Ignore madvise(MADV_WILLNEED) for hugetlbfs-backed regions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / edac.txt
blob8eda3fb664166726163bf59565c9d52c76af6c79
3 EDAC - Error Detection And Correction
5 Written by Doug Thompson <dougthompson@xmission.com>
6 7 Dec 2005
7 17 Jul 2007     Updated
10 EDAC is maintained and written by:
12         Doug Thompson, Dave Jiang, Dave Peterson et al,
13         original author: Thayne Harbaugh,
15 Contact:
16         website:        bluesmoke.sourceforge.net
17         mailing list:   bluesmoke-devel@lists.sourceforge.net
19 "bluesmoke" was the name for this device driver when it was "out-of-tree"
20 and maintained at sourceforge.net.  When it was pushed into 2.6.16 for the
21 first time, it was renamed to 'EDAC'.
23 The bluesmoke project at sourceforge.net is now utilized as a 'staging area'
24 for EDAC development, before it is sent upstream to kernel.org
26 At the bluesmoke/EDAC project site, is a series of quilt patches against
27 recent kernels, stored in a SVN respository. For easier downloading, there
28 is also a tarball snapshot available.
30 ============================================================================
31 EDAC PURPOSE
33 The 'edac' kernel module goal is to detect and report errors that occur
34 within the computer system running under linux.
36 MEMORY
38 In the initial release, memory Correctable Errors (CE) and Uncorrectable
39 Errors (UE) are the primary errors being harvested. These types of errors
40 are harvested by the 'edac_mc' class of device.
42 Detecting CE events, then harvesting those events and reporting them,
43 CAN be a predictor of future UE events.  With CE events, the system can
44 continue to operate, but with less safety. Preventive maintenance and
45 proactive part replacement of memory DIMMs exhibiting CEs can reduce
46 the likelihood of the dreaded UE events and system 'panics'.
48 NON-MEMORY
50 A new feature for EDAC, the edac_device class of device, was added in
51 the 2.6.23 version of the kernel.
53 This new device type allows for non-memory type of ECC hardware detectors
54 to have their states harvested and presented to userspace via the sysfs
55 interface.
57 Some architectures have ECC detectors for L1, L2 and L3 caches, along with DMA
58 engines, fabric switches, main data path switches, interconnections,
59 and various other hardware data paths. If the hardware reports it, then
60 a edac_device device probably can be constructed to harvest and present
61 that to userspace.
64 PCI BUS SCANNING
66 In addition, PCI Bus Parity and SERR Errors are scanned for on PCI devices
67 in order to determine if errors are occurring on data transfers.
69 The presence of PCI Parity errors must be examined with a grain of salt.
70 There are several add-in adapters that do NOT follow the PCI specification
71 with regards to Parity generation and reporting. The specification says
72 the vendor should tie the parity status bits to 0 if they do not intend
73 to generate parity.  Some vendors do not do this, and thus the parity bit
74 can "float" giving false positives.
76 In the kernel there is a pci device attribute located in sysfs that is
77 checked by the EDAC PCI scanning code. If that attribute is set,
78 PCI parity/error scannining is skipped for that device. The attribute
79 is:
81         broken_parity_status
83 as is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directorys for
84 PCI devices.
86 FUTURE HARDWARE SCANNING
88 EDAC will have future error detectors that will be integrated with
89 EDAC or added to it, in the following list:
91         MCE     Machine Check Exception
92         MCA     Machine Check Architecture
93         NMI     NMI notification of ECC errors
94         MSRs    Machine Specific Register error cases
95         and other mechanisms.
97 These errors are usually bus errors, ECC errors, thermal throttling
98 and the like.
101 ============================================================================
102 EDAC VERSIONING
104 EDAC is composed of a "core" module (edac_core.ko) and several Memory
105 Controller (MC) driver modules. On a given system, the CORE
106 is loaded and one MC driver will be loaded. Both the CORE and
107 the MC driver (or edac_device driver) have individual versions that reflect
108 current release level of their respective modules.
110 Thus, to "report" on what version a system is running, one must report both
111 the CORE's and the MC driver's versions.
114 LOADING
116 If 'edac' was statically linked with the kernel then no loading is
117 necessary.  If 'edac' was built as modules then simply modprobe the
118 'edac' pieces that you need.  You should be able to modprobe
119 hardware-specific modules and have the dependencies load the necessary core
120 modules.
122 Example:
124 $> modprobe amd76x_edac
126 loads both the amd76x_edac.ko memory controller module and the edac_mc.ko
127 core module.
130 ============================================================================
131 EDAC sysfs INTERFACE
133 EDAC presents a 'sysfs' interface for control, reporting and attribute
134 reporting purposes.
136 EDAC lives in the /sys/devices/system/edac directory.
138 Within this directory there currently reside 2 'edac' components:
140         mc      memory controller(s) system
141         pci     PCI control and status system
144 ============================================================================
145 Memory Controller (mc) Model
147 First a background on the memory controller's model abstracted in EDAC.
148 Each 'mc' device controls a set of DIMM memory modules. These modules are
149 laid out in a Chip-Select Row (csrowX) and Channel table (chX). There can
150 be multiple csrows and multiple channels.
152 Memory controllers allow for several csrows, with 8 csrows being a typical value.
153 Yet, the actual number of csrows depends on the electrical "loading"
154 of a given motherboard, memory controller and DIMM characteristics.
156 Dual channels allows for 128 bit data transfers to the CPU from memory.
157 Some newer chipsets allow for more than 2 channels, like Fully Buffered DIMMs
158 (FB-DIMMs). The following example will assume 2 channels:
161                 Channel 0       Channel 1
162         ===================================
163         csrow0  | DIMM_A0       | DIMM_B0 |
164         csrow1  | DIMM_A0       | DIMM_B0 |
165         ===================================
167         ===================================
168         csrow2  | DIMM_A1       | DIMM_B1 |
169         csrow3  | DIMM_A1       | DIMM_B1 |
170         ===================================
172 In the above example table there are 4 physical slots on the motherboard
173 for memory DIMMs:
175         DIMM_A0
176         DIMM_B0
177         DIMM_A1
178         DIMM_B1
180 Labels for these slots are usually silk screened on the motherboard. Slots
181 labeled 'A' are channel 0 in this example. Slots labeled 'B'
182 are channel 1. Notice that there are two csrows possible on a
183 physical DIMM. These csrows are allocated their csrow assignment
184 based on the slot into which the memory DIMM is placed. Thus, when 1 DIMM
185 is placed in each Channel, the csrows cross both DIMMs.
187 Memory DIMMs come single or dual "ranked". A rank is a populated csrow.
188 Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
189 will have 1 csrow, csrow0. csrow1 will be empty. On the other hand,
190 when 2 dual ranked DIMMs are similarly placed, then both csrow0 and
191 csrow1 will be populated. The pattern repeats itself for csrow2 and
192 csrow3.
194 The representation of the above is reflected in the directory tree
195 in EDAC's sysfs interface. Starting in directory
196 /sys/devices/system/edac/mc each memory controller will be represented
197 by its own 'mcX' directory, where 'X" is the index of the MC.
200         ..../edac/mc/
201                    |
202                    |->mc0
203                    |->mc1
204                    |->mc2
205                    ....
207 Under each 'mcX' directory each 'csrowX' is again represented by a
208 'csrowX', where 'X" is the csrow index:
211         .../mc/mc0/
212                 |
213                 |->csrow0
214                 |->csrow2
215                 |->csrow3
216                 ....
218 Notice that there is no csrow1, which indicates that csrow0 is
219 composed of a single ranked DIMMs. This should also apply in both
220 Channels, in order to have dual-channel mode be operational. Since
221 both csrow2 and csrow3 are populated, this indicates a dual ranked
222 set of DIMMs for channels 0 and 1.
225 Within each of the 'mcX' and 'csrowX' directories are several
226 EDAC control and attribute files.
228 ============================================================================
229 'mcX' DIRECTORIES
232 In 'mcX' directories are EDAC control and attribute files for
233 this 'X" instance of the memory controllers:
236 Counter reset control file:
238         'reset_counters'
240         This write-only control file will zero all the statistical counters
241         for UE and CE errors.  Zeroing the counters will also reset the timer
242         indicating how long since the last counter zero.  This is useful
243         for computing errors/time.  Since the counters are always reset at
244         driver initialization time, no module/kernel parameter is available.
246         RUN TIME: echo "anything" >/sys/devices/system/edac/mc/mc0/counter_reset
248                 This resets the counters on memory controller 0
251 Seconds since last counter reset control file:
253         'seconds_since_reset'
255         This attribute file displays how many seconds have elapsed since the
256         last counter reset. This can be used with the error counters to
257         measure error rates.
261 Memory Controller name attribute file:
263         'mc_name'
265         This attribute file displays the type of memory controller
266         that is being utilized.
269 Total memory managed by this memory controller attribute file:
271         'size_mb'
273         This attribute file displays, in count of megabytes, of memory
274         that this instance of memory controller manages.
277 Total Uncorrectable Errors count attribute file:
279         'ue_count'
281         This attribute file displays the total count of uncorrectable
282         errors that have occurred on this memory controller. If panic_on_ue
283         is set this counter will not have a chance to increment,
284         since EDAC will panic the system.
287 Total UE count that had no information attribute fileY:
289         'ue_noinfo_count'
291         This attribute file displays the number of UEs that
292         have occurred have occurred with  no informations as to which DIMM
293         slot is having errors.
296 Total Correctable Errors count attribute file:
298         'ce_count'
300         This attribute file displays the total count of correctable
301         errors that have occurred on this memory controller. This
302         count is very important to examine. CEs provide early
303         indications that a DIMM is beginning to fail. This count
304         field should be monitored for non-zero values and report
305         such information to the system administrator.
308 Total Correctable Errors count attribute file:
310         'ce_noinfo_count'
312         This attribute file displays the number of CEs that
313         have occurred wherewith no informations as to which DIMM slot
314         is having errors. Memory is handicapped, but operational,
315         yet no information is available to indicate which slot
316         the failing memory is in. This count field should be also
317         be monitored for non-zero values.
319 Device Symlink:
321         'device'
323         Symlink to the memory controller device.
325 Sdram memory scrubbing rate:
327         'sdram_scrub_rate'
329         Read/Write attribute file that controls memory scrubbing. The scrubbing
330         rate is set by writing a minimum bandwidth in bytes/sec to the attribute
331         file. The rate will be translated to an internal value that gives at
332         least the specified rate.
334         Reading the file will return the actual scrubbing rate employed.
336         If configuration fails or memory scrubbing is not implemented, the value
337         of the attribute file will be -1.
341 ============================================================================
342 'csrowX' DIRECTORIES
344 In the 'csrowX' directories are EDAC control and attribute files for
345 this 'X" instance of csrow:
348 Total Uncorrectable Errors count attribute file:
350         'ue_count'
352         This attribute file displays the total count of uncorrectable
353         errors that have occurred on this csrow. If panic_on_ue is set
354         this counter will not have a chance to increment, since EDAC
355         will panic the system.
358 Total Correctable Errors count attribute file:
360         'ce_count'
362         This attribute file displays the total count of correctable
363         errors that have occurred on this csrow. This
364         count is very important to examine. CEs provide early
365         indications that a DIMM is beginning to fail. This count
366         field should be monitored for non-zero values and report
367         such information to the system administrator.
370 Total memory managed by this csrow attribute file:
372         'size_mb'
374         This attribute file displays, in count of megabytes, of memory
375         that this csrow contains.
378 Memory Type attribute file:
380         'mem_type'
382         This attribute file will display what type of memory is currently
383         on this csrow. Normally, either buffered or unbuffered memory.
384         Examples:
385                 Registered-DDR
386                 Unbuffered-DDR
389 EDAC Mode of operation attribute file:
391         'edac_mode'
393         This attribute file will display what type of Error detection
394         and correction is being utilized.
397 Device type attribute file:
399         'dev_type'
401         This attribute file will display what type of DRAM device is
402         being utilized on this DIMM.
403         Examples:
404                 x1
405                 x2
406                 x4
407                 x8
410 Channel 0 CE Count attribute file:
412         'ch0_ce_count'
414         This attribute file will display the count of CEs on this
415         DIMM located in channel 0.
418 Channel 0 UE Count attribute file:
420         'ch0_ue_count'
422         This attribute file will display the count of UEs on this
423         DIMM located in channel 0.
426 Channel 0 DIMM Label control file:
428         'ch0_dimm_label'
430         This control file allows this DIMM to have a label assigned
431         to it. With this label in the module, when errors occur
432         the output can provide the DIMM label in the system log.
433         This becomes vital for panic events to isolate the
434         cause of the UE event.
436         DIMM Labels must be assigned after booting, with information
437         that correctly identifies the physical slot with its
438         silk screen label. This information is currently very
439         motherboard specific and determination of this information
440         must occur in userland at this time.
443 Channel 1 CE Count attribute file:
445         'ch1_ce_count'
447         This attribute file will display the count of CEs on this
448         DIMM located in channel 1.
451 Channel 1 UE Count attribute file:
453         'ch1_ue_count'
455         This attribute file will display the count of UEs on this
456         DIMM located in channel 0.
459 Channel 1 DIMM Label control file:
461         'ch1_dimm_label'
463         This control file allows this DIMM to have a label assigned
464         to it. With this label in the module, when errors occur
465         the output can provide the DIMM label in the system log.
466         This becomes vital for panic events to isolate the
467         cause of the UE event.
469         DIMM Labels must be assigned after booting, with information
470         that correctly identifies the physical slot with its
471         silk screen label. This information is currently very
472         motherboard specific and determination of this information
473         must occur in userland at this time.
475 ============================================================================
476 SYSTEM LOGGING
478 If logging for UEs and CEs are enabled then system logs will have
479 error notices indicating errors that have been detected:
481 EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
482 channel 1 "DIMM_B1": amd76x_edac
484 EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0,
485 channel 1 "DIMM_B1": amd76x_edac
488 The structure of the message is:
489         the memory controller                   (MC0)
490         Error type                              (CE)
491         memory page                             (0x283)
492         offset in the page                      (0xce0)
493         the byte granularity                    (grain 8)
494                 or resolution of the error
495         the error syndrome                      (0xb741)
496         memory row                              (row 0)
497         memory channel                          (channel 1)
498         DIMM label, if set prior                (DIMM B1
499         and then an optional, driver-specific message that may
500                 have additional information.
502 Both UEs and CEs with no info will lack all but memory controller,
503 error type, a notice of "no info" and then an optional,
504 driver-specific error message.
507 ============================================================================
508 PCI Bus Parity Detection
511 On Header Type 00 devices the primary status is looked at
512 for any parity error regardless of whether Parity is enabled on the
513 device.  (The spec indicates parity is generated in some cases).
514 On Header Type 01 bridges, the secondary status register is also
515 looked at to see if parity occurred on the bus on the other side of
516 the bridge.
519 SYSFS CONFIGURATION
521 Under /sys/devices/system/edac/pci are control and attribute files as follows:
524 Enable/Disable PCI Parity checking control file:
526         'check_pci_parity'
529         This control file enables or disables the PCI Bus Parity scanning
530         operation. Writing a 1 to this file enables the scanning. Writing
531         a 0 to this file disables the scanning.
533         Enable:
534         echo "1" >/sys/devices/system/edac/pci/check_pci_parity
536         Disable:
537         echo "0" >/sys/devices/system/edac/pci/check_pci_parity
540 Parity Count:
542         'pci_parity_count'
544         This attribute file will display the number of parity errors that
545         have been detected.
548 ============================================================================
549 MODULE PARAMETERS
551 Panic on UE control file:
553         'edac_mc_panic_on_ue'
555         An uncorrectable error will cause a machine panic.  This is usually
556         desirable.  It is a bad idea to continue when an uncorrectable error
557         occurs - it is indeterminate what was uncorrected and the operating
558         system context might be so mangled that continuing will lead to further
559         corruption. If the kernel has MCE configured, then EDAC will never
560         notice the UE.
562         LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1]
564         RUN TIME:  echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
567 Log UE control file:
569         'edac_mc_log_ue'
571         Generate kernel messages describing uncorrectable errors.  These errors
572         are reported through the system message log system.  UE statistics
573         will be accumulated even when UE logging is disabled.
575         LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1]
577         RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
580 Log CE control file:
582         'edac_mc_log_ce'
584         Generate kernel messages describing correctable errors.  These
585         errors are reported through the system message log system.
586         CE statistics will be accumulated even when CE logging is disabled.
588         LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1]
590         RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
593 Polling period control file:
595         'edac_mc_poll_msec'
597         The time period, in milliseconds, for polling for error information.
598         Too small a value wastes resources.  Too large a value might delay
599         necessary handling of errors and might loose valuable information for
600         locating the error.  1000 milliseconds (once each second) is the current
601         default. Systems which require all the bandwidth they can get, may
602         increase this.
604         LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1]
606         RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
609 Panic on PCI PARITY Error:
611         'panic_on_pci_parity'
614         This control files enables or disables panicking when a parity
615         error has been detected.
618         module/kernel parameter: edac_panic_on_pci_pe=[0|1]
620         Enable:
621         echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
623         Disable:
624         echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
628 =======================================================================
631 EDAC_DEVICE type of device
633 In the header file, edac_core.h, there is a series of edac_device structures
634 and APIs for the EDAC_DEVICE.
636 User space access to an edac_device is through the sysfs interface.
638 At the location /sys/devices/system/edac (sysfs) new edac_device devices will
639 appear.
641 There is a three level tree beneath the above 'edac' directory. For example,
642 the 'test_device_edac' device (found at the bluesmoke.sourceforget.net website)
643 installs itself as:
645         /sys/devices/systm/edac/test-instance
647 in this directory are various controls, a symlink and one or more 'instance'
648 directorys.
650 The standard default controls are:
652         log_ce          boolean to log CE events
653         log_ue          boolean to log UE events
654         panic_on_ue     boolean to 'panic' the system if an UE is encountered
655                         (default off, can be set true via startup script)
656         poll_msec       time period between POLL cycles for events
658 The test_device_edac device adds at least one of its own custom control:
660         test_bits       which in the current test driver does nothing but
661                         show how it is installed. A ported driver can
662                         add one or more such controls and/or attributes
663                         for specific uses.
664                         One out-of-tree driver uses controls here to allow
665                         for ERROR INJECTION operations to hardware
666                         injection registers
668 The symlink points to the 'struct dev' that is registered for this edac_device.
670 INSTANCES
672 One or more instance directories are present. For the 'test_device_edac' case:
674         test-instance0
677 In this directory there are two default counter attributes, which are totals of
678 counter in deeper subdirectories.
680         ce_count        total of CE events of subdirectories
681         ue_count        total of UE events of subdirectories
683 BLOCKS
685 At the lowest directory level is the 'block' directory. There can be 0, 1
686 or more blocks specified in each instance.
688         test-block0
691 In this directory the default attributes are:
693         ce_count        which is counter of CE events for this 'block'
694                         of hardware being monitored
695         ue_count        which is counter of UE events for this 'block'
696                         of hardware being monitored
699 The 'test_device_edac' device adds 4 attributes and 1 control:
701         test-block-bits-0       for every POLL cycle this counter
702                                 is incremented
703         test-block-bits-1       every 10 cycles, this counter is bumped once,
704                                 and test-block-bits-0 is set to 0
705         test-block-bits-2       every 100 cycles, this counter is bumped once,
706                                 and test-block-bits-1 is set to 0
707         test-block-bits-3       every 1000 cycles, this counter is bumped once,
708                                 and test-block-bits-2 is set to 0
711         reset-counters          writing ANY thing to this control will
712                                 reset all the above counters.
715 Use of the 'test_device_edac' driver should any others to create their own
716 unique drivers for their hardware systems.
718 The 'test_device_edac' sample driver is located at the
719 bluesmoke.sourceforge.net project site for EDAC.