omap: i2c: add a timeout to the busy waiting
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / mon / mon_bin.c
blobddf7f9a1b3362c37178ac2cccc9f81f828d7bfcd
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
4 * This is a binary format reader.
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
22 #include <asm/uaccess.h>
24 #include "usb_mon.h"
27 * Defined by USB 2.0 clause 9.3, table 9.2.
29 #define SETUP_LEN 8
31 /* ioctl macros */
32 #define MON_IOC_MAGIC 0x92
34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42 /* #9 was MON_IOCT_SETAPI */
43 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
45 #ifdef CONFIG_COMPAT
46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49 #endif
52 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53 * But it's all right. Just use a simple way to make sure the chunk is never
54 * smaller than a page.
56 * N.B. An application does not know our chunk size.
58 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59 * page-sized chunks for the time being.
61 #define CHUNK_SIZE PAGE_SIZE
62 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
65 * The magic limit was calculated so that it allows the monitoring
66 * application to pick data once in two ticks. This way, another application,
67 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69 * enormous overhead built into the bus protocol, so we need about 1000 KB.
71 * This is still too much for most cases, where we just snoop a few
72 * descriptor fetches for enumeration. So, the default is a "reasonable"
73 * amount for systems with HZ=250 and incomplete bus saturation.
75 * XXX What about multi-megabyte URBs which take minutes to transfer?
77 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
78 #define BUFF_DFL CHUNK_ALIGN(300*1024)
79 #define BUFF_MIN CHUNK_ALIGN(8*1024)
82 * The per-event API header (2 per URB).
84 * This structure is seen in userland as defined by the documentation.
86 struct mon_bin_hdr {
87 u64 id; /* URB ID - from submission to callback */
88 unsigned char type; /* Same as in text API; extensible. */
89 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
90 unsigned char epnum; /* Endpoint number and transfer direction */
91 unsigned char devnum; /* Device address */
92 unsigned short busnum; /* Bus number */
93 char flag_setup;
94 char flag_data;
95 s64 ts_sec; /* gettimeofday */
96 s32 ts_usec; /* gettimeofday */
97 int status;
98 unsigned int len_urb; /* Length of data (submitted or actual) */
99 unsigned int len_cap; /* Delivered length */
100 union {
101 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
102 struct iso_rec {
103 int error_count;
104 int numdesc;
105 } iso;
106 } s;
107 int interval;
108 int start_frame;
109 unsigned int xfer_flags;
110 unsigned int ndesc; /* Actual number of ISO descriptors */
114 * ISO vector, packed into the head of data stream.
115 * This has to take 16 bytes to make sure that the end of buffer
116 * wrap is not happening in the middle of a descriptor.
118 struct mon_bin_isodesc {
119 int iso_status;
120 unsigned int iso_off;
121 unsigned int iso_len;
122 u32 _pad;
125 /* per file statistic */
126 struct mon_bin_stats {
127 u32 queued;
128 u32 dropped;
131 struct mon_bin_get {
132 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
133 void __user *data;
134 size_t alloc; /* Length of data (can be zero) */
137 struct mon_bin_mfetch {
138 u32 __user *offvec; /* Vector of events fetched */
139 u32 nfetch; /* Number of events to fetch (out: fetched) */
140 u32 nflush; /* Number of events to flush */
143 #ifdef CONFIG_COMPAT
144 struct mon_bin_get32 {
145 u32 hdr32;
146 u32 data32;
147 u32 alloc32;
150 struct mon_bin_mfetch32 {
151 u32 offvec32;
152 u32 nfetch32;
153 u32 nflush32;
155 #endif
157 /* Having these two values same prevents wrapping of the mon_bin_hdr */
158 #define PKT_ALIGN 64
159 #define PKT_SIZE 64
161 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
162 #define PKT_SZ_API1 64 /* API 1 size: extra fields */
164 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
166 /* max number of USB bus supported */
167 #define MON_BIN_MAX_MINOR 128
170 * The buffer: map of used pages.
172 struct mon_pgmap {
173 struct page *pg;
174 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
178 * This gets associated with an open file struct.
180 struct mon_reader_bin {
181 /* The buffer: one per open. */
182 spinlock_t b_lock; /* Protect b_cnt, b_in */
183 unsigned int b_size; /* Current size of the buffer - bytes */
184 unsigned int b_cnt; /* Bytes used */
185 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
186 unsigned int b_read; /* Amount of read data in curr. pkt. */
187 struct mon_pgmap *b_vec; /* The map array */
188 wait_queue_head_t b_wait; /* Wait for data here */
190 struct mutex fetch_lock; /* Protect b_read, b_out */
191 int mmap_active;
193 /* A list of these is needed for "bus 0". Some time later. */
194 struct mon_reader r;
196 /* Stats */
197 unsigned int cnt_lost;
200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201 unsigned int offset)
203 return (struct mon_bin_hdr *)
204 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
207 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
209 static unsigned char xfer_to_pipe[4] = {
210 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
213 static struct class *mon_bin_class;
214 static dev_t mon_bin_dev0;
215 static struct cdev mon_bin_cdev;
217 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218 unsigned int offset, unsigned int size);
219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221 static void mon_free_buff(struct mon_pgmap *map, int npages);
224 * This is a "chunked memcpy". It does not manipulate any counters.
226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227 unsigned int off, const unsigned char *from, unsigned int length)
229 unsigned int step_len;
230 unsigned char *buf;
231 unsigned int in_page;
233 while (length) {
235 * Determine step_len.
237 step_len = length;
238 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 if (in_page < step_len)
240 step_len = in_page;
243 * Copy data and advance pointers.
245 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 memcpy(buf, from, step_len);
247 if ((off += step_len) >= this->b_size) off = 0;
248 from += step_len;
249 length -= step_len;
251 return off;
255 * This is a little worse than the above because it's "chunked copy_to_user".
256 * The return value is an error code, not an offset.
258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259 char __user *to, int length)
261 unsigned int step_len;
262 unsigned char *buf;
263 unsigned int in_page;
265 while (length) {
267 * Determine step_len.
269 step_len = length;
270 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271 if (in_page < step_len)
272 step_len = in_page;
275 * Copy data and advance pointers.
277 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278 if (copy_to_user(to, buf, step_len))
279 return -EINVAL;
280 if ((off += step_len) >= this->b_size) off = 0;
281 to += step_len;
282 length -= step_len;
284 return 0;
288 * Allocate an (aligned) area in the buffer.
289 * This is called under b_lock.
290 * Returns ~0 on failure.
292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293 unsigned int size)
295 unsigned int offset;
297 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298 if (rp->b_cnt + size > rp->b_size)
299 return ~0;
300 offset = rp->b_in;
301 rp->b_cnt += size;
302 if ((rp->b_in += size) >= rp->b_size)
303 rp->b_in -= rp->b_size;
304 return offset;
308 * This is the same thing as mon_buff_area_alloc, only it does not allow
309 * buffers to wrap. This is needed by applications which pass references
310 * into mmap-ed buffers up their stacks (libpcap can do that).
312 * Currently, we always have the header stuck with the data, although
313 * it is not strictly speaking necessary.
315 * When a buffer would wrap, we place a filler packet to mark the space.
317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318 unsigned int size)
320 unsigned int offset;
321 unsigned int fill_size;
323 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 if (rp->b_cnt + size > rp->b_size)
325 return ~0;
326 if (rp->b_in + size > rp->b_size) {
328 * This would wrap. Find if we still have space after
329 * skipping to the end of the buffer. If we do, place
330 * a filler packet and allocate a new packet.
332 fill_size = rp->b_size - rp->b_in;
333 if (rp->b_cnt + size + fill_size > rp->b_size)
334 return ~0;
335 mon_buff_area_fill(rp, rp->b_in, fill_size);
337 offset = 0;
338 rp->b_in = size;
339 rp->b_cnt += size + fill_size;
340 } else if (rp->b_in + size == rp->b_size) {
341 offset = rp->b_in;
342 rp->b_in = 0;
343 rp->b_cnt += size;
344 } else {
345 offset = rp->b_in;
346 rp->b_in += size;
347 rp->b_cnt += size;
349 return offset;
353 * Return a few (kilo-)bytes to the head of the buffer.
354 * This is used if a data fetch fails.
356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
359 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
360 rp->b_cnt -= size;
361 if (rp->b_in < size)
362 rp->b_in += rp->b_size;
363 rp->b_in -= size;
367 * This has to be called under both b_lock and fetch_lock, because
368 * it accesses both b_cnt and b_out.
370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
373 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374 rp->b_cnt -= size;
375 if ((rp->b_out += size) >= rp->b_size)
376 rp->b_out -= rp->b_size;
379 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380 unsigned int offset, unsigned int size)
382 struct mon_bin_hdr *ep;
384 ep = MON_OFF2HDR(rp, offset);
385 memset(ep, 0, PKT_SIZE);
386 ep->type = '@';
387 ep->len_cap = size - PKT_SIZE;
390 static inline char mon_bin_get_setup(unsigned char *setupb,
391 const struct urb *urb, char ev_type)
394 if (urb->setup_packet == NULL)
395 return 'Z';
396 memcpy(setupb, urb->setup_packet, SETUP_LEN);
397 return 0;
400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401 unsigned int offset, struct urb *urb, unsigned int length,
402 char *flag)
404 int i;
405 struct scatterlist *sg;
406 unsigned int this_len;
408 *flag = 0;
409 if (urb->num_sgs == 0) {
410 if (urb->transfer_buffer == NULL) {
411 *flag = 'Z';
412 return length;
414 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415 length = 0;
417 } else {
418 /* If IOMMU coalescing occurred, we cannot trust sg_page */
419 if (urb->sg->nents != urb->num_sgs) {
420 *flag = 'D';
421 return length;
424 /* Copy up to the first non-addressable segment */
425 for_each_sg(urb->sg->sg, sg, urb->num_sgs, i) {
426 if (length == 0 || PageHighMem(sg_page(sg)))
427 break;
428 this_len = min_t(unsigned int, sg->length, length);
429 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430 this_len);
431 length -= this_len;
433 if (i == 0)
434 *flag = 'D';
437 return length;
440 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
441 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
443 struct mon_bin_isodesc *dp;
444 struct usb_iso_packet_descriptor *fp;
446 fp = urb->iso_frame_desc;
447 while (ndesc-- != 0) {
448 dp = (struct mon_bin_isodesc *)
449 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
450 dp->iso_status = fp->status;
451 dp->iso_off = fp->offset;
452 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
453 dp->_pad = 0;
454 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
455 offset = 0;
456 fp++;
460 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
461 char ev_type, int status)
463 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
464 struct timeval ts;
465 unsigned long flags;
466 unsigned int urb_length;
467 unsigned int offset;
468 unsigned int length;
469 unsigned int delta;
470 unsigned int ndesc, lendesc;
471 unsigned char dir;
472 struct mon_bin_hdr *ep;
473 char data_tag = 0;
475 do_gettimeofday(&ts);
477 spin_lock_irqsave(&rp->b_lock, flags);
480 * Find the maximum allowable length, then allocate space.
482 if (usb_endpoint_xfer_isoc(epd)) {
483 if (urb->number_of_packets < 0) {
484 ndesc = 0;
485 } else if (urb->number_of_packets >= ISODESC_MAX) {
486 ndesc = ISODESC_MAX;
487 } else {
488 ndesc = urb->number_of_packets;
490 } else {
491 ndesc = 0;
493 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
495 urb_length = (ev_type == 'S') ?
496 urb->transfer_buffer_length : urb->actual_length;
497 length = urb_length;
499 if (length >= rp->b_size/5)
500 length = rp->b_size/5;
502 if (usb_urb_dir_in(urb)) {
503 if (ev_type == 'S') {
504 length = 0;
505 data_tag = '<';
507 /* Cannot rely on endpoint number in case of control ep.0 */
508 dir = USB_DIR_IN;
509 } else {
510 if (ev_type == 'C') {
511 length = 0;
512 data_tag = '>';
514 dir = 0;
517 if (rp->mmap_active) {
518 offset = mon_buff_area_alloc_contiguous(rp,
519 length + PKT_SIZE + lendesc);
520 } else {
521 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
523 if (offset == ~0) {
524 rp->cnt_lost++;
525 spin_unlock_irqrestore(&rp->b_lock, flags);
526 return;
529 ep = MON_OFF2HDR(rp, offset);
530 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
533 * Fill the allocated area.
535 memset(ep, 0, PKT_SIZE);
536 ep->type = ev_type;
537 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
538 ep->epnum = dir | usb_endpoint_num(epd);
539 ep->devnum = urb->dev->devnum;
540 ep->busnum = urb->dev->bus->busnum;
541 ep->id = (unsigned long) urb;
542 ep->ts_sec = ts.tv_sec;
543 ep->ts_usec = ts.tv_usec;
544 ep->status = status;
545 ep->len_urb = urb_length;
546 ep->len_cap = length + lendesc;
547 ep->xfer_flags = urb->transfer_flags;
549 if (usb_endpoint_xfer_int(epd)) {
550 ep->interval = urb->interval;
551 } else if (usb_endpoint_xfer_isoc(epd)) {
552 ep->interval = urb->interval;
553 ep->start_frame = urb->start_frame;
554 ep->s.iso.error_count = urb->error_count;
555 ep->s.iso.numdesc = urb->number_of_packets;
558 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
559 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
560 } else {
561 ep->flag_setup = '-';
564 if (ndesc != 0) {
565 ep->ndesc = ndesc;
566 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
567 if ((offset += lendesc) >= rp->b_size)
568 offset -= rp->b_size;
571 if (length != 0) {
572 length = mon_bin_get_data(rp, offset, urb, length,
573 &ep->flag_data);
574 if (length > 0) {
575 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
576 ep->len_cap -= length;
577 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
578 mon_buff_area_shrink(rp, delta);
580 } else {
581 ep->flag_data = data_tag;
584 spin_unlock_irqrestore(&rp->b_lock, flags);
586 wake_up(&rp->b_wait);
589 static void mon_bin_submit(void *data, struct urb *urb)
591 struct mon_reader_bin *rp = data;
592 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
595 static void mon_bin_complete(void *data, struct urb *urb, int status)
597 struct mon_reader_bin *rp = data;
598 mon_bin_event(rp, urb, 'C', status);
601 static void mon_bin_error(void *data, struct urb *urb, int error)
603 struct mon_reader_bin *rp = data;
604 struct timeval ts;
605 unsigned long flags;
606 unsigned int offset;
607 struct mon_bin_hdr *ep;
609 do_gettimeofday(&ts);
611 spin_lock_irqsave(&rp->b_lock, flags);
613 offset = mon_buff_area_alloc(rp, PKT_SIZE);
614 if (offset == ~0) {
615 /* Not incrementing cnt_lost. Just because. */
616 spin_unlock_irqrestore(&rp->b_lock, flags);
617 return;
620 ep = MON_OFF2HDR(rp, offset);
622 memset(ep, 0, PKT_SIZE);
623 ep->type = 'E';
624 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
625 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
626 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
627 ep->devnum = urb->dev->devnum;
628 ep->busnum = urb->dev->bus->busnum;
629 ep->id = (unsigned long) urb;
630 ep->ts_sec = ts.tv_sec;
631 ep->ts_usec = ts.tv_usec;
632 ep->status = error;
634 ep->flag_setup = '-';
635 ep->flag_data = 'E';
637 spin_unlock_irqrestore(&rp->b_lock, flags);
639 wake_up(&rp->b_wait);
642 static int mon_bin_open(struct inode *inode, struct file *file)
644 struct mon_bus *mbus;
645 struct mon_reader_bin *rp;
646 size_t size;
647 int rc;
649 lock_kernel();
650 mutex_lock(&mon_lock);
651 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
652 mutex_unlock(&mon_lock);
653 unlock_kernel();
654 return -ENODEV;
656 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
657 printk(KERN_ERR TAG ": consistency error on open\n");
658 mutex_unlock(&mon_lock);
659 unlock_kernel();
660 return -ENODEV;
663 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
664 if (rp == NULL) {
665 rc = -ENOMEM;
666 goto err_alloc;
668 spin_lock_init(&rp->b_lock);
669 init_waitqueue_head(&rp->b_wait);
670 mutex_init(&rp->fetch_lock);
671 rp->b_size = BUFF_DFL;
673 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
674 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
675 rc = -ENOMEM;
676 goto err_allocvec;
679 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
680 goto err_allocbuff;
682 rp->r.m_bus = mbus;
683 rp->r.r_data = rp;
684 rp->r.rnf_submit = mon_bin_submit;
685 rp->r.rnf_error = mon_bin_error;
686 rp->r.rnf_complete = mon_bin_complete;
688 mon_reader_add(mbus, &rp->r);
690 file->private_data = rp;
691 mutex_unlock(&mon_lock);
692 unlock_kernel();
693 return 0;
695 err_allocbuff:
696 kfree(rp->b_vec);
697 err_allocvec:
698 kfree(rp);
699 err_alloc:
700 mutex_unlock(&mon_lock);
701 unlock_kernel();
702 return rc;
706 * Extract an event from buffer and copy it to user space.
707 * Wait if there is no event ready.
708 * Returns zero or error.
710 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
711 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
712 void __user *data, unsigned int nbytes)
714 unsigned long flags;
715 struct mon_bin_hdr *ep;
716 size_t step_len;
717 unsigned int offset;
718 int rc;
720 mutex_lock(&rp->fetch_lock);
722 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
723 mutex_unlock(&rp->fetch_lock);
724 return rc;
727 ep = MON_OFF2HDR(rp, rp->b_out);
729 if (copy_to_user(hdr, ep, hdrbytes)) {
730 mutex_unlock(&rp->fetch_lock);
731 return -EFAULT;
734 step_len = min(ep->len_cap, nbytes);
735 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
737 if (copy_from_buf(rp, offset, data, step_len)) {
738 mutex_unlock(&rp->fetch_lock);
739 return -EFAULT;
742 spin_lock_irqsave(&rp->b_lock, flags);
743 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
744 spin_unlock_irqrestore(&rp->b_lock, flags);
745 rp->b_read = 0;
747 mutex_unlock(&rp->fetch_lock);
748 return 0;
751 static int mon_bin_release(struct inode *inode, struct file *file)
753 struct mon_reader_bin *rp = file->private_data;
754 struct mon_bus* mbus = rp->r.m_bus;
756 mutex_lock(&mon_lock);
758 if (mbus->nreaders <= 0) {
759 printk(KERN_ERR TAG ": consistency error on close\n");
760 mutex_unlock(&mon_lock);
761 return 0;
763 mon_reader_del(mbus, &rp->r);
765 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
766 kfree(rp->b_vec);
767 kfree(rp);
769 mutex_unlock(&mon_lock);
770 return 0;
773 static ssize_t mon_bin_read(struct file *file, char __user *buf,
774 size_t nbytes, loff_t *ppos)
776 struct mon_reader_bin *rp = file->private_data;
777 unsigned int hdrbytes = PKT_SZ_API0;
778 unsigned long flags;
779 struct mon_bin_hdr *ep;
780 unsigned int offset;
781 size_t step_len;
782 char *ptr;
783 ssize_t done = 0;
784 int rc;
786 mutex_lock(&rp->fetch_lock);
788 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
789 mutex_unlock(&rp->fetch_lock);
790 return rc;
793 ep = MON_OFF2HDR(rp, rp->b_out);
795 if (rp->b_read < hdrbytes) {
796 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
797 ptr = ((char *)ep) + rp->b_read;
798 if (step_len && copy_to_user(buf, ptr, step_len)) {
799 mutex_unlock(&rp->fetch_lock);
800 return -EFAULT;
802 nbytes -= step_len;
803 buf += step_len;
804 rp->b_read += step_len;
805 done += step_len;
808 if (rp->b_read >= hdrbytes) {
809 step_len = ep->len_cap;
810 step_len -= rp->b_read - hdrbytes;
811 if (step_len > nbytes)
812 step_len = nbytes;
813 offset = rp->b_out + PKT_SIZE;
814 offset += rp->b_read - hdrbytes;
815 if (offset >= rp->b_size)
816 offset -= rp->b_size;
817 if (copy_from_buf(rp, offset, buf, step_len)) {
818 mutex_unlock(&rp->fetch_lock);
819 return -EFAULT;
821 nbytes -= step_len;
822 buf += step_len;
823 rp->b_read += step_len;
824 done += step_len;
828 * Check if whole packet was read, and if so, jump to the next one.
830 if (rp->b_read >= hdrbytes + ep->len_cap) {
831 spin_lock_irqsave(&rp->b_lock, flags);
832 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
833 spin_unlock_irqrestore(&rp->b_lock, flags);
834 rp->b_read = 0;
837 mutex_unlock(&rp->fetch_lock);
838 return done;
842 * Remove at most nevents from chunked buffer.
843 * Returns the number of removed events.
845 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
847 unsigned long flags;
848 struct mon_bin_hdr *ep;
849 int i;
851 mutex_lock(&rp->fetch_lock);
852 spin_lock_irqsave(&rp->b_lock, flags);
853 for (i = 0; i < nevents; ++i) {
854 if (MON_RING_EMPTY(rp))
855 break;
857 ep = MON_OFF2HDR(rp, rp->b_out);
858 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
860 spin_unlock_irqrestore(&rp->b_lock, flags);
861 rp->b_read = 0;
862 mutex_unlock(&rp->fetch_lock);
863 return i;
867 * Fetch at most max event offsets into the buffer and put them into vec.
868 * The events are usually freed later with mon_bin_flush.
869 * Return the effective number of events fetched.
871 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
872 u32 __user *vec, unsigned int max)
874 unsigned int cur_out;
875 unsigned int bytes, avail;
876 unsigned int size;
877 unsigned int nevents;
878 struct mon_bin_hdr *ep;
879 unsigned long flags;
880 int rc;
882 mutex_lock(&rp->fetch_lock);
884 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
885 mutex_unlock(&rp->fetch_lock);
886 return rc;
889 spin_lock_irqsave(&rp->b_lock, flags);
890 avail = rp->b_cnt;
891 spin_unlock_irqrestore(&rp->b_lock, flags);
893 cur_out = rp->b_out;
894 nevents = 0;
895 bytes = 0;
896 while (bytes < avail) {
897 if (nevents >= max)
898 break;
900 ep = MON_OFF2HDR(rp, cur_out);
901 if (put_user(cur_out, &vec[nevents])) {
902 mutex_unlock(&rp->fetch_lock);
903 return -EFAULT;
906 nevents++;
907 size = ep->len_cap + PKT_SIZE;
908 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
909 if ((cur_out += size) >= rp->b_size)
910 cur_out -= rp->b_size;
911 bytes += size;
914 mutex_unlock(&rp->fetch_lock);
915 return nevents;
919 * Count events. This is almost the same as the above mon_bin_fetch,
920 * only we do not store offsets into user vector, and we have no limit.
922 static int mon_bin_queued(struct mon_reader_bin *rp)
924 unsigned int cur_out;
925 unsigned int bytes, avail;
926 unsigned int size;
927 unsigned int nevents;
928 struct mon_bin_hdr *ep;
929 unsigned long flags;
931 mutex_lock(&rp->fetch_lock);
933 spin_lock_irqsave(&rp->b_lock, flags);
934 avail = rp->b_cnt;
935 spin_unlock_irqrestore(&rp->b_lock, flags);
937 cur_out = rp->b_out;
938 nevents = 0;
939 bytes = 0;
940 while (bytes < avail) {
941 ep = MON_OFF2HDR(rp, cur_out);
943 nevents++;
944 size = ep->len_cap + PKT_SIZE;
945 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
946 if ((cur_out += size) >= rp->b_size)
947 cur_out -= rp->b_size;
948 bytes += size;
951 mutex_unlock(&rp->fetch_lock);
952 return nevents;
957 static int mon_bin_ioctl(struct inode *inode, struct file *file,
958 unsigned int cmd, unsigned long arg)
960 struct mon_reader_bin *rp = file->private_data;
961 // struct mon_bus* mbus = rp->r.m_bus;
962 int ret = 0;
963 struct mon_bin_hdr *ep;
964 unsigned long flags;
966 switch (cmd) {
968 case MON_IOCQ_URB_LEN:
970 * N.B. This only returns the size of data, without the header.
972 spin_lock_irqsave(&rp->b_lock, flags);
973 if (!MON_RING_EMPTY(rp)) {
974 ep = MON_OFF2HDR(rp, rp->b_out);
975 ret = ep->len_cap;
977 spin_unlock_irqrestore(&rp->b_lock, flags);
978 break;
980 case MON_IOCQ_RING_SIZE:
981 ret = rp->b_size;
982 break;
984 case MON_IOCT_RING_SIZE:
986 * Changing the buffer size will flush it's contents; the new
987 * buffer is allocated before releasing the old one to be sure
988 * the device will stay functional also in case of memory
989 * pressure.
992 int size;
993 struct mon_pgmap *vec;
995 if (arg < BUFF_MIN || arg > BUFF_MAX)
996 return -EINVAL;
998 size = CHUNK_ALIGN(arg);
999 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
1000 GFP_KERNEL)) == NULL) {
1001 ret = -ENOMEM;
1002 break;
1005 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1006 if (ret < 0) {
1007 kfree(vec);
1008 break;
1011 mutex_lock(&rp->fetch_lock);
1012 spin_lock_irqsave(&rp->b_lock, flags);
1013 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
1014 kfree(rp->b_vec);
1015 rp->b_vec = vec;
1016 rp->b_size = size;
1017 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1018 rp->cnt_lost = 0;
1019 spin_unlock_irqrestore(&rp->b_lock, flags);
1020 mutex_unlock(&rp->fetch_lock);
1022 break;
1024 case MON_IOCH_MFLUSH:
1025 ret = mon_bin_flush(rp, arg);
1026 break;
1028 case MON_IOCX_GET:
1029 case MON_IOCX_GETX:
1031 struct mon_bin_get getb;
1033 if (copy_from_user(&getb, (void __user *)arg,
1034 sizeof(struct mon_bin_get)))
1035 return -EFAULT;
1037 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1038 return -EINVAL;
1039 ret = mon_bin_get_event(file, rp, getb.hdr,
1040 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1041 getb.data, (unsigned int)getb.alloc);
1043 break;
1045 case MON_IOCX_MFETCH:
1047 struct mon_bin_mfetch mfetch;
1048 struct mon_bin_mfetch __user *uptr;
1050 uptr = (struct mon_bin_mfetch __user *)arg;
1052 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1053 return -EFAULT;
1055 if (mfetch.nflush) {
1056 ret = mon_bin_flush(rp, mfetch.nflush);
1057 if (ret < 0)
1058 return ret;
1059 if (put_user(ret, &uptr->nflush))
1060 return -EFAULT;
1062 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1063 if (ret < 0)
1064 return ret;
1065 if (put_user(ret, &uptr->nfetch))
1066 return -EFAULT;
1067 ret = 0;
1069 break;
1071 case MON_IOCG_STATS: {
1072 struct mon_bin_stats __user *sp;
1073 unsigned int nevents;
1074 unsigned int ndropped;
1076 spin_lock_irqsave(&rp->b_lock, flags);
1077 ndropped = rp->cnt_lost;
1078 rp->cnt_lost = 0;
1079 spin_unlock_irqrestore(&rp->b_lock, flags);
1080 nevents = mon_bin_queued(rp);
1082 sp = (struct mon_bin_stats __user *)arg;
1083 if (put_user(rp->cnt_lost, &sp->dropped))
1084 return -EFAULT;
1085 if (put_user(nevents, &sp->queued))
1086 return -EFAULT;
1089 break;
1091 default:
1092 return -ENOTTY;
1095 return ret;
1098 #ifdef CONFIG_COMPAT
1099 static long mon_bin_compat_ioctl(struct file *file,
1100 unsigned int cmd, unsigned long arg)
1102 struct mon_reader_bin *rp = file->private_data;
1103 int ret;
1105 switch (cmd) {
1107 case MON_IOCX_GET32:
1108 case MON_IOCX_GETX32:
1110 struct mon_bin_get32 getb;
1112 if (copy_from_user(&getb, (void __user *)arg,
1113 sizeof(struct mon_bin_get32)))
1114 return -EFAULT;
1116 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1117 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1118 compat_ptr(getb.data32), getb.alloc32);
1119 if (ret < 0)
1120 return ret;
1122 return 0;
1124 case MON_IOCX_MFETCH32:
1126 struct mon_bin_mfetch32 mfetch;
1127 struct mon_bin_mfetch32 __user *uptr;
1129 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1131 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1132 return -EFAULT;
1134 if (mfetch.nflush32) {
1135 ret = mon_bin_flush(rp, mfetch.nflush32);
1136 if (ret < 0)
1137 return ret;
1138 if (put_user(ret, &uptr->nflush32))
1139 return -EFAULT;
1141 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1142 mfetch.nfetch32);
1143 if (ret < 0)
1144 return ret;
1145 if (put_user(ret, &uptr->nfetch32))
1146 return -EFAULT;
1148 return 0;
1150 case MON_IOCG_STATS:
1151 return mon_bin_ioctl(NULL, file, cmd,
1152 (unsigned long) compat_ptr(arg));
1154 case MON_IOCQ_URB_LEN:
1155 case MON_IOCQ_RING_SIZE:
1156 case MON_IOCT_RING_SIZE:
1157 case MON_IOCH_MFLUSH:
1158 return mon_bin_ioctl(NULL, file, cmd, arg);
1160 default:
1163 return -ENOTTY;
1165 #endif /* CONFIG_COMPAT */
1167 static unsigned int
1168 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1170 struct mon_reader_bin *rp = file->private_data;
1171 unsigned int mask = 0;
1172 unsigned long flags;
1174 if (file->f_mode & FMODE_READ)
1175 poll_wait(file, &rp->b_wait, wait);
1177 spin_lock_irqsave(&rp->b_lock, flags);
1178 if (!MON_RING_EMPTY(rp))
1179 mask |= POLLIN | POLLRDNORM; /* readable */
1180 spin_unlock_irqrestore(&rp->b_lock, flags);
1181 return mask;
1185 * open and close: just keep track of how many times the device is
1186 * mapped, to use the proper memory allocation function.
1188 static void mon_bin_vma_open(struct vm_area_struct *vma)
1190 struct mon_reader_bin *rp = vma->vm_private_data;
1191 rp->mmap_active++;
1194 static void mon_bin_vma_close(struct vm_area_struct *vma)
1196 struct mon_reader_bin *rp = vma->vm_private_data;
1197 rp->mmap_active--;
1201 * Map ring pages to user space.
1203 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1205 struct mon_reader_bin *rp = vma->vm_private_data;
1206 unsigned long offset, chunk_idx;
1207 struct page *pageptr;
1209 offset = vmf->pgoff << PAGE_SHIFT;
1210 if (offset >= rp->b_size)
1211 return VM_FAULT_SIGBUS;
1212 chunk_idx = offset / CHUNK_SIZE;
1213 pageptr = rp->b_vec[chunk_idx].pg;
1214 get_page(pageptr);
1215 vmf->page = pageptr;
1216 return 0;
1219 static const struct vm_operations_struct mon_bin_vm_ops = {
1220 .open = mon_bin_vma_open,
1221 .close = mon_bin_vma_close,
1222 .fault = mon_bin_vma_fault,
1225 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1227 /* don't do anything here: "fault" will set up page table entries */
1228 vma->vm_ops = &mon_bin_vm_ops;
1229 vma->vm_flags |= VM_RESERVED;
1230 vma->vm_private_data = filp->private_data;
1231 mon_bin_vma_open(vma);
1232 return 0;
1235 static const struct file_operations mon_fops_binary = {
1236 .owner = THIS_MODULE,
1237 .open = mon_bin_open,
1238 .llseek = no_llseek,
1239 .read = mon_bin_read,
1240 /* .write = mon_text_write, */
1241 .poll = mon_bin_poll,
1242 .ioctl = mon_bin_ioctl,
1243 #ifdef CONFIG_COMPAT
1244 .compat_ioctl = mon_bin_compat_ioctl,
1245 #endif
1246 .release = mon_bin_release,
1247 .mmap = mon_bin_mmap,
1250 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1252 DECLARE_WAITQUEUE(waita, current);
1253 unsigned long flags;
1255 add_wait_queue(&rp->b_wait, &waita);
1256 set_current_state(TASK_INTERRUPTIBLE);
1258 spin_lock_irqsave(&rp->b_lock, flags);
1259 while (MON_RING_EMPTY(rp)) {
1260 spin_unlock_irqrestore(&rp->b_lock, flags);
1262 if (file->f_flags & O_NONBLOCK) {
1263 set_current_state(TASK_RUNNING);
1264 remove_wait_queue(&rp->b_wait, &waita);
1265 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1267 schedule();
1268 if (signal_pending(current)) {
1269 remove_wait_queue(&rp->b_wait, &waita);
1270 return -EINTR;
1272 set_current_state(TASK_INTERRUPTIBLE);
1274 spin_lock_irqsave(&rp->b_lock, flags);
1276 spin_unlock_irqrestore(&rp->b_lock, flags);
1278 set_current_state(TASK_RUNNING);
1279 remove_wait_queue(&rp->b_wait, &waita);
1280 return 0;
1283 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1285 int n;
1286 unsigned long vaddr;
1288 for (n = 0; n < npages; n++) {
1289 vaddr = get_zeroed_page(GFP_KERNEL);
1290 if (vaddr == 0) {
1291 while (n-- != 0)
1292 free_page((unsigned long) map[n].ptr);
1293 return -ENOMEM;
1295 map[n].ptr = (unsigned char *) vaddr;
1296 map[n].pg = virt_to_page((void *) vaddr);
1298 return 0;
1301 static void mon_free_buff(struct mon_pgmap *map, int npages)
1303 int n;
1305 for (n = 0; n < npages; n++)
1306 free_page((unsigned long) map[n].ptr);
1309 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1311 struct device *dev;
1312 unsigned minor = ubus? ubus->busnum: 0;
1314 if (minor >= MON_BIN_MAX_MINOR)
1315 return 0;
1317 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1318 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1319 "usbmon%d", minor);
1320 if (IS_ERR(dev))
1321 return 0;
1323 mbus->classdev = dev;
1324 return 1;
1327 void mon_bin_del(struct mon_bus *mbus)
1329 device_destroy(mon_bin_class, mbus->classdev->devt);
1332 int __init mon_bin_init(void)
1334 int rc;
1336 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1337 if (IS_ERR(mon_bin_class)) {
1338 rc = PTR_ERR(mon_bin_class);
1339 goto err_class;
1342 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1343 if (rc < 0)
1344 goto err_dev;
1346 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1347 mon_bin_cdev.owner = THIS_MODULE;
1349 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1350 if (rc < 0)
1351 goto err_add;
1353 return 0;
1355 err_add:
1356 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1357 err_dev:
1358 class_destroy(mon_bin_class);
1359 err_class:
1360 return rc;
1363 void mon_bin_exit(void)
1365 cdev_del(&mon_bin_cdev);
1366 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1367 class_destroy(mon_bin_class);