x86: modify smp_callin in x86_64 to look like i386
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-cpu-timers.c
blob2eae91f954ca2ed98b05e2c145b38c2cb857fbb5
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
10 static int check_clock(const clockid_t which_clock)
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
19 if (pid == 0)
20 return 0;
22 read_lock(&tasklist_lock);
23 p = find_task_by_vpid(pid);
24 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
25 same_thread_group(p, current) : thread_group_leader(p))) {
26 error = -EINVAL;
28 read_unlock(&tasklist_lock);
30 return error;
33 static inline union cpu_time_count
34 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
43 return ret;
46 static void sample_to_timespec(const clockid_t which_clock,
47 union cpu_time_count cpu,
48 struct timespec *tp)
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
58 static inline int cpu_time_before(const clockid_t which_clock,
59 union cpu_time_count now,
60 union cpu_time_count then)
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
68 static inline void cpu_time_add(const clockid_t which_clock,
69 union cpu_time_count *acc,
70 union cpu_time_count val)
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
78 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
79 union cpu_time_count a,
80 union cpu_time_count b)
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
87 return a;
91 * Divide and limit the result to res >= 1
93 * This is necessary to prevent signal delivery starvation, when the result of
94 * the division would be rounded down to 0.
96 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
98 cputime_t res = cputime_div(time, div);
100 return max_t(cputime_t, res, 1);
104 * Update expiry time from increment, and increase overrun count,
105 * given the current clock sample.
107 static void bump_cpu_timer(struct k_itimer *timer,
108 union cpu_time_count now)
110 int i;
112 if (timer->it.cpu.incr.sched == 0)
113 return;
115 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
116 unsigned long long delta, incr;
118 if (now.sched < timer->it.cpu.expires.sched)
119 return;
120 incr = timer->it.cpu.incr.sched;
121 delta = now.sched + incr - timer->it.cpu.expires.sched;
122 /* Don't use (incr*2 < delta), incr*2 might overflow. */
123 for (i = 0; incr < delta - incr; i++)
124 incr = incr << 1;
125 for (; i >= 0; incr >>= 1, i--) {
126 if (delta < incr)
127 continue;
128 timer->it.cpu.expires.sched += incr;
129 timer->it_overrun += 1 << i;
130 delta -= incr;
132 } else {
133 cputime_t delta, incr;
135 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
136 return;
137 incr = timer->it.cpu.incr.cpu;
138 delta = cputime_sub(cputime_add(now.cpu, incr),
139 timer->it.cpu.expires.cpu);
140 /* Don't use (incr*2 < delta), incr*2 might overflow. */
141 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
142 incr = cputime_add(incr, incr);
143 for (; i >= 0; incr = cputime_halve(incr), i--) {
144 if (cputime_lt(delta, incr))
145 continue;
146 timer->it.cpu.expires.cpu =
147 cputime_add(timer->it.cpu.expires.cpu, incr);
148 timer->it_overrun += 1 << i;
149 delta = cputime_sub(delta, incr);
154 static inline cputime_t prof_ticks(struct task_struct *p)
156 return cputime_add(p->utime, p->stime);
158 static inline cputime_t virt_ticks(struct task_struct *p)
160 return p->utime;
162 static inline unsigned long long sched_ns(struct task_struct *p)
164 return task_sched_runtime(p);
167 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
169 int error = check_clock(which_clock);
170 if (!error) {
171 tp->tv_sec = 0;
172 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
173 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
175 * If sched_clock is using a cycle counter, we
176 * don't have any idea of its true resolution
177 * exported, but it is much more than 1s/HZ.
179 tp->tv_nsec = 1;
182 return error;
185 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
188 * You can never reset a CPU clock, but we check for other errors
189 * in the call before failing with EPERM.
191 int error = check_clock(which_clock);
192 if (error == 0) {
193 error = -EPERM;
195 return error;
200 * Sample a per-thread clock for the given task.
202 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
203 union cpu_time_count *cpu)
205 switch (CPUCLOCK_WHICH(which_clock)) {
206 default:
207 return -EINVAL;
208 case CPUCLOCK_PROF:
209 cpu->cpu = prof_ticks(p);
210 break;
211 case CPUCLOCK_VIRT:
212 cpu->cpu = virt_ticks(p);
213 break;
214 case CPUCLOCK_SCHED:
215 cpu->sched = sched_ns(p);
216 break;
218 return 0;
222 * Sample a process (thread group) clock for the given group_leader task.
223 * Must be called with tasklist_lock held for reading.
224 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
226 static int cpu_clock_sample_group_locked(unsigned int clock_idx,
227 struct task_struct *p,
228 union cpu_time_count *cpu)
230 struct task_struct *t = p;
231 switch (clock_idx) {
232 default:
233 return -EINVAL;
234 case CPUCLOCK_PROF:
235 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
236 do {
237 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
238 t = next_thread(t);
239 } while (t != p);
240 break;
241 case CPUCLOCK_VIRT:
242 cpu->cpu = p->signal->utime;
243 do {
244 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
245 t = next_thread(t);
246 } while (t != p);
247 break;
248 case CPUCLOCK_SCHED:
249 cpu->sched = p->signal->sum_sched_runtime;
250 /* Add in each other live thread. */
251 while ((t = next_thread(t)) != p) {
252 cpu->sched += t->se.sum_exec_runtime;
254 cpu->sched += sched_ns(p);
255 break;
257 return 0;
261 * Sample a process (thread group) clock for the given group_leader task.
262 * Must be called with tasklist_lock held for reading.
264 static int cpu_clock_sample_group(const clockid_t which_clock,
265 struct task_struct *p,
266 union cpu_time_count *cpu)
268 int ret;
269 unsigned long flags;
270 spin_lock_irqsave(&p->sighand->siglock, flags);
271 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
272 cpu);
273 spin_unlock_irqrestore(&p->sighand->siglock, flags);
274 return ret;
278 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
280 const pid_t pid = CPUCLOCK_PID(which_clock);
281 int error = -EINVAL;
282 union cpu_time_count rtn;
284 if (pid == 0) {
286 * Special case constant value for our own clocks.
287 * We don't have to do any lookup to find ourselves.
289 if (CPUCLOCK_PERTHREAD(which_clock)) {
291 * Sampling just ourselves we can do with no locking.
293 error = cpu_clock_sample(which_clock,
294 current, &rtn);
295 } else {
296 read_lock(&tasklist_lock);
297 error = cpu_clock_sample_group(which_clock,
298 current, &rtn);
299 read_unlock(&tasklist_lock);
301 } else {
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
306 struct task_struct *p;
307 rcu_read_lock();
308 p = find_task_by_vpid(pid);
309 if (p) {
310 if (CPUCLOCK_PERTHREAD(which_clock)) {
311 if (same_thread_group(p, current)) {
312 error = cpu_clock_sample(which_clock,
313 p, &rtn);
315 } else {
316 read_lock(&tasklist_lock);
317 if (thread_group_leader(p) && p->signal) {
318 error =
319 cpu_clock_sample_group(which_clock,
320 p, &rtn);
322 read_unlock(&tasklist_lock);
325 rcu_read_unlock();
328 if (error)
329 return error;
330 sample_to_timespec(which_clock, rtn, tp);
331 return 0;
336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
337 * This is called from sys_timer_create with the new timer already locked.
339 int posix_cpu_timer_create(struct k_itimer *new_timer)
341 int ret = 0;
342 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
343 struct task_struct *p;
345 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
346 return -EINVAL;
348 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
349 new_timer->it.cpu.incr.sched = 0;
350 new_timer->it.cpu.expires.sched = 0;
352 read_lock(&tasklist_lock);
353 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
354 if (pid == 0) {
355 p = current;
356 } else {
357 p = find_task_by_vpid(pid);
358 if (p && !same_thread_group(p, current))
359 p = NULL;
361 } else {
362 if (pid == 0) {
363 p = current->group_leader;
364 } else {
365 p = find_task_by_vpid(pid);
366 if (p && !thread_group_leader(p))
367 p = NULL;
370 new_timer->it.cpu.task = p;
371 if (p) {
372 get_task_struct(p);
373 } else {
374 ret = -EINVAL;
376 read_unlock(&tasklist_lock);
378 return ret;
382 * Clean up a CPU-clock timer that is about to be destroyed.
383 * This is called from timer deletion with the timer already locked.
384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
385 * and try again. (This happens when the timer is in the middle of firing.)
387 int posix_cpu_timer_del(struct k_itimer *timer)
389 struct task_struct *p = timer->it.cpu.task;
390 int ret = 0;
392 if (likely(p != NULL)) {
393 read_lock(&tasklist_lock);
394 if (unlikely(p->signal == NULL)) {
396 * We raced with the reaping of the task.
397 * The deletion should have cleared us off the list.
399 BUG_ON(!list_empty(&timer->it.cpu.entry));
400 } else {
401 spin_lock(&p->sighand->siglock);
402 if (timer->it.cpu.firing)
403 ret = TIMER_RETRY;
404 else
405 list_del(&timer->it.cpu.entry);
406 spin_unlock(&p->sighand->siglock);
408 read_unlock(&tasklist_lock);
410 if (!ret)
411 put_task_struct(p);
414 return ret;
418 * Clean out CPU timers still ticking when a thread exited. The task
419 * pointer is cleared, and the expiry time is replaced with the residual
420 * time for later timer_gettime calls to return.
421 * This must be called with the siglock held.
423 static void cleanup_timers(struct list_head *head,
424 cputime_t utime, cputime_t stime,
425 unsigned long long sum_exec_runtime)
427 struct cpu_timer_list *timer, *next;
428 cputime_t ptime = cputime_add(utime, stime);
430 list_for_each_entry_safe(timer, next, head, entry) {
431 list_del_init(&timer->entry);
432 if (cputime_lt(timer->expires.cpu, ptime)) {
433 timer->expires.cpu = cputime_zero;
434 } else {
435 timer->expires.cpu = cputime_sub(timer->expires.cpu,
436 ptime);
440 ++head;
441 list_for_each_entry_safe(timer, next, head, entry) {
442 list_del_init(&timer->entry);
443 if (cputime_lt(timer->expires.cpu, utime)) {
444 timer->expires.cpu = cputime_zero;
445 } else {
446 timer->expires.cpu = cputime_sub(timer->expires.cpu,
447 utime);
451 ++head;
452 list_for_each_entry_safe(timer, next, head, entry) {
453 list_del_init(&timer->entry);
454 if (timer->expires.sched < sum_exec_runtime) {
455 timer->expires.sched = 0;
456 } else {
457 timer->expires.sched -= sum_exec_runtime;
463 * These are both called with the siglock held, when the current thread
464 * is being reaped. When the final (leader) thread in the group is reaped,
465 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
467 void posix_cpu_timers_exit(struct task_struct *tsk)
469 cleanup_timers(tsk->cpu_timers,
470 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
473 void posix_cpu_timers_exit_group(struct task_struct *tsk)
475 cleanup_timers(tsk->signal->cpu_timers,
476 cputime_add(tsk->utime, tsk->signal->utime),
477 cputime_add(tsk->stime, tsk->signal->stime),
478 tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
483 * Set the expiry times of all the threads in the process so one of them
484 * will go off before the process cumulative expiry total is reached.
486 static void process_timer_rebalance(struct task_struct *p,
487 unsigned int clock_idx,
488 union cpu_time_count expires,
489 union cpu_time_count val)
491 cputime_t ticks, left;
492 unsigned long long ns, nsleft;
493 struct task_struct *t = p;
494 unsigned int nthreads = atomic_read(&p->signal->live);
496 if (!nthreads)
497 return;
499 switch (clock_idx) {
500 default:
501 BUG();
502 break;
503 case CPUCLOCK_PROF:
504 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
505 nthreads);
506 do {
507 if (likely(!(t->flags & PF_EXITING))) {
508 ticks = cputime_add(prof_ticks(t), left);
509 if (cputime_eq(t->it_prof_expires,
510 cputime_zero) ||
511 cputime_gt(t->it_prof_expires, ticks)) {
512 t->it_prof_expires = ticks;
515 t = next_thread(t);
516 } while (t != p);
517 break;
518 case CPUCLOCK_VIRT:
519 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
520 nthreads);
521 do {
522 if (likely(!(t->flags & PF_EXITING))) {
523 ticks = cputime_add(virt_ticks(t), left);
524 if (cputime_eq(t->it_virt_expires,
525 cputime_zero) ||
526 cputime_gt(t->it_virt_expires, ticks)) {
527 t->it_virt_expires = ticks;
530 t = next_thread(t);
531 } while (t != p);
532 break;
533 case CPUCLOCK_SCHED:
534 nsleft = expires.sched - val.sched;
535 do_div(nsleft, nthreads);
536 nsleft = max_t(unsigned long long, nsleft, 1);
537 do {
538 if (likely(!(t->flags & PF_EXITING))) {
539 ns = t->se.sum_exec_runtime + nsleft;
540 if (t->it_sched_expires == 0 ||
541 t->it_sched_expires > ns) {
542 t->it_sched_expires = ns;
545 t = next_thread(t);
546 } while (t != p);
547 break;
551 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
554 * That's all for this thread or process.
555 * We leave our residual in expires to be reported.
557 put_task_struct(timer->it.cpu.task);
558 timer->it.cpu.task = NULL;
559 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
560 timer->it.cpu.expires,
561 now);
565 * Insert the timer on the appropriate list before any timers that
566 * expire later. This must be called with the tasklist_lock held
567 * for reading, and interrupts disabled.
569 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
571 struct task_struct *p = timer->it.cpu.task;
572 struct list_head *head, *listpos;
573 struct cpu_timer_list *const nt = &timer->it.cpu;
574 struct cpu_timer_list *next;
575 unsigned long i;
577 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
578 p->cpu_timers : p->signal->cpu_timers);
579 head += CPUCLOCK_WHICH(timer->it_clock);
581 BUG_ON(!irqs_disabled());
582 spin_lock(&p->sighand->siglock);
584 listpos = head;
585 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
586 list_for_each_entry(next, head, entry) {
587 if (next->expires.sched > nt->expires.sched)
588 break;
589 listpos = &next->entry;
591 } else {
592 list_for_each_entry(next, head, entry) {
593 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
594 break;
595 listpos = &next->entry;
598 list_add(&nt->entry, listpos);
600 if (listpos == head) {
602 * We are the new earliest-expiring timer.
603 * If we are a thread timer, there can always
604 * be a process timer telling us to stop earlier.
607 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
608 switch (CPUCLOCK_WHICH(timer->it_clock)) {
609 default:
610 BUG();
611 case CPUCLOCK_PROF:
612 if (cputime_eq(p->it_prof_expires,
613 cputime_zero) ||
614 cputime_gt(p->it_prof_expires,
615 nt->expires.cpu))
616 p->it_prof_expires = nt->expires.cpu;
617 break;
618 case CPUCLOCK_VIRT:
619 if (cputime_eq(p->it_virt_expires,
620 cputime_zero) ||
621 cputime_gt(p->it_virt_expires,
622 nt->expires.cpu))
623 p->it_virt_expires = nt->expires.cpu;
624 break;
625 case CPUCLOCK_SCHED:
626 if (p->it_sched_expires == 0 ||
627 p->it_sched_expires > nt->expires.sched)
628 p->it_sched_expires = nt->expires.sched;
629 break;
631 } else {
633 * For a process timer, we must balance
634 * all the live threads' expirations.
636 switch (CPUCLOCK_WHICH(timer->it_clock)) {
637 default:
638 BUG();
639 case CPUCLOCK_VIRT:
640 if (!cputime_eq(p->signal->it_virt_expires,
641 cputime_zero) &&
642 cputime_lt(p->signal->it_virt_expires,
643 timer->it.cpu.expires.cpu))
644 break;
645 goto rebalance;
646 case CPUCLOCK_PROF:
647 if (!cputime_eq(p->signal->it_prof_expires,
648 cputime_zero) &&
649 cputime_lt(p->signal->it_prof_expires,
650 timer->it.cpu.expires.cpu))
651 break;
652 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
653 if (i != RLIM_INFINITY &&
654 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
655 break;
656 goto rebalance;
657 case CPUCLOCK_SCHED:
658 rebalance:
659 process_timer_rebalance(
660 timer->it.cpu.task,
661 CPUCLOCK_WHICH(timer->it_clock),
662 timer->it.cpu.expires, now);
663 break;
668 spin_unlock(&p->sighand->siglock);
672 * The timer is locked, fire it and arrange for its reload.
674 static void cpu_timer_fire(struct k_itimer *timer)
676 if (unlikely(timer->sigq == NULL)) {
678 * This a special case for clock_nanosleep,
679 * not a normal timer from sys_timer_create.
681 wake_up_process(timer->it_process);
682 timer->it.cpu.expires.sched = 0;
683 } else if (timer->it.cpu.incr.sched == 0) {
685 * One-shot timer. Clear it as soon as it's fired.
687 posix_timer_event(timer, 0);
688 timer->it.cpu.expires.sched = 0;
689 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
691 * The signal did not get queued because the signal
692 * was ignored, so we won't get any callback to
693 * reload the timer. But we need to keep it
694 * ticking in case the signal is deliverable next time.
696 posix_cpu_timer_schedule(timer);
701 * Guts of sys_timer_settime for CPU timers.
702 * This is called with the timer locked and interrupts disabled.
703 * If we return TIMER_RETRY, it's necessary to release the timer's lock
704 * and try again. (This happens when the timer is in the middle of firing.)
706 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
707 struct itimerspec *new, struct itimerspec *old)
709 struct task_struct *p = timer->it.cpu.task;
710 union cpu_time_count old_expires, new_expires, val;
711 int ret;
713 if (unlikely(p == NULL)) {
715 * Timer refers to a dead task's clock.
717 return -ESRCH;
720 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
722 read_lock(&tasklist_lock);
724 * We need the tasklist_lock to protect against reaping that
725 * clears p->signal. If p has just been reaped, we can no
726 * longer get any information about it at all.
728 if (unlikely(p->signal == NULL)) {
729 read_unlock(&tasklist_lock);
730 put_task_struct(p);
731 timer->it.cpu.task = NULL;
732 return -ESRCH;
736 * Disarm any old timer after extracting its expiry time.
738 BUG_ON(!irqs_disabled());
740 ret = 0;
741 spin_lock(&p->sighand->siglock);
742 old_expires = timer->it.cpu.expires;
743 if (unlikely(timer->it.cpu.firing)) {
744 timer->it.cpu.firing = -1;
745 ret = TIMER_RETRY;
746 } else
747 list_del_init(&timer->it.cpu.entry);
748 spin_unlock(&p->sighand->siglock);
751 * We need to sample the current value to convert the new
752 * value from to relative and absolute, and to convert the
753 * old value from absolute to relative. To set a process
754 * timer, we need a sample to balance the thread expiry
755 * times (in arm_timer). With an absolute time, we must
756 * check if it's already passed. In short, we need a sample.
758 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
759 cpu_clock_sample(timer->it_clock, p, &val);
760 } else {
761 cpu_clock_sample_group(timer->it_clock, p, &val);
764 if (old) {
765 if (old_expires.sched == 0) {
766 old->it_value.tv_sec = 0;
767 old->it_value.tv_nsec = 0;
768 } else {
770 * Update the timer in case it has
771 * overrun already. If it has,
772 * we'll report it as having overrun
773 * and with the next reloaded timer
774 * already ticking, though we are
775 * swallowing that pending
776 * notification here to install the
777 * new setting.
779 bump_cpu_timer(timer, val);
780 if (cpu_time_before(timer->it_clock, val,
781 timer->it.cpu.expires)) {
782 old_expires = cpu_time_sub(
783 timer->it_clock,
784 timer->it.cpu.expires, val);
785 sample_to_timespec(timer->it_clock,
786 old_expires,
787 &old->it_value);
788 } else {
789 old->it_value.tv_nsec = 1;
790 old->it_value.tv_sec = 0;
795 if (unlikely(ret)) {
797 * We are colliding with the timer actually firing.
798 * Punt after filling in the timer's old value, and
799 * disable this firing since we are already reporting
800 * it as an overrun (thanks to bump_cpu_timer above).
802 read_unlock(&tasklist_lock);
803 goto out;
806 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
807 cpu_time_add(timer->it_clock, &new_expires, val);
811 * Install the new expiry time (or zero).
812 * For a timer with no notification action, we don't actually
813 * arm the timer (we'll just fake it for timer_gettime).
815 timer->it.cpu.expires = new_expires;
816 if (new_expires.sched != 0 &&
817 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
818 cpu_time_before(timer->it_clock, val, new_expires)) {
819 arm_timer(timer, val);
822 read_unlock(&tasklist_lock);
825 * Install the new reload setting, and
826 * set up the signal and overrun bookkeeping.
828 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
829 &new->it_interval);
832 * This acts as a modification timestamp for the timer,
833 * so any automatic reload attempt will punt on seeing
834 * that we have reset the timer manually.
836 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
837 ~REQUEUE_PENDING;
838 timer->it_overrun_last = 0;
839 timer->it_overrun = -1;
841 if (new_expires.sched != 0 &&
842 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
843 !cpu_time_before(timer->it_clock, val, new_expires)) {
845 * The designated time already passed, so we notify
846 * immediately, even if the thread never runs to
847 * accumulate more time on this clock.
849 cpu_timer_fire(timer);
852 ret = 0;
853 out:
854 if (old) {
855 sample_to_timespec(timer->it_clock,
856 timer->it.cpu.incr, &old->it_interval);
858 return ret;
861 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
863 union cpu_time_count now;
864 struct task_struct *p = timer->it.cpu.task;
865 int clear_dead;
868 * Easy part: convert the reload time.
870 sample_to_timespec(timer->it_clock,
871 timer->it.cpu.incr, &itp->it_interval);
873 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
874 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
875 return;
878 if (unlikely(p == NULL)) {
880 * This task already died and the timer will never fire.
881 * In this case, expires is actually the dead value.
883 dead:
884 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
885 &itp->it_value);
886 return;
890 * Sample the clock to take the difference with the expiry time.
892 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
893 cpu_clock_sample(timer->it_clock, p, &now);
894 clear_dead = p->exit_state;
895 } else {
896 read_lock(&tasklist_lock);
897 if (unlikely(p->signal == NULL)) {
899 * The process has been reaped.
900 * We can't even collect a sample any more.
901 * Call the timer disarmed, nothing else to do.
903 put_task_struct(p);
904 timer->it.cpu.task = NULL;
905 timer->it.cpu.expires.sched = 0;
906 read_unlock(&tasklist_lock);
907 goto dead;
908 } else {
909 cpu_clock_sample_group(timer->it_clock, p, &now);
910 clear_dead = (unlikely(p->exit_state) &&
911 thread_group_empty(p));
913 read_unlock(&tasklist_lock);
916 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
917 if (timer->it.cpu.incr.sched == 0 &&
918 cpu_time_before(timer->it_clock,
919 timer->it.cpu.expires, now)) {
921 * Do-nothing timer expired and has no reload,
922 * so it's as if it was never set.
924 timer->it.cpu.expires.sched = 0;
925 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
926 return;
929 * Account for any expirations and reloads that should
930 * have happened.
932 bump_cpu_timer(timer, now);
935 if (unlikely(clear_dead)) {
937 * We've noticed that the thread is dead, but
938 * not yet reaped. Take this opportunity to
939 * drop our task ref.
941 clear_dead_task(timer, now);
942 goto dead;
945 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
946 sample_to_timespec(timer->it_clock,
947 cpu_time_sub(timer->it_clock,
948 timer->it.cpu.expires, now),
949 &itp->it_value);
950 } else {
952 * The timer should have expired already, but the firing
953 * hasn't taken place yet. Say it's just about to expire.
955 itp->it_value.tv_nsec = 1;
956 itp->it_value.tv_sec = 0;
961 * Check for any per-thread CPU timers that have fired and move them off
962 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
963 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
965 static void check_thread_timers(struct task_struct *tsk,
966 struct list_head *firing)
968 int maxfire;
969 struct list_head *timers = tsk->cpu_timers;
970 struct signal_struct *const sig = tsk->signal;
972 maxfire = 20;
973 tsk->it_prof_expires = cputime_zero;
974 while (!list_empty(timers)) {
975 struct cpu_timer_list *t = list_first_entry(timers,
976 struct cpu_timer_list,
977 entry);
978 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
979 tsk->it_prof_expires = t->expires.cpu;
980 break;
982 t->firing = 1;
983 list_move_tail(&t->entry, firing);
986 ++timers;
987 maxfire = 20;
988 tsk->it_virt_expires = cputime_zero;
989 while (!list_empty(timers)) {
990 struct cpu_timer_list *t = list_first_entry(timers,
991 struct cpu_timer_list,
992 entry);
993 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
994 tsk->it_virt_expires = t->expires.cpu;
995 break;
997 t->firing = 1;
998 list_move_tail(&t->entry, firing);
1001 ++timers;
1002 maxfire = 20;
1003 tsk->it_sched_expires = 0;
1004 while (!list_empty(timers)) {
1005 struct cpu_timer_list *t = list_first_entry(timers,
1006 struct cpu_timer_list,
1007 entry);
1008 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1009 tsk->it_sched_expires = t->expires.sched;
1010 break;
1012 t->firing = 1;
1013 list_move_tail(&t->entry, firing);
1017 * Check for the special case thread timers.
1019 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1020 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1021 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1023 if (hard != RLIM_INFINITY &&
1024 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1026 * At the hard limit, we just die.
1027 * No need to calculate anything else now.
1029 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1030 return;
1032 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1034 * At the soft limit, send a SIGXCPU every second.
1036 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1037 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1038 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1039 USEC_PER_SEC;
1041 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1047 * Check for any per-thread CPU timers that have fired and move them
1048 * off the tsk->*_timers list onto the firing list. Per-thread timers
1049 * have already been taken off.
1051 static void check_process_timers(struct task_struct *tsk,
1052 struct list_head *firing)
1054 int maxfire;
1055 struct signal_struct *const sig = tsk->signal;
1056 cputime_t utime, stime, ptime, virt_expires, prof_expires;
1057 unsigned long long sum_sched_runtime, sched_expires;
1058 struct task_struct *t;
1059 struct list_head *timers = sig->cpu_timers;
1062 * Don't sample the current process CPU clocks if there are no timers.
1064 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1065 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1066 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1067 list_empty(&timers[CPUCLOCK_VIRT]) &&
1068 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1069 list_empty(&timers[CPUCLOCK_SCHED]))
1070 return;
1073 * Collect the current process totals.
1075 utime = sig->utime;
1076 stime = sig->stime;
1077 sum_sched_runtime = sig->sum_sched_runtime;
1078 t = tsk;
1079 do {
1080 utime = cputime_add(utime, t->utime);
1081 stime = cputime_add(stime, t->stime);
1082 sum_sched_runtime += t->se.sum_exec_runtime;
1083 t = next_thread(t);
1084 } while (t != tsk);
1085 ptime = cputime_add(utime, stime);
1087 maxfire = 20;
1088 prof_expires = cputime_zero;
1089 while (!list_empty(timers)) {
1090 struct cpu_timer_list *t = list_first_entry(timers,
1091 struct cpu_timer_list,
1092 entry);
1093 if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1094 prof_expires = t->expires.cpu;
1095 break;
1097 t->firing = 1;
1098 list_move_tail(&t->entry, firing);
1101 ++timers;
1102 maxfire = 20;
1103 virt_expires = cputime_zero;
1104 while (!list_empty(timers)) {
1105 struct cpu_timer_list *t = list_first_entry(timers,
1106 struct cpu_timer_list,
1107 entry);
1108 if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1109 virt_expires = t->expires.cpu;
1110 break;
1112 t->firing = 1;
1113 list_move_tail(&t->entry, firing);
1116 ++timers;
1117 maxfire = 20;
1118 sched_expires = 0;
1119 while (!list_empty(timers)) {
1120 struct cpu_timer_list *t = list_first_entry(timers,
1121 struct cpu_timer_list,
1122 entry);
1123 if (!--maxfire || sum_sched_runtime < t->expires.sched) {
1124 sched_expires = t->expires.sched;
1125 break;
1127 t->firing = 1;
1128 list_move_tail(&t->entry, firing);
1132 * Check for the special case process timers.
1134 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1135 if (cputime_ge(ptime, sig->it_prof_expires)) {
1136 /* ITIMER_PROF fires and reloads. */
1137 sig->it_prof_expires = sig->it_prof_incr;
1138 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1139 sig->it_prof_expires = cputime_add(
1140 sig->it_prof_expires, ptime);
1142 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1144 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1145 (cputime_eq(prof_expires, cputime_zero) ||
1146 cputime_lt(sig->it_prof_expires, prof_expires))) {
1147 prof_expires = sig->it_prof_expires;
1150 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1151 if (cputime_ge(utime, sig->it_virt_expires)) {
1152 /* ITIMER_VIRTUAL fires and reloads. */
1153 sig->it_virt_expires = sig->it_virt_incr;
1154 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1155 sig->it_virt_expires = cputime_add(
1156 sig->it_virt_expires, utime);
1158 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1160 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1161 (cputime_eq(virt_expires, cputime_zero) ||
1162 cputime_lt(sig->it_virt_expires, virt_expires))) {
1163 virt_expires = sig->it_virt_expires;
1166 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1167 unsigned long psecs = cputime_to_secs(ptime);
1168 cputime_t x;
1169 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1171 * At the hard limit, we just die.
1172 * No need to calculate anything else now.
1174 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1175 return;
1177 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1179 * At the soft limit, send a SIGXCPU every second.
1181 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1182 if (sig->rlim[RLIMIT_CPU].rlim_cur
1183 < sig->rlim[RLIMIT_CPU].rlim_max) {
1184 sig->rlim[RLIMIT_CPU].rlim_cur++;
1187 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1188 if (cputime_eq(prof_expires, cputime_zero) ||
1189 cputime_lt(x, prof_expires)) {
1190 prof_expires = x;
1194 if (!cputime_eq(prof_expires, cputime_zero) ||
1195 !cputime_eq(virt_expires, cputime_zero) ||
1196 sched_expires != 0) {
1198 * Rebalance the threads' expiry times for the remaining
1199 * process CPU timers.
1202 cputime_t prof_left, virt_left, ticks;
1203 unsigned long long sched_left, sched;
1204 const unsigned int nthreads = atomic_read(&sig->live);
1206 if (!nthreads)
1207 return;
1209 prof_left = cputime_sub(prof_expires, utime);
1210 prof_left = cputime_sub(prof_left, stime);
1211 prof_left = cputime_div_non_zero(prof_left, nthreads);
1212 virt_left = cputime_sub(virt_expires, utime);
1213 virt_left = cputime_div_non_zero(virt_left, nthreads);
1214 if (sched_expires) {
1215 sched_left = sched_expires - sum_sched_runtime;
1216 do_div(sched_left, nthreads);
1217 sched_left = max_t(unsigned long long, sched_left, 1);
1218 } else {
1219 sched_left = 0;
1221 t = tsk;
1222 do {
1223 if (unlikely(t->flags & PF_EXITING))
1224 continue;
1226 ticks = cputime_add(cputime_add(t->utime, t->stime),
1227 prof_left);
1228 if (!cputime_eq(prof_expires, cputime_zero) &&
1229 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1230 cputime_gt(t->it_prof_expires, ticks))) {
1231 t->it_prof_expires = ticks;
1234 ticks = cputime_add(t->utime, virt_left);
1235 if (!cputime_eq(virt_expires, cputime_zero) &&
1236 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1237 cputime_gt(t->it_virt_expires, ticks))) {
1238 t->it_virt_expires = ticks;
1241 sched = t->se.sum_exec_runtime + sched_left;
1242 if (sched_expires && (t->it_sched_expires == 0 ||
1243 t->it_sched_expires > sched)) {
1244 t->it_sched_expires = sched;
1246 } while ((t = next_thread(t)) != tsk);
1251 * This is called from the signal code (via do_schedule_next_timer)
1252 * when the last timer signal was delivered and we have to reload the timer.
1254 void posix_cpu_timer_schedule(struct k_itimer *timer)
1256 struct task_struct *p = timer->it.cpu.task;
1257 union cpu_time_count now;
1259 if (unlikely(p == NULL))
1261 * The task was cleaned up already, no future firings.
1263 goto out;
1266 * Fetch the current sample and update the timer's expiry time.
1268 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1269 cpu_clock_sample(timer->it_clock, p, &now);
1270 bump_cpu_timer(timer, now);
1271 if (unlikely(p->exit_state)) {
1272 clear_dead_task(timer, now);
1273 goto out;
1275 read_lock(&tasklist_lock); /* arm_timer needs it. */
1276 } else {
1277 read_lock(&tasklist_lock);
1278 if (unlikely(p->signal == NULL)) {
1280 * The process has been reaped.
1281 * We can't even collect a sample any more.
1283 put_task_struct(p);
1284 timer->it.cpu.task = p = NULL;
1285 timer->it.cpu.expires.sched = 0;
1286 goto out_unlock;
1287 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1289 * We've noticed that the thread is dead, but
1290 * not yet reaped. Take this opportunity to
1291 * drop our task ref.
1293 clear_dead_task(timer, now);
1294 goto out_unlock;
1296 cpu_clock_sample_group(timer->it_clock, p, &now);
1297 bump_cpu_timer(timer, now);
1298 /* Leave the tasklist_lock locked for the call below. */
1302 * Now re-arm for the new expiry time.
1304 arm_timer(timer, now);
1306 out_unlock:
1307 read_unlock(&tasklist_lock);
1309 out:
1310 timer->it_overrun_last = timer->it_overrun;
1311 timer->it_overrun = -1;
1312 ++timer->it_requeue_pending;
1316 * This is called from the timer interrupt handler. The irq handler has
1317 * already updated our counts. We need to check if any timers fire now.
1318 * Interrupts are disabled.
1320 void run_posix_cpu_timers(struct task_struct *tsk)
1322 LIST_HEAD(firing);
1323 struct k_itimer *timer, *next;
1325 BUG_ON(!irqs_disabled());
1327 #define UNEXPIRED(clock) \
1328 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1329 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1331 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1332 (tsk->it_sched_expires == 0 ||
1333 tsk->se.sum_exec_runtime < tsk->it_sched_expires))
1334 return;
1336 #undef UNEXPIRED
1339 * Double-check with locks held.
1341 read_lock(&tasklist_lock);
1342 if (likely(tsk->signal != NULL)) {
1343 spin_lock(&tsk->sighand->siglock);
1346 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1347 * all the timers that are firing, and put them on the firing list.
1349 check_thread_timers(tsk, &firing);
1350 check_process_timers(tsk, &firing);
1353 * We must release these locks before taking any timer's lock.
1354 * There is a potential race with timer deletion here, as the
1355 * siglock now protects our private firing list. We have set
1356 * the firing flag in each timer, so that a deletion attempt
1357 * that gets the timer lock before we do will give it up and
1358 * spin until we've taken care of that timer below.
1360 spin_unlock(&tsk->sighand->siglock);
1362 read_unlock(&tasklist_lock);
1365 * Now that all the timers on our list have the firing flag,
1366 * noone will touch their list entries but us. We'll take
1367 * each timer's lock before clearing its firing flag, so no
1368 * timer call will interfere.
1370 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1371 int firing;
1372 spin_lock(&timer->it_lock);
1373 list_del_init(&timer->it.cpu.entry);
1374 firing = timer->it.cpu.firing;
1375 timer->it.cpu.firing = 0;
1377 * The firing flag is -1 if we collided with a reset
1378 * of the timer, which already reported this
1379 * almost-firing as an overrun. So don't generate an event.
1381 if (likely(firing >= 0)) {
1382 cpu_timer_fire(timer);
1384 spin_unlock(&timer->it_lock);
1389 * Set one of the process-wide special case CPU timers.
1390 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1391 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1392 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1393 * it to be absolute, *oldval is absolute and we update it to be relative.
1395 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1396 cputime_t *newval, cputime_t *oldval)
1398 union cpu_time_count now;
1399 struct list_head *head;
1401 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1402 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1404 if (oldval) {
1405 if (!cputime_eq(*oldval, cputime_zero)) {
1406 if (cputime_le(*oldval, now.cpu)) {
1407 /* Just about to fire. */
1408 *oldval = jiffies_to_cputime(1);
1409 } else {
1410 *oldval = cputime_sub(*oldval, now.cpu);
1414 if (cputime_eq(*newval, cputime_zero))
1415 return;
1416 *newval = cputime_add(*newval, now.cpu);
1419 * If the RLIMIT_CPU timer will expire before the
1420 * ITIMER_PROF timer, we have nothing else to do.
1422 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1423 < cputime_to_secs(*newval))
1424 return;
1428 * Check whether there are any process timers already set to fire
1429 * before this one. If so, we don't have anything more to do.
1431 head = &tsk->signal->cpu_timers[clock_idx];
1432 if (list_empty(head) ||
1433 cputime_ge(list_first_entry(head,
1434 struct cpu_timer_list, entry)->expires.cpu,
1435 *newval)) {
1437 * Rejigger each thread's expiry time so that one will
1438 * notice before we hit the process-cumulative expiry time.
1440 union cpu_time_count expires = { .sched = 0 };
1441 expires.cpu = *newval;
1442 process_timer_rebalance(tsk, clock_idx, expires, now);
1446 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1447 struct timespec *rqtp, struct itimerspec *it)
1449 struct k_itimer timer;
1450 int error;
1453 * Set up a temporary timer and then wait for it to go off.
1455 memset(&timer, 0, sizeof timer);
1456 spin_lock_init(&timer.it_lock);
1457 timer.it_clock = which_clock;
1458 timer.it_overrun = -1;
1459 error = posix_cpu_timer_create(&timer);
1460 timer.it_process = current;
1461 if (!error) {
1462 static struct itimerspec zero_it;
1464 memset(it, 0, sizeof *it);
1465 it->it_value = *rqtp;
1467 spin_lock_irq(&timer.it_lock);
1468 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1469 if (error) {
1470 spin_unlock_irq(&timer.it_lock);
1471 return error;
1474 while (!signal_pending(current)) {
1475 if (timer.it.cpu.expires.sched == 0) {
1477 * Our timer fired and was reset.
1479 spin_unlock_irq(&timer.it_lock);
1480 return 0;
1484 * Block until cpu_timer_fire (or a signal) wakes us.
1486 __set_current_state(TASK_INTERRUPTIBLE);
1487 spin_unlock_irq(&timer.it_lock);
1488 schedule();
1489 spin_lock_irq(&timer.it_lock);
1493 * We were interrupted by a signal.
1495 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1496 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1497 spin_unlock_irq(&timer.it_lock);
1499 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1501 * It actually did fire already.
1503 return 0;
1506 error = -ERESTART_RESTARTBLOCK;
1509 return error;
1512 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1513 struct timespec *rqtp, struct timespec __user *rmtp)
1515 struct restart_block *restart_block =
1516 &current_thread_info()->restart_block;
1517 struct itimerspec it;
1518 int error;
1521 * Diagnose required errors first.
1523 if (CPUCLOCK_PERTHREAD(which_clock) &&
1524 (CPUCLOCK_PID(which_clock) == 0 ||
1525 CPUCLOCK_PID(which_clock) == current->pid))
1526 return -EINVAL;
1528 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1530 if (error == -ERESTART_RESTARTBLOCK) {
1532 if (flags & TIMER_ABSTIME)
1533 return -ERESTARTNOHAND;
1535 * Report back to the user the time still remaining.
1537 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1538 return -EFAULT;
1540 restart_block->fn = posix_cpu_nsleep_restart;
1541 restart_block->arg0 = which_clock;
1542 restart_block->arg1 = (unsigned long) rmtp;
1543 restart_block->arg2 = rqtp->tv_sec;
1544 restart_block->arg3 = rqtp->tv_nsec;
1546 return error;
1549 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1551 clockid_t which_clock = restart_block->arg0;
1552 struct timespec __user *rmtp;
1553 struct timespec t;
1554 struct itimerspec it;
1555 int error;
1557 rmtp = (struct timespec __user *) restart_block->arg1;
1558 t.tv_sec = restart_block->arg2;
1559 t.tv_nsec = restart_block->arg3;
1561 restart_block->fn = do_no_restart_syscall;
1562 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1564 if (error == -ERESTART_RESTARTBLOCK) {
1566 * Report back to the user the time still remaining.
1568 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1569 return -EFAULT;
1571 restart_block->fn = posix_cpu_nsleep_restart;
1572 restart_block->arg0 = which_clock;
1573 restart_block->arg1 = (unsigned long) rmtp;
1574 restart_block->arg2 = t.tv_sec;
1575 restart_block->arg3 = t.tv_nsec;
1577 return error;
1582 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1583 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1585 static int process_cpu_clock_getres(const clockid_t which_clock,
1586 struct timespec *tp)
1588 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1590 static int process_cpu_clock_get(const clockid_t which_clock,
1591 struct timespec *tp)
1593 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1595 static int process_cpu_timer_create(struct k_itimer *timer)
1597 timer->it_clock = PROCESS_CLOCK;
1598 return posix_cpu_timer_create(timer);
1600 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1601 struct timespec *rqtp,
1602 struct timespec __user *rmtp)
1604 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1606 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1608 return -EINVAL;
1610 static int thread_cpu_clock_getres(const clockid_t which_clock,
1611 struct timespec *tp)
1613 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1615 static int thread_cpu_clock_get(const clockid_t which_clock,
1616 struct timespec *tp)
1618 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1620 static int thread_cpu_timer_create(struct k_itimer *timer)
1622 timer->it_clock = THREAD_CLOCK;
1623 return posix_cpu_timer_create(timer);
1625 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1626 struct timespec *rqtp, struct timespec __user *rmtp)
1628 return -EINVAL;
1630 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1632 return -EINVAL;
1635 static __init int init_posix_cpu_timers(void)
1637 struct k_clock process = {
1638 .clock_getres = process_cpu_clock_getres,
1639 .clock_get = process_cpu_clock_get,
1640 .clock_set = do_posix_clock_nosettime,
1641 .timer_create = process_cpu_timer_create,
1642 .nsleep = process_cpu_nsleep,
1643 .nsleep_restart = process_cpu_nsleep_restart,
1645 struct k_clock thread = {
1646 .clock_getres = thread_cpu_clock_getres,
1647 .clock_get = thread_cpu_clock_get,
1648 .clock_set = do_posix_clock_nosettime,
1649 .timer_create = thread_cpu_timer_create,
1650 .nsleep = thread_cpu_nsleep,
1651 .nsleep_restart = thread_cpu_nsleep_restart,
1654 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1655 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1657 return 0;
1659 __initcall(init_posix_cpu_timers);