_help);
1856 * skb_gso_segment - Perform segmentation on skb.
1857 * @skb: buffer to segment
1858 * @features: features for the output path (see dev->features)
1860 * This function segments the given skb and returns a list of segments.
1862 * It may return NULL if the skb requires no segmentation. This is
1863 * only possible when GSO is used for verifying header integrity.
1865 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1867 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1868 struct packet_type *ptype;
1869 __be16 type = skb->protocol;
1870 int vlan_depth = ETH_HLEN;
1871 int err;
1873 while (type == htons(ETH_P_8021Q)) {
1874 struct vlan_hdr *vh;
1876 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1877 return ERR_PTR(-EINVAL);
1879 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1880 type = vh->h_vlan_encapsulated_proto;
1881 vlan_depth += VLAN_HLEN;
1884 skb_reset_mac_header(skb);
1885 skb->mac_len = skb->network_header - skb->mac_header;
1886 __skb_pull(skb, skb->mac_len);
1888 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1889 struct net_device *dev = skb->dev;
1890 struct ethtool_drvinfo info = {};
1892 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1893 dev->ethtool_ops->get_drvinfo(dev, &info);
1895 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1896 info.driver, dev ? dev->features : 0L,
1897 skb->sk ? skb->sk->sk_route_caps : 0L,
1898 skb->len, skb->data_len, skb->ip_summed);
1900 if (skb_header_cloned(skb) &&
1901 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1902 return ERR_PTR(err);
1905 rcu_read_lock();
1906 list_for_each_entry_rcu(ptype,
1907 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1908 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1909 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1910 err = ptype->gso_send_check(skb);
1911 segs = ERR_PTR(err);
1912 if (err || skb_gso_ok(skb, features))
1913 break;
1914 __skb_push(skb, (skb->data -
1915 skb_network_header(skb)));
1917 segs = ptype->gso_segment(skb, features);
1918 break;
1921 rcu_read_unlock();
1923 __skb_push(skb, skb->data - skb_mac_header(skb));
1925 return segs;
1927 EXPORT_SYMBOL(skb_gso_segment);
1929 /* Take action when hardware reception checksum errors are detected. */
1930 #ifdef CONFIG_BUG
1931 void netdev_rx_csum_fault(struct net_device *dev)
1933 if (net_ratelimit()) {
1934 printk(KERN_ERR "%s: hw csum failure.\n",
1935 dev ? dev->name : "<unknown>");
1936 dump_stack();
1939 EXPORT_SYMBOL(netdev_rx_csum_fault);
1940 #endif
1942 /* Actually, we should eliminate this check as soon as we know, that:
1943 * 1. IOMMU is present and allows to map all the memory.
1944 * 2. No high memory really exists on this machine.
1947 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1949 #ifdef CONFIG_HIGHMEM
1950 int i;
1951 if (!(dev->features & NETIF_F_HIGHDMA)) {
1952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1953 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1954 if (PageHighMem(skb_frag_page(frag)))
1955 return 1;
1959 if (PCI_DMA_BUS_IS_PHYS) {
1960 struct device *pdev = dev->dev.parent;
1962 if (!pdev)
1963 return 0;
1964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1965 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1966 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
1967 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1968 return 1;
1971 #endif
1972 return 0;
1975 struct dev_gso_cb {
1976 void (*destructor)(struct sk_buff *skb);
1979 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1981 static void dev_gso_skb_destructor(struct sk_buff *skb)
1983 struct dev_gso_cb *cb;
1985 do {
1986 struct sk_buff *nskb = skb->next;
1988 skb->next = nskb->next;
1989 nskb->next = NULL;
1990 kfree_skb(nskb);
1991 } while (skb->next);
1993 cb = DEV_GSO_CB(skb);
1994 if (cb->destructor)
1995 cb->destructor(skb);
1999 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2000 * @skb: buffer to segment
2001 * @features: device features as applicable to this skb
2003 * This function segments the given skb and stores the list of segments
2004 * in skb->next.
2006 static int dev_gso_segment(struct sk_buff *skb, int features)
2008 struct sk_buff *segs;
2010 segs = skb_gso_segment(skb, features);
2012 /* Verifying header integrity only. */
2013 if (!segs)
2014 return 0;
2016 if (IS_ERR(segs))
2017 return PTR_ERR(segs);
2019 skb->next = segs;
2020 DEV_GSO_CB(skb)->destructor = skb->destructor;
2021 skb->destructor = dev_gso_skb_destructor;
2023 return 0;
2027 * Try to orphan skb early, right before transmission by the device.
2028 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2029 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2031 static inline void skb_orphan_try(struct sk_buff *skb)
2033 struct sock *sk = skb->sk;
2035 if (sk && !skb_shinfo(skb)->tx_flags) {
2036 /* skb_tx_hash() wont be able to get sk.
2037 * We copy sk_hash into skb->rxhash
2039 if (!skb->rxhash)
2040 skb->rxhash = sk->sk_hash;
2041 skb_orphan(skb);
2045 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2047 return ((features & NETIF_F_GEN_CSUM) ||
2048 ((features & NETIF_F_V4_CSUM) &&
2049 protocol == htons(ETH_P_IP)) ||
2050 ((features & NETIF_F_V6_CSUM) &&
2051 protocol == htons(ETH_P_IPV6)) ||
2052 ((features & NETIF_F_FCOE_CRC) &&
2053 protocol == htons(ETH_P_FCOE)));
2056 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2058 if (!can_checksum_protocol(features, protocol)) {
2059 features &= ~NETIF_F_ALL_CSUM;
2060 features &= ~NETIF_F_SG;
2061 } else if (illegal_highdma(skb->dev, skb)) {
2062 features &= ~NETIF_F_SG;
2065 return features;
2068 u32 netif_skb_features(struct sk_buff *skb)
2070 __be16 protocol = skb->protocol;
2071 u32 features = skb->dev->features;
2073 if (protocol == htons(ETH_P_8021Q)) {
2074 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2075 protocol = veh->h_vlan_encapsulated_proto;
2076 } else if (!vlan_tx_tag_present(skb)) {
2077 return harmonize_features(skb, protocol, features);
2080 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2082 if (protocol != htons(ETH_P_8021Q)) {
2083 return harmonize_features(skb, protocol, features);
2084 } else {
2085 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2086 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2087 return harmonize_features(skb, protocol, features);
2090 EXPORT_SYMBOL(netif_skb_features);
2093 * Returns true if either:
2094 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2095 * 2. skb is fragmented and the device does not support SG, or if
2096 * at least one of fragments is in highmem and device does not
2097 * support DMA from it.
2099 static inline int skb_needs_linearize(struct sk_buff *skb,
2100 int features)
2102 return skb_is_nonlinear(skb) &&
2103 ((skb_has_frag_list(skb) &&
2104 !(features & NETIF_F_FRAGLIST)) ||
2105 (skb_shinfo(skb)->nr_frags &&
2106 !(features & NETIF_F_SG)));
2109 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2110 struct netdev_queue *txq)
2112 const struct net_device_ops *ops = dev->netdev_ops;
2113 int rc = NETDEV_TX_OK;
2114 unsigned int skb_len;
2116 if (likely(!skb->next)) {
2117 u32 features;
2120 * If device doesn't need skb->dst, release it right now while
2121 * its hot in this cpu cache
2123 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2124 skb_dst_drop(skb);
2126 if (!list_empty(&ptype_all))
2127 dev_queue_xmit_nit(skb, dev);
2129 skb_orphan_try(skb);
2131 features = netif_skb_features(skb);
2133 if (vlan_tx_tag_present(skb) &&
2134 !(features & NETIF_F_HW_VLAN_TX)) {
2135 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2136 if (unlikely(!skb))
2137 goto out;
2139 skb->vlan_tci = 0;
2142 if (netif_needs_gso(skb, features)) {
2143 if (unlikely(dev_gso_segment(skb, features)))
2144 goto out_kfree_skb;
2145 if (skb->next)
2146 goto gso;
2147 } else {
2148 if (skb_needs_linearize(skb, features) &&
2149 __skb_linearize(skb))
2150 goto out_kfree_skb;
2152 /* If packet is not checksummed and device does not
2153 * support checksumming for this protocol, complete
2154 * checksumming here.
2156 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2157 skb_set_transport_header(skb,
2158 skb_checksum_start_offset(skb));
2159 if (!(features & NETIF_F_ALL_CSUM) &&
2160 skb_checksum_help(skb))
2161 goto out_kfree_skb;
2165 skb_len = skb->len;
2166 rc = ops->ndo_start_xmit(skb, dev);
2167 trace_net_dev_xmit(skb, rc, dev, skb_len);
2168 if (rc == NETDEV_TX_OK)
2169 txq_trans_update(txq);
2170 return rc;
2173 gso:
2174 do {
2175 struct sk_buff *nskb = skb->next;
2177 skb->next = nskb->next;
2178 nskb->next = NULL;
2181 * If device doesn't need nskb->dst, release it right now while
2182 * its hot in this cpu cache
2184 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2185 skb_dst_drop(nskb);
2187 skb_len = nskb->len;
2188 rc = ops->ndo_start_xmit(nskb, dev);
2189 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2190 if (unlikely(rc != NETDEV_TX_OK)) {
2191 if (rc & ~NETDEV_TX_MASK)
2192 goto out_kfree_gso_skb;
2193 nskb->next = skb->next;
2194 skb->next = nskb;
2195 return rc;
2197 txq_trans_update(txq);
2198 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2199 return NETDEV_TX_BUSY;
2200 } while (skb->next);
2202 out_kfree_gso_skb:
2203 if (likely(skb->next == NULL))
2204 skb->destructor = DEV_GSO_CB(skb)->destructor;
2205 out_kfree_skb:
2206 kfree_skb(skb);
2207 out:
2208 return rc;
2211 static u32 hashrnd __read_mostly;
2214 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2215 * to be used as a distribution range.
2217 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2218 unsigned int num_tx_queues)
2220 u32 hash;
2221 u16 qoffset = 0;
2222 u16 qcount = num_tx_queues;
2224 if (skb_rx_queue_recorded(skb)) {
2225 hash = skb_get_rx_queue(skb);
2226 while (unlikely(hash >= num_tx_queues))
2227 hash -= num_tx_queues;
2228 return hash;
2231 if (dev->num_tc) {
2232 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2233 qoffset = dev->tc_to_txq[tc].offset;
2234 qcount = dev->tc_to_txq[tc].count;
2237 if (skb->sk && skb->sk->sk_hash)
2238 hash = skb->sk->sk_hash;
2239 else
2240 hash = (__force u16) skb->protocol ^ skb->rxhash;
2241 hash = jhash_1word(hash, hashrnd);
2243 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2245 EXPORT_SYMBOL(__skb_tx_hash);
2247 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2249 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2250 if (net_ratelimit()) {
2251 pr_warning("%s selects TX queue %d, but "
2252 "real number of TX queues is %d\n",
2253 dev->name, queue_index, dev->real_num_tx_queues);
2255 return 0;
2257 return queue_index;
2260 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2262 #ifdef CONFIG_XPS
2263 struct xps_dev_maps *dev_maps;
2264 struct xps_map *map;
2265 int queue_index = -1;
2267 rcu_read_lock();
2268 dev_maps = rcu_dereference(dev->xps_maps);
2269 if (dev_maps) {
2270 map = rcu_dereference(
2271 dev_maps->cpu_map[raw_smp_processor_id()]);
2272 if (map) {
2273 if (map->len == 1)
2274 queue_index = map->queues[0];
2275 else {
2276 u32 hash;
2277 if (skb->sk && skb->sk->sk_hash)
2278 hash = skb->sk->sk_hash;
2279 else
2280 hash = (__force u16) skb->protocol ^
2281 skb->rxhash;
2282 hash = jhash_1word(hash, hashrnd);
2283 queue_index = map->queues[
2284 ((u64)hash * map->len) >> 32];
2286 if (unlikely(queue_index >= dev->real_num_tx_queues))
2287 queue_index = -1;
2290 rcu_read_unlock();
2292 return queue_index;
2293 #else
2294 return -1;
2295 #endif
2298 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2299 struct sk_buff *skb)
2301 int queue_index;
2302 const struct net_device_ops *ops = dev->netdev_ops;
2304 if (dev->real_num_tx_queues == 1)
2305 queue_index = 0;
2306 else if (ops->ndo_select_queue) {
2307 queue_index = ops->ndo_select_queue(dev, skb);
2308 queue_index = dev_cap_txqueue(dev, queue_index);
2309 } else {
2310 struct sock *sk = skb->sk;
2311 queue_index = sk_tx_queue_get(sk);
2313 if (queue_index < 0 || skb->ooo_okay ||
2314 queue_index >= dev->real_num_tx_queues) {
2315 int old_index = queue_index;
2317 queue_index = get_xps_queue(dev, skb);
2318 if (queue_index < 0)
2319 queue_index = skb_tx_hash(dev, skb);
2321 if (queue_index != old_index && sk) {
2322 struct dst_entry *dst =
2323 rcu_dereference_check(sk->sk_dst_cache, 1);
2325 if (dst && skb_dst(skb) == dst)
2326 sk_tx_queue_set(sk, queue_index);
2331 skb_set_queue_mapping(skb, queue_index);
2332 return netdev_get_tx_queue(dev, queue_index);
2335 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2336 struct net_device *dev,
2337 struct netdev_queue *txq)
2339 spinlock_t *root_lock = qdisc_lock(q);
2340 bool contended;
2341 int rc;
2343 qdisc_skb_cb(skb)->pkt_len = skb->len;
2344 qdisc_calculate_pkt_len(skb, q);
2346 * Heuristic to force contended enqueues to serialize on a
2347 * separate lock before trying to get qdisc main lock.
2348 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2349 * and dequeue packets faster.
2351 contended = qdisc_is_running(q);
2352 if (unlikely(contended))
2353 spin_lock(&q->busylock);
2355 spin_lock(root_lock);
2356 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2357 kfree_skb(skb);
2358 rc = NET_XMIT_DROP;
2359 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2360 qdisc_run_begin(q)) {
2362 * This is a work-conserving queue; there are no old skbs
2363 * waiting to be sent out; and the qdisc is not running -
2364 * xmit the skb directly.
2366 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2367 skb_dst_force(skb);
2369 qdisc_bstats_update(q, skb);
2371 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2372 if (unlikely(contended)) {
2373 spin_unlock(&q->busylock);
2374 contended = false;
2376 __qdisc_run(q);
2377 } else
2378 qdisc_run_end(q);
2380 rc = NET_XMIT_SUCCESS;
2381 } else {
2382 skb_dst_force(skb);
2383 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2384 if (qdisc_run_begin(q)) {
2385 if (unlikely(contended)) {
2386 spin_unlock(&q->busylock);
2387 contended = false;
2389 __qdisc_run(q);
2392 spin_unlock(root_lock);
2393 if (unlikely(contended))
2394 spin_unlock(&q->busylock);
2395 return rc;
2398 static DEFINE_PER_CPU(int, xmit_recursion);
2399 #define RECURSION_LIMIT 10
2402 * dev_queue_xmit - transmit a buffer
2403 * @skb: buffer to transmit
2405 * Queue a buffer for transmission to a network device. The caller must
2406 * have set the device and priority and built the buffer before calling
2407 * this function. The function can be called from an interrupt.
2409 * A negative errno code is returned on a failure. A success does not
2410 * guarantee the frame will be transmitted as it may be dropped due
2411 * to congestion or traffic shaping.
2413 * -----------------------------------------------------------------------------------
2414 * I notice this method can also return errors from the queue disciplines,
2415 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2416 * be positive.
2418 * Regardless of the return value, the skb is consumed, so it is currently
2419 * difficult to retry a send to this method. (You can bump the ref count
2420 * before sending to hold a reference for retry if you are careful.)
2422 * When calling this method, interrupts MUST be enabled. This is because
2423 * the BH enable code must have IRQs enabled so that it will not deadlock.
2424 * --BLG
2426 int dev_queue_xmit(struct sk_buff *skb)
2428 struct net_device *dev = skb->dev;
2429 struct netdev_queue *txq;
2430 struct Qdisc *q;
2431 int rc = -ENOMEM;
2433 /* Disable soft irqs for various locks below. Also
2434 * stops preemption for RCU.
2436 rcu_read_lock_bh();
2438 txq = dev_pick_tx(dev, skb);
2439 q = rcu_dereference_bh(txq->qdisc);
2441 #ifdef CONFIG_NET_CLS_ACT
2442 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2443 #endif
2444 trace_net_dev_queue(skb);
2445 if (q->enqueue) {
2446 rc = __dev_xmit_skb(skb, q, dev, txq);
2447 goto out;
2450 /* The device has no queue. Common case for software devices:
2451 loopback, all the sorts of tunnels...
2453 Really, it is unlikely that netif_tx_lock protection is necessary
2454 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2455 counters.)
2456 However, it is possible, that they rely on protection
2457 made by us here.
2459 Check this and shot the lock. It is not prone from deadlocks.
2460 Either shot noqueue qdisc, it is even simpler 8)
2462 if (dev->flags & IFF_UP) {
2463 int cpu = smp_processor_id(); /* ok because BHs are off */
2465 if (txq->xmit_lock_owner != cpu) {
2467 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2468 goto recursion_alert;
2470 HARD_TX_LOCK(dev, txq, cpu);
2472 if (!netif_tx_queue_stopped(txq)) {
2473 __this_cpu_inc(xmit_recursion);
2474 rc = dev_hard_start_xmit(skb, dev, txq);
2475 __this_cpu_dec(xmit_recursion);
2476 if (dev_xmit_complete(rc)) {
2477 HARD_TX_UNLOCK(dev, txq);
2478 goto out;
2481 HARD_TX_UNLOCK(dev, txq);
2482 if (net_ratelimit())
2483 printk(KERN_CRIT "Virtual device %s asks to "
2484 "queue packet!\n", dev->name);
2485 } else {
2486 /* Recursion is detected! It is possible,
2487 * unfortunately
2489 recursion_alert:
2490 if (net_ratelimit())
2491 printk(KERN_CRIT "Dead loop on virtual device "
2492 "%s, fix it urgently!\n", dev->name);
2496 rc = -ENETDOWN;
2497 rcu_read_unlock_bh();
2499 kfree_skb(skb);
2500 return rc;
2501 out:
2502 rcu_read_unlock_bh();
2503 return rc;
2505 EXPORT_SYMBOL(dev_queue_xmit);
2508 /*=======================================================================
2509 Receiver routines
2510 =======================================================================*/
2512 int netdev_max_backlog __read_mostly = 1000;
2513 int netdev_tstamp_prequeue __read_mostly = 1;
2514 int netdev_budget __read_mostly = 300;
2515 int weight_p __read_mostly = 64; /* old backlog weight */
2517 /* Called with irq disabled */
2518 static inline void ____napi_schedule(struct softnet_data *sd,
2519 struct napi_struct *napi)
2521 list_add_tail(&napi->poll_list, &sd->poll_list);
2522 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2526 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2527 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2528 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2529 * if hash is a canonical 4-tuple hash over transport ports.
2531 void __skb_get_rxhash(struct sk_buff *skb)
2533 int nhoff, hash = 0, poff;
2534 const struct ipv6hdr *ip6;
2535 const struct iphdr *ip;
2536 const struct vlan_hdr *vlan;
2537 u8 ip_proto;
2538 u32 addr1, addr2;
2539 u16 proto;
2540 union {
2541 u32 v32;
2542 u16 v16[2];
2543 } ports;
2545 nhoff = skb_network_offset(skb);
2546 proto = skb->protocol;
2548 again:
2549 switch (proto) {
2550 case __constant_htons(ETH_P_IP):
2551 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2552 goto done;
2554 ip = (const struct iphdr *) (skb->data + nhoff);
2555 if (ip_is_fragment(ip))
2556 ip_proto = 0;
2557 else
2558 ip_proto = ip->protocol;
2559 addr1 = (__force u32) ip->saddr;
2560 addr2 = (__force u32) ip->daddr;
2561 nhoff += ip->ihl * 4;
2562 break;
2563 case __constant_htons(ETH_P_IPV6):
2564 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2565 goto done;
2567 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2568 ip_proto = ip6->nexthdr;
2569 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2570 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2571 nhoff += 40;
2572 break;
2573 case __constant_htons(ETH_P_8021Q):
2574 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff))
2575 goto done;
2576 vlan = (const struct vlan_hdr *) (skb->data + nhoff);
2577 proto = vlan->h_vlan_encapsulated_proto;
2578 nhoff += sizeof(*vlan);
2579 goto again;
2580 case __constant_htons(ETH_P_PPP_SES):
2581 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff))
2582 goto done;
2583 proto = *((__be16 *) (skb->data + nhoff +
2584 sizeof(struct pppoe_hdr)));
2585 nhoff += PPPOE_SES_HLEN;
2586 goto again;
2587 default:
2588 goto done;
2591 switch (ip_proto) {
2592 case IPPROTO_GRE:
2593 if (pskb_may_pull(skb, nhoff + 16)) {
2594 u8 *h = skb->data + nhoff;
2595 __be16 flags = *(__be16 *)h;
2598 * Only look inside GRE if version zero and no
2599 * routing
2601 if (!(flags & (GRE_VERSION|GRE_ROUTING))) {
2602 proto = *(__be16 *)(h + 2);
2603 nhoff += 4;
2604 if (flags & GRE_CSUM)
2605 nhoff += 4;
2606 if (flags & GRE_KEY)
2607 nhoff += 4;
2608 if (flags & GRE_SEQ)
2609 nhoff += 4;
2610 goto again;
2613 break;
2614 case IPPROTO_IPIP:
2615 goto again;
2616 default:
2617 break;
2620 ports.v32 = 0;
2621 poff = proto_ports_offset(ip_proto);
2622 if (poff >= 0) {
2623 nhoff += poff;
2624 if (pskb_may_pull(skb, nhoff + 4)) {
2625 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2626 if (ports.v16[1] < ports.v16[0])
2627 swap(ports.v16[0], ports.v16[1]);
2628 skb->l4_rxhash = 1;
2632 /* get a consistent hash (same value on both flow directions) */
2633 if (addr2 < addr1)
2634 swap(addr1, addr2);
2636 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2637 if (!hash)
2638 hash = 1;
2640 done:
2641 skb->rxhash = hash;
2643 EXPORT_SYMBOL(__skb_get_rxhash);
2645 #ifdef CONFIG_RPS
2647 /* One global table that all flow-based protocols share. */
2648 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2649 EXPORT_SYMBOL(rps_sock_flow_table);
2651 static struct rps_dev_flow *
2652 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2653 struct rps_dev_flow *rflow, u16 next_cpu)
2655 u16 tcpu;
2657 tcpu = rflow->cpu = next_cpu;
2658 if (tcpu != RPS_NO_CPU) {
2659 #ifdef CONFIG_RFS_ACCEL
2660 struct netdev_rx_queue *rxqueue;
2661 struct rps_dev_flow_table *flow_table;
2662 struct rps_dev_flow *old_rflow;
2663 u32 flow_id;
2664 u16 rxq_index;
2665 int rc;
2667 /* Should we steer this flow to a different hardware queue? */
2668 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2669 !(dev->features & NETIF_F_NTUPLE))
2670 goto out;
2671 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2672 if (rxq_index == skb_get_rx_queue(skb))
2673 goto out;
2675 rxqueue = dev->_rx + rxq_index;
2676 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2677 if (!flow_table)
2678 goto out;
2679 flow_id = skb->rxhash & flow_table->mask;
2680 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2681 rxq_index, flow_id);
2682 if (rc < 0)
2683 goto out;
2684 old_rflow = rflow;
2685 rflow = &flow_table->flows[flow_id];
2686 rflow->cpu = next_cpu;
2687 rflow->filter = rc;
2688 if (old_rflow->filter == rflow->filter)
2689 old_rflow->filter = RPS_NO_FILTER;
2690 out:
2691 #endif
2692 rflow->last_qtail =
2693 per_cpu(softnet_data, tcpu).input_queue_head;
2696 return rflow;
2700 * get_rps_cpu is called from netif_receive_skb and returns the target
2701 * CPU from the RPS map of the receiving queue for a given skb.
2702 * rcu_read_lock must be held on entry.
2704 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2705 struct rps_dev_flow **rflowp)
2707 struct netdev_rx_queue *rxqueue;
2708 struct rps_map *map;
2709 struct rps_dev_flow_table *flow_table;
2710 struct rps_sock_flow_table *sock_flow_table;
2711 int cpu = -1;
2712 u16 tcpu;
2714 if (skb_rx_queue_recorded(skb)) {
2715 u16 index = skb_get_rx_queue(skb);
2716 if (unlikely(index >= dev->real_num_rx_queues)) {
2717 WARN_ONCE(dev->real_num_rx_queues > 1,
2718 "%s received packet on queue %u, but number "
2719 "of RX queues is %u\n",
2720 dev->name, index, dev->real_num_rx_queues);
2721 goto done;
2723 rxqueue = dev->_rx + index;
2724 } else
2725 rxqueue = dev->_rx;
2727 map = rcu_dereference(rxqueue->rps_map);
2728 if (map) {
2729 if (map->len == 1 &&
2730 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2731 tcpu = map->cpus[0];
2732 if (cpu_online(tcpu))
2733 cpu = tcpu;
2734 goto done;
2736 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2737 goto done;
2740 skb_reset_network_header(skb);
2741 if (!skb_get_rxhash(skb))
2742 goto done;
2744 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2745 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2746 if (flow_table && sock_flow_table) {
2747 u16 next_cpu;
2748 struct rps_dev_flow *rflow;
2750 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2751 tcpu = rflow->cpu;
2753 next_cpu = sock_flow_table->ents[skb->rxhash &
2754 sock_flow_table->mask];
2757 * If the desired CPU (where last recvmsg was done) is
2758 * different from current CPU (one in the rx-queue flow
2759 * table entry), switch if one of the following holds:
2760 * - Current CPU is unset (equal to RPS_NO_CPU).
2761 * - Current CPU is offline.
2762 * - The current CPU's queue tail has advanced beyond the
2763 * last packet that was enqueued using this table entry.
2764 * This guarantees that all previous packets for the flow
2765 * have been dequeued, thus preserving in order delivery.
2767 if (unlikely(tcpu != next_cpu) &&
2768 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2769 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2770 rflow->last_qtail)) >= 0))
2771 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2773 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2774 *rflowp = rflow;
2775 cpu = tcpu;
2776 goto done;
2780 if (map) {
2781 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2783 if (cpu_online(tcpu)) {
2784 cpu = tcpu;
2785 goto done;
2789 done:
2790 return cpu;
2793 #ifdef CONFIG_RFS_ACCEL
2796 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2797 * @dev: Device on which the filter was set
2798 * @rxq_index: RX queue index
2799 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2800 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2802 * Drivers that implement ndo_rx_flow_steer() should periodically call
2803 * this function for each installed filter and remove the filters for
2804 * which it returns %true.
2806 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2807 u32 flow_id, u16 filter_id)
2809 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2810 struct rps_dev_flow_table *flow_table;
2811 struct rps_dev_flow *rflow;
2812 bool expire = true;
2813 int cpu;
2815 rcu_read_lock();
2816 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2817 if (flow_table && flow_id <= flow_table->mask) {
2818 rflow = &flow_table->flows[flow_id];
2819 cpu = ACCESS_ONCE(rflow->cpu);
2820 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2821 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2822 rflow->last_qtail) <
2823 (int)(10 * flow_table->mask)))
2824 expire = false;
2826 rcu_read_unlock();
2827 return expire;
2829 EXPORT_SYMBOL(rps_may_expire_flow);
2831 #endif /* CONFIG_RFS_ACCEL */
2833 /* Called from hardirq (IPI) context */
2834 static void rps_trigger_softirq(void *data)
2836 struct softnet_data *sd = data;
2838 ____napi_schedule(sd, &sd->backlog);
2839 sd->received_rps++;
2842 #endif /* CONFIG_RPS */
2845 * Check if this softnet_data structure is another cpu one
2846 * If yes, queue it to our IPI list and return 1
2847 * If no, return 0
2849 static int rps_ipi_queued(struct softnet_data *sd)
2851 #ifdef CONFIG_RPS
2852 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2854 if (sd != mysd) {
2855 sd->rps_ipi_next = mysd->rps_ipi_list;
2856 mysd->rps_ipi_list = sd;
2858 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2859 return 1;
2861 #endif /* CONFIG_RPS */
2862 return 0;
2866 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2867 * queue (may be a remote CPU queue).
2869 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2870 unsigned int *qtail)
2872 struct softnet_data *sd;
2873 unsigned long flags;
2875 sd = &per_cpu(softnet_data, cpu);
2877 local_irq_save(flags);
2879 rps_lock(sd);
2880 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2881 if (skb_queue_len(&sd->input_pkt_queue)) {
2882 enqueue:
2883 __skb_queue_tail(&sd->input_pkt_queue, skb);
2884 input_queue_tail_incr_save(sd, qtail);
2885 rps_unlock(sd);
2886 local_irq_restore(flags);
2887 return NET_RX_SUCCESS;
2890 /* Schedule NAPI for backlog device
2891 * We can use non atomic operation since we own the queue lock
2893 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2894 if (!rps_ipi_queued(sd))
2895 ____napi_schedule(sd, &sd->backlog);
2897 goto enqueue;
2900 sd->dropped++;
2901 rps_unlock(sd);
2903 local_irq_restore(flags);
2905 atomic_long_inc(&skb->dev->rx_dropped);
2906 kfree_skb(skb);
2907 return NET_RX_DROP;
2911 * netif_rx - post buffer to the network code
2912 * @skb: buffer to post
2914 * This function receives a packet from a device driver and queues it for
2915 * the upper (protocol) levels to process. It always succeeds. The buffer
2916 * may be dropped during processing for congestion control or by the
2917 * protocol layers.
2919 * return values:
2920 * NET_RX_SUCCESS (no congestion)
2921 * NET_RX_DROP (packet was dropped)
2925 int netif_rx(struct sk_buff *skb)
2927 int ret;
2929 /* if netpoll wants it, pretend we never saw it */
2930 if (netpoll_rx(skb))
2931 return NET_RX_DROP;
2933 if (netdev_tstamp_prequeue)
2934 net_timestamp_check(skb);
2936 trace_netif_rx(skb);
2937 #ifdef CONFIG_RPS
2939 struct rps_dev_flow voidflow, *rflow = &voidflow;
2940 int cpu;
2942 preempt_disable();
2943 rcu_read_lock();
2945 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2946 if (cpu < 0)
2947 cpu = smp_processor_id();
2949 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2951 rcu_read_unlock();
2952 preempt_enable();
2954 #else
2956 unsigned int qtail;
2957 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2958 put_cpu();
2960 #endif
2961 return ret;
2963 EXPORT_SYMBOL(netif_rx);
2965 int netif_rx_ni(struct sk_buff *skb)
2967 int err;
2969 preempt_disable();
2970 err = netif_rx(skb);
2971 if (local_softirq_pending())
2972 do_softirq();
2973 preempt_enable();
2975 return err;
2977 EXPORT_SYMBOL(netif_rx_ni);
2979 static void net_tx_action(struct softirq_action *h)
2981 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2983 if (sd->completion_queue) {
2984 struct sk_buff *clist;
2986 local_irq_disable();
2987 clist = sd->completion_queue;
2988 sd->completion_queue = NULL;
2989 local_irq_enable();
2991 while (clist) {
2992 struct sk_buff *skb = clist;
2993 clist = clist->next;
2995 WARN_ON(atomic_read(&skb->users));
2996 trace_kfree_skb(skb, net_tx_action);
2997 __kfree_skb(skb);
3001 if (sd->output_queue) {
3002 struct Qdisc *head;
3004 local_irq_disable();
3005 head = sd->output_queue;
3006 sd->output_queue = NULL;
3007 sd->output_queue_tailp = &sd->output_queue;
3008 local_irq_enable();
3010 while (head) {
3011 struct Qdisc *q = head;
3012 spinlock_t *root_lock;
3014 head = head->next_sched;
3016 root_lock = qdisc_lock(q);
3017 if (spin_trylock(root_lock)) {
3018 smp_mb__before_clear_bit();
3019 clear_bit(__QDISC_STATE_SCHED,
3020 &q->state);
3021 qdisc_run(q);
3022 spin_unlock(root_lock);
3023 } else {
3024 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3025 &q->state)) {
3026 __netif_reschedule(q);
3027 } else {
3028 smp_mb__before_clear_bit();
3029 clear_bit(__QDISC_STATE_SCHED,
3030 &q->state);
3037 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3038 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3039 /* This hook is defined here for ATM LANE */
3040 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3041 unsigned char *addr) __read_mostly;
3042 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3043 #endif
3045 #ifdef CONFIG_NET_CLS_ACT
3046 /* TODO: Maybe we should just force sch_ingress to be compiled in
3047 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3048 * a compare and 2 stores extra right now if we dont have it on
3049 * but have CONFIG_NET_CLS_ACT
3050 * NOTE: This doesn't stop any functionality; if you dont have
3051 * the ingress scheduler, you just can't add policies on ingress.
3054 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3056 struct net_device *dev = skb->dev;
3057 u32 ttl = G_TC_RTTL(skb->tc_verd);
3058 int result = TC_ACT_OK;
3059 struct Qdisc *q;
3061 if (unlikely(MAX_RED_LOOP < ttl++)) {
3062 if (net_ratelimit())
3063 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3064 skb->skb_iif, dev->ifindex);
3065 return TC_ACT_SHOT;
3068 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3069 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3071 q = rxq->qdisc;
3072 if (q != &noop_qdisc) {
3073 spin_lock(qdisc_lock(q));
3074 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3075 result = qdisc_enqueue_root(skb, q);
3076 spin_unlock(qdisc_lock(q));
3079 return result;
3082 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3083 struct packet_type **pt_prev,
3084 int *ret, struct net_device *orig_dev)
3086 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3088 if (!rxq || rxq->qdisc == &noop_qdisc)
3089 goto out;
3091 if (*pt_prev) {
3092 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3093 *pt_prev = NULL;
3096 switch (ing_filter(skb, rxq)) {
3097 case TC_ACT_SHOT:
3098 case TC_ACT_STOLEN:
3099 kfree_skb(skb);
3100 return NULL;
3103 out:
3104 skb->tc_verd = 0;
3105 return skb;
3107 #endif
3110 * netdev_rx_handler_register - register receive handler
3111 * @dev: device to register a handler for
3112 * @rx_handler: receive handler to register
3113 * @rx_handler_data: data pointer that is used by rx handler
3115 * Register a receive hander for a device. This handler will then be
3116 * called from __netif_receive_skb. A negative errno code is returned
3117 * on a failure.
3119 * The caller must hold the rtnl_mutex.
3121 * For a general description of rx_handler, see enum rx_handler_result.
3123 int netdev_rx_handler_register(struct net_device *dev,
3124 rx_handler_func_t *rx_handler,
3125 void *rx_handler_data)
3127 ASSERT_RTNL();
3129 if (dev->rx_handler)
3130 return -EBUSY;
3132 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3133 rcu_assign_pointer(dev->rx_handler, rx_handler);
3135 return 0;
3137 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3140 * netdev_rx_handler_unregister - unregister receive handler
3141 * @dev: device to unregister a handler from
3143 * Unregister a receive hander from a device.
3145 * The caller must hold the rtnl_mutex.
3147 void netdev_rx_handler_unregister(struct net_device *dev)
3150 ASSERT_RTNL();
3151 RCU_INIT_POINTER(dev->rx_handler, NULL);
3152 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3154 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3156 static int __netif_receive_skb(struct sk_buff *skb)
3158 struct packet_type *ptype, *pt_prev;
3159 rx_handler_func_t *rx_handler;
3160 struct net_device *orig_dev;
3161 struct net_device *null_or_dev;
3162 bool deliver_exact = false;
3163 int ret = NET_RX_DROP;
3164 __be16 type;
3166 if (!netdev_tstamp_prequeue)
3167 net_timestamp_check(skb);
3169 trace_netif_receive_skb(skb);
3171 /* if we've gotten here through NAPI, check netpoll */
3172 if (netpoll_receive_skb(skb))
3173 return NET_RX_DROP;
3175 if (!skb->skb_iif)
3176 skb->skb_iif = skb->dev->ifindex;
3177 orig_dev = skb->dev;
3179 skb_reset_network_header(skb);
3180 skb_reset_transport_header(skb);
3181 skb_reset_mac_len(skb);
3183 pt_prev = NULL;
3185 rcu_read_lock();
3187 another_round:
3189 __this_cpu_inc(softnet_data.processed);
3191 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3192 skb = vlan_untag(skb);
3193 if (unlikely(!skb))
3194 goto out;
3197 #ifdef CONFIG_NET_CLS_ACT
3198 if (skb->tc_verd & TC_NCLS) {
3199 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3200 goto ncls;
3202 #endif
3204 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3205 if (!ptype->dev || ptype->dev == skb->dev) {
3206 if (pt_prev)
3207 ret = deliver_skb(skb, pt_prev, orig_dev);
3208 pt_prev = ptype;
3212 #ifdef CONFIG_NET_CLS_ACT
3213 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3214 if (!skb)
3215 goto out;
3216 ncls:
3217 #endif
3219 rx_handler = rcu_dereference(skb->dev->rx_handler);
3220 if (rx_handler) {
3221 if (pt_prev) {
3222 ret = deliver_skb(skb, pt_prev, orig_dev);
3223 pt_prev = NULL;
3225 switch (rx_handler(&skb)) {
3226 case RX_HANDLER_CONSUMED:
3227 goto out;
3228 case RX_HANDLER_ANOTHER:
3229 goto another_round;
3230 case RX_HANDLER_EXACT:
3231 deliver_exact = true;
3232 case RX_HANDLER_PASS:
3233 break;
3234 default:
3235 BUG();
3239 if (vlan_tx_tag_present(skb)) {
3240 if (pt_prev) {
3241 ret = deliver_skb(skb, pt_prev, orig_dev);
3242 pt_prev = NULL;
3244 if (vlan_do_receive(&skb))
3245 goto another_round;
3246 else if (unlikely(!skb))
3247 goto out;
3250 /* deliver only exact match when indicated */
3251 null_or_dev = deliver_exact ? skb->dev : NULL;
3253 type = skb->protocol;
3254 list_for_each_entry_rcu(ptype,
3255 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3256 if (ptype->type == type &&
3257 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3258 ptype->dev == orig_dev)) {
3259 if (pt_prev)
3260 ret = deliver_skb(skb, pt_prev, orig_dev);
3261 pt_prev = ptype;
3265 if (pt_prev) {
3266 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3267 } else {
3268 atomic_long_inc(&skb->dev->rx_dropped);
3269 kfree_skb(skb);
3270 /* Jamal, now you will not able to escape explaining
3271 * me how you were going to use this. :-)
3273 ret = NET_RX_DROP;
3276 out:
3277 rcu_read_unlock();
3278 return ret;
3282 * netif_receive_skb - process receive buffer from network
3283 * @skb: buffer to process
3285 * netif_receive_skb() is the main receive data processing function.
3286 * It always succeeds. The buffer may be dropped during processing
3287 * for congestion control or by the protocol layers.
3289 * This function may only be called from softirq context and interrupts
3290 * should be enabled.
3292 * Return values (usually ignored):
3293 * NET_RX_SUCCESS: no congestion
3294 * NET_RX_DROP: packet was dropped
3296 int netif_receive_skb(struct sk_buff *skb)
3298 if (netdev_tstamp_prequeue)
3299 net_timestamp_check(skb);
3301 if (skb_defer_rx_timestamp(skb))
3302 return NET_RX_SUCCESS;
3304 #ifdef CONFIG_RPS
3306 struct rps_dev_flow voidflow, *rflow = &voidflow;
3307 int cpu, ret;
3309 rcu_read_lock();
3311 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3313 if (cpu >= 0) {
3314 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3315 rcu_read_unlock();
3316 } else {
3317 rcu_read_unlock();
3318 ret = __netif_receive_skb(skb);
3321 return ret;
3323 #else
3324 return __netif_receive_skb(skb);
3325 #endif
3327 EXPORT_SYMBOL(netif_receive_skb);
3329 /* Network device is going away, flush any packets still pending
3330 * Called with irqs disabled.
3332 static void flush_backlog(void *arg)
3334 struct net_device *dev = arg;
3335 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3336 struct sk_buff *skb, *tmp;
3338 rps_lock(sd);
3339 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3340 if (skb->dev == dev) {
3341 __skb_unlink(skb, &sd->input_pkt_queue);
3342 kfree_skb(skb);
3343 input_queue_head_incr(sd);
3346 rps_unlock(sd);
3348 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3349 if (skb->dev == dev) {
3350 __skb_unlink(skb, &sd->process_queue);
3351 kfree_skb(skb);
3352 input_queue_head_incr(sd);
3357 static int napi_gro_complete(struct sk_buff *skb)
3359 struct packet_type *ptype;
3360 __be16 type = skb->protocol;
3361 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3362 int err = -ENOENT;
3364 if (NAPI_GRO_CB(skb)->count == 1) {
3365 skb_shinfo(skb)->gso_size = 0;
3366 goto out;
3369 rcu_read_lock();
3370 list_for_each_entry_rcu(ptype, head, list) {
3371 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3372 continue;
3374 err = ptype->gro_complete(skb);
3375 break;
3377 rcu_read_unlock();
3379 if (err) {
3380 WARN_ON(&ptype->list == head);
3381 kfree_skb(skb);
3382 return NET_RX_SUCCESS;
3385 out:
3386 return netif_receive_skb(skb);
3389 inline void napi_gro_flush(struct napi_struct *napi)
3391 struct sk_buff *skb, *next;
3393 for (skb = napi->gro_list; skb; skb = next) {
3394 next = skb->next;
3395 skb->next = NULL;
3396 napi_gro_complete(skb);
3399 napi->gro_count = 0;
3400 napi->gro_list = NULL;
3402 EXPORT_SYMBOL(napi_gro_flush);
3404 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3406 struct sk_buff **pp = NULL;
3407 struct packet_type *ptype;
3408 __be16 type = skb->protocol;
3409 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3410 int same_flow;
3411 int mac_len;
3412 enum gro_result ret;
3414 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3415 goto normal;
3417 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3418 goto normal;
3420 rcu_read_lock();
3421 list_for_each_entry_rcu(ptype, head, list) {
3422 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3423 continue;
3425 skb_set_network_header(skb, skb_gro_offset(skb));
3426 mac_len = skb->network_header - skb->mac_header;
3427 skb->mac_len = mac_len;
3428 NAPI_GRO_CB(skb)->same_flow = 0;
3429 NAPI_GRO_CB(skb)->flush = 0;
3430 NAPI_GRO_CB(skb)->free = 0;
3432 pp = ptype->gro_receive(&napi->gro_list, skb);
3433 break;
3435 rcu_read_unlock();
3437 if (&ptype->list == head)
3438 goto normal;
3440 same_flow = NAPI_GRO_CB(skb)->same_flow;
3441 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3443 if (pp) {
3444 struct sk_buff *nskb = *pp;
3446 *pp = nskb->next;
3447 nskb->next = NULL;
3448 napi_gro_complete(nskb);
3449 napi->gro_count--;
3452 if (same_flow)
3453 goto ok;
3455 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3456 goto normal;
3458 napi->gro_count++;
3459 NAPI_GRO_CB(skb)->count = 1;
3460 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3461 skb->next = napi->gro_list;
3462 napi->gro_list = skb;
3463 ret = GRO_HELD;
3465 pull:
3466 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3467 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3469 BUG_ON(skb->end - skb->tail < grow);
3471 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3473 skb->tail += grow;
3474 skb->data_len -= grow;
3476 skb_shinfo(skb)->frags[0].page_offset += grow;
3477 skb_shinfo(skb)->frags[0].size -= grow;
3479 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3480 skb_frag_unref(skb, 0);
3481 memmove(skb_shinfo(skb)->frags,
3482 skb_shinfo(skb)->frags + 1,
3483 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3488 return ret;
3490 normal:
3491 ret = GRO_NORMAL;
3492 goto pull;
3494 EXPORT_SYMBOL(dev_gro_receive);
3496 static inline gro_result_t
3497 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3499 struct sk_buff *p;
3501 for (p = napi->gro_list; p; p = p->next) {
3502 unsigned long diffs;
3504 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3505 diffs |= p->vlan_tci ^ skb->vlan_tci;
3506 diffs |= compare_ether_header(skb_mac_header(p),
3507 skb_gro_mac_header(skb));
3508 NAPI_GRO_CB(p)->same_flow = !diffs;
3509 NAPI_GRO_CB(p)->flush = 0;
3512 return dev_gro_receive(napi, skb);
3515 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3517 switch (ret) {
3518 case GRO_NORMAL:
3519 if (netif_receive_skb(skb))
3520 ret = GRO_DROP;
3521 break;
3523 case GRO_DROP:
3524 case GRO_MERGED_FREE:
3525 kfree_skb(skb);
3526 break;
3528 case GRO_HELD:
3529 case GRO_MERGED:
3530 break;
3533 return ret;
3535 EXPORT_SYMBOL(napi_skb_finish);
3537 void skb_gro_reset_offset(struct sk_buff *skb)
3539 NAPI_GRO_CB(skb)->data_offset = 0;
3540 NAPI_GRO_CB(skb)->frag0 = NULL;
3541 NAPI_GRO_CB(skb)->frag0_len = 0;
3543 if (skb->mac_header == skb->tail &&
3544 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3545 NAPI_GRO_CB(skb)->frag0 =
3546 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3547 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3550 EXPORT_SYMBOL(skb_gro_reset_offset);
3552 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3554 skb_gro_reset_offset(skb);
3556 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3558 EXPORT_SYMBOL(napi_gro_receive);
3560 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3562 __skb_pull(skb, skb_headlen(skb));
3563 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3564 skb->vlan_tci = 0;
3565 skb->dev = napi->dev;
3566 skb->skb_iif = 0;
3568 napi->skb = skb;
3571 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3573 struct sk_buff *skb = napi->skb;
3575 if (!skb) {
3576 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3577 if (skb)
3578 napi->skb = skb;
3580 return skb;
3582 EXPORT_SYMBOL(napi_get_frags);
3584 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3585 gro_result_t ret)
3587 switch (ret) {
3588 case GRO_NORMAL:
3589 case GRO_HELD:
3590 skb->protocol = eth_type_trans(skb, skb->dev);
3592 if (ret == GRO_HELD)
3593 skb_gro_pull(skb, -ETH_HLEN);
3594 else if (netif_receive_skb(skb))
3595 ret = GRO_DROP;
3596 break;
3598 case GRO_DROP:
3599 case GRO_MERGED_FREE:
3600 napi_reuse_skb(napi, skb);
3601 break;
3603 case GRO_MERGED:
3604 break;
3607 return ret;
3609 EXPORT_SYMBOL(napi_frags_finish);
3611 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3613 struct sk_buff *skb = napi->skb;
3614 struct ethhdr *eth;
3615 unsigned int hlen;
3616 unsigned int off;
3618 napi->skb = NULL;
3620 skb_reset_mac_header(skb);
3621 skb_gro_reset_offset(skb);
3623 off = skb_gro_offset(skb);
3624 hlen = off + sizeof(*eth);
3625 eth = skb_gro_header_fast(skb, off);
3626 if (skb_gro_header_hard(skb, hlen)) {
3627 eth = skb_gro_header_slow(skb, hlen, off);
3628 if (unlikely(!eth)) {
3629 napi_reuse_skb(napi, skb);
3630 skb = NULL;
3631 goto out;
3635 skb_gro_pull(skb, sizeof(*eth));
3638 * This works because the only protocols we care about don't require
3639 * special handling. We'll fix it up properly at the end.
3641 skb->protocol = eth->h_proto;
3643 out:
3644 return skb;
3646 EXPORT_SYMBOL(napi_frags_skb);
3648 gro_result_t napi_gro_frags(struct napi_struct *napi)
3650 struct sk_buff *skb = napi_frags_skb(napi);
3652 if (!skb)
3653 return GRO_DROP;
3655 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3657 EXPORT_SYMBOL(napi_gro_frags);
3660 * net_rps_action sends any pending IPI's for rps.
3661 * Note: called with local irq disabled, but exits with local irq enabled.
3663 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3665 #ifdef CONFIG_RPS
3666 struct softnet_data *remsd = sd->rps_ipi_list;
3668 if (remsd) {
3669 sd->rps_ipi_list = NULL;
3671 local_irq_enable();
3673 /* Send pending IPI's to kick RPS processing on remote cpus. */
3674 while (remsd) {
3675 struct softnet_data *next = remsd->rps_ipi_next;
3677 if (cpu_online(remsd->cpu))
3678 __smp_call_function_single(remsd->cpu,
3679 &remsd->csd, 0);
3680 remsd = next;
3682 } else
3683 #endif
3684 local_irq_enable();
3687 static int process_backlog(struct napi_struct *napi, int quota)
3689 int work = 0;
3690 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3692 #ifdef CONFIG_RPS
3693 /* Check if we have pending ipi, its better to send them now,
3694 * not waiting net_rx_action() end.
3696 if (sd->rps_ipi_list) {
3697 local_irq_disable();
3698 net_rps_action_and_irq_enable(sd);
3700 #endif
3701 napi->weight = weight_p;
3702 local_irq_disable();
3703 while (work < quota) {
3704 struct sk_buff *skb;
3705 unsigned int qlen;
3707 while ((skb = __skb_dequeue(&sd->process_queue))) {
3708 local_irq_enable();
3709 __netif_receive_skb(skb);
3710 local_irq_disable();
3711 input_queue_head_incr(sd);
3712 if (++work >= quota) {
3713 local_irq_enable();
3714 return work;
3718 rps_lock(sd);
3719 qlen = skb_queue_len(&sd->input_pkt_queue);
3720 if (qlen)
3721 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3722 &sd->process_queue);
3724 if (qlen < quota - work) {
3726 * Inline a custom version of __napi_complete().
3727 * only current cpu owns and manipulates this napi,
3728 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3729 * we can use a plain write instead of clear_bit(),
3730 * and we dont need an smp_mb() memory barrier.
3732 list_del(&napi->poll_list);
3733 napi->state = 0;
3735 quota = work + qlen;
3737 rps_unlock(sd);
3739 local_irq_enable();
3741 return work;
3745 * __napi_schedule - schedule for receive
3746 * @n: entry to schedule
3748 * The entry's receive function will be scheduled to run
3750 void __napi_schedule(struct napi_struct *n)
3752 unsigned long flags;
3754 local_irq_save(flags);
3755 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3756 local_irq_restore(flags);
3758 EXPORT_SYMBOL(__napi_schedule);
3760 void __napi_complete(struct napi_struct *n)
3762 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3763 BUG_ON(n->gro_list);
3765 list_del(&n->poll_list);
3766 smp_mb__before_clear_bit();
3767 clear_bit(NAPI_STATE_SCHED, &n->state);
3769 EXPORT_SYMBOL(__napi_complete);
3771 void napi_complete(struct napi_struct *n)
3773 unsigned long flags;
3776 * don't let napi dequeue from the cpu poll list
3777 * just in case its running on a different cpu
3779 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3780 return;
3782 napi_gro_flush(n);
3783 local_irq_save(flags);
3784 __napi_complete(n);
3785 local_irq_restore(flags);
3787 EXPORT_SYMBOL(napi_complete);
3789 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3790 int (*poll)(struct napi_struct *, int), int weight)
3792 INIT_LIST_HEAD(&napi->poll_list);
3793 napi->gro_count = 0;
3794 napi->gro_list = NULL;
3795 napi->skb = NULL;
3796 napi->poll = poll;
3797 napi->weight = weight;
3798 list_add(&napi->dev_list, &dev->napi_list);
3799 napi->dev = dev;
3800 #ifdef CONFIG_NETPOLL
3801 spin_lock_init(&napi->poll_lock);
3802 napi->poll_owner = -1;
3803 #endif
3804 set_bit(NAPI_STATE_SCHED, &napi->state);
3806 EXPORT_SYMBOL(netif_napi_add);
3808 void netif_napi_del(struct napi_struct *napi)
3810 struct sk_buff *skb, *next;
3812 list_del_init(&napi->dev_list);
3813 napi_free_frags(napi);
3815 for (skb = napi->gro_list; skb; skb = next) {
3816 next = skb->next;
3817 skb->next = NULL;
3818 kfree_skb(skb);
3821 napi->gro_list = NULL;
3822 napi->gro_count = 0;
3824 EXPORT_SYMBOL(netif_napi_del);
3826 static void net_rx_action(struct softirq_action *h)
3828 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3829 unsigned long time_limit = jiffies + 2;
3830 int budget = netdev_budget;
3831 void *have;
3833 local_irq_disable();
3835 while (!list_empty(&sd->poll_list)) {
3836 struct napi_struct *n;
3837 int work, weight;
3839 /* If softirq window is exhuasted then punt.
3840 * Allow this to run for 2 jiffies since which will allow
3841 * an average latency of 1.5/HZ.
3843 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3844 goto softnet_break;
3846 local_irq_enable();
3848 /* Even though interrupts have been re-enabled, this
3849 * access is safe because interrupts can only add new
3850 * entries to the tail of this list, and only ->poll()
3851 * calls can remove this head entry from the list.
3853 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3855 have = netpoll_poll_lock(n);
3857 weight = n->weight;
3859 /* This NAPI_STATE_SCHED test is for avoiding a race
3860 * with netpoll's poll_napi(). Only the entity which
3861 * obtains the lock and sees NAPI_STATE_SCHED set will
3862 * actually make the ->poll() call. Therefore we avoid
3863 * accidentally calling ->poll() when NAPI is not scheduled.
3865 work = 0;
3866 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3867 work = n->poll(n, weight);
3868 trace_napi_poll(n);
3871 WARN_ON_ONCE(work > weight);
3873 budget -= work;
3875 local_irq_disable();
3877 /* Drivers must not modify the NAPI state if they
3878 * consume the entire weight. In such cases this code
3879 * still "owns" the NAPI instance and therefore can
3880 * move the instance around on the list at-will.
3882 if (unlikely(work == weight)) {
3883 if (unlikely(napi_disable_pending(n))) {
3884 local_irq_enable();
3885 napi_complete(n);
3886 local_irq_disable();
3887 } else
3888 list_move_tail(&n->poll_list, &sd->poll_list);
3891 netpoll_poll_unlock(have);
3893 out:
3894 net_rps_action_and_irq_enable(sd);
3896 #ifdef CONFIG_NET_DMA
3898 * There may not be any more sk_buffs coming right now, so push
3899 * any pending DMA copies to hardware
3901 dma_issue_pending_all();
3902 #endif
3904 return;
3906 softnet_break:
3907 sd->time_squeeze++;
3908 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3909 goto out;
3912 static gifconf_func_t *gifconf_list[NPROTO];
3915 * register_gifconf - register a SIOCGIF handler
3916 * @family: Address family
3917 * @gifconf: Function handler
3919 * Register protocol dependent address dumping routines. The handler
3920 * that is passed must not be freed or reused until it has been replaced
3921 * by another handler.
3923 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3925 if (family >= NPROTO)
3926 return -EINVAL;
3927 gifconf_list[family] = gifconf;
3928 return 0;
3930 EXPORT_SYMBOL(register_gifconf);
3934 * Map an interface index to its name (SIOCGIFNAME)
3938 * We need this ioctl for efficient implementation of the
3939 * if_indextoname() function required by the IPv6 API. Without
3940 * it, we would have to search all the interfaces to find a
3941 * match. --pb
3944 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3946 struct net_device *dev;
3947 struct ifreq ifr;
3950 * Fetch the caller's info block.
3953 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3954 return -EFAULT;
3956 rcu_read_lock();
3957 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3958 if (!dev) {
3959 rcu_read_unlock();
3960 return -ENODEV;
3963 strcpy(ifr.ifr_name, dev->name);
3964 rcu_read_unlock();
3966 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3967 return -EFAULT;
3968 return 0;
3972 * Perform a SIOCGIFCONF call. This structure will change
3973 * size eventually, and there is nothing I can do about it.
3974 * Thus we will need a 'compatibility mode'.
3977 static int dev_ifconf(struct net *net, char __user *arg)
3979 struct ifconf ifc;
3980 struct net_device *dev;
3981 char __user *pos;
3982 int len;
3983 int total;
3984 int i;
3987 * Fetch the caller's info block.
3990 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3991 return -EFAULT;
3993 pos = ifc.ifc_buf;
3994 len = ifc.ifc_len;
3997 * Loop over the interfaces, and write an info block for each.
4000 total = 0;
4001 for_each_netdev(net, dev) {
4002 for (i = 0; i < NPROTO; i++) {
4003 if (gifconf_list[i]) {
4004 int done;
4005 if (!pos)
4006 done = gifconf_list[i](dev, NULL, 0);
4007 else
4008 done = gifconf_list[i](dev, pos + total,
4009 len - total);
4010 if (done < 0)
4011 return -EFAULT;
4012 total += done;
4018 * All done. Write the updated control block back to the caller.
4020 ifc.ifc_len = total;
4023 * Both BSD and Solaris return 0 here, so we do too.
4025 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4028 #ifdef CONFIG_PROC_FS
4030 * This is invoked by the /proc filesystem handler to display a device
4031 * in detail.
4033 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4034 __acquires(RCU)
4036 struct net *net = seq_file_net(seq);
4037 loff_t off;
4038 struct net_device *dev;
4040 rcu_read_lock();
4041 if (!*pos)
4042 return SEQ_START_TOKEN;
4044 off = 1;
4045 for_each_netdev_rcu(net, dev)
4046 if (off++ == *pos)
4047 return dev;
4049 return NULL;
4052 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4054 struct net_device *dev = v;
4056 if (v == SEQ_START_TOKEN)
4057 dev = first_net_device_rcu(seq_file_net(seq));
4058 else
4059 dev = next_net_device_rcu(dev);
4061 ++*pos;
4062 return dev;
4065 void dev_seq_stop(struct seq_file *seq, void *v)
4066 __releases(RCU)
4068 rcu_read_unlock();
4071 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4073 struct rtnl_link_stats64 temp;
4074 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4076 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4077 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4078 dev->name, stats->rx_bytes, stats->rx_packets,
4079 stats->rx_errors,
4080 stats->rx_dropped + stats->rx_missed_errors,
4081 stats->rx_fifo_errors,
4082 stats->rx_length_errors + stats->rx_over_errors +
4083 stats->rx_crc_errors + stats->rx_frame_errors,
4084 stats->rx_compressed, stats->multicast,
4085 stats->tx_bytes, stats->tx_packets,
4086 stats->tx_errors, stats->tx_dropped,
4087 stats->tx_fifo_errors, stats->collisions,
4088 stats->tx_carrier_errors +
4089 stats->tx_aborted_errors +
4090 stats->tx_window_errors +
4091 stats->tx_heartbeat_errors,
4092 stats->tx_compressed);
4096 * Called from the PROCfs module. This now uses the new arbitrary sized
4097 * /proc/net interface to create /proc/net/dev
4099 static int dev_seq_show(struct seq_file *seq, void *v)
4101 if (v == SEQ_START_TOKEN)
4102 seq_puts(seq, "Inter-| Receive "
4103 " | Transmit\n"
4104 " face |bytes packets errs drop fifo frame "
4105 "compressed multicast|bytes packets errs "
4106 "drop fifo colls carrier compressed\n");
4107 else
4108 dev_seq_printf_stats(seq, v);
4109 return 0;
4112 static struct softnet_data *softnet_get_online(loff_t *pos)
4114 struct softnet_data *sd = NULL;
4116 while (*pos < nr_cpu_ids)
4117 if (cpu_online(*pos)) {
4118 sd = &per_cpu(softnet_data, *pos);
4119 break;
4120 } else
4121 ++*pos;
4122 return sd;
4125 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4127 return softnet_get_online(pos);
4130 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4132 ++*pos;
4133 return softnet_get_online(pos);
4136 static void softnet_seq_stop(struct seq_file *seq, void *v)
4140 static int softnet_seq_show(struct seq_file *seq, void *v)
4142 struct softnet_data *sd = v;
4144 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4145 sd->processed, sd->dropped, sd->time_squeeze, 0,
4146 0, 0, 0, 0, /* was fastroute */
4147 sd->cpu_collision, sd->received_rps);
4148 return 0;
4151 static const struct seq_operations dev_seq_ops = {
4152 .start = dev_seq_start,
4153 .next = dev_seq_next,
4154 .stop = dev_seq_stop,
4155 .show = dev_seq_show,
4158 static int dev_seq_open(struct inode *inode, struct file *file)
4160 return seq_open_net(inode, file, &dev_seq_ops,
4161 sizeof(struct seq_net_private));
4164 static const struct file_operations dev_seq_fops = {
4165 .owner = THIS_MODULE,
4166 .open = dev_seq_open,
4167 .read = seq_read,
4168 .llseek = seq_lseek,
4169 .release = seq_release_net,
4172 static const struct seq_operations softnet_seq_ops = {
4173 .start = softnet_seq_start,
4174 .next = softnet_seq_next,
4175 .stop = softnet_seq_stop,
4176 .show = softnet_seq_show,
4179 static int softnet_seq_open(struct inode *inode, struct file *file)
4181 return seq_open(file, &softnet_seq_ops);
4184 static const struct file_operations softnet_seq_fops = {
4185 .owner = THIS_MODULE,
4186 .open = softnet_seq_open,
4187 .read = seq_read,
4188 .llseek = seq_lseek,
4189 .release = seq_release,
4192 static void *ptype_get_idx(loff_t pos)
4194 struct packet_type *pt = NULL;
4195 loff_t i = 0;
4196 int t;
4198 list_for_each_entry_rcu(pt, &ptype_all, list) {
4199 if (i == pos)
4200 return pt;
4201 ++i;
4204 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4205 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4206 if (i == pos)
4207 return pt;
4208 ++i;
4211 return NULL;
4214 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4215 __acquires(RCU)
4217 rcu_read_lock();
4218 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4221 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4223 struct packet_type *pt;
4224 struct list_head *nxt;
4225 int hash;
4227 ++*pos;
4228 if (v == SEQ_START_TOKEN)
4229 return ptype_get_idx(0);
4231 pt = v;
4232 nxt = pt->list.next;
4233 if (pt->type == htons(ETH_P_ALL)) {
4234 if (nxt != &ptype_all)
4235 goto found;
4236 hash = 0;
4237 nxt = ptype_base[0].next;
4238 } else
4239 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4241 while (nxt == &ptype_base[hash]) {
4242 if (++hash >= PTYPE_HASH_SIZE)
4243 return NULL;
4244 nxt = ptype_base[hash].next;
4246 found:
4247 return list_entry(nxt, struct packet_type, list);
4250 static void ptype_seq_stop(struct seq_file *seq, void *v)
4251 __releases(RCU)
4253 rcu_read_unlock();
4256 static int ptype_seq_show(struct seq_file *seq, void *v)
4258 struct packet_type *pt = v;
4260 if (v == SEQ_START_TOKEN)
4261 seq_puts(seq, "Type Device Function\n");
4262 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4263 if (pt->type == htons(ETH_P_ALL))
4264 seq_puts(seq, "ALL ");
4265 else
4266 seq_printf(seq, "%04x", ntohs(pt->type));
4268 seq_printf(seq, " %-8s %pF\n",
4269 pt->dev ? pt->dev->name : "", pt->func);
4272 return 0;
4275 static const struct seq_operations ptype_seq_ops = {
4276 .start = ptype_seq_start,
4277 .next = ptype_seq_next,
4278 .stop = ptype_seq_stop,
4279 .show = ptype_seq_show,
4282 static int ptype_seq_open(struct inode *inode, struct file *file)
4284 return seq_open_net(inode, file, &ptype_seq_ops,
4285 sizeof(struct seq_net_private));
4288 static const struct file_operations ptype_seq_fops = {
4289 .owner = THIS_MODULE,
4290 .open = ptype_seq_open,
4291 .read = seq_read,
4292 .llseek = seq_lseek,
4293 .release = seq_release_net,
4297 static int __net_init dev_proc_net_init(struct net *net)
4299 int rc = -ENOMEM;
4301 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4302 goto out;
4303 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4304 goto out_dev;
4305 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4306 goto out_softnet;
4308 if (wext_proc_init(net))
4309 goto out_ptype;
4310 rc = 0;
4311 out:
4312 return rc;
4313 out_ptype:
4314 proc_net_remove(net, "ptype");
4315 out_softnet:
4316 proc_net_remove(net, "softnet_stat");
4317 out_dev:
4318 proc_net_remove(net, "dev");
4319 goto out;
4322 static void __net_exit dev_proc_net_exit(struct net *net)
4324 wext_proc_exit(net);
4326 proc_net_remove(net, "ptype");
4327 proc_net_remove(net, "softnet_stat");
4328 proc_net_remove(net, "dev");
4331 static struct pernet_operations __net_initdata dev_proc_ops = {
4332 .init = dev_proc_net_init,
4333 .exit = dev_proc_net_exit,
4336 static int __init dev_proc_init(void)
4338 return register_pernet_subsys(&dev_proc_ops);
4340 #else
4341 #define dev_proc_init() 0
4342 #endif /* CONFIG_PROC_FS */
4346 * netdev_set_master - set up master pointer
4347 * @slave: slave device
4348 * @master: new master device
4350 * Changes the master device of the slave. Pass %NULL to break the
4351 * bonding. The caller must hold the RTNL semaphore. On a failure
4352 * a negative errno code is returned. On success the reference counts
4353 * are adjusted and the function returns zero.
4355 int netdev_set_master(struct net_device *slave, struct net_device *master)
4357 struct net_device *old = slave->master;
4359 ASSERT_RTNL();
4361 if (master) {
4362 if (old)
4363 return -EBUSY;
4364 dev_hold(master);
4367 slave->master = master;
4369 if (old)
4370 dev_put(old);
4371 return 0;
4373 EXPORT_SYMBOL(netdev_set_master);
4376 * netdev_set_bond_master - set up bonding master/slave pair
4377 * @slave: slave device
4378 * @master: new master device
4380 * Changes the master device of the slave. Pass %NULL to break the
4381 * bonding. The caller must hold the RTNL semaphore. On a failure
4382 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4383 * to the routing socket and the function returns zero.
4385 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4387 int err;
4389 ASSERT_RTNL();
4391 err = netdev_set_master(slave, master);
4392 if (err)
4393 return err;
4394 if (master)
4395 slave->flags |= IFF_SLAVE;
4396 else
4397 slave->flags &= ~IFF_SLAVE;
4399 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4400 return 0;
4402 EXPORT_SYMBOL(netdev_set_bond_master);
4404 static void dev_change_rx_flags(struct net_device *dev, int flags)
4406 const struct net_device_ops *ops = dev->netdev_ops;
4408 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4409 ops->ndo_change_rx_flags(dev, flags);
4412 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4414 unsigned short old_flags = dev->flags;
4415 uid_t uid;
4416 gid_t gid;
4418 ASSERT_RTNL();
4420 dev->flags |= IFF_PROMISC;
4421 dev->promiscuity += inc;
4422 if (dev->promiscuity == 0) {
4424 * Avoid overflow.
4425 * If inc causes overflow, untouch promisc and return error.
4427 if (inc < 0)
4428 dev->flags &= ~IFF_PROMISC;
4429 else {
4430 dev->promiscuity -= inc;
4431 printk(KERN_WARNING "%s: promiscuity touches roof, "
4432 "set promiscuity failed, promiscuity feature "
4433 "of device might be broken.\n", dev->name);
4434 return -EOVERFLOW;
4437 if (dev->flags != old_flags) {
4438 printk(KERN_INFO "device %s %s promiscuous mode\n",
4439 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4440 "left");
4441 if (audit_enabled) {
4442 current_uid_gid(&uid, &gid);
4443 audit_log(current->audit_context, GFP_ATOMIC,
4444 AUDIT_ANOM_PROMISCUOUS,
4445 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4446 dev->name, (dev->flags & IFF_PROMISC),
4447 (old_flags & IFF_PROMISC),
4448 audit_get_loginuid(current),
4449 uid, gid,
4450 audit_get_sessionid(current));
4453 dev_change_rx_flags(dev, IFF_PROMISC);
4455 return 0;
4459 * dev_set_promiscuity - update promiscuity count on a device
4460 * @dev: device
4461 * @inc: modifier
4463 * Add or remove promiscuity from a device. While the count in the device
4464 * remains above zero the interface remains promiscuous. Once it hits zero
4465 * the device reverts back to normal filtering operation. A negative inc
4466 * value is used to drop promiscuity on the device.
4467 * Return 0 if successful or a negative errno code on error.
4469 int dev_set_promiscuity(struct net_device *dev, int inc)
4471 unsigned short old_flags = dev->flags;
4472 int err;
4474 err = __dev_set_promiscuity(dev, inc);
4475 if (err < 0)
4476 return err;
4477 if (dev->flags != old_flags)
4478 dev_set_rx_mode(dev);
4479 return err;
4481 EXPORT_SYMBOL(dev_set_promiscuity);
4484 * dev_set_allmulti - update allmulti count on a device
4485 * @dev: device
4486 * @inc: modifier
4488 * Add or remove reception of all multicast frames to a device. While the
4489 * count in the device remains above zero the interface remains listening
4490 * to all interfaces. Once it hits zero the device reverts back to normal
4491 * filtering operation. A negative @inc value is used to drop the counter
4492 * when releasing a resource needing all multicasts.
4493 * Return 0 if successful or a negative errno code on error.
4496 int dev_set_allmulti(struct net_device *dev, int inc)
4498 unsigned short old_flags = dev->flags;
4500 ASSERT_RTNL();
4502 dev->flags |= IFF_ALLMULTI;
4503 dev->allmulti += inc;
4504 if (dev->allmulti == 0) {
4506 * Avoid overflow.
4507 * If inc causes overflow, untouch allmulti and return error.
4509 if (inc < 0)
4510 dev->flags &= ~IFF_ALLMULTI;
4511 else {
4512 dev->allmulti -= inc;
4513 printk(KERN_WARNING "%s: allmulti touches roof, "
4514 "set allmulti failed, allmulti feature of "
4515 "device might be broken.\n", dev->name);
4516 return -EOVERFLOW;
4519 if (dev->flags ^ old_flags) {
4520 dev_change_rx_flags(dev, IFF_ALLMULTI);
4521 dev_set_rx_mode(dev);
4523 return 0;
4525 EXPORT_SYMBOL(dev_set_allmulti);
4528 * Upload unicast and multicast address lists to device and
4529 * configure RX filtering. When the device doesn't support unicast
4530 * filtering it is put in promiscuous mode while unicast addresses
4531 * are present.
4533 void __dev_set_rx_mode(struct net_device *dev)
4535 const struct net_device_ops *ops = dev->netdev_ops;
4537 /* dev_open will call this function so the list will stay sane. */
4538 if (!(dev->flags&IFF_UP))
4539 return;
4541 if (!netif_device_present(dev))
4542 return;
4544 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4545 /* Unicast addresses changes may only happen under the rtnl,
4546 * therefore calling __dev_set_promiscuity here is safe.
4548 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4549 __dev_set_promiscuity(dev, 1);
4550 dev->uc_promisc = true;
4551 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4552 __dev_set_promiscuity(dev, -1);
4553 dev->uc_promisc = false;
4557 if (ops->ndo_set_rx_mode)
4558 ops->ndo_set_rx_mode(dev);
4561 void dev_set_rx_mode(struct net_device *dev)
4563 netif_addr_lock_bh(dev);
4564 __dev_set_rx_mode(dev);
4565 netif_addr_unlock_bh(dev);
4569 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4570 * @dev: device
4571 * @cmd: memory area for ethtool_ops::get_settings() result
4573 * The cmd arg is initialized properly (cleared and
4574 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4576 * Return device's ethtool_ops::get_settings() result value or
4577 * -EOPNOTSUPP when device doesn't expose
4578 * ethtool_ops::get_settings() operation.
4580 int dev_ethtool_get_settings(struct net_device *dev,
4581 struct ethtool_cmd *cmd)
4583 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4584 return -EOPNOTSUPP;
4586 memset(cmd, 0, sizeof(struct ethtool_cmd));
4587 cmd->cmd = ETHTOOL_GSET;
4588 return dev->ethtool_ops->get_settings(dev, cmd);
4590 EXPORT_SYMBOL(dev_ethtool_get_settings);
4593 * dev_get_flags - get flags reported to userspace
4594 * @dev: device
4596 * Get the combination of flag bits exported through APIs to userspace.
4598 unsigned dev_get_flags(const struct net_device *dev)
4600 unsigned flags;
4602 flags = (dev->flags & ~(IFF_PROMISC |
4603 IFF_ALLMULTI |
4604 IFF_RUNNING |
4605 IFF_LOWER_UP |
4606 IFF_DORMANT)) |
4607 (dev->gflags & (IFF_PROMISC |
4608 IFF_ALLMULTI));
4610 if (netif_running(dev)) {
4611 if (netif_oper_up(dev))
4612 flags |= IFF_RUNNING;
4613 if (netif_carrier_ok(dev))
4614 flags |= IFF_LOWER_UP;
4615 if (netif_dormant(dev))
4616 flags |= IFF_DORMANT;
4619 return flags;
4621 EXPORT_SYMBOL(dev_get_flags);
4623 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4625 int old_flags = dev->flags;
4626 int ret;
4628 ASSERT_RTNL();
4631 * Set the flags on our device.
4634 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4635 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4636 IFF_AUTOMEDIA)) |
4637 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4638 IFF_ALLMULTI));
4641 * Load in the correct multicast list now the flags have changed.
4644 if ((old_flags ^ flags) & IFF_MULTICAST)
4645 dev_change_rx_flags(dev, IFF_MULTICAST);
4647 dev_set_rx_mode(dev);
4650 * Have we downed the interface. We handle IFF_UP ourselves
4651 * according to user attempts to set it, rather than blindly
4652 * setting it.
4655 ret = 0;
4656 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4657 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4659 if (!ret)
4660 dev_set_rx_mode(dev);
4663 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4664 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4666 dev->gflags ^= IFF_PROMISC;
4667 dev_set_promiscuity(dev, inc);
4670 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4671 is important. Some (broken) drivers set IFF_PROMISC, when
4672 IFF_ALLMULTI is requested not asking us and not reporting.
4674 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4675 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4677 dev->gflags ^= IFF_ALLMULTI;
4678 dev_set_allmulti(dev, inc);
4681 return ret;
4684 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4686 unsigned int changes = dev->flags ^ old_flags;
4688 if (changes & IFF_UP) {
4689 if (dev->flags & IFF_UP)
4690 call_netdevice_notifiers(NETDEV_UP, dev);
4691 else
4692 call_netdevice_notifiers(NETDEV_DOWN, dev);
4695 if (dev->flags & IFF_UP &&
4696 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4697 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4701 * dev_change_flags - change device settings
4702 * @dev: device
4703 * @flags: device state flags
4705 * Change settings on device based state flags. The flags are
4706 * in the userspace exported format.
4708 int dev_change_flags(struct net_device *dev, unsigned flags)
4710 int ret, changes;
4711 int old_flags = dev->flags;
4713 ret = __dev_change_flags(dev, flags);
4714 if (ret < 0)
4715 return ret;
4717 changes = old_flags ^ dev->flags;
4718 if (changes)
4719 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4721 __dev_notify_flags(dev, old_flags);
4722 return ret;
4724 EXPORT_SYMBOL(dev_change_flags);
4727 * dev_set_mtu - Change maximum transfer unit
4728 * @dev: device
4729 * @new_mtu: new transfer unit
4731 * Change the maximum transfer size of the network device.
4733 int dev_set_mtu(struct net_device *dev, int new_mtu)
4735 const struct net_device_ops *ops = dev->netdev_ops;
4736 int err;
4738 if (new_mtu == dev->mtu)
4739 return 0;
4741 /* MTU must be positive. */
4742 if (new_mtu < 0)
4743 return -EINVAL;
4745 if (!netif_device_present(dev))
4746 return -ENODEV;
4748 err = 0;
4749 if (ops->ndo_change_mtu)
4750 err = ops->ndo_change_mtu(dev, new_mtu);
4751 else
4752 dev->mtu = new_mtu;
4754 if (!err && dev->flags & IFF_UP)
4755 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4756 return err;
4758 EXPORT_SYMBOL(dev_set_mtu);
4761 * dev_set_group - Change group this device belongs to
4762 * @dev: device
4763 * @new_group: group this device should belong to
4765 void dev_set_group(struct net_device *dev, int new_group)
4767 dev->group = new_group;
4769 EXPORT_SYMBOL(dev_set_group);
4772 * dev_set_mac_address - Change Media Access Control Address
4773 * @dev: device
4774 * @sa: new address
4776 * Change the hardware (MAC) address of the device
4778 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4780 const struct net_device_ops *ops = dev->netdev_ops;
4781 int err;
4783 if (!ops->ndo_set_mac_address)
4784 return -EOPNOTSUPP;
4785 if (sa->sa_family != dev->type)
4786 return -EINVAL;
4787 if (!netif_device_present(dev))
4788 return -ENODEV;
4789 err = ops->ndo_set_mac_address(dev, sa);
4790 if (!err)
4791 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4792 return err;
4794 EXPORT_SYMBOL(dev_set_mac_address);
4797 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4799 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4801 int err;
4802 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4804 if (!dev)
4805 return -ENODEV;
4807 switch (cmd) {
4808 case SIOCGIFFLAGS: /* Get interface flags */
4809 ifr->ifr_flags = (short) dev_get_flags(dev);
4810 return 0;
4812 case SIOCGIFMETRIC: /* Get the metric on the interface
4813 (currently unused) */
4814 ifr->ifr_metric = 0;
4815 return 0;
4817 case SIOCGIFMTU: /* Get the MTU of a device */
4818 ifr->ifr_mtu = dev->mtu;
4819 return 0;
4821 case SIOCGIFHWADDR:
4822 if (!dev->addr_len)
4823 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4824 else
4825 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4826 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4827 ifr->ifr_hwaddr.sa_family = dev->type;
4828 return 0;
4830 case SIOCGIFSLAVE:
4831 err = -EINVAL;
4832 break;
4834 case SIOCGIFMAP:
4835 ifr->ifr_map.mem_start = dev->mem_start;
4836 ifr->ifr_map.mem_end = dev->mem_end;
4837 ifr->ifr_map.base_addr = dev->base_addr;
4838 ifr->ifr_map.irq = dev->irq;
4839 ifr->ifr_map.dma = dev->dma;
4840 ifr->ifr_map.port = dev->if_port;
4841 return 0;
4843 case SIOCGIFINDEX:
4844 ifr->ifr_ifindex = dev->ifindex;
4845 return 0;
4847 case SIOCGIFTXQLEN:
4848 ifr->ifr_qlen = dev->tx_queue_len;
4849 return 0;
4851 default:
4852 /* dev_ioctl() should ensure this case
4853 * is never reached
4855 WARN_ON(1);
4856 err = -ENOTTY;
4857 break;
4860 return err;
4864 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4866 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4868 int err;
4869 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4870 const struct net_device_ops *ops;
4872 if (!dev)
4873 return -ENODEV;
4875 ops = dev->netdev_ops;
4877 switch (cmd) {
4878 case SIOCSIFFLAGS: /* Set interface flags */
4879 return dev_change_flags(dev, ifr->ifr_flags);
4881 case SIOCSIFMETRIC: /* Set the metric on the interface
4882 (currently unused) */
4883 return -EOPNOTSUPP;
4885 case SIOCSIFMTU: /* Set the MTU of a device */
4886 return dev_set_mtu(dev, ifr->ifr_mtu);
4888 case SIOCSIFHWADDR:
4889 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4891 case SIOCSIFHWBROADCAST:
4892 if (ifr->ifr_hwaddr.sa_family != dev->type)
4893 return -EINVAL;
4894 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4895 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4896 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4897 return 0;
4899 case SIOCSIFMAP:
4900 if (ops->ndo_set_config) {
4901 if (!netif_device_present(dev))
4902 return -ENODEV;
4903 return ops->ndo_set_config(dev, &ifr->ifr_map);
4905 return -EOPNOTSUPP;
4907 case SIOCADDMULTI:
4908 if (!ops->ndo_set_rx_mode ||
4909 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4910 return -EINVAL;
4911 if (!netif_device_present(dev))
4912 return -ENODEV;
4913 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4915 case SIOCDELMULTI:
4916 if (!ops->ndo_set_rx_mode ||
4917 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4918 return -EINVAL;
4919 if (!netif_device_present(dev))
4920 return -ENODEV;
4921 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4923 case SIOCSIFTXQLEN:
4924 if (ifr->ifr_qlen < 0)
4925 return -EINVAL;
4926 dev->tx_queue_len = ifr->ifr_qlen;
4927 return 0;
4929 case SIOCSIFNAME:
4930 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4931 return dev_change_name(dev, ifr->ifr_newname);
4934 * Unknown or private ioctl
4936 default:
4937 if ((cmd >= SIOCDEVPRIVATE &&
4938 cmd <= SIOCDEVPRIVATE + 15) ||
4939 cmd == SIOCBONDENSLAVE ||
4940 cmd == SIOCBONDRELEASE ||
4941 cmd == SIOCBONDSETHWADDR ||
4942 cmd == SIOCBONDSLAVEINFOQUERY ||
4943 cmd == SIOCBONDINFOQUERY ||
4944 cmd == SIOCBONDCHANGEACTIVE ||
4945 cmd == SIOCGMIIPHY ||
4946 cmd == SIOCGMIIREG ||
4947 cmd == SIOCSMIIREG ||
4948 cmd == SIOCBRADDIF ||
4949 cmd == SIOCBRDELIF ||
4950 cmd == SIOCSHWTSTAMP ||
4951 cmd == SIOCWANDEV) {
4952 err = -EOPNOTSUPP;
4953 if (ops->ndo_do_ioctl) {
4954 if (netif_device_present(dev))
4955 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4956 else
4957 err = -ENODEV;
4959 } else
4960 err = -EINVAL;
4963 return err;
4967 * This function handles all "interface"-type I/O control requests. The actual
4968 * 'doing' part of this is dev_ifsioc above.
4972 * dev_ioctl - network device ioctl
4973 * @net: the applicable net namespace
4974 * @cmd: command to issue
4975 * @arg: pointer to a struct ifreq in user space
4977 * Issue ioctl functions to devices. This is normally called by the
4978 * user space syscall interfaces but can sometimes be useful for
4979 * other purposes. The return value is the return from the syscall if
4980 * positive or a negative errno code on error.
4983 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4985 struct ifreq ifr;
4986 int ret;
4987 char *colon;
4989 /* One special case: SIOCGIFCONF takes ifconf argument
4990 and requires shared lock, because it sleeps writing
4991 to user space.
4994 if (cmd == SIOCGIFCONF) {
4995 rtnl_lock();
4996 ret = dev_ifconf(net, (char __user *) arg);
4997 rtnl_unlock();
4998 return ret;
5000 if (cmd == SIOCGIFNAME)
5001 return dev_ifname(net, (struct ifreq __user *)arg);
5003 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5004 return -EFAULT;
5006 ifr.ifr_name[IFNAMSIZ-1] = 0;
5008 colon = strchr(ifr.ifr_name, ':');
5009 if (colon)
5010 *colon = 0;
5013 * See which interface the caller is talking about.
5016 switch (cmd) {
5018 * These ioctl calls:
5019 * - can be done by all.
5020 * - atomic and do not require locking.
5021 * - return a value
5023 case SIOCGIFFLAGS:
5024 case SIOCGIFMETRIC:
5025 case SIOCGIFMTU:
5026 case SIOCGIFHWADDR:
5027 case SIOCGIFSLAVE:
5028 case SIOCGIFMAP:
5029 case SIOCGIFINDEX:
5030 case SIOCGIFTXQLEN:
5031 dev_load(net, ifr.ifr_name);
5032 rcu_read_lock();
5033 ret = dev_ifsioc_locked(net, &ifr, cmd);
5034 rcu_read_unlock();
5035 if (!ret) {
5036 if (colon)
5037 *colon = ':';
5038 if (copy_to_user(arg, &ifr,
5039 sizeof(struct ifreq)))
5040 ret = -EFAULT;
5042 return ret;
5044 case SIOCETHTOOL:
5045 dev_load(net, ifr.ifr_name);
5046 rtnl_lock();
5047 ret = dev_ethtool(net, &ifr);
5048 rtnl_unlock();
5049 if (!ret) {
5050 if (colon)
5051 *colon = ':';
5052 if (copy_to_user(arg, &ifr,
5053 sizeof(struct ifreq)))
5054 ret = -EFAULT;
5056 return ret;
5059 * These ioctl calls:
5060 * - require superuser power.
5061 * - require strict serialization.
5062 * - return a value
5064 case SIOCGMIIPHY:
5065 case SIOCGMIIREG:
5066 case SIOCSIFNAME:
5067 if (!capable(CAP_NET_ADMIN))
5068 return -EPERM;
5069 dev_load(net, ifr.ifr_name);
5070 rtnl_lock();
5071 ret = dev_ifsioc(net, &ifr, cmd);
5072 rtnl_unlock();
5073 if (!ret) {
5074 if (colon)
5075 *colon = ':';
5076 if (copy_to_user(arg, &ifr,
5077 sizeof(struct ifreq)))
5078 ret = -EFAULT;
5080 return ret;
5083 * These ioctl calls:
5084 * - require superuser power.
5085 * - require strict serialization.
5086 * - do not return a value
5088 case SIOCSIFFLAGS:
5089 case SIOCSIFMETRIC:
5090 case SIOCSIFMTU:
5091 case SIOCSIFMAP:
5092 case SIOCSIFHWADDR:
5093 case SIOCSIFSLAVE:
5094 case SIOCADDMULTI:
5095 case SIOCDELMULTI:
5096 case SIOCSIFHWBROADCAST:
5097 case SIOCSIFTXQLEN:
5098 case SIOCSMIIREG:
5099 case SIOCBONDENSLAVE:
5100 case SIOCBONDRELEASE:
5101 case SIOCBONDSETHWADDR:
5102 case SIOCBONDCHANGEACTIVE:
5103 case SIOCBRADDIF:
5104 case SIOCBRDELIF:
5105 case SIOCSHWTSTAMP:
5106 if (!capable(CAP_NET_ADMIN))
5107 return -EPERM;
5108 /* fall through */
5109 case SIOCBONDSLAVEINFOQUERY:
5110 case SIOCBONDINFOQUERY:
5111 dev_load(net, ifr.ifr_name);
5112 rtnl_lock();
5113 ret = dev_ifsioc(net, &ifr, cmd);
5114 rtnl_unlock();
5115 return ret;
5117 case SIOCGIFMEM:
5118 /* Get the per device memory space. We can add this but
5119 * currently do not support it */
5120 case SIOCSIFMEM:
5121 /* Set the per device memory buffer space.
5122 * Not applicable in our case */
5123 case SIOCSIFLINK:
5124 return -ENOTTY;
5127 * Unknown or private ioctl.
5129 default:
5130 if (cmd == SIOCWANDEV ||
5131 (cmd >= SIOCDEVPRIVATE &&
5132 cmd <= SIOCDEVPRIVATE + 15)) {
5133 dev_load(net, ifr.ifr_name);
5134 rtnl_lock();
5135 ret = dev_ifsioc(net, &ifr, cmd);
5136 rtnl_unlock();
5137 if (!ret && copy_to_user(arg, &ifr,
5138 sizeof(struct ifreq)))
5139 ret = -EFAULT;
5140 return ret;
5142 /* Take care of Wireless Extensions */
5143 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5144 return wext_handle_ioctl(net, &ifr, cmd, arg);
5145 return -ENOTTY;
5151 * dev_new_index - allocate an ifindex
5152 * @net: the applicable net namespace
5154 * Returns a suitable unique value for a new device interface
5155 * number. The caller must hold the rtnl semaphore or the
5156 * dev_base_lock to be sure it remains unique.
5158 static int dev_new_index(struct net *net)
5160 static int ifindex;
5161 for (;;) {
5162 if (++ifindex <= 0)
5163 ifindex = 1;
5164 if (!__dev_get_by_index(net, ifindex))
5165 return ifindex;
5169 /* Delayed registration/unregisteration */
5170 static LIST_HEAD(net_todo_list);
5172 static void net_set_todo(struct net_device *dev)
5174 list_add_tail(&dev->todo_list, &net_todo_list);
5177 static void rollback_registered_many(struct list_head *head)
5179 struct net_device *dev, *tmp;
5181 BUG_ON(dev_boot_phase);
5182 ASSERT_RTNL();
5184 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5185 /* Some devices call without registering
5186 * for initialization unwind. Remove those
5187 * devices and proceed with the remaining.
5189 if (dev->reg_state == NETREG_UNINITIALIZED) {
5190 pr_debug("unregister_netdevice: device %s/%p never "
5191 "was registered\n", dev->name, dev);
5193 WARN_ON(1);
5194 list_del(&dev->unreg_list);
5195 continue;
5197 dev->dismantle = true;
5198 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5201 /* If device is running, close it first. */
5202 dev_close_many(head);
5204 list_for_each_entry(dev, head, unreg_list) {
5205 /* And unlink it from device chain. */
5206 unlist_netdevice(dev);
5208 dev->reg_state = NETREG_UNREGISTERING;
5211 synchronize_net();
5213 list_for_each_entry(dev, head, unreg_list) {
5214 /* Shutdown queueing discipline. */
5215 dev_shutdown(dev);
5218 /* Notify protocols, that we are about to destroy
5219 this device. They should clean all the things.
5221 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5223 if (!dev->rtnl_link_ops ||
5224 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5225 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5228 * Flush the unicast and multicast chains
5230 dev_uc_flush(dev);
5231 dev_mc_flush(dev);
5233 if (dev->netdev_ops->ndo_uninit)
5234 dev->netdev_ops->ndo_uninit(dev);
5236 /* Notifier chain MUST detach us from master device. */
5237 WARN_ON(dev->master);
5239 /* Remove entries from kobject tree */
5240 netdev_unregister_kobject(dev);
5243 /* Process any work delayed until the end of the batch */
5244 dev = list_first_entry(head, struct net_device, unreg_list);
5245 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5247 rcu_barrier();
5249 list_for_each_entry(dev, head, unreg_list)
5250 dev_put(dev);
5253 static void rollback_registered(struct net_device *dev)
5255 LIST_HEAD(single);
5257 list_add(&dev->unreg_list, &single);
5258 rollback_registered_many(&single);
5259 list_del(&single);
5262 static u32 netdev_fix_features(struct net_device *dev, u32 features)
5264 /* Fix illegal checksum combinations */
5265 if ((features & NETIF_F_HW_CSUM) &&
5266 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5267 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5268 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5271 if ((features & NETIF_F_NO_CSUM) &&
5272 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5273 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5274 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5277 /* Fix illegal SG+CSUM combinations. */
5278 if ((features & NETIF_F_SG) &&
5279 !(features & NETIF_F_ALL_CSUM)) {
5280 netdev_dbg(dev,
5281 "Dropping NETIF_F_SG since no checksum feature.\n");
5282 features &= ~NETIF_F_SG;
5285 /* TSO requires that SG is present as well. */
5286 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5287 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5288 features &= ~NETIF_F_ALL_TSO;
5291 /* TSO ECN requires that TSO is present as well. */
5292 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5293 features &= ~NETIF_F_TSO_ECN;
5295 /* Software GSO depends on SG. */
5296 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5297 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5298 features &= ~NETIF_F_GSO;
5301 /* UFO needs SG and checksumming */
5302 if (features & NETIF_F_UFO) {
5303 /* maybe split UFO into V4 and V6? */
5304 if (!((features & NETIF_F_GEN_CSUM) ||
5305 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5306 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5307 netdev_dbg(dev,
5308 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5309 features &= ~NETIF_F_UFO;
5312 if (!(features & NETIF_F_SG)) {
5313 netdev_dbg(dev,
5314 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5315 features &= ~NETIF_F_UFO;
5319 return features;
5322 int __netdev_update_features(struct net_device *dev)
5324 u32 features;
5325 int err = 0;
5327 ASSERT_RTNL();
5329 features = netdev_get_wanted_features(dev);
5331 if (dev->netdev_ops->ndo_fix_features)
5332 features = dev->netdev_ops->ndo_fix_features(dev, features);
5334 /* driver might be less strict about feature dependencies */
5335 features = netdev_fix_features(dev, features);
5337 if (dev->features == features)
5338 return 0;
5340 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5341 dev->features, features);
5343 if (dev->netdev_ops->ndo_set_features)
5344 err = dev->netdev_ops->ndo_set_features(dev, features);
5346 if (unlikely(err < 0)) {
5347 netdev_err(dev,
5348 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5349 err, features, dev->features);
5350 return -1;
5353 if (!err)
5354 dev->features = features;
5356 return 1;
5360 * netdev_update_features - recalculate device features
5361 * @dev: the device to check
5363 * Recalculate dev->features set and send notifications if it
5364 * has changed. Should be called after driver or hardware dependent
5365 * conditions might have changed that influence the features.
5367 void netdev_update_features(struct net_device *dev)
5369 if (__netdev_update_features(dev))
5370 netdev_features_change(dev);
5372 EXPORT_SYMBOL(netdev_update_features);
5375 * netdev_change_features - recalculate device features
5376 * @dev: the device to check
5378 * Recalculate dev->features set and send notifications even
5379 * if they have not changed. Should be called instead of
5380 * netdev_update_features() if also dev->vlan_features might
5381 * have changed to allow the changes to be propagated to stacked
5382 * VLAN devices.
5384 void netdev_change_features(struct net_device *dev)
5386 __netdev_update_features(dev);
5387 netdev_features_change(dev);
5389 EXPORT_SYMBOL(netdev_change_features);
5392 * netif_stacked_transfer_operstate - transfer operstate
5393 * @rootdev: the root or lower level device to transfer state from
5394 * @dev: the device to transfer operstate to
5396 * Transfer operational state from root to device. This is normally
5397 * called when a stacking relationship exists between the root
5398 * device and the device(a leaf device).
5400 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5401 struct net_device *dev)
5403 if (rootdev->operstate == IF_OPER_DORMANT)
5404 netif_dormant_on(dev);
5405 else
5406 netif_dormant_off(dev);
5408 if (netif_carrier_ok(rootdev)) {
5409 if (!netif_carrier_ok(dev))
5410 netif_carrier_on(dev);
5411 } else {
5412 if (netif_carrier_ok(dev))
5413 netif_carrier_off(dev);
5416 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5418 #ifdef CONFIG_RPS
5419 static int netif_alloc_rx_queues(struct net_device *dev)
5421 unsigned int i, count = dev->num_rx_queues;
5422 struct netdev_rx_queue *rx;
5424 BUG_ON(count < 1);
5426 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5427 if (!rx) {
5428 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5429 return -ENOMEM;
5431 dev->_rx = rx;
5433 for (i = 0; i < count; i++)
5434 rx[i].dev = dev;
5435 return 0;
5437 #endif
5439 static void netdev_init_one_queue(struct net_device *dev,
5440 struct netdev_queue *queue, void *_unused)
5442 /* Initialize queue lock */
5443 spin_lock_init(&queue->_xmit_lock);
5444 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5445 queue->xmit_lock_owner = -1;
5446 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5447 queue->dev = dev;
5450 static int netif_alloc_netdev_queues(struct net_device *dev)
5452 unsigned int count = dev->num_tx_queues;
5453 struct netdev_queue *tx;
5455 BUG_ON(count < 1);
5457 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5458 if (!tx) {
5459 pr_err("netdev: Unable to allocate %u tx queues.\n",
5460 count);
5461 return -ENOMEM;
5463 dev->_tx = tx;
5465 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5466 spin_lock_init(&dev->tx_global_lock);
5468 return 0;
5472 * register_netdevice - register a network device
5473 * @dev: device to register
5475 * Take a completed network device structure and add it to the kernel
5476 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5477 * chain. 0 is returned on success. A negative errno code is returned
5478 * on a failure to set up the device, or if the name is a duplicate.
5480 * Callers must hold the rtnl semaphore. You may want
5481 * register_netdev() instead of this.
5483 * BUGS:
5484 * The locking appears insufficient to guarantee two parallel registers
5485 * will not get the same name.
5488 int register_netdevice(struct net_device *dev)
5490 int ret;
5491 struct net *net = dev_net(dev);
5493 BUG_ON(dev_boot_phase);
5494 ASSERT_RTNL();
5496 might_sleep();
5498 /* When net_device's are persistent, this will be fatal. */
5499 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5500 BUG_ON(!net);
5502 spin_lock_init(&dev->addr_list_lock);
5503 netdev_set_addr_lockdep_class(dev);
5505 dev->iflink = -1;
5507 ret = dev_get_valid_name(dev, dev->name);
5508 if (ret < 0)
5509 goto out;
5511 /* Init, if this function is available */
5512 if (dev->netdev_ops->ndo_init) {
5513 ret = dev->netdev_ops->ndo_init(dev);
5514 if (ret) {
5515 if (ret > 0)
5516 ret = -EIO;
5517 goto out;
5521 dev->ifindex = dev_new_index(net);
5522 if (dev->iflink == -1)
5523 dev->iflink = dev->ifindex;
5525 /* Transfer changeable features to wanted_features and enable
5526 * software offloads (GSO and GRO).
5528 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5529 dev->features |= NETIF_F_SOFT_FEATURES;
5530 dev->wanted_features = dev->features & dev->hw_features;
5532 /* Turn on no cache copy if HW is doing checksum */
5533 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5534 if ((dev->features & NETIF_F_ALL_CSUM) &&
5535 !(dev->features & NETIF_F_NO_CSUM)) {
5536 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5537 dev->features |= NETIF_F_NOCACHE_COPY;
5540 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5542 dev->vlan_features |= NETIF_F_HIGHDMA;
5544 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5545 ret = notifier_to_errno(ret);
5546 if (ret)
5547 goto err_uninit;
5549 ret = netdev_register_kobject(dev);
5550 if (ret)
5551 goto err_uninit;
5552 dev->reg_state = NETREG_REGISTERED;
5554 __netdev_update_features(dev);
5557 * Default initial state at registry is that the
5558 * device is present.
5561 set_bit(__LINK_STATE_PRESENT, &dev->state);
5563 dev_init_scheduler(dev);
5564 dev_hold(dev);
5565 list_netdevice(dev);
5567 /* Notify protocols, that a new device appeared. */
5568 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5569 ret = notifier_to_errno(ret);
5570 if (ret) {
5571 rollback_registered(dev);
5572 dev->reg_state = NETREG_UNREGISTERED;
5575 * Prevent userspace races by waiting until the network
5576 * device is fully setup before sending notifications.
5578 if (!dev->rtnl_link_ops ||
5579 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5580 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5582 out:
5583 return ret;
5585 err_uninit:
5586 if (dev->netdev_ops->ndo_uninit)
5587 dev->netdev_ops->ndo_uninit(dev);
5588 goto out;
5590 EXPORT_SYMBOL(register_netdevice);
5593 * init_dummy_netdev - init a dummy network device for NAPI
5594 * @dev: device to init
5596 * This takes a network device structure and initialize the minimum
5597 * amount of fields so it can be used to schedule NAPI polls without
5598 * registering a full blown interface. This is to be used by drivers
5599 * that need to tie several hardware interfaces to a single NAPI
5600 * poll scheduler due to HW limitations.
5602 int init_dummy_netdev(struct net_device *dev)
5604 /* Clear everything. Note we don't initialize spinlocks
5605 * are they aren't supposed to be taken by any of the
5606 * NAPI code and this dummy netdev is supposed to be
5607 * only ever used for NAPI polls
5609 memset(dev, 0, sizeof(struct net_device));
5611 /* make sure we BUG if trying to hit standard
5612 * register/unregister code path
5614 dev->reg_state = NETREG_DUMMY;
5616 /* NAPI wants this */
5617 INIT_LIST_HEAD(&dev->napi_list);
5619 /* a dummy interface is started by default */
5620 set_bit(__LINK_STATE_PRESENT, &dev->state);
5621 set_bit(__LINK_STATE_START, &dev->state);
5623 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5624 * because users of this 'device' dont need to change
5625 * its refcount.
5628 return 0;
5630 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5634 * register_netdev - register a network device
5635 * @dev: device to register
5637 * Take a completed network device structure and add it to the kernel
5638 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5639 * chain. 0 is returned on success. A negative errno code is returned
5640 * on a failure to set up the device, or if the name is a duplicate.
5642 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5643 * and expands the device name if you passed a format string to
5644 * alloc_netdev.
5646 int register_netdev(struct net_device *dev)
5648 int err;
5650 rtnl_lock();
5651 err = register_netdevice(dev);
5652 rtnl_unlock();
5653 return err;
5655 EXPORT_SYMBOL(register_netdev);
5657 int netdev_refcnt_read(const struct net_device *dev)
5659 int i, refcnt = 0;
5661 for_each_possible_cpu(i)
5662 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5663 return refcnt;
5665 EXPORT_SYMBOL(netdev_refcnt_read);
5668 * netdev_wait_allrefs - wait until all references are gone.
5670 * This is called when unregistering network devices.
5672 * Any protocol or device that holds a reference should register
5673 * for netdevice notification, and cleanup and put back the
5674 * reference if they receive an UNREGISTER event.
5675 * We can get stuck here if buggy protocols don't correctly
5676 * call dev_put.
5678 static void netdev_wait_allrefs(struct net_device *dev)
5680 unsigned long rebroadcast_time, warning_time;
5681 int refcnt;
5683 linkwatch_forget_dev(dev);
5685 rebroadcast_time = warning_time = jiffies;
5686 refcnt = netdev_refcnt_read(dev);
5688 while (refcnt != 0) {
5689 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5690 rtnl_lock();
5692 /* Rebroadcast unregister notification */
5693 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5694 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5695 * should have already handle it the first time */
5697 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5698 &dev->state)) {
5699 /* We must not have linkwatch events
5700 * pending on unregister. If this
5701 * happens, we simply run the queue
5702 * unscheduled, resulting in a noop
5703 * for this device.
5705 linkwatch_run_queue();
5708 __rtnl_unlock();
5710 rebroadcast_time = jiffies;
5713 msleep(250);
5715 refcnt = netdev_refcnt_read(dev);
5717 if (time_after(jiffies, warning_time + 10 * HZ)) {
5718 printk(KERN_EMERG "unregister_netdevice: "
5719 "waiting for %s to become free. Usage "
5720 "count = %d\n",
5721 dev->name, refcnt);
5722 warning_time = jiffies;
5727 /* The sequence is:
5729 * rtnl_lock();
5730 * ...
5731 * register_netdevice(x1);
5732 * register_netdevice(x2);
5733 * ...
5734 * unregister_netdevice(y1);
5735 * unregister_netdevice(y2);
5736 * ...
5737 * rtnl_unlock();
5738 * free_netdev(y1);
5739 * free_netdev(y2);
5741 * We are invoked by rtnl_unlock().
5742 * This allows us to deal with problems:
5743 * 1) We can delete sysfs objects which invoke hotplug
5744 * without deadlocking with linkwatch via keventd.
5745 * 2) Since we run with the RTNL semaphore not held, we can sleep
5746 * safely in order to wait for the netdev refcnt to drop to zero.
5748 * We must not return until all unregister events added during
5749 * the interval the lock was held have been completed.
5751 void netdev_run_todo(void)
5753 struct list_head list;
5755 /* Snapshot list, allow later requests */
5756 list_replace_init(&net_todo_list, &list);
5758 __rtnl_unlock();
5760 while (!list_empty(&list)) {
5761 struct net_device *dev
5762 = list_first_entry(&list, struct net_device, todo_list);
5763 list_del(&dev->todo_list);
5765 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5766 printk(KERN_ERR "network todo '%s' but state %d\n",
5767 dev->name, dev->reg_state);
5768 dump_stack();
5769 continue;
5772 dev->reg_state = NETREG_UNREGISTERED;
5774 on_each_cpu(flush_backlog, dev, 1);
5776 netdev_wait_allrefs(dev);
5778 /* paranoia */
5779 BUG_ON(netdev_refcnt_read(dev));
5780 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5781 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5782 WARN_ON(dev->dn_ptr);
5784 if (dev->destructor)
5785 dev->destructor(dev);
5787 /* Free network device */
5788 kobject_put(&dev->dev.kobj);
5792 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5793 * fields in the same order, with only the type differing.
5795 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5796 const struct net_device_stats *netdev_stats)
5798 #if BITS_PER_LONG == 64
5799 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5800 memcpy(stats64, netdev_stats, sizeof(*stats64));
5801 #else
5802 size_t i, n = sizeof(*stats64) / sizeof(u64);
5803 const unsigned long *src = (const unsigned long *)netdev_stats;
5804 u64 *dst = (u64 *)stats64;
5806 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5807 sizeof(*stats64) / sizeof(u64));
5808 for (i = 0; i < n; i++)
5809 dst[i] = src[i];
5810 #endif
5814 * dev_get_stats - get network device statistics
5815 * @dev: device to get statistics from
5816 * @storage: place to store stats
5818 * Get network statistics from device. Return @storage.
5819 * The device driver may provide its own method by setting
5820 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5821 * otherwise the internal statistics structure is used.
5823 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5824 struct rtnl_link_stats64 *storage)
5826 const struct net_device_ops *ops = dev->netdev_ops;
5828 if (ops->ndo_get_stats64) {
5829 memset(storage, 0, sizeof(*storage));
5830 ops->ndo_get_stats64(dev, storage);
5831 } else if (ops->ndo_get_stats) {
5832 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5833 } else {
5834 netdev_stats_to_stats64(storage, &dev->stats);
5836 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5837 return storage;
5839 EXPORT_SYMBOL(dev_get_stats);
5841 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5843 struct netdev_queue *queue = dev_ingress_queue(dev);
5845 #ifdef CONFIG_NET_CLS_ACT
5846 if (queue)
5847 return queue;
5848 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5849 if (!queue)
5850 return NULL;
5851 netdev_init_one_queue(dev, queue, NULL);
5852 queue->qdisc = &noop_qdisc;
5853 queue->qdisc_sleeping = &noop_qdisc;
5854 rcu_assign_pointer(dev->ingress_queue, queue);
5855 #endif
5856 return queue;
5860 * alloc_netdev_mqs - allocate network device
5861 * @sizeof_priv: size of private data to allocate space for
5862 * @name: device name format string
5863 * @setup: callback to initialize device
5864 * @txqs: the number of TX subqueues to allocate
5865 * @rxqs: the number of RX subqueues to allocate
5867 * Allocates a struct net_device with private data area for driver use
5868 * and performs basic initialization. Also allocates subquue structs
5869 * for each queue on the device.
5871 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5872 void (*setup)(struct net_device *),
5873 unsigned int txqs, unsigned int rxqs)
5875 struct net_device *dev;
5876 size_t alloc_size;
5877 struct net_device *p;
5879 BUG_ON(strlen(name) >= sizeof(dev->name));
5881 if (txqs < 1) {
5882 pr_err("alloc_netdev: Unable to allocate device "
5883 "with zero queues.\n");
5884 return NULL;
5887 #ifdef CONFIG_RPS
5888 if (rxqs < 1) {
5889 pr_err("alloc_netdev: Unable to allocate device "
5890 "with zero RX queues.\n");
5891 return NULL;
5893 #endif
5895 alloc_size = sizeof(struct net_device);
5896 if (sizeof_priv) {
5897 /* ensure 32-byte alignment of private area */
5898 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5899 alloc_size += sizeof_priv;
5901 /* ensure 32-byte alignment of whole construct */
5902 alloc_size += NETDEV_ALIGN - 1;
5904 p = kzalloc(alloc_size, GFP_KERNEL);
5905 if (!p) {
5906 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5907 return NULL;
5910 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5911 dev->padded = (char *)dev - (char *)p;
5913 dev->pcpu_refcnt = alloc_percpu(int);
5914 if (!dev->pcpu_refcnt)
5915 goto free_p;
5917 if (dev_addr_init(dev))
5918 goto free_pcpu;
5920 dev_mc_init(dev);
5921 dev_uc_init(dev);
5923 dev_net_set(dev, &init_net);
5925 dev->gso_max_size = GSO_MAX_SIZE;
5927 INIT_LIST_HEAD(&dev->napi_list);
5928 INIT_LIST_HEAD(&dev->unreg_list);
5929 INIT_LIST_HEAD(&dev->link_watch_list);
5930 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5931 setup(dev);
5933 dev->num_tx_queues = txqs;
5934 dev->real_num_tx_queues = txqs;
5935 if (netif_alloc_netdev_queues(dev))
5936 goto free_all;
5938 #ifdef CONFIG_RPS
5939 dev->num_rx_queues = rxqs;
5940 dev->real_num_rx_queues = rxqs;
5941 if (netif_alloc_rx_queues(dev))
5942 goto free_all;
5943 #endif
5945 strcpy(dev->name, name);
5946 dev->group = INIT_NETDEV_GROUP;
5947 return dev;
5949 free_all:
5950 free_netdev(dev);
5951 return NULL;
5953 free_pcpu:
5954 free_percpu(dev->pcpu_refcnt);
5955 kfree(dev->_tx);
5956 #ifdef CONFIG_RPS
5957 kfree(dev->_rx);
5958 #endif
5960 free_p:
5961 kfree(p);
5962 return NULL;
5964 EXPORT_SYMBOL(alloc_netdev_mqs);
5967 * free_netdev - free network device
5968 * @dev: device
5970 * This function does the last stage of destroying an allocated device
5971 * interface. The reference to the device object is released.
5972 * If this is the last reference then it will be freed.
5974 void free_netdev(struct net_device *dev)
5976 struct napi_struct *p, *n;
5978 release_net(dev_net(dev));
5980 kfree(dev->_tx);
5981 #ifdef CONFIG_RPS
5982 kfree(dev->_rx);
5983 #endif
5985 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5987 /* Flush device addresses */
5988 dev_addr_flush(dev);
5990 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5991 netif_napi_del(p);
5993 free_percpu(dev->pcpu_refcnt);
5994 dev->pcpu_refcnt = NULL;
5996 /* Compatibility with error handling in drivers */
5997 if (dev->reg_state == NETREG_UNINITIALIZED) {
5998 kfree((char *)dev - dev->padded);
5999 return;
6002 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6003 dev->reg_state = NETREG_RELEASED;
6005 /* will free via device release */
6006 put_device(&dev->dev);
6008 EXPORT_SYMBOL(free_netdev);
6011 * synchronize_net - Synchronize with packet receive processing
6013 * Wait for packets currently being received to be done.
6014 * Does not block later packets from starting.
6016 void synchronize_net(void)
6018 might_sleep();
6019 if (rtnl_is_locked())
6020 synchronize_rcu_expedited();
6021 else
6022 synchronize_rcu();
6024 EXPORT_SYMBOL(synchronize_net);
6027 * unregister_netdevice_queue - remove device from the kernel
6028 * @dev: device
6029 * @head: list
6031 * This function shuts down a device interface and removes it
6032 * from the kernel tables.
6033 * If head not NULL, device is queued to be unregistered later.
6035 * Callers must hold the rtnl semaphore. You may want
6036 * unregister_netdev() instead of this.
6039 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6041 ASSERT_RTNL();
6043 if (head) {
6044 list_move_tail(&dev->unreg_list, head);
6045 } else {
6046 rollback_registered(dev);
6047 /* Finish processing unregister after unlock */
6048 net_set_todo(dev);
6051 EXPORT_SYMBOL(unregister_netdevice_queue);
6054 * unregister_netdevice_many - unregister many devices
6055 * @head: list of devices
6057 void unregister_netdevice_many(struct list_head *head)
6059 struct net_device *dev;
6061 if (!list_empty(head)) {
6062 rollback_registered_many(head);
6063 list_for_each_entry(dev, head, unreg_list)
6064 net_set_todo(dev);
6067 EXPORT_SYMBOL(unregister_netdevice_many);
6070 * unregister_netdev - remove device from the kernel
6071 * @dev: device
6073 * This function shuts down a device interface and removes it
6074 * from the kernel tables.
6076 * This is just a wrapper for unregister_netdevice that takes
6077 * the rtnl semaphore. In general you want to use this and not
6078 * unregister_netdevice.
6080 void unregister_netdev(struct net_device *dev)
6082 rtnl_lock();
6083 unregister_netdevice(dev);
6084 rtnl_unlock();
6086 EXPORT_SYMBOL(unregister_netdev);
6089 * dev_change_net_namespace - move device to different nethost namespace
6090 * @dev: device
6091 * @net: network namespace
6092 * @pat: If not NULL name pattern to try if the current device name
6093 * is already taken in the destination network namespace.
6095 * This function shuts down a device interface and moves it
6096 * to a new network namespace. On success 0 is returned, on
6097 * a failure a netagive errno code is returned.
6099 * Callers must hold the rtnl semaphore.
6102 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6104 int err;
6106 ASSERT_RTNL();
6108 /* Don't allow namespace local devices to be moved. */
6109 err = -EINVAL;
6110 if (dev->features & NETIF_F_NETNS_LOCAL)
6111 goto out;
6113 /* Ensure the device has been registrered */
6114 err = -EINVAL;
6115 if (dev->reg_state != NETREG_REGISTERED)
6116 goto out;
6118 /* Get out if there is nothing todo */
6119 err = 0;
6120 if (net_eq(dev_net(dev), net))
6121 goto out;
6123 /* Pick the destination device name, and ensure
6124 * we can use it in the destination network namespace.
6126 err = -EEXIST;
6127 if (__dev_get_by_name(net, dev->name)) {
6128 /* We get here if we can't use the current device name */
6129 if (!pat)
6130 goto out;
6131 if (dev_get_valid_name(dev, pat) < 0)
6132 goto out;
6136 * And now a mini version of register_netdevice unregister_netdevice.
6139 /* If device is running close it first. */
6140 dev_close(dev);
6142 /* And unlink it from device chain */
6143 err = -ENODEV;
6144 unlist_netdevice(dev);
6146 synchronize_net();
6148 /* Shutdown queueing discipline. */
6149 dev_shutdown(dev);
6151 /* Notify protocols, that we are about to destroy
6152 this device. They should clean all the things.
6154 Note that dev->reg_state stays at NETREG_REGISTERED.
6155 This is wanted because this way 8021q and macvlan know
6156 the device is just moving and can keep their slaves up.
6158 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6159 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6162 * Flush the unicast and multicast chains
6164 dev_uc_flush(dev);
6165 dev_mc_flush(dev);
6167 /* Actually switch the network namespace */
6168 dev_net_set(dev, net);
6170 /* If there is an ifindex conflict assign a new one */
6171 if (__dev_get_by_index(net, dev->ifindex)) {
6172 int iflink = (dev->iflink == dev->ifindex);
6173 dev->ifindex = dev_new_index(net);
6174 if (iflink)
6175 dev->iflink = dev->ifindex;
6178 /* Fixup kobjects */
6179 err = device_rename(&dev->dev, dev->name);
6180 WARN_ON(err);
6182 /* Add the device back in the hashes */
6183 list_netdevice(dev);
6185 /* Notify protocols, that a new device appeared. */
6186 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6189 * Prevent userspace races by waiting until the network
6190 * device is fully setup before sending notifications.
6192 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6194 synchronize_net();
6195 err = 0;
6196 out:
6197 return err;
6199 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6201 static int dev_cpu_callback(struct notifier_block *nfb,
6202 unsigned long action,
6203 void *ocpu)
6205 struct sk_buff **list_skb;
6206 struct sk_buff *skb;
6207 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6208 struct softnet_data *sd, *oldsd;
6210 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6211 return NOTIFY_OK;
6213 local_irq_disable();
6214 cpu = smp_processor_id();
6215 sd = &per_cpu(softnet_data, cpu);
6216 oldsd = &per_cpu(softnet_data, oldcpu);
6218 /* Find end of our completion_queue. */
6219 list_skb = &sd->completion_queue;
6220 while (*list_skb)
6221 list_skb = &(*list_skb)->next;
6222 /* Append completion queue from offline CPU. */
6223 *list_skb = oldsd->completion_queue;
6224 oldsd->completion_queue = NULL;
6226 /* Append output queue from offline CPU. */
6227 if (oldsd->output_queue) {
6228 *sd->output_queue_tailp = oldsd->output_queue;
6229 sd->output_queue_tailp = oldsd->output_queue_tailp;
6230 oldsd->output_queue = NULL;
6231 oldsd->output_queue_tailp = &oldsd->output_queue;
6233 /* Append NAPI poll list from offline CPU. */
6234 if (!list_empty(&oldsd->poll_list)) {
6235 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6236 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6239 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6240 local_irq_enable();
6242 /* Process offline CPU's input_pkt_queue */
6243 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6244 netif_rx(skb);
6245 input_queue_head_incr(oldsd);
6247 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6248 netif_rx(skb);
6249 input_queue_head_incr(oldsd);
6252 return NOTIFY_OK;
6257 * netdev_increment_features - increment feature set by one
6258 * @all: current feature set
6259 * @one: new feature set
6260 * @mask: mask feature set
6262 * Computes a new feature set after adding a device with feature set
6263 * @one to the master device with current feature set @all. Will not
6264 * enable anything that is off in @mask. Returns the new feature set.
6266 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6268 if (mask & NETIF_F_GEN_CSUM)
6269 mask |= NETIF_F_ALL_CSUM;
6270 mask |= NETIF_F_VLAN_CHALLENGED;
6272 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6273 all &= one | ~NETIF_F_ALL_FOR_ALL;
6275 /* If device needs checksumming, downgrade to it. */
6276 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6277 all &= ~NETIF_F_NO_CSUM;
6279 /* If one device supports hw checksumming, set for all. */
6280 if (all & NETIF_F_GEN_CSUM)
6281 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6283 return all;
6285 EXPORT_SYMBOL(netdev_increment_features);
6287 static struct hlist_head *netdev_create_hash(void)
6289 int i;
6290 struct hlist_head *hash;
6292 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6293 if (hash != NULL)
6294 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6295 INIT_HLIST_HEAD(&hash[i]);
6297 return hash;
6300 /* Initialize per network namespace state */
6301 static int __net_init netdev_init(struct net *net)
6303 INIT_LIST_HEAD(&net->dev_base_head);
6305 net->dev_name_head = netdev_create_hash();
6306 if (net->dev_name_head == NULL)
6307 goto err_name;
6309 net->dev_index_head = netdev_create_hash();
6310 if (net->dev_index_head == NULL)
6311 goto err_idx;
6313 return 0;
6315 err_idx:
6316 kfree(net->dev_name_head);
6317 err_name:
6318 return -ENOMEM;
6322 * netdev_drivername - network driver for the device
6323 * @dev: network device
6325 * Determine network driver for device.
6327 const char *netdev_drivername(const struct net_device *dev)
6329 const struct device_driver *driver;
6330 const struct device *parent;
6331 const char *empty = "";
6333 parent = dev->dev.parent;
6334 if (!parent)
6335 return empty;
6337 driver = parent->driver;
6338 if (driver && driver->name)
6339 return driver->name;
6340 return empty;
6343 static int __netdev_printk(const char *level, const struct net_device *dev,
6344 struct va_format *vaf)
6346 int r;
6348 if (dev && dev->dev.parent)
6349 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6350 netdev_name(dev), vaf);
6351 else if (dev)
6352 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6353 else
6354 r = printk("%s(NULL net_device): %pV", level, vaf);
6356 return r;
6359 int netdev_printk(const char *level, const struct net_device *dev,
6360 const char *format, ...)
6362 struct va_format vaf;
6363 va_list args;
6364 int r;
6366 va_start(args, format);
6368 vaf.fmt = format;
6369 vaf.va = &args;
6371 r = __netdev_printk(level, dev, &vaf);
6372 va_end(args);
6374 return r;
6376 EXPORT_SYMBOL(netdev_printk);
6378 #define define_netdev_printk_level(func, level) \
6379 int func(const struct net_device *dev, const char *fmt, ...) \
6381 int r; \
6382 struct va_format vaf; \
6383 va_list args; \
6385 va_start(args, fmt); \
6387 vaf.fmt = fmt; \
6388 vaf.va = &args; \
6390 r = __netdev_printk(level, dev, &vaf); \
6391 va_end(args); \
6393 return r; \
6395 EXPORT_SYMBOL(func);
6397 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6398 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6399 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6400 define_netdev_printk_level(netdev_err, KERN_ERR);
6401 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6402 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6403 define_netdev_printk_level(netdev_info, KERN_INFO);
6405 static void __net_exit netdev_exit(struct net *net)
6407 kfree(net->dev_name_head);
6408 kfree(net->dev_index_head);
6411 static struct pernet_operations __net_initdata netdev_net_ops = {
6412 .init = netdev_init,
6413 .exit = netdev_exit,
6416 static void __net_exit default_device_exit(struct net *net)
6418 struct net_device *dev, *aux;
6420 * Push all migratable network devices back to the
6421 * initial network namespace
6423 rtnl_lock();
6424 for_each_netdev_safe(net, dev, aux) {
6425 int err;
6426 char fb_name[IFNAMSIZ];
6428 /* Ignore unmoveable devices (i.e. loopback) */
6429 if (dev->features & NETIF_F_NETNS_LOCAL)
6430 continue;
6432 /* Leave virtual devices for the generic cleanup */
6433 if (dev->rtnl_link_ops)
6434 continue;
6436 /* Push remaining network devices to init_net */
6437 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6438 err = dev_change_net_namespace(dev, &init_net, fb_name);
6439 if (err) {
6440 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6441 __func__, dev->name, err);
6442 BUG();
6445 rtnl_unlock();
6448 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6450 /* At exit all network devices most be removed from a network
6451 * namespace. Do this in the reverse order of registration.
6452 * Do this across as many network namespaces as possible to
6453 * improve batching efficiency.
6455 struct net_device *dev;
6456 struct net *net;
6457 LIST_HEAD(dev_kill_list);
6459 rtnl_lock();
6460 list_for_each_entry(net, net_list, exit_list) {
6461 for_each_netdev_reverse(net, dev) {
6462 if (dev->rtnl_link_ops)
6463 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6464 else
6465 unregister_netdevice_queue(dev, &dev_kill_list);
6468 unregister_netdevice_many(&dev_kill_list);
6469 list_del(&dev_kill_list);
6470 rtnl_unlock();
6473 static struct pernet_operations __net_initdata default_device_ops = {
6474 .exit = default_device_exit,
6475 .exit_batch = default_device_exit_batch,
6479 * Initialize the DEV module. At boot time this walks the device list and
6480 * unhooks any devices that fail to initialise (normally hardware not
6481 * present) and leaves us with a valid list of present and active devices.
6486 * This is called single threaded during boot, so no need
6487 * to take the rtnl semaphore.
6489 static int __init net_dev_init(void)
6491 int i, rc = -ENOMEM;
6493 BUG_ON(!dev_boot_phase);
6495 if (dev_proc_init())
6496 goto out;
6498 if (netdev_kobject_init())
6499 goto out;
6501 INIT_LIST_HEAD(&ptype_all);
6502 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6503 INIT_LIST_HEAD(&ptype_base[i]);
6505 if (register_pernet_subsys(&netdev_net_ops))
6506 goto out;
6509 * Initialise the packet receive queues.
6512 for_each_possible_cpu(i) {
6513 struct softnet_data *sd = &per_cpu(softnet_data, i);
6515 memset(sd, 0, sizeof(*sd));
6516 skb_queue_head_init(&sd->input_pkt_queue);
6517 skb_queue_head_init(&sd->process_queue);
6518 sd->completion_queue = NULL;
6519 INIT_LIST_HEAD(&sd->poll_list);
6520 sd->output_queue = NULL;
6521 sd->output_queue_tailp = &sd->output_queue;
6522 #ifdef CONFIG_RPS
6523 sd->csd.func = rps_trigger_softirq;
6524 sd->csd.info = sd;
6525 sd->csd.flags = 0;
6526 sd->cpu = i;
6527 #endif
6529 sd->backlog.poll = process_backlog;
6530 sd->backlog.weight = weight_p;
6531 sd->backlog.gro_list = NULL;
6532 sd->backlog.gro_count = 0;
6535 dev_boot_phase = 0;
6537 /* The loopback device is special if any other network devices
6538 * is present in a network namespace the loopback device must
6539 * be present. Since we now dynamically allocate and free the
6540 * loopback device ensure this invariant is maintained by
6541 * keeping the loopback device as the first device on the
6542 * list of network devices. Ensuring the loopback devices
6543 * is the first device that appears and the last network device
6544 * that disappears.
6546 if (register_pernet_device(&loopback_net_ops))
6547 goto out;
6549 if (register_pernet_device(&default_device_ops))
6550 goto out;
6552 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6553 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6555 hotcpu_notifier(dev_cpu_callback, 0);
6556 dst_init();
6557 dev_mcast_init();
6558 rc = 0;
6559 out:
6560 return rc;
6563 subsys_initcall(net_dev_init);
6565 static int __init initialize_hashrnd(void)
6567 get_random_bytes(&hashrnd, sizeof(hashrnd));
6568 return 0;
6571 late_initcall_sync(initialize_hashrnd);