Blackfin: ints-priority: clean up some local vars
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / hpsa.c
blobc6c0434d80345a122b5e5729bb423615c12e0657
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 "Use 'simple mode' rather than 'performant mode'");
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
110 static struct board_type products[] = {
111 {0x3241103C, "Smart Array P212", &SA5_access},
112 {0x3243103C, "Smart Array P410", &SA5_access},
113 {0x3245103C, "Smart Array P410i", &SA5_access},
114 {0x3247103C, "Smart Array P411", &SA5_access},
115 {0x3249103C, "Smart Array P812", &SA5_access},
116 {0x324a103C, "Smart Array P712m", &SA5_access},
117 {0x324b103C, "Smart Array P711m", &SA5_access},
118 {0x3350103C, "Smart Array", &SA5_access},
119 {0x3351103C, "Smart Array", &SA5_access},
120 {0x3352103C, "Smart Array", &SA5_access},
121 {0x3353103C, "Smart Array", &SA5_access},
122 {0x3354103C, "Smart Array", &SA5_access},
123 {0x3355103C, "Smart Array", &SA5_access},
124 {0x3356103C, "Smart Array", &SA5_access},
125 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 static int number_of_controllers;
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 int cmd_type);
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 int qdepth, int reason);
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
181 unsigned long *priv = shost_priv(sdev->host);
182 return (struct ctlr_info *) *priv;
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
187 unsigned long *priv = shost_priv(sh);
188 return (struct ctlr_info *) *priv;
191 static int check_for_unit_attention(struct ctlr_info *h,
192 struct CommandList *c)
194 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 return 0;
197 switch (c->err_info->SenseInfo[12]) {
198 case STATE_CHANGED:
199 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 "detected, command retried\n", h->ctlr);
201 break;
202 case LUN_FAILED:
203 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 "detected, action required\n", h->ctlr);
205 break;
206 case REPORT_LUNS_CHANGED:
207 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 "changed, action required\n", h->ctlr);
210 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
212 break;
213 case POWER_OR_RESET:
214 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 "or device reset detected\n", h->ctlr);
216 break;
217 case UNIT_ATTENTION_CLEARED:
218 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 "cleared by another initiator\n", h->ctlr);
220 break;
221 default:
222 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 "unit attention detected\n", h->ctlr);
224 break;
226 return 1;
229 static ssize_t host_store_rescan(struct device *dev,
230 struct device_attribute *attr,
231 const char *buf, size_t count)
233 struct ctlr_info *h;
234 struct Scsi_Host *shost = class_to_shost(dev);
235 h = shost_to_hba(shost);
236 hpsa_scan_start(h->scsi_host);
237 return count;
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct ctlr_info *h;
244 struct Scsi_Host *shost = class_to_shost(dev);
245 unsigned char *fwrev;
247 h = shost_to_hba(shost);
248 if (!h->hba_inquiry_data)
249 return 0;
250 fwrev = &h->hba_inquiry_data[32];
251 return snprintf(buf, 20, "%c%c%c%c\n",
252 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 struct device_attribute *attr, char *buf)
258 struct Scsi_Host *shost = class_to_shost(dev);
259 struct ctlr_info *h = shost_to_hba(shost);
261 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
264 static ssize_t host_show_transport_mode(struct device *dev,
265 struct device_attribute *attr, char *buf)
267 struct ctlr_info *h;
268 struct Scsi_Host *shost = class_to_shost(dev);
270 h = shost_to_hba(shost);
271 return snprintf(buf, 20, "%s\n",
272 h->transMethod & CFGTBL_Trans_Performant ?
273 "performant" : "simple");
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 0x324a103C, /* Smart Array P712m */
279 0x324b103C, /* SmartArray P711m */
280 0x3223103C, /* Smart Array P800 */
281 0x3234103C, /* Smart Array P400 */
282 0x3235103C, /* Smart Array P400i */
283 0x3211103C, /* Smart Array E200i */
284 0x3212103C, /* Smart Array E200 */
285 0x3213103C, /* Smart Array E200i */
286 0x3214103C, /* Smart Array E200i */
287 0x3215103C, /* Smart Array E200i */
288 0x3237103C, /* Smart Array E500 */
289 0x323D103C, /* Smart Array P700m */
290 0x409C0E11, /* Smart Array 6400 */
291 0x409D0E11, /* Smart Array 6400 EM */
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296 /* Exclude 640x boards. These are two pci devices in one slot
297 * which share a battery backed cache module. One controls the
298 * cache, the other accesses the cache through the one that controls
299 * it. If we reset the one controlling the cache, the other will
300 * likely not be happy. Just forbid resetting this conjoined mess.
301 * The 640x isn't really supported by hpsa anyway.
303 0x409C0E11, /* Smart Array 6400 */
304 0x409D0E11, /* Smart Array 6400 EM */
307 static int ctlr_is_hard_resettable(u32 board_id)
309 int i;
311 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312 if (unresettable_controller[i] == board_id)
313 return 0;
314 return 1;
317 static int ctlr_is_soft_resettable(u32 board_id)
319 int i;
321 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322 if (soft_unresettable_controller[i] == board_id)
323 return 0;
324 return 1;
327 static int ctlr_is_resettable(u32 board_id)
329 return ctlr_is_hard_resettable(board_id) ||
330 ctlr_is_soft_resettable(board_id);
333 static ssize_t host_show_resettable(struct device *dev,
334 struct device_attribute *attr, char *buf)
336 struct ctlr_info *h;
337 struct Scsi_Host *shost = class_to_shost(dev);
339 h = shost_to_hba(shost);
340 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
345 return (scsi3addr[3] & 0xC0) == 0x40;
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349 "UNKNOWN"
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
353 static ssize_t raid_level_show(struct device *dev,
354 struct device_attribute *attr, char *buf)
356 ssize_t l = 0;
357 unsigned char rlevel;
358 struct ctlr_info *h;
359 struct scsi_device *sdev;
360 struct hpsa_scsi_dev_t *hdev;
361 unsigned long flags;
363 sdev = to_scsi_device(dev);
364 h = sdev_to_hba(sdev);
365 spin_lock_irqsave(&h->lock, flags);
366 hdev = sdev->hostdata;
367 if (!hdev) {
368 spin_unlock_irqrestore(&h->lock, flags);
369 return -ENODEV;
372 /* Is this even a logical drive? */
373 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374 spin_unlock_irqrestore(&h->lock, flags);
375 l = snprintf(buf, PAGE_SIZE, "N/A\n");
376 return l;
379 rlevel = hdev->raid_level;
380 spin_unlock_irqrestore(&h->lock, flags);
381 if (rlevel > RAID_UNKNOWN)
382 rlevel = RAID_UNKNOWN;
383 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384 return l;
387 static ssize_t lunid_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
390 struct ctlr_info *h;
391 struct scsi_device *sdev;
392 struct hpsa_scsi_dev_t *hdev;
393 unsigned long flags;
394 unsigned char lunid[8];
396 sdev = to_scsi_device(dev);
397 h = sdev_to_hba(sdev);
398 spin_lock_irqsave(&h->lock, flags);
399 hdev = sdev->hostdata;
400 if (!hdev) {
401 spin_unlock_irqrestore(&h->lock, flags);
402 return -ENODEV;
404 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405 spin_unlock_irqrestore(&h->lock, flags);
406 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407 lunid[0], lunid[1], lunid[2], lunid[3],
408 lunid[4], lunid[5], lunid[6], lunid[7]);
411 static ssize_t unique_id_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
414 struct ctlr_info *h;
415 struct scsi_device *sdev;
416 struct hpsa_scsi_dev_t *hdev;
417 unsigned long flags;
418 unsigned char sn[16];
420 sdev = to_scsi_device(dev);
421 h = sdev_to_hba(sdev);
422 spin_lock_irqsave(&h->lock, flags);
423 hdev = sdev->hostdata;
424 if (!hdev) {
425 spin_unlock_irqrestore(&h->lock, flags);
426 return -ENODEV;
428 memcpy(sn, hdev->device_id, sizeof(sn));
429 spin_unlock_irqrestore(&h->lock, flags);
430 return snprintf(buf, 16 * 2 + 2,
431 "%02X%02X%02X%02X%02X%02X%02X%02X"
432 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
433 sn[0], sn[1], sn[2], sn[3],
434 sn[4], sn[5], sn[6], sn[7],
435 sn[8], sn[9], sn[10], sn[11],
436 sn[12], sn[13], sn[14], sn[15]);
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444 host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446 host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448 host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450 host_show_resettable, NULL);
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453 &dev_attr_raid_level,
454 &dev_attr_lunid,
455 &dev_attr_unique_id,
456 NULL,
459 static struct device_attribute *hpsa_shost_attrs[] = {
460 &dev_attr_rescan,
461 &dev_attr_firmware_revision,
462 &dev_attr_commands_outstanding,
463 &dev_attr_transport_mode,
464 &dev_attr_resettable,
465 NULL,
468 static struct scsi_host_template hpsa_driver_template = {
469 .module = THIS_MODULE,
470 .name = "hpsa",
471 .proc_name = "hpsa",
472 .queuecommand = hpsa_scsi_queue_command,
473 .scan_start = hpsa_scan_start,
474 .scan_finished = hpsa_scan_finished,
475 .change_queue_depth = hpsa_change_queue_depth,
476 .this_id = -1,
477 .use_clustering = ENABLE_CLUSTERING,
478 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
479 .ioctl = hpsa_ioctl,
480 .slave_alloc = hpsa_slave_alloc,
481 .slave_destroy = hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483 .compat_ioctl = hpsa_compat_ioctl,
484 #endif
485 .sdev_attrs = hpsa_sdev_attrs,
486 .shost_attrs = hpsa_shost_attrs,
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
493 list_add_tail(&c->list, list);
496 static inline u32 next_command(struct ctlr_info *h)
498 u32 a;
500 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501 return h->access.command_completed(h);
503 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505 (h->reply_pool_head)++;
506 h->commands_outstanding--;
507 } else {
508 a = FIFO_EMPTY;
510 /* Check for wraparound */
511 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512 h->reply_pool_head = h->reply_pool;
513 h->reply_pool_wraparound ^= 1;
515 return a;
518 /* set_performant_mode: Modify the tag for cciss performant
519 * set bit 0 for pull model, bits 3-1 for block fetch
520 * register number
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
524 if (likely(h->transMethod & CFGTBL_Trans_Performant))
525 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529 struct CommandList *c)
531 unsigned long flags;
533 set_performant_mode(h, c);
534 spin_lock_irqsave(&h->lock, flags);
535 addQ(&h->reqQ, c);
536 h->Qdepth++;
537 start_io(h);
538 spin_unlock_irqrestore(&h->lock, flags);
541 static inline void removeQ(struct CommandList *c)
543 if (WARN_ON(list_empty(&c->list)))
544 return;
545 list_del_init(&c->list);
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
550 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
555 if (!h->hba_inquiry_data)
556 return 0;
557 if ((h->hba_inquiry_data[2] & 0x07) == 5)
558 return 1;
559 return 0;
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563 unsigned char scsi3addr[], int bus, int *target, int *lun)
565 /* finds an unused bus, target, lun for a new physical device
566 * assumes h->devlock is held
568 int i, found = 0;
569 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
571 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
573 for (i = 0; i < h->ndevices; i++) {
574 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575 set_bit(h->dev[i]->target, lun_taken);
578 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579 if (!test_bit(i, lun_taken)) {
580 /* *bus = 1; */
581 *target = i;
582 *lun = 0;
583 found = 1;
584 break;
587 return !found;
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592 struct hpsa_scsi_dev_t *device,
593 struct hpsa_scsi_dev_t *added[], int *nadded)
595 /* assumes h->devlock is held */
596 int n = h->ndevices;
597 int i;
598 unsigned char addr1[8], addr2[8];
599 struct hpsa_scsi_dev_t *sd;
601 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602 dev_err(&h->pdev->dev, "too many devices, some will be "
603 "inaccessible.\n");
604 return -1;
607 /* physical devices do not have lun or target assigned until now. */
608 if (device->lun != -1)
609 /* Logical device, lun is already assigned. */
610 goto lun_assigned;
612 /* If this device a non-zero lun of a multi-lun device
613 * byte 4 of the 8-byte LUN addr will contain the logical
614 * unit no, zero otherise.
616 if (device->scsi3addr[4] == 0) {
617 /* This is not a non-zero lun of a multi-lun device */
618 if (hpsa_find_target_lun(h, device->scsi3addr,
619 device->bus, &device->target, &device->lun) != 0)
620 return -1;
621 goto lun_assigned;
624 /* This is a non-zero lun of a multi-lun device.
625 * Search through our list and find the device which
626 * has the same 8 byte LUN address, excepting byte 4.
627 * Assign the same bus and target for this new LUN.
628 * Use the logical unit number from the firmware.
630 memcpy(addr1, device->scsi3addr, 8);
631 addr1[4] = 0;
632 for (i = 0; i < n; i++) {
633 sd = h->dev[i];
634 memcpy(addr2, sd->scsi3addr, 8);
635 addr2[4] = 0;
636 /* differ only in byte 4? */
637 if (memcmp(addr1, addr2, 8) == 0) {
638 device->bus = sd->bus;
639 device->target = sd->target;
640 device->lun = device->scsi3addr[4];
641 break;
644 if (device->lun == -1) {
645 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646 " suspect firmware bug or unsupported hardware "
647 "configuration.\n");
648 return -1;
651 lun_assigned:
653 h->dev[n] = device;
654 h->ndevices++;
655 added[*nadded] = device;
656 (*nadded)++;
658 /* initially, (before registering with scsi layer) we don't
659 * know our hostno and we don't want to print anything first
660 * time anyway (the scsi layer's inquiries will show that info)
662 /* if (hostno != -1) */
663 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664 scsi_device_type(device->devtype), hostno,
665 device->bus, device->target, device->lun);
666 return 0;
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671 int entry, struct hpsa_scsi_dev_t *new_entry,
672 struct hpsa_scsi_dev_t *added[], int *nadded,
673 struct hpsa_scsi_dev_t *removed[], int *nremoved)
675 /* assumes h->devlock is held */
676 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677 removed[*nremoved] = h->dev[entry];
678 (*nremoved)++;
679 h->dev[entry] = new_entry;
680 added[*nadded] = new_entry;
681 (*nadded)++;
682 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
683 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
684 new_entry->target, new_entry->lun);
687 /* Remove an entry from h->dev[] array. */
688 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
689 struct hpsa_scsi_dev_t *removed[], int *nremoved)
691 /* assumes h->devlock is held */
692 int i;
693 struct hpsa_scsi_dev_t *sd;
695 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
697 sd = h->dev[entry];
698 removed[*nremoved] = h->dev[entry];
699 (*nremoved)++;
701 for (i = entry; i < h->ndevices-1; i++)
702 h->dev[i] = h->dev[i+1];
703 h->ndevices--;
704 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
705 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
706 sd->lun);
709 #define SCSI3ADDR_EQ(a, b) ( \
710 (a)[7] == (b)[7] && \
711 (a)[6] == (b)[6] && \
712 (a)[5] == (b)[5] && \
713 (a)[4] == (b)[4] && \
714 (a)[3] == (b)[3] && \
715 (a)[2] == (b)[2] && \
716 (a)[1] == (b)[1] && \
717 (a)[0] == (b)[0])
719 static void fixup_botched_add(struct ctlr_info *h,
720 struct hpsa_scsi_dev_t *added)
722 /* called when scsi_add_device fails in order to re-adjust
723 * h->dev[] to match the mid layer's view.
725 unsigned long flags;
726 int i, j;
728 spin_lock_irqsave(&h->lock, flags);
729 for (i = 0; i < h->ndevices; i++) {
730 if (h->dev[i] == added) {
731 for (j = i; j < h->ndevices-1; j++)
732 h->dev[j] = h->dev[j+1];
733 h->ndevices--;
734 break;
737 spin_unlock_irqrestore(&h->lock, flags);
738 kfree(added);
741 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
742 struct hpsa_scsi_dev_t *dev2)
744 /* we compare everything except lun and target as these
745 * are not yet assigned. Compare parts likely
746 * to differ first
748 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
749 sizeof(dev1->scsi3addr)) != 0)
750 return 0;
751 if (memcmp(dev1->device_id, dev2->device_id,
752 sizeof(dev1->device_id)) != 0)
753 return 0;
754 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
755 return 0;
756 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
757 return 0;
758 if (dev1->devtype != dev2->devtype)
759 return 0;
760 if (dev1->bus != dev2->bus)
761 return 0;
762 return 1;
765 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
766 * and return needle location in *index. If scsi3addr matches, but not
767 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772 int *index)
774 int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778 for (i = 0; i < haystack_size; i++) {
779 if (haystack[i] == NULL) /* previously removed. */
780 continue;
781 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
782 *index = i;
783 if (device_is_the_same(needle, haystack[i]))
784 return DEVICE_SAME;
785 else
786 return DEVICE_CHANGED;
789 *index = -1;
790 return DEVICE_NOT_FOUND;
793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
794 struct hpsa_scsi_dev_t *sd[], int nsds)
796 /* sd contains scsi3 addresses and devtypes, and inquiry
797 * data. This function takes what's in sd to be the current
798 * reality and updates h->dev[] to reflect that reality.
800 int i, entry, device_change, changes = 0;
801 struct hpsa_scsi_dev_t *csd;
802 unsigned long flags;
803 struct hpsa_scsi_dev_t **added, **removed;
804 int nadded, nremoved;
805 struct Scsi_Host *sh = NULL;
807 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808 GFP_KERNEL);
809 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
810 GFP_KERNEL);
812 if (!added || !removed) {
813 dev_warn(&h->pdev->dev, "out of memory in "
814 "adjust_hpsa_scsi_table\n");
815 goto free_and_out;
818 spin_lock_irqsave(&h->devlock, flags);
820 /* find any devices in h->dev[] that are not in
821 * sd[] and remove them from h->dev[], and for any
822 * devices which have changed, remove the old device
823 * info and add the new device info.
825 i = 0;
826 nremoved = 0;
827 nadded = 0;
828 while (i < h->ndevices) {
829 csd = h->dev[i];
830 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
831 if (device_change == DEVICE_NOT_FOUND) {
832 changes++;
833 hpsa_scsi_remove_entry(h, hostno, i,
834 removed, &nremoved);
835 continue; /* remove ^^^, hence i not incremented */
836 } else if (device_change == DEVICE_CHANGED) {
837 changes++;
838 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
839 added, &nadded, removed, &nremoved);
840 /* Set it to NULL to prevent it from being freed
841 * at the bottom of hpsa_update_scsi_devices()
843 sd[entry] = NULL;
845 i++;
848 /* Now, make sure every device listed in sd[] is also
849 * listed in h->dev[], adding them if they aren't found
852 for (i = 0; i < nsds; i++) {
853 if (!sd[i]) /* if already added above. */
854 continue;
855 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
856 h->ndevices, &entry);
857 if (device_change == DEVICE_NOT_FOUND) {
858 changes++;
859 if (hpsa_scsi_add_entry(h, hostno, sd[i],
860 added, &nadded) != 0)
861 break;
862 sd[i] = NULL; /* prevent from being freed later. */
863 } else if (device_change == DEVICE_CHANGED) {
864 /* should never happen... */
865 changes++;
866 dev_warn(&h->pdev->dev,
867 "device unexpectedly changed.\n");
868 /* but if it does happen, we just ignore that device */
871 spin_unlock_irqrestore(&h->devlock, flags);
873 /* Don't notify scsi mid layer of any changes the first time through
874 * (or if there are no changes) scsi_scan_host will do it later the
875 * first time through.
877 if (hostno == -1 || !changes)
878 goto free_and_out;
880 sh = h->scsi_host;
881 /* Notify scsi mid layer of any removed devices */
882 for (i = 0; i < nremoved; i++) {
883 struct scsi_device *sdev =
884 scsi_device_lookup(sh, removed[i]->bus,
885 removed[i]->target, removed[i]->lun);
886 if (sdev != NULL) {
887 scsi_remove_device(sdev);
888 scsi_device_put(sdev);
889 } else {
890 /* We don't expect to get here.
891 * future cmds to this device will get selection
892 * timeout as if the device was gone.
894 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
895 " for removal.", hostno, removed[i]->bus,
896 removed[i]->target, removed[i]->lun);
898 kfree(removed[i]);
899 removed[i] = NULL;
902 /* Notify scsi mid layer of any added devices */
903 for (i = 0; i < nadded; i++) {
904 if (scsi_add_device(sh, added[i]->bus,
905 added[i]->target, added[i]->lun) == 0)
906 continue;
907 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
908 "device not added.\n", hostno, added[i]->bus,
909 added[i]->target, added[i]->lun);
910 /* now we have to remove it from h->dev,
911 * since it didn't get added to scsi mid layer
913 fixup_botched_add(h, added[i]);
916 free_and_out:
917 kfree(added);
918 kfree(removed);
922 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
923 * Assume's h->devlock is held.
925 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
926 int bus, int target, int lun)
928 int i;
929 struct hpsa_scsi_dev_t *sd;
931 for (i = 0; i < h->ndevices; i++) {
932 sd = h->dev[i];
933 if (sd->bus == bus && sd->target == target && sd->lun == lun)
934 return sd;
936 return NULL;
939 /* link sdev->hostdata to our per-device structure. */
940 static int hpsa_slave_alloc(struct scsi_device *sdev)
942 struct hpsa_scsi_dev_t *sd;
943 unsigned long flags;
944 struct ctlr_info *h;
946 h = sdev_to_hba(sdev);
947 spin_lock_irqsave(&h->devlock, flags);
948 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
949 sdev_id(sdev), sdev->lun);
950 if (sd != NULL)
951 sdev->hostdata = sd;
952 spin_unlock_irqrestore(&h->devlock, flags);
953 return 0;
956 static void hpsa_slave_destroy(struct scsi_device *sdev)
958 /* nothing to do. */
961 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
963 int i;
965 if (!h->cmd_sg_list)
966 return;
967 for (i = 0; i < h->nr_cmds; i++) {
968 kfree(h->cmd_sg_list[i]);
969 h->cmd_sg_list[i] = NULL;
971 kfree(h->cmd_sg_list);
972 h->cmd_sg_list = NULL;
975 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
977 int i;
979 if (h->chainsize <= 0)
980 return 0;
982 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
983 GFP_KERNEL);
984 if (!h->cmd_sg_list)
985 return -ENOMEM;
986 for (i = 0; i < h->nr_cmds; i++) {
987 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
988 h->chainsize, GFP_KERNEL);
989 if (!h->cmd_sg_list[i])
990 goto clean;
992 return 0;
994 clean:
995 hpsa_free_sg_chain_blocks(h);
996 return -ENOMEM;
999 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1000 struct CommandList *c)
1002 struct SGDescriptor *chain_sg, *chain_block;
1003 u64 temp64;
1005 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1006 chain_block = h->cmd_sg_list[c->cmdindex];
1007 chain_sg->Ext = HPSA_SG_CHAIN;
1008 chain_sg->Len = sizeof(*chain_sg) *
1009 (c->Header.SGTotal - h->max_cmd_sg_entries);
1010 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1011 PCI_DMA_TODEVICE);
1012 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1013 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1016 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1017 struct CommandList *c)
1019 struct SGDescriptor *chain_sg;
1020 union u64bit temp64;
1022 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1023 return;
1025 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1026 temp64.val32.lower = chain_sg->Addr.lower;
1027 temp64.val32.upper = chain_sg->Addr.upper;
1028 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1031 static void complete_scsi_command(struct CommandList *cp)
1033 struct scsi_cmnd *cmd;
1034 struct ctlr_info *h;
1035 struct ErrorInfo *ei;
1037 unsigned char sense_key;
1038 unsigned char asc; /* additional sense code */
1039 unsigned char ascq; /* additional sense code qualifier */
1041 ei = cp->err_info;
1042 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1043 h = cp->h;
1045 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1046 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1047 hpsa_unmap_sg_chain_block(h, cp);
1049 cmd->result = (DID_OK << 16); /* host byte */
1050 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1051 cmd->result |= ei->ScsiStatus;
1053 /* copy the sense data whether we need to or not. */
1054 memcpy(cmd->sense_buffer, ei->SenseInfo,
1055 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1056 SCSI_SENSE_BUFFERSIZE :
1057 ei->SenseLen);
1058 scsi_set_resid(cmd, ei->ResidualCnt);
1060 if (ei->CommandStatus == 0) {
1061 cmd->scsi_done(cmd);
1062 cmd_free(h, cp);
1063 return;
1066 /* an error has occurred */
1067 switch (ei->CommandStatus) {
1069 case CMD_TARGET_STATUS:
1070 if (ei->ScsiStatus) {
1071 /* Get sense key */
1072 sense_key = 0xf & ei->SenseInfo[2];
1073 /* Get additional sense code */
1074 asc = ei->SenseInfo[12];
1075 /* Get addition sense code qualifier */
1076 ascq = ei->SenseInfo[13];
1079 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1080 if (check_for_unit_attention(h, cp)) {
1081 cmd->result = DID_SOFT_ERROR << 16;
1082 break;
1084 if (sense_key == ILLEGAL_REQUEST) {
1086 * SCSI REPORT_LUNS is commonly unsupported on
1087 * Smart Array. Suppress noisy complaint.
1089 if (cp->Request.CDB[0] == REPORT_LUNS)
1090 break;
1092 /* If ASC/ASCQ indicate Logical Unit
1093 * Not Supported condition,
1095 if ((asc == 0x25) && (ascq == 0x0)) {
1096 dev_warn(&h->pdev->dev, "cp %p "
1097 "has check condition\n", cp);
1098 break;
1102 if (sense_key == NOT_READY) {
1103 /* If Sense is Not Ready, Logical Unit
1104 * Not ready, Manual Intervention
1105 * required
1107 if ((asc == 0x04) && (ascq == 0x03)) {
1108 dev_warn(&h->pdev->dev, "cp %p "
1109 "has check condition: unit "
1110 "not ready, manual "
1111 "intervention required\n", cp);
1112 break;
1115 if (sense_key == ABORTED_COMMAND) {
1116 /* Aborted command is retryable */
1117 dev_warn(&h->pdev->dev, "cp %p "
1118 "has check condition: aborted command: "
1119 "ASC: 0x%x, ASCQ: 0x%x\n",
1120 cp, asc, ascq);
1121 cmd->result = DID_SOFT_ERROR << 16;
1122 break;
1124 /* Must be some other type of check condition */
1125 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1126 "unknown type: "
1127 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1128 "Returning result: 0x%x, "
1129 "cmd=[%02x %02x %02x %02x %02x "
1130 "%02x %02x %02x %02x %02x %02x "
1131 "%02x %02x %02x %02x %02x]\n",
1132 cp, sense_key, asc, ascq,
1133 cmd->result,
1134 cmd->cmnd[0], cmd->cmnd[1],
1135 cmd->cmnd[2], cmd->cmnd[3],
1136 cmd->cmnd[4], cmd->cmnd[5],
1137 cmd->cmnd[6], cmd->cmnd[7],
1138 cmd->cmnd[8], cmd->cmnd[9],
1139 cmd->cmnd[10], cmd->cmnd[11],
1140 cmd->cmnd[12], cmd->cmnd[13],
1141 cmd->cmnd[14], cmd->cmnd[15]);
1142 break;
1146 /* Problem was not a check condition
1147 * Pass it up to the upper layers...
1149 if (ei->ScsiStatus) {
1150 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1151 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1152 "Returning result: 0x%x\n",
1153 cp, ei->ScsiStatus,
1154 sense_key, asc, ascq,
1155 cmd->result);
1156 } else { /* scsi status is zero??? How??? */
1157 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1158 "Returning no connection.\n", cp),
1160 /* Ordinarily, this case should never happen,
1161 * but there is a bug in some released firmware
1162 * revisions that allows it to happen if, for
1163 * example, a 4100 backplane loses power and
1164 * the tape drive is in it. We assume that
1165 * it's a fatal error of some kind because we
1166 * can't show that it wasn't. We will make it
1167 * look like selection timeout since that is
1168 * the most common reason for this to occur,
1169 * and it's severe enough.
1172 cmd->result = DID_NO_CONNECT << 16;
1174 break;
1176 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1177 break;
1178 case CMD_DATA_OVERRUN:
1179 dev_warn(&h->pdev->dev, "cp %p has"
1180 " completed with data overrun "
1181 "reported\n", cp);
1182 break;
1183 case CMD_INVALID: {
1184 /* print_bytes(cp, sizeof(*cp), 1, 0);
1185 print_cmd(cp); */
1186 /* We get CMD_INVALID if you address a non-existent device
1187 * instead of a selection timeout (no response). You will
1188 * see this if you yank out a drive, then try to access it.
1189 * This is kind of a shame because it means that any other
1190 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1191 * missing target. */
1192 cmd->result = DID_NO_CONNECT << 16;
1194 break;
1195 case CMD_PROTOCOL_ERR:
1196 dev_warn(&h->pdev->dev, "cp %p has "
1197 "protocol error \n", cp);
1198 break;
1199 case CMD_HARDWARE_ERR:
1200 cmd->result = DID_ERROR << 16;
1201 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1202 break;
1203 case CMD_CONNECTION_LOST:
1204 cmd->result = DID_ERROR << 16;
1205 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1206 break;
1207 case CMD_ABORTED:
1208 cmd->result = DID_ABORT << 16;
1209 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1210 cp, ei->ScsiStatus);
1211 break;
1212 case CMD_ABORT_FAILED:
1213 cmd->result = DID_ERROR << 16;
1214 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1215 break;
1216 case CMD_UNSOLICITED_ABORT:
1217 cmd->result = DID_RESET << 16;
1218 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1219 "abort\n", cp);
1220 break;
1221 case CMD_TIMEOUT:
1222 cmd->result = DID_TIME_OUT << 16;
1223 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1224 break;
1225 case CMD_UNABORTABLE:
1226 cmd->result = DID_ERROR << 16;
1227 dev_warn(&h->pdev->dev, "Command unabortable\n");
1228 break;
1229 default:
1230 cmd->result = DID_ERROR << 16;
1231 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1232 cp, ei->CommandStatus);
1234 cmd->scsi_done(cmd);
1235 cmd_free(h, cp);
1238 static int hpsa_scsi_detect(struct ctlr_info *h)
1240 struct Scsi_Host *sh;
1241 int error;
1243 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1244 if (sh == NULL)
1245 goto fail;
1247 sh->io_port = 0;
1248 sh->n_io_port = 0;
1249 sh->this_id = -1;
1250 sh->max_channel = 3;
1251 sh->max_cmd_len = MAX_COMMAND_SIZE;
1252 sh->max_lun = HPSA_MAX_LUN;
1253 sh->max_id = HPSA_MAX_LUN;
1254 sh->can_queue = h->nr_cmds;
1255 sh->cmd_per_lun = h->nr_cmds;
1256 sh->sg_tablesize = h->maxsgentries;
1257 h->scsi_host = sh;
1258 sh->hostdata[0] = (unsigned long) h;
1259 sh->irq = h->intr[h->intr_mode];
1260 sh->unique_id = sh->irq;
1261 error = scsi_add_host(sh, &h->pdev->dev);
1262 if (error)
1263 goto fail_host_put;
1264 scsi_scan_host(sh);
1265 return 0;
1267 fail_host_put:
1268 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1269 " failed for controller %d\n", h->ctlr);
1270 scsi_host_put(sh);
1271 return error;
1272 fail:
1273 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1274 " failed for controller %d\n", h->ctlr);
1275 return -ENOMEM;
1278 static void hpsa_pci_unmap(struct pci_dev *pdev,
1279 struct CommandList *c, int sg_used, int data_direction)
1281 int i;
1282 union u64bit addr64;
1284 for (i = 0; i < sg_used; i++) {
1285 addr64.val32.lower = c->SG[i].Addr.lower;
1286 addr64.val32.upper = c->SG[i].Addr.upper;
1287 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1288 data_direction);
1292 static void hpsa_map_one(struct pci_dev *pdev,
1293 struct CommandList *cp,
1294 unsigned char *buf,
1295 size_t buflen,
1296 int data_direction)
1298 u64 addr64;
1300 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1301 cp->Header.SGList = 0;
1302 cp->Header.SGTotal = 0;
1303 return;
1306 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1307 cp->SG[0].Addr.lower =
1308 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1309 cp->SG[0].Addr.upper =
1310 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1311 cp->SG[0].Len = buflen;
1312 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1313 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1316 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1317 struct CommandList *c)
1319 DECLARE_COMPLETION_ONSTACK(wait);
1321 c->waiting = &wait;
1322 enqueue_cmd_and_start_io(h, c);
1323 wait_for_completion(&wait);
1326 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1327 struct CommandList *c, int data_direction)
1329 int retry_count = 0;
1331 do {
1332 memset(c->err_info, 0, sizeof(*c->err_info));
1333 hpsa_scsi_do_simple_cmd_core(h, c);
1334 retry_count++;
1335 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1336 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1339 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1341 struct ErrorInfo *ei;
1342 struct device *d = &cp->h->pdev->dev;
1344 ei = cp->err_info;
1345 switch (ei->CommandStatus) {
1346 case CMD_TARGET_STATUS:
1347 dev_warn(d, "cmd %p has completed with errors\n", cp);
1348 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1349 ei->ScsiStatus);
1350 if (ei->ScsiStatus == 0)
1351 dev_warn(d, "SCSI status is abnormally zero. "
1352 "(probably indicates selection timeout "
1353 "reported incorrectly due to a known "
1354 "firmware bug, circa July, 2001.)\n");
1355 break;
1356 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1357 dev_info(d, "UNDERRUN\n");
1358 break;
1359 case CMD_DATA_OVERRUN:
1360 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1361 break;
1362 case CMD_INVALID: {
1363 /* controller unfortunately reports SCSI passthru's
1364 * to non-existent targets as invalid commands.
1366 dev_warn(d, "cp %p is reported invalid (probably means "
1367 "target device no longer present)\n", cp);
1368 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1369 print_cmd(cp); */
1371 break;
1372 case CMD_PROTOCOL_ERR:
1373 dev_warn(d, "cp %p has protocol error \n", cp);
1374 break;
1375 case CMD_HARDWARE_ERR:
1376 /* cmd->result = DID_ERROR << 16; */
1377 dev_warn(d, "cp %p had hardware error\n", cp);
1378 break;
1379 case CMD_CONNECTION_LOST:
1380 dev_warn(d, "cp %p had connection lost\n", cp);
1381 break;
1382 case CMD_ABORTED:
1383 dev_warn(d, "cp %p was aborted\n", cp);
1384 break;
1385 case CMD_ABORT_FAILED:
1386 dev_warn(d, "cp %p reports abort failed\n", cp);
1387 break;
1388 case CMD_UNSOLICITED_ABORT:
1389 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1390 break;
1391 case CMD_TIMEOUT:
1392 dev_warn(d, "cp %p timed out\n", cp);
1393 break;
1394 case CMD_UNABORTABLE:
1395 dev_warn(d, "Command unabortable\n");
1396 break;
1397 default:
1398 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1399 ei->CommandStatus);
1403 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1404 unsigned char page, unsigned char *buf,
1405 unsigned char bufsize)
1407 int rc = IO_OK;
1408 struct CommandList *c;
1409 struct ErrorInfo *ei;
1411 c = cmd_special_alloc(h);
1413 if (c == NULL) { /* trouble... */
1414 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1415 return -ENOMEM;
1418 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1419 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1420 ei = c->err_info;
1421 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1422 hpsa_scsi_interpret_error(c);
1423 rc = -1;
1425 cmd_special_free(h, c);
1426 return rc;
1429 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1431 int rc = IO_OK;
1432 struct CommandList *c;
1433 struct ErrorInfo *ei;
1435 c = cmd_special_alloc(h);
1437 if (c == NULL) { /* trouble... */
1438 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1439 return -ENOMEM;
1442 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1443 hpsa_scsi_do_simple_cmd_core(h, c);
1444 /* no unmap needed here because no data xfer. */
1446 ei = c->err_info;
1447 if (ei->CommandStatus != 0) {
1448 hpsa_scsi_interpret_error(c);
1449 rc = -1;
1451 cmd_special_free(h, c);
1452 return rc;
1455 static void hpsa_get_raid_level(struct ctlr_info *h,
1456 unsigned char *scsi3addr, unsigned char *raid_level)
1458 int rc;
1459 unsigned char *buf;
1461 *raid_level = RAID_UNKNOWN;
1462 buf = kzalloc(64, GFP_KERNEL);
1463 if (!buf)
1464 return;
1465 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1466 if (rc == 0)
1467 *raid_level = buf[8];
1468 if (*raid_level > RAID_UNKNOWN)
1469 *raid_level = RAID_UNKNOWN;
1470 kfree(buf);
1471 return;
1474 /* Get the device id from inquiry page 0x83 */
1475 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1476 unsigned char *device_id, int buflen)
1478 int rc;
1479 unsigned char *buf;
1481 if (buflen > 16)
1482 buflen = 16;
1483 buf = kzalloc(64, GFP_KERNEL);
1484 if (!buf)
1485 return -1;
1486 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1487 if (rc == 0)
1488 memcpy(device_id, &buf[8], buflen);
1489 kfree(buf);
1490 return rc != 0;
1493 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1494 struct ReportLUNdata *buf, int bufsize,
1495 int extended_response)
1497 int rc = IO_OK;
1498 struct CommandList *c;
1499 unsigned char scsi3addr[8];
1500 struct ErrorInfo *ei;
1502 c = cmd_special_alloc(h);
1503 if (c == NULL) { /* trouble... */
1504 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1505 return -1;
1507 /* address the controller */
1508 memset(scsi3addr, 0, sizeof(scsi3addr));
1509 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1510 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1511 if (extended_response)
1512 c->Request.CDB[1] = extended_response;
1513 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1514 ei = c->err_info;
1515 if (ei->CommandStatus != 0 &&
1516 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1517 hpsa_scsi_interpret_error(c);
1518 rc = -1;
1520 cmd_special_free(h, c);
1521 return rc;
1524 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1525 struct ReportLUNdata *buf,
1526 int bufsize, int extended_response)
1528 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1531 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1532 struct ReportLUNdata *buf, int bufsize)
1534 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1537 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1538 int bus, int target, int lun)
1540 device->bus = bus;
1541 device->target = target;
1542 device->lun = lun;
1545 static int hpsa_update_device_info(struct ctlr_info *h,
1546 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1548 #define OBDR_TAPE_INQ_SIZE 49
1549 unsigned char *inq_buff;
1551 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1552 if (!inq_buff)
1553 goto bail_out;
1555 /* Do an inquiry to the device to see what it is. */
1556 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1557 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1558 /* Inquiry failed (msg printed already) */
1559 dev_err(&h->pdev->dev,
1560 "hpsa_update_device_info: inquiry failed\n");
1561 goto bail_out;
1564 this_device->devtype = (inq_buff[0] & 0x1f);
1565 memcpy(this_device->scsi3addr, scsi3addr, 8);
1566 memcpy(this_device->vendor, &inq_buff[8],
1567 sizeof(this_device->vendor));
1568 memcpy(this_device->model, &inq_buff[16],
1569 sizeof(this_device->model));
1570 memset(this_device->device_id, 0,
1571 sizeof(this_device->device_id));
1572 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1573 sizeof(this_device->device_id));
1575 if (this_device->devtype == TYPE_DISK &&
1576 is_logical_dev_addr_mode(scsi3addr))
1577 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1578 else
1579 this_device->raid_level = RAID_UNKNOWN;
1581 kfree(inq_buff);
1582 return 0;
1584 bail_out:
1585 kfree(inq_buff);
1586 return 1;
1589 static unsigned char *msa2xxx_model[] = {
1590 "MSA2012",
1591 "MSA2024",
1592 "MSA2312",
1593 "MSA2324",
1594 "P2000 G3 SAS",
1595 NULL,
1598 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1600 int i;
1602 for (i = 0; msa2xxx_model[i]; i++)
1603 if (strncmp(device->model, msa2xxx_model[i],
1604 strlen(msa2xxx_model[i])) == 0)
1605 return 1;
1606 return 0;
1609 /* Helper function to assign bus, target, lun mapping of devices.
1610 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1611 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1612 * Logical drive target and lun are assigned at this time, but
1613 * physical device lun and target assignment are deferred (assigned
1614 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1616 static void figure_bus_target_lun(struct ctlr_info *h,
1617 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1618 struct hpsa_scsi_dev_t *device)
1620 u32 lunid;
1622 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1623 /* logical device */
1624 if (unlikely(is_scsi_rev_5(h))) {
1625 /* p1210m, logical drives lun assignments
1626 * match SCSI REPORT LUNS data.
1628 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1629 *bus = 0;
1630 *target = 0;
1631 *lun = (lunid & 0x3fff) + 1;
1632 } else {
1633 /* not p1210m... */
1634 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1635 if (is_msa2xxx(h, device)) {
1636 /* msa2xxx way, put logicals on bus 1
1637 * and match target/lun numbers box
1638 * reports.
1640 *bus = 1;
1641 *target = (lunid >> 16) & 0x3fff;
1642 *lun = lunid & 0x00ff;
1643 } else {
1644 /* Traditional smart array way. */
1645 *bus = 0;
1646 *lun = 0;
1647 *target = lunid & 0x3fff;
1650 } else {
1651 /* physical device */
1652 if (is_hba_lunid(lunaddrbytes))
1653 if (unlikely(is_scsi_rev_5(h))) {
1654 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1655 *target = 0;
1656 *lun = 0;
1657 return;
1658 } else
1659 *bus = 3; /* traditional smartarray */
1660 else
1661 *bus = 2; /* physical disk */
1662 *target = -1;
1663 *lun = -1; /* we will fill these in later. */
1668 * If there is no lun 0 on a target, linux won't find any devices.
1669 * For the MSA2xxx boxes, we have to manually detect the enclosure
1670 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1671 * it for some reason. *tmpdevice is the target we're adding,
1672 * this_device is a pointer into the current element of currentsd[]
1673 * that we're building up in update_scsi_devices(), below.
1674 * lunzerobits is a bitmap that tracks which targets already have a
1675 * lun 0 assigned.
1676 * Returns 1 if an enclosure was added, 0 if not.
1678 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1679 struct hpsa_scsi_dev_t *tmpdevice,
1680 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1681 int bus, int target, int lun, unsigned long lunzerobits[],
1682 int *nmsa2xxx_enclosures)
1684 unsigned char scsi3addr[8];
1686 if (test_bit(target, lunzerobits))
1687 return 0; /* There is already a lun 0 on this target. */
1689 if (!is_logical_dev_addr_mode(lunaddrbytes))
1690 return 0; /* It's the logical targets that may lack lun 0. */
1692 if (!is_msa2xxx(h, tmpdevice))
1693 return 0; /* It's only the MSA2xxx that have this problem. */
1695 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1696 return 0;
1698 memset(scsi3addr, 0, 8);
1699 scsi3addr[3] = target;
1700 if (is_hba_lunid(scsi3addr))
1701 return 0; /* Don't add the RAID controller here. */
1703 if (is_scsi_rev_5(h))
1704 return 0; /* p1210m doesn't need to do this. */
1706 #define MAX_MSA2XXX_ENCLOSURES 32
1707 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1708 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1709 "enclosures exceeded. Check your hardware "
1710 "configuration.");
1711 return 0;
1714 if (hpsa_update_device_info(h, scsi3addr, this_device))
1715 return 0;
1716 (*nmsa2xxx_enclosures)++;
1717 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1718 set_bit(target, lunzerobits);
1719 return 1;
1723 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1724 * logdev. The number of luns in physdev and logdev are returned in
1725 * *nphysicals and *nlogicals, respectively.
1726 * Returns 0 on success, -1 otherwise.
1728 static int hpsa_gather_lun_info(struct ctlr_info *h,
1729 int reportlunsize,
1730 struct ReportLUNdata *physdev, u32 *nphysicals,
1731 struct ReportLUNdata *logdev, u32 *nlogicals)
1733 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1734 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1735 return -1;
1737 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1738 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1739 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1740 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1741 *nphysicals - HPSA_MAX_PHYS_LUN);
1742 *nphysicals = HPSA_MAX_PHYS_LUN;
1744 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1745 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1746 return -1;
1748 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1749 /* Reject Logicals in excess of our max capability. */
1750 if (*nlogicals > HPSA_MAX_LUN) {
1751 dev_warn(&h->pdev->dev,
1752 "maximum logical LUNs (%d) exceeded. "
1753 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1754 *nlogicals - HPSA_MAX_LUN);
1755 *nlogicals = HPSA_MAX_LUN;
1757 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1758 dev_warn(&h->pdev->dev,
1759 "maximum logical + physical LUNs (%d) exceeded. "
1760 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1761 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1762 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1764 return 0;
1767 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1768 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1769 struct ReportLUNdata *logdev_list)
1771 /* Helper function, figure out where the LUN ID info is coming from
1772 * given index i, lists of physical and logical devices, where in
1773 * the list the raid controller is supposed to appear (first or last)
1776 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1777 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1779 if (i == raid_ctlr_position)
1780 return RAID_CTLR_LUNID;
1782 if (i < logicals_start)
1783 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1785 if (i < last_device)
1786 return &logdev_list->LUN[i - nphysicals -
1787 (raid_ctlr_position == 0)][0];
1788 BUG();
1789 return NULL;
1792 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1794 /* the idea here is we could get notified
1795 * that some devices have changed, so we do a report
1796 * physical luns and report logical luns cmd, and adjust
1797 * our list of devices accordingly.
1799 * The scsi3addr's of devices won't change so long as the
1800 * adapter is not reset. That means we can rescan and
1801 * tell which devices we already know about, vs. new
1802 * devices, vs. disappearing devices.
1804 struct ReportLUNdata *physdev_list = NULL;
1805 struct ReportLUNdata *logdev_list = NULL;
1806 unsigned char *inq_buff = NULL;
1807 u32 nphysicals = 0;
1808 u32 nlogicals = 0;
1809 u32 ndev_allocated = 0;
1810 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1811 int ncurrent = 0;
1812 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1813 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1814 int bus, target, lun;
1815 int raid_ctlr_position;
1816 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1818 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1819 GFP_KERNEL);
1820 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1821 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1822 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1823 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1825 if (!currentsd || !physdev_list || !logdev_list ||
1826 !inq_buff || !tmpdevice) {
1827 dev_err(&h->pdev->dev, "out of memory\n");
1828 goto out;
1830 memset(lunzerobits, 0, sizeof(lunzerobits));
1832 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1833 logdev_list, &nlogicals))
1834 goto out;
1836 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1837 * but each of them 4 times through different paths. The plus 1
1838 * is for the RAID controller.
1840 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1842 /* Allocate the per device structures */
1843 for (i = 0; i < ndevs_to_allocate; i++) {
1844 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1845 if (!currentsd[i]) {
1846 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1847 __FILE__, __LINE__);
1848 goto out;
1850 ndev_allocated++;
1853 if (unlikely(is_scsi_rev_5(h)))
1854 raid_ctlr_position = 0;
1855 else
1856 raid_ctlr_position = nphysicals + nlogicals;
1858 /* adjust our table of devices */
1859 nmsa2xxx_enclosures = 0;
1860 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1861 u8 *lunaddrbytes;
1863 /* Figure out where the LUN ID info is coming from */
1864 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1865 i, nphysicals, nlogicals, physdev_list, logdev_list);
1866 /* skip masked physical devices. */
1867 if (lunaddrbytes[3] & 0xC0 &&
1868 i < nphysicals + (raid_ctlr_position == 0))
1869 continue;
1871 /* Get device type, vendor, model, device id */
1872 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1873 continue; /* skip it if we can't talk to it. */
1874 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1875 tmpdevice);
1876 this_device = currentsd[ncurrent];
1879 * For the msa2xxx boxes, we have to insert a LUN 0 which
1880 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1881 * is nonetheless an enclosure device there. We have to
1882 * present that otherwise linux won't find anything if
1883 * there is no lun 0.
1885 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1886 lunaddrbytes, bus, target, lun, lunzerobits,
1887 &nmsa2xxx_enclosures)) {
1888 ncurrent++;
1889 this_device = currentsd[ncurrent];
1892 *this_device = *tmpdevice;
1893 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1895 switch (this_device->devtype) {
1896 case TYPE_ROM: {
1897 /* We don't *really* support actual CD-ROM devices,
1898 * just "One Button Disaster Recovery" tape drive
1899 * which temporarily pretends to be a CD-ROM drive.
1900 * So we check that the device is really an OBDR tape
1901 * device by checking for "$DR-10" in bytes 43-48 of
1902 * the inquiry data.
1904 char obdr_sig[7];
1905 #define OBDR_TAPE_SIG "$DR-10"
1906 strncpy(obdr_sig, &inq_buff[43], 6);
1907 obdr_sig[6] = '\0';
1908 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1909 /* Not OBDR device, ignore it. */
1910 break;
1912 ncurrent++;
1913 break;
1914 case TYPE_DISK:
1915 if (i < nphysicals)
1916 break;
1917 ncurrent++;
1918 break;
1919 case TYPE_TAPE:
1920 case TYPE_MEDIUM_CHANGER:
1921 ncurrent++;
1922 break;
1923 case TYPE_RAID:
1924 /* Only present the Smartarray HBA as a RAID controller.
1925 * If it's a RAID controller other than the HBA itself
1926 * (an external RAID controller, MSA500 or similar)
1927 * don't present it.
1929 if (!is_hba_lunid(lunaddrbytes))
1930 break;
1931 ncurrent++;
1932 break;
1933 default:
1934 break;
1936 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1937 break;
1939 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1940 out:
1941 kfree(tmpdevice);
1942 for (i = 0; i < ndev_allocated; i++)
1943 kfree(currentsd[i]);
1944 kfree(currentsd);
1945 kfree(inq_buff);
1946 kfree(physdev_list);
1947 kfree(logdev_list);
1950 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1951 * dma mapping and fills in the scatter gather entries of the
1952 * hpsa command, cp.
1954 static int hpsa_scatter_gather(struct ctlr_info *h,
1955 struct CommandList *cp,
1956 struct scsi_cmnd *cmd)
1958 unsigned int len;
1959 struct scatterlist *sg;
1960 u64 addr64;
1961 int use_sg, i, sg_index, chained;
1962 struct SGDescriptor *curr_sg;
1964 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1966 use_sg = scsi_dma_map(cmd);
1967 if (use_sg < 0)
1968 return use_sg;
1970 if (!use_sg)
1971 goto sglist_finished;
1973 curr_sg = cp->SG;
1974 chained = 0;
1975 sg_index = 0;
1976 scsi_for_each_sg(cmd, sg, use_sg, i) {
1977 if (i == h->max_cmd_sg_entries - 1 &&
1978 use_sg > h->max_cmd_sg_entries) {
1979 chained = 1;
1980 curr_sg = h->cmd_sg_list[cp->cmdindex];
1981 sg_index = 0;
1983 addr64 = (u64) sg_dma_address(sg);
1984 len = sg_dma_len(sg);
1985 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1986 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1987 curr_sg->Len = len;
1988 curr_sg->Ext = 0; /* we are not chaining */
1989 curr_sg++;
1992 if (use_sg + chained > h->maxSG)
1993 h->maxSG = use_sg + chained;
1995 if (chained) {
1996 cp->Header.SGList = h->max_cmd_sg_entries;
1997 cp->Header.SGTotal = (u16) (use_sg + 1);
1998 hpsa_map_sg_chain_block(h, cp);
1999 return 0;
2002 sglist_finished:
2004 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2005 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2006 return 0;
2010 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2011 void (*done)(struct scsi_cmnd *))
2013 struct ctlr_info *h;
2014 struct hpsa_scsi_dev_t *dev;
2015 unsigned char scsi3addr[8];
2016 struct CommandList *c;
2017 unsigned long flags;
2019 /* Get the ptr to our adapter structure out of cmd->host. */
2020 h = sdev_to_hba(cmd->device);
2021 dev = cmd->device->hostdata;
2022 if (!dev) {
2023 cmd->result = DID_NO_CONNECT << 16;
2024 done(cmd);
2025 return 0;
2027 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2029 /* Need a lock as this is being allocated from the pool */
2030 spin_lock_irqsave(&h->lock, flags);
2031 c = cmd_alloc(h);
2032 spin_unlock_irqrestore(&h->lock, flags);
2033 if (c == NULL) { /* trouble... */
2034 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2035 return SCSI_MLQUEUE_HOST_BUSY;
2038 /* Fill in the command list header */
2040 cmd->scsi_done = done; /* save this for use by completion code */
2042 /* save c in case we have to abort it */
2043 cmd->host_scribble = (unsigned char *) c;
2045 c->cmd_type = CMD_SCSI;
2046 c->scsi_cmd = cmd;
2047 c->Header.ReplyQueue = 0; /* unused in simple mode */
2048 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2049 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2050 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2052 /* Fill in the request block... */
2054 c->Request.Timeout = 0;
2055 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2056 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2057 c->Request.CDBLen = cmd->cmd_len;
2058 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2059 c->Request.Type.Type = TYPE_CMD;
2060 c->Request.Type.Attribute = ATTR_SIMPLE;
2061 switch (cmd->sc_data_direction) {
2062 case DMA_TO_DEVICE:
2063 c->Request.Type.Direction = XFER_WRITE;
2064 break;
2065 case DMA_FROM_DEVICE:
2066 c->Request.Type.Direction = XFER_READ;
2067 break;
2068 case DMA_NONE:
2069 c->Request.Type.Direction = XFER_NONE;
2070 break;
2071 case DMA_BIDIRECTIONAL:
2072 /* This can happen if a buggy application does a scsi passthru
2073 * and sets both inlen and outlen to non-zero. ( see
2074 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2077 c->Request.Type.Direction = XFER_RSVD;
2078 /* This is technically wrong, and hpsa controllers should
2079 * reject it with CMD_INVALID, which is the most correct
2080 * response, but non-fibre backends appear to let it
2081 * slide by, and give the same results as if this field
2082 * were set correctly. Either way is acceptable for
2083 * our purposes here.
2086 break;
2088 default:
2089 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2090 cmd->sc_data_direction);
2091 BUG();
2092 break;
2095 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2096 cmd_free(h, c);
2097 return SCSI_MLQUEUE_HOST_BUSY;
2099 enqueue_cmd_and_start_io(h, c);
2100 /* the cmd'll come back via intr handler in complete_scsi_command() */
2101 return 0;
2104 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2106 static void hpsa_scan_start(struct Scsi_Host *sh)
2108 struct ctlr_info *h = shost_to_hba(sh);
2109 unsigned long flags;
2111 /* wait until any scan already in progress is finished. */
2112 while (1) {
2113 spin_lock_irqsave(&h->scan_lock, flags);
2114 if (h->scan_finished)
2115 break;
2116 spin_unlock_irqrestore(&h->scan_lock, flags);
2117 wait_event(h->scan_wait_queue, h->scan_finished);
2118 /* Note: We don't need to worry about a race between this
2119 * thread and driver unload because the midlayer will
2120 * have incremented the reference count, so unload won't
2121 * happen if we're in here.
2124 h->scan_finished = 0; /* mark scan as in progress */
2125 spin_unlock_irqrestore(&h->scan_lock, flags);
2127 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2129 spin_lock_irqsave(&h->scan_lock, flags);
2130 h->scan_finished = 1; /* mark scan as finished. */
2131 wake_up_all(&h->scan_wait_queue);
2132 spin_unlock_irqrestore(&h->scan_lock, flags);
2135 static int hpsa_scan_finished(struct Scsi_Host *sh,
2136 unsigned long elapsed_time)
2138 struct ctlr_info *h = shost_to_hba(sh);
2139 unsigned long flags;
2140 int finished;
2142 spin_lock_irqsave(&h->scan_lock, flags);
2143 finished = h->scan_finished;
2144 spin_unlock_irqrestore(&h->scan_lock, flags);
2145 return finished;
2148 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2149 int qdepth, int reason)
2151 struct ctlr_info *h = sdev_to_hba(sdev);
2153 if (reason != SCSI_QDEPTH_DEFAULT)
2154 return -ENOTSUPP;
2156 if (qdepth < 1)
2157 qdepth = 1;
2158 else
2159 if (qdepth > h->nr_cmds)
2160 qdepth = h->nr_cmds;
2161 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2162 return sdev->queue_depth;
2165 static void hpsa_unregister_scsi(struct ctlr_info *h)
2167 /* we are being forcibly unloaded, and may not refuse. */
2168 scsi_remove_host(h->scsi_host);
2169 scsi_host_put(h->scsi_host);
2170 h->scsi_host = NULL;
2173 static int hpsa_register_scsi(struct ctlr_info *h)
2175 int rc;
2177 rc = hpsa_scsi_detect(h);
2178 if (rc != 0)
2179 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2180 " hpsa_scsi_detect(), rc is %d\n", rc);
2181 return rc;
2184 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2185 unsigned char lunaddr[])
2187 int rc = 0;
2188 int count = 0;
2189 int waittime = 1; /* seconds */
2190 struct CommandList *c;
2192 c = cmd_special_alloc(h);
2193 if (!c) {
2194 dev_warn(&h->pdev->dev, "out of memory in "
2195 "wait_for_device_to_become_ready.\n");
2196 return IO_ERROR;
2199 /* Send test unit ready until device ready, or give up. */
2200 while (count < HPSA_TUR_RETRY_LIMIT) {
2202 /* Wait for a bit. do this first, because if we send
2203 * the TUR right away, the reset will just abort it.
2205 msleep(1000 * waittime);
2206 count++;
2208 /* Increase wait time with each try, up to a point. */
2209 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2210 waittime = waittime * 2;
2212 /* Send the Test Unit Ready */
2213 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2214 hpsa_scsi_do_simple_cmd_core(h, c);
2215 /* no unmap needed here because no data xfer. */
2217 if (c->err_info->CommandStatus == CMD_SUCCESS)
2218 break;
2220 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2221 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2222 (c->err_info->SenseInfo[2] == NO_SENSE ||
2223 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2224 break;
2226 dev_warn(&h->pdev->dev, "waiting %d secs "
2227 "for device to become ready.\n", waittime);
2228 rc = 1; /* device not ready. */
2231 if (rc)
2232 dev_warn(&h->pdev->dev, "giving up on device.\n");
2233 else
2234 dev_warn(&h->pdev->dev, "device is ready.\n");
2236 cmd_special_free(h, c);
2237 return rc;
2240 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2241 * complaining. Doing a host- or bus-reset can't do anything good here.
2243 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2245 int rc;
2246 struct ctlr_info *h;
2247 struct hpsa_scsi_dev_t *dev;
2249 /* find the controller to which the command to be aborted was sent */
2250 h = sdev_to_hba(scsicmd->device);
2251 if (h == NULL) /* paranoia */
2252 return FAILED;
2253 dev = scsicmd->device->hostdata;
2254 if (!dev) {
2255 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2256 "device lookup failed.\n");
2257 return FAILED;
2259 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2260 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2261 /* send a reset to the SCSI LUN which the command was sent to */
2262 rc = hpsa_send_reset(h, dev->scsi3addr);
2263 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2264 return SUCCESS;
2266 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2267 return FAILED;
2271 * For operations that cannot sleep, a command block is allocated at init,
2272 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2273 * which ones are free or in use. Lock must be held when calling this.
2274 * cmd_free() is the complement.
2276 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2278 struct CommandList *c;
2279 int i;
2280 union u64bit temp64;
2281 dma_addr_t cmd_dma_handle, err_dma_handle;
2283 do {
2284 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2285 if (i == h->nr_cmds)
2286 return NULL;
2287 } while (test_and_set_bit
2288 (i & (BITS_PER_LONG - 1),
2289 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2290 c = h->cmd_pool + i;
2291 memset(c, 0, sizeof(*c));
2292 cmd_dma_handle = h->cmd_pool_dhandle
2293 + i * sizeof(*c);
2294 c->err_info = h->errinfo_pool + i;
2295 memset(c->err_info, 0, sizeof(*c->err_info));
2296 err_dma_handle = h->errinfo_pool_dhandle
2297 + i * sizeof(*c->err_info);
2298 h->nr_allocs++;
2300 c->cmdindex = i;
2302 INIT_LIST_HEAD(&c->list);
2303 c->busaddr = (u32) cmd_dma_handle;
2304 temp64.val = (u64) err_dma_handle;
2305 c->ErrDesc.Addr.lower = temp64.val32.lower;
2306 c->ErrDesc.Addr.upper = temp64.val32.upper;
2307 c->ErrDesc.Len = sizeof(*c->err_info);
2309 c->h = h;
2310 return c;
2313 /* For operations that can wait for kmalloc to possibly sleep,
2314 * this routine can be called. Lock need not be held to call
2315 * cmd_special_alloc. cmd_special_free() is the complement.
2317 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2319 struct CommandList *c;
2320 union u64bit temp64;
2321 dma_addr_t cmd_dma_handle, err_dma_handle;
2323 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2324 if (c == NULL)
2325 return NULL;
2326 memset(c, 0, sizeof(*c));
2328 c->cmdindex = -1;
2330 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2331 &err_dma_handle);
2333 if (c->err_info == NULL) {
2334 pci_free_consistent(h->pdev,
2335 sizeof(*c), c, cmd_dma_handle);
2336 return NULL;
2338 memset(c->err_info, 0, sizeof(*c->err_info));
2340 INIT_LIST_HEAD(&c->list);
2341 c->busaddr = (u32) cmd_dma_handle;
2342 temp64.val = (u64) err_dma_handle;
2343 c->ErrDesc.Addr.lower = temp64.val32.lower;
2344 c->ErrDesc.Addr.upper = temp64.val32.upper;
2345 c->ErrDesc.Len = sizeof(*c->err_info);
2347 c->h = h;
2348 return c;
2351 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2353 int i;
2355 i = c - h->cmd_pool;
2356 clear_bit(i & (BITS_PER_LONG - 1),
2357 h->cmd_pool_bits + (i / BITS_PER_LONG));
2358 h->nr_frees++;
2361 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2363 union u64bit temp64;
2365 temp64.val32.lower = c->ErrDesc.Addr.lower;
2366 temp64.val32.upper = c->ErrDesc.Addr.upper;
2367 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2368 c->err_info, (dma_addr_t) temp64.val);
2369 pci_free_consistent(h->pdev, sizeof(*c),
2370 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2373 #ifdef CONFIG_COMPAT
2375 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2377 IOCTL32_Command_struct __user *arg32 =
2378 (IOCTL32_Command_struct __user *) arg;
2379 IOCTL_Command_struct arg64;
2380 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2381 int err;
2382 u32 cp;
2384 memset(&arg64, 0, sizeof(arg64));
2385 err = 0;
2386 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2387 sizeof(arg64.LUN_info));
2388 err |= copy_from_user(&arg64.Request, &arg32->Request,
2389 sizeof(arg64.Request));
2390 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2391 sizeof(arg64.error_info));
2392 err |= get_user(arg64.buf_size, &arg32->buf_size);
2393 err |= get_user(cp, &arg32->buf);
2394 arg64.buf = compat_ptr(cp);
2395 err |= copy_to_user(p, &arg64, sizeof(arg64));
2397 if (err)
2398 return -EFAULT;
2400 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2401 if (err)
2402 return err;
2403 err |= copy_in_user(&arg32->error_info, &p->error_info,
2404 sizeof(arg32->error_info));
2405 if (err)
2406 return -EFAULT;
2407 return err;
2410 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2411 int cmd, void *arg)
2413 BIG_IOCTL32_Command_struct __user *arg32 =
2414 (BIG_IOCTL32_Command_struct __user *) arg;
2415 BIG_IOCTL_Command_struct arg64;
2416 BIG_IOCTL_Command_struct __user *p =
2417 compat_alloc_user_space(sizeof(arg64));
2418 int err;
2419 u32 cp;
2421 memset(&arg64, 0, sizeof(arg64));
2422 err = 0;
2423 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2424 sizeof(arg64.LUN_info));
2425 err |= copy_from_user(&arg64.Request, &arg32->Request,
2426 sizeof(arg64.Request));
2427 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2428 sizeof(arg64.error_info));
2429 err |= get_user(arg64.buf_size, &arg32->buf_size);
2430 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2431 err |= get_user(cp, &arg32->buf);
2432 arg64.buf = compat_ptr(cp);
2433 err |= copy_to_user(p, &arg64, sizeof(arg64));
2435 if (err)
2436 return -EFAULT;
2438 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2439 if (err)
2440 return err;
2441 err |= copy_in_user(&arg32->error_info, &p->error_info,
2442 sizeof(arg32->error_info));
2443 if (err)
2444 return -EFAULT;
2445 return err;
2448 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2450 switch (cmd) {
2451 case CCISS_GETPCIINFO:
2452 case CCISS_GETINTINFO:
2453 case CCISS_SETINTINFO:
2454 case CCISS_GETNODENAME:
2455 case CCISS_SETNODENAME:
2456 case CCISS_GETHEARTBEAT:
2457 case CCISS_GETBUSTYPES:
2458 case CCISS_GETFIRMVER:
2459 case CCISS_GETDRIVVER:
2460 case CCISS_REVALIDVOLS:
2461 case CCISS_DEREGDISK:
2462 case CCISS_REGNEWDISK:
2463 case CCISS_REGNEWD:
2464 case CCISS_RESCANDISK:
2465 case CCISS_GETLUNINFO:
2466 return hpsa_ioctl(dev, cmd, arg);
2468 case CCISS_PASSTHRU32:
2469 return hpsa_ioctl32_passthru(dev, cmd, arg);
2470 case CCISS_BIG_PASSTHRU32:
2471 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2473 default:
2474 return -ENOIOCTLCMD;
2477 #endif
2479 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2481 struct hpsa_pci_info pciinfo;
2483 if (!argp)
2484 return -EINVAL;
2485 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2486 pciinfo.bus = h->pdev->bus->number;
2487 pciinfo.dev_fn = h->pdev->devfn;
2488 pciinfo.board_id = h->board_id;
2489 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2490 return -EFAULT;
2491 return 0;
2494 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2496 DriverVer_type DriverVer;
2497 unsigned char vmaj, vmin, vsubmin;
2498 int rc;
2500 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2501 &vmaj, &vmin, &vsubmin);
2502 if (rc != 3) {
2503 dev_info(&h->pdev->dev, "driver version string '%s' "
2504 "unrecognized.", HPSA_DRIVER_VERSION);
2505 vmaj = 0;
2506 vmin = 0;
2507 vsubmin = 0;
2509 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2510 if (!argp)
2511 return -EINVAL;
2512 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2513 return -EFAULT;
2514 return 0;
2517 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2519 IOCTL_Command_struct iocommand;
2520 struct CommandList *c;
2521 char *buff = NULL;
2522 union u64bit temp64;
2524 if (!argp)
2525 return -EINVAL;
2526 if (!capable(CAP_SYS_RAWIO))
2527 return -EPERM;
2528 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2529 return -EFAULT;
2530 if ((iocommand.buf_size < 1) &&
2531 (iocommand.Request.Type.Direction != XFER_NONE)) {
2532 return -EINVAL;
2534 if (iocommand.buf_size > 0) {
2535 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2536 if (buff == NULL)
2537 return -EFAULT;
2538 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2539 /* Copy the data into the buffer we created */
2540 if (copy_from_user(buff, iocommand.buf,
2541 iocommand.buf_size)) {
2542 kfree(buff);
2543 return -EFAULT;
2545 } else {
2546 memset(buff, 0, iocommand.buf_size);
2549 c = cmd_special_alloc(h);
2550 if (c == NULL) {
2551 kfree(buff);
2552 return -ENOMEM;
2554 /* Fill in the command type */
2555 c->cmd_type = CMD_IOCTL_PEND;
2556 /* Fill in Command Header */
2557 c->Header.ReplyQueue = 0; /* unused in simple mode */
2558 if (iocommand.buf_size > 0) { /* buffer to fill */
2559 c->Header.SGList = 1;
2560 c->Header.SGTotal = 1;
2561 } else { /* no buffers to fill */
2562 c->Header.SGList = 0;
2563 c->Header.SGTotal = 0;
2565 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2566 /* use the kernel address the cmd block for tag */
2567 c->Header.Tag.lower = c->busaddr;
2569 /* Fill in Request block */
2570 memcpy(&c->Request, &iocommand.Request,
2571 sizeof(c->Request));
2573 /* Fill in the scatter gather information */
2574 if (iocommand.buf_size > 0) {
2575 temp64.val = pci_map_single(h->pdev, buff,
2576 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2577 c->SG[0].Addr.lower = temp64.val32.lower;
2578 c->SG[0].Addr.upper = temp64.val32.upper;
2579 c->SG[0].Len = iocommand.buf_size;
2580 c->SG[0].Ext = 0; /* we are not chaining*/
2582 hpsa_scsi_do_simple_cmd_core(h, c);
2583 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2584 check_ioctl_unit_attention(h, c);
2586 /* Copy the error information out */
2587 memcpy(&iocommand.error_info, c->err_info,
2588 sizeof(iocommand.error_info));
2589 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2590 kfree(buff);
2591 cmd_special_free(h, c);
2592 return -EFAULT;
2594 if (iocommand.Request.Type.Direction == XFER_READ &&
2595 iocommand.buf_size > 0) {
2596 /* Copy the data out of the buffer we created */
2597 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2598 kfree(buff);
2599 cmd_special_free(h, c);
2600 return -EFAULT;
2603 kfree(buff);
2604 cmd_special_free(h, c);
2605 return 0;
2608 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2610 BIG_IOCTL_Command_struct *ioc;
2611 struct CommandList *c;
2612 unsigned char **buff = NULL;
2613 int *buff_size = NULL;
2614 union u64bit temp64;
2615 BYTE sg_used = 0;
2616 int status = 0;
2617 int i;
2618 u32 left;
2619 u32 sz;
2620 BYTE __user *data_ptr;
2622 if (!argp)
2623 return -EINVAL;
2624 if (!capable(CAP_SYS_RAWIO))
2625 return -EPERM;
2626 ioc = (BIG_IOCTL_Command_struct *)
2627 kmalloc(sizeof(*ioc), GFP_KERNEL);
2628 if (!ioc) {
2629 status = -ENOMEM;
2630 goto cleanup1;
2632 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2633 status = -EFAULT;
2634 goto cleanup1;
2636 if ((ioc->buf_size < 1) &&
2637 (ioc->Request.Type.Direction != XFER_NONE)) {
2638 status = -EINVAL;
2639 goto cleanup1;
2641 /* Check kmalloc limits using all SGs */
2642 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2643 status = -EINVAL;
2644 goto cleanup1;
2646 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2647 status = -EINVAL;
2648 goto cleanup1;
2650 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2651 if (!buff) {
2652 status = -ENOMEM;
2653 goto cleanup1;
2655 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2656 if (!buff_size) {
2657 status = -ENOMEM;
2658 goto cleanup1;
2660 left = ioc->buf_size;
2661 data_ptr = ioc->buf;
2662 while (left) {
2663 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2664 buff_size[sg_used] = sz;
2665 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2666 if (buff[sg_used] == NULL) {
2667 status = -ENOMEM;
2668 goto cleanup1;
2670 if (ioc->Request.Type.Direction == XFER_WRITE) {
2671 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2672 status = -ENOMEM;
2673 goto cleanup1;
2675 } else
2676 memset(buff[sg_used], 0, sz);
2677 left -= sz;
2678 data_ptr += sz;
2679 sg_used++;
2681 c = cmd_special_alloc(h);
2682 if (c == NULL) {
2683 status = -ENOMEM;
2684 goto cleanup1;
2686 c->cmd_type = CMD_IOCTL_PEND;
2687 c->Header.ReplyQueue = 0;
2688 c->Header.SGList = c->Header.SGTotal = sg_used;
2689 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2690 c->Header.Tag.lower = c->busaddr;
2691 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2692 if (ioc->buf_size > 0) {
2693 int i;
2694 for (i = 0; i < sg_used; i++) {
2695 temp64.val = pci_map_single(h->pdev, buff[i],
2696 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2697 c->SG[i].Addr.lower = temp64.val32.lower;
2698 c->SG[i].Addr.upper = temp64.val32.upper;
2699 c->SG[i].Len = buff_size[i];
2700 /* we are not chaining */
2701 c->SG[i].Ext = 0;
2704 hpsa_scsi_do_simple_cmd_core(h, c);
2705 if (sg_used)
2706 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2707 check_ioctl_unit_attention(h, c);
2708 /* Copy the error information out */
2709 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2710 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2711 cmd_special_free(h, c);
2712 status = -EFAULT;
2713 goto cleanup1;
2715 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2716 /* Copy the data out of the buffer we created */
2717 BYTE __user *ptr = ioc->buf;
2718 for (i = 0; i < sg_used; i++) {
2719 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2720 cmd_special_free(h, c);
2721 status = -EFAULT;
2722 goto cleanup1;
2724 ptr += buff_size[i];
2727 cmd_special_free(h, c);
2728 status = 0;
2729 cleanup1:
2730 if (buff) {
2731 for (i = 0; i < sg_used; i++)
2732 kfree(buff[i]);
2733 kfree(buff);
2735 kfree(buff_size);
2736 kfree(ioc);
2737 return status;
2740 static void check_ioctl_unit_attention(struct ctlr_info *h,
2741 struct CommandList *c)
2743 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2744 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2745 (void) check_for_unit_attention(h, c);
2748 * ioctl
2750 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2752 struct ctlr_info *h;
2753 void __user *argp = (void __user *)arg;
2755 h = sdev_to_hba(dev);
2757 switch (cmd) {
2758 case CCISS_DEREGDISK:
2759 case CCISS_REGNEWDISK:
2760 case CCISS_REGNEWD:
2761 hpsa_scan_start(h->scsi_host);
2762 return 0;
2763 case CCISS_GETPCIINFO:
2764 return hpsa_getpciinfo_ioctl(h, argp);
2765 case CCISS_GETDRIVVER:
2766 return hpsa_getdrivver_ioctl(h, argp);
2767 case CCISS_PASSTHRU:
2768 return hpsa_passthru_ioctl(h, argp);
2769 case CCISS_BIG_PASSTHRU:
2770 return hpsa_big_passthru_ioctl(h, argp);
2771 default:
2772 return -ENOTTY;
2776 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2777 unsigned char *scsi3addr, u8 reset_type)
2779 struct CommandList *c;
2781 c = cmd_alloc(h);
2782 if (!c)
2783 return -ENOMEM;
2784 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2785 RAID_CTLR_LUNID, TYPE_MSG);
2786 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2787 c->waiting = NULL;
2788 enqueue_cmd_and_start_io(h, c);
2789 /* Don't wait for completion, the reset won't complete. Don't free
2790 * the command either. This is the last command we will send before
2791 * re-initializing everything, so it doesn't matter and won't leak.
2793 return 0;
2796 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2797 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2798 int cmd_type)
2800 int pci_dir = XFER_NONE;
2802 c->cmd_type = CMD_IOCTL_PEND;
2803 c->Header.ReplyQueue = 0;
2804 if (buff != NULL && size > 0) {
2805 c->Header.SGList = 1;
2806 c->Header.SGTotal = 1;
2807 } else {
2808 c->Header.SGList = 0;
2809 c->Header.SGTotal = 0;
2811 c->Header.Tag.lower = c->busaddr;
2812 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2814 c->Request.Type.Type = cmd_type;
2815 if (cmd_type == TYPE_CMD) {
2816 switch (cmd) {
2817 case HPSA_INQUIRY:
2818 /* are we trying to read a vital product page */
2819 if (page_code != 0) {
2820 c->Request.CDB[1] = 0x01;
2821 c->Request.CDB[2] = page_code;
2823 c->Request.CDBLen = 6;
2824 c->Request.Type.Attribute = ATTR_SIMPLE;
2825 c->Request.Type.Direction = XFER_READ;
2826 c->Request.Timeout = 0;
2827 c->Request.CDB[0] = HPSA_INQUIRY;
2828 c->Request.CDB[4] = size & 0xFF;
2829 break;
2830 case HPSA_REPORT_LOG:
2831 case HPSA_REPORT_PHYS:
2832 /* Talking to controller so It's a physical command
2833 mode = 00 target = 0. Nothing to write.
2835 c->Request.CDBLen = 12;
2836 c->Request.Type.Attribute = ATTR_SIMPLE;
2837 c->Request.Type.Direction = XFER_READ;
2838 c->Request.Timeout = 0;
2839 c->Request.CDB[0] = cmd;
2840 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2841 c->Request.CDB[7] = (size >> 16) & 0xFF;
2842 c->Request.CDB[8] = (size >> 8) & 0xFF;
2843 c->Request.CDB[9] = size & 0xFF;
2844 break;
2845 case HPSA_CACHE_FLUSH:
2846 c->Request.CDBLen = 12;
2847 c->Request.Type.Attribute = ATTR_SIMPLE;
2848 c->Request.Type.Direction = XFER_WRITE;
2849 c->Request.Timeout = 0;
2850 c->Request.CDB[0] = BMIC_WRITE;
2851 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2852 break;
2853 case TEST_UNIT_READY:
2854 c->Request.CDBLen = 6;
2855 c->Request.Type.Attribute = ATTR_SIMPLE;
2856 c->Request.Type.Direction = XFER_NONE;
2857 c->Request.Timeout = 0;
2858 break;
2859 default:
2860 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2861 BUG();
2862 return;
2864 } else if (cmd_type == TYPE_MSG) {
2865 switch (cmd) {
2867 case HPSA_DEVICE_RESET_MSG:
2868 c->Request.CDBLen = 16;
2869 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2870 c->Request.Type.Attribute = ATTR_SIMPLE;
2871 c->Request.Type.Direction = XFER_NONE;
2872 c->Request.Timeout = 0; /* Don't time out */
2873 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2874 c->Request.CDB[0] = cmd;
2875 c->Request.CDB[1] = 0x03; /* Reset target above */
2876 /* If bytes 4-7 are zero, it means reset the */
2877 /* LunID device */
2878 c->Request.CDB[4] = 0x00;
2879 c->Request.CDB[5] = 0x00;
2880 c->Request.CDB[6] = 0x00;
2881 c->Request.CDB[7] = 0x00;
2882 break;
2884 default:
2885 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2886 cmd);
2887 BUG();
2889 } else {
2890 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2891 BUG();
2894 switch (c->Request.Type.Direction) {
2895 case XFER_READ:
2896 pci_dir = PCI_DMA_FROMDEVICE;
2897 break;
2898 case XFER_WRITE:
2899 pci_dir = PCI_DMA_TODEVICE;
2900 break;
2901 case XFER_NONE:
2902 pci_dir = PCI_DMA_NONE;
2903 break;
2904 default:
2905 pci_dir = PCI_DMA_BIDIRECTIONAL;
2908 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2910 return;
2914 * Map (physical) PCI mem into (virtual) kernel space
2916 static void __iomem *remap_pci_mem(ulong base, ulong size)
2918 ulong page_base = ((ulong) base) & PAGE_MASK;
2919 ulong page_offs = ((ulong) base) - page_base;
2920 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2922 return page_remapped ? (page_remapped + page_offs) : NULL;
2925 /* Takes cmds off the submission queue and sends them to the hardware,
2926 * then puts them on the queue of cmds waiting for completion.
2928 static void start_io(struct ctlr_info *h)
2930 struct CommandList *c;
2932 while (!list_empty(&h->reqQ)) {
2933 c = list_entry(h->reqQ.next, struct CommandList, list);
2934 /* can't do anything if fifo is full */
2935 if ((h->access.fifo_full(h))) {
2936 dev_warn(&h->pdev->dev, "fifo full\n");
2937 break;
2940 /* Get the first entry from the Request Q */
2941 removeQ(c);
2942 h->Qdepth--;
2944 /* Tell the controller execute command */
2945 h->access.submit_command(h, c);
2947 /* Put job onto the completed Q */
2948 addQ(&h->cmpQ, c);
2952 static inline unsigned long get_next_completion(struct ctlr_info *h)
2954 return h->access.command_completed(h);
2957 static inline bool interrupt_pending(struct ctlr_info *h)
2959 return h->access.intr_pending(h);
2962 static inline long interrupt_not_for_us(struct ctlr_info *h)
2964 return (h->access.intr_pending(h) == 0) ||
2965 (h->interrupts_enabled == 0);
2968 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2969 u32 raw_tag)
2971 if (unlikely(tag_index >= h->nr_cmds)) {
2972 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2973 return 1;
2975 return 0;
2978 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2980 removeQ(c);
2981 if (likely(c->cmd_type == CMD_SCSI))
2982 complete_scsi_command(c);
2983 else if (c->cmd_type == CMD_IOCTL_PEND)
2984 complete(c->waiting);
2987 static inline u32 hpsa_tag_contains_index(u32 tag)
2989 return tag & DIRECT_LOOKUP_BIT;
2992 static inline u32 hpsa_tag_to_index(u32 tag)
2994 return tag >> DIRECT_LOOKUP_SHIFT;
2998 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3000 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3001 #define HPSA_SIMPLE_ERROR_BITS 0x03
3002 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3003 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3004 return tag & ~HPSA_PERF_ERROR_BITS;
3007 /* process completion of an indexed ("direct lookup") command */
3008 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3009 u32 raw_tag)
3011 u32 tag_index;
3012 struct CommandList *c;
3014 tag_index = hpsa_tag_to_index(raw_tag);
3015 if (bad_tag(h, tag_index, raw_tag))
3016 return next_command(h);
3017 c = h->cmd_pool + tag_index;
3018 finish_cmd(c, raw_tag);
3019 return next_command(h);
3022 /* process completion of a non-indexed command */
3023 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3024 u32 raw_tag)
3026 u32 tag;
3027 struct CommandList *c = NULL;
3029 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3030 list_for_each_entry(c, &h->cmpQ, list) {
3031 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3032 finish_cmd(c, raw_tag);
3033 return next_command(h);
3036 bad_tag(h, h->nr_cmds + 1, raw_tag);
3037 return next_command(h);
3040 /* Some controllers, like p400, will give us one interrupt
3041 * after a soft reset, even if we turned interrupts off.
3042 * Only need to check for this in the hpsa_xxx_discard_completions
3043 * functions.
3045 static int ignore_bogus_interrupt(struct ctlr_info *h)
3047 if (likely(!reset_devices))
3048 return 0;
3050 if (likely(h->interrupts_enabled))
3051 return 0;
3053 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3054 "(known firmware bug.) Ignoring.\n");
3056 return 1;
3059 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3061 struct ctlr_info *h = dev_id;
3062 unsigned long flags;
3063 u32 raw_tag;
3065 if (ignore_bogus_interrupt(h))
3066 return IRQ_NONE;
3068 if (interrupt_not_for_us(h))
3069 return IRQ_NONE;
3070 spin_lock_irqsave(&h->lock, flags);
3071 while (interrupt_pending(h)) {
3072 raw_tag = get_next_completion(h);
3073 while (raw_tag != FIFO_EMPTY)
3074 raw_tag = next_command(h);
3076 spin_unlock_irqrestore(&h->lock, flags);
3077 return IRQ_HANDLED;
3080 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3082 struct ctlr_info *h = dev_id;
3083 unsigned long flags;
3084 u32 raw_tag;
3086 if (ignore_bogus_interrupt(h))
3087 return IRQ_NONE;
3089 spin_lock_irqsave(&h->lock, flags);
3090 raw_tag = get_next_completion(h);
3091 while (raw_tag != FIFO_EMPTY)
3092 raw_tag = next_command(h);
3093 spin_unlock_irqrestore(&h->lock, flags);
3094 return IRQ_HANDLED;
3097 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3099 struct ctlr_info *h = dev_id;
3100 unsigned long flags;
3101 u32 raw_tag;
3103 if (interrupt_not_for_us(h))
3104 return IRQ_NONE;
3105 spin_lock_irqsave(&h->lock, flags);
3106 while (interrupt_pending(h)) {
3107 raw_tag = get_next_completion(h);
3108 while (raw_tag != FIFO_EMPTY) {
3109 if (hpsa_tag_contains_index(raw_tag))
3110 raw_tag = process_indexed_cmd(h, raw_tag);
3111 else
3112 raw_tag = process_nonindexed_cmd(h, raw_tag);
3115 spin_unlock_irqrestore(&h->lock, flags);
3116 return IRQ_HANDLED;
3119 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3121 struct ctlr_info *h = dev_id;
3122 unsigned long flags;
3123 u32 raw_tag;
3125 spin_lock_irqsave(&h->lock, flags);
3126 raw_tag = get_next_completion(h);
3127 while (raw_tag != FIFO_EMPTY) {
3128 if (hpsa_tag_contains_index(raw_tag))
3129 raw_tag = process_indexed_cmd(h, raw_tag);
3130 else
3131 raw_tag = process_nonindexed_cmd(h, raw_tag);
3133 spin_unlock_irqrestore(&h->lock, flags);
3134 return IRQ_HANDLED;
3137 /* Send a message CDB to the firmware. Careful, this only works
3138 * in simple mode, not performant mode due to the tag lookup.
3139 * We only ever use this immediately after a controller reset.
3141 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3142 unsigned char type)
3144 struct Command {
3145 struct CommandListHeader CommandHeader;
3146 struct RequestBlock Request;
3147 struct ErrDescriptor ErrorDescriptor;
3149 struct Command *cmd;
3150 static const size_t cmd_sz = sizeof(*cmd) +
3151 sizeof(cmd->ErrorDescriptor);
3152 dma_addr_t paddr64;
3153 uint32_t paddr32, tag;
3154 void __iomem *vaddr;
3155 int i, err;
3157 vaddr = pci_ioremap_bar(pdev, 0);
3158 if (vaddr == NULL)
3159 return -ENOMEM;
3161 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3162 * CCISS commands, so they must be allocated from the lower 4GiB of
3163 * memory.
3165 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3166 if (err) {
3167 iounmap(vaddr);
3168 return -ENOMEM;
3171 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3172 if (cmd == NULL) {
3173 iounmap(vaddr);
3174 return -ENOMEM;
3177 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3178 * although there's no guarantee, we assume that the address is at
3179 * least 4-byte aligned (most likely, it's page-aligned).
3181 paddr32 = paddr64;
3183 cmd->CommandHeader.ReplyQueue = 0;
3184 cmd->CommandHeader.SGList = 0;
3185 cmd->CommandHeader.SGTotal = 0;
3186 cmd->CommandHeader.Tag.lower = paddr32;
3187 cmd->CommandHeader.Tag.upper = 0;
3188 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3190 cmd->Request.CDBLen = 16;
3191 cmd->Request.Type.Type = TYPE_MSG;
3192 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3193 cmd->Request.Type.Direction = XFER_NONE;
3194 cmd->Request.Timeout = 0; /* Don't time out */
3195 cmd->Request.CDB[0] = opcode;
3196 cmd->Request.CDB[1] = type;
3197 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3198 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3199 cmd->ErrorDescriptor.Addr.upper = 0;
3200 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3202 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3204 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3205 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3206 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3207 break;
3208 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3211 iounmap(vaddr);
3213 /* we leak the DMA buffer here ... no choice since the controller could
3214 * still complete the command.
3216 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3217 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3218 opcode, type);
3219 return -ETIMEDOUT;
3222 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3224 if (tag & HPSA_ERROR_BIT) {
3225 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3226 opcode, type);
3227 return -EIO;
3230 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3231 opcode, type);
3232 return 0;
3235 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3237 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3238 void * __iomem vaddr, u32 use_doorbell)
3240 u16 pmcsr;
3241 int pos;
3243 if (use_doorbell) {
3244 /* For everything after the P600, the PCI power state method
3245 * of resetting the controller doesn't work, so we have this
3246 * other way using the doorbell register.
3248 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3249 writel(use_doorbell, vaddr + SA5_DOORBELL);
3250 } else { /* Try to do it the PCI power state way */
3252 /* Quoting from the Open CISS Specification: "The Power
3253 * Management Control/Status Register (CSR) controls the power
3254 * state of the device. The normal operating state is D0,
3255 * CSR=00h. The software off state is D3, CSR=03h. To reset
3256 * the controller, place the interface device in D3 then to D0,
3257 * this causes a secondary PCI reset which will reset the
3258 * controller." */
3260 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3261 if (pos == 0) {
3262 dev_err(&pdev->dev,
3263 "hpsa_reset_controller: "
3264 "PCI PM not supported\n");
3265 return -ENODEV;
3267 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3268 /* enter the D3hot power management state */
3269 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3270 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3271 pmcsr |= PCI_D3hot;
3272 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3274 msleep(500);
3276 /* enter the D0 power management state */
3277 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3278 pmcsr |= PCI_D0;
3279 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3281 return 0;
3284 static __devinit void init_driver_version(char *driver_version, int len)
3286 memset(driver_version, 0, len);
3287 strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3290 static __devinit int write_driver_ver_to_cfgtable(
3291 struct CfgTable __iomem *cfgtable)
3293 char *driver_version;
3294 int i, size = sizeof(cfgtable->driver_version);
3296 driver_version = kmalloc(size, GFP_KERNEL);
3297 if (!driver_version)
3298 return -ENOMEM;
3300 init_driver_version(driver_version, size);
3301 for (i = 0; i < size; i++)
3302 writeb(driver_version[i], &cfgtable->driver_version[i]);
3303 kfree(driver_version);
3304 return 0;
3307 static __devinit void read_driver_ver_from_cfgtable(
3308 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3310 int i;
3312 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3313 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3316 static __devinit int controller_reset_failed(
3317 struct CfgTable __iomem *cfgtable)
3320 char *driver_ver, *old_driver_ver;
3321 int rc, size = sizeof(cfgtable->driver_version);
3323 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3324 if (!old_driver_ver)
3325 return -ENOMEM;
3326 driver_ver = old_driver_ver + size;
3328 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3329 * should have been changed, otherwise we know the reset failed.
3331 init_driver_version(old_driver_ver, size);
3332 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3333 rc = !memcmp(driver_ver, old_driver_ver, size);
3334 kfree(old_driver_ver);
3335 return rc;
3337 /* This does a hard reset of the controller using PCI power management
3338 * states or the using the doorbell register.
3340 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3342 u64 cfg_offset;
3343 u32 cfg_base_addr;
3344 u64 cfg_base_addr_index;
3345 void __iomem *vaddr;
3346 unsigned long paddr;
3347 u32 misc_fw_support;
3348 int rc;
3349 struct CfgTable __iomem *cfgtable;
3350 u32 use_doorbell;
3351 u32 board_id;
3352 u16 command_register;
3354 /* For controllers as old as the P600, this is very nearly
3355 * the same thing as
3357 * pci_save_state(pci_dev);
3358 * pci_set_power_state(pci_dev, PCI_D3hot);
3359 * pci_set_power_state(pci_dev, PCI_D0);
3360 * pci_restore_state(pci_dev);
3362 * For controllers newer than the P600, the pci power state
3363 * method of resetting doesn't work so we have another way
3364 * using the doorbell register.
3367 rc = hpsa_lookup_board_id(pdev, &board_id);
3368 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3369 dev_warn(&pdev->dev, "Not resetting device.\n");
3370 return -ENODEV;
3373 /* if controller is soft- but not hard resettable... */
3374 if (!ctlr_is_hard_resettable(board_id))
3375 return -ENOTSUPP; /* try soft reset later. */
3377 /* Save the PCI command register */
3378 pci_read_config_word(pdev, 4, &command_register);
3379 /* Turn the board off. This is so that later pci_restore_state()
3380 * won't turn the board on before the rest of config space is ready.
3382 pci_disable_device(pdev);
3383 pci_save_state(pdev);
3385 /* find the first memory BAR, so we can find the cfg table */
3386 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3387 if (rc)
3388 return rc;
3389 vaddr = remap_pci_mem(paddr, 0x250);
3390 if (!vaddr)
3391 return -ENOMEM;
3393 /* find cfgtable in order to check if reset via doorbell is supported */
3394 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3395 &cfg_base_addr_index, &cfg_offset);
3396 if (rc)
3397 goto unmap_vaddr;
3398 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3399 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3400 if (!cfgtable) {
3401 rc = -ENOMEM;
3402 goto unmap_vaddr;
3404 rc = write_driver_ver_to_cfgtable(cfgtable);
3405 if (rc)
3406 goto unmap_vaddr;
3408 /* If reset via doorbell register is supported, use that.
3409 * There are two such methods. Favor the newest method.
3411 misc_fw_support = readl(&cfgtable->misc_fw_support);
3412 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3413 if (use_doorbell) {
3414 use_doorbell = DOORBELL_CTLR_RESET2;
3415 } else {
3416 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3417 if (use_doorbell) {
3418 dev_warn(&pdev->dev, "Controller claims that "
3419 "'Bit 2 doorbell reset' is "
3420 "supported, but not 'bit 5 doorbell reset'. "
3421 "Firmware update is recommended.\n");
3422 rc = -ENOTSUPP; /* try soft reset */
3423 goto unmap_cfgtable;
3427 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3428 if (rc)
3429 goto unmap_cfgtable;
3431 pci_restore_state(pdev);
3432 rc = pci_enable_device(pdev);
3433 if (rc) {
3434 dev_warn(&pdev->dev, "failed to enable device.\n");
3435 goto unmap_cfgtable;
3437 pci_write_config_word(pdev, 4, command_register);
3439 /* Some devices (notably the HP Smart Array 5i Controller)
3440 need a little pause here */
3441 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3443 /* Wait for board to become not ready, then ready. */
3444 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3445 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3446 if (rc) {
3447 dev_warn(&pdev->dev,
3448 "failed waiting for board to reset."
3449 " Will try soft reset.\n");
3450 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3451 goto unmap_cfgtable;
3453 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3454 if (rc) {
3455 dev_warn(&pdev->dev,
3456 "failed waiting for board to become ready "
3457 "after hard reset\n");
3458 goto unmap_cfgtable;
3461 rc = controller_reset_failed(vaddr);
3462 if (rc < 0)
3463 goto unmap_cfgtable;
3464 if (rc) {
3465 dev_warn(&pdev->dev, "Unable to successfully reset "
3466 "controller. Will try soft reset.\n");
3467 rc = -ENOTSUPP;
3468 } else {
3469 dev_info(&pdev->dev, "board ready after hard reset.\n");
3472 unmap_cfgtable:
3473 iounmap(cfgtable);
3475 unmap_vaddr:
3476 iounmap(vaddr);
3477 return rc;
3481 * We cannot read the structure directly, for portability we must use
3482 * the io functions.
3483 * This is for debug only.
3485 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3487 #ifdef HPSA_DEBUG
3488 int i;
3489 char temp_name[17];
3491 dev_info(dev, "Controller Configuration information\n");
3492 dev_info(dev, "------------------------------------\n");
3493 for (i = 0; i < 4; i++)
3494 temp_name[i] = readb(&(tb->Signature[i]));
3495 temp_name[4] = '\0';
3496 dev_info(dev, " Signature = %s\n", temp_name);
3497 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3498 dev_info(dev, " Transport methods supported = 0x%x\n",
3499 readl(&(tb->TransportSupport)));
3500 dev_info(dev, " Transport methods active = 0x%x\n",
3501 readl(&(tb->TransportActive)));
3502 dev_info(dev, " Requested transport Method = 0x%x\n",
3503 readl(&(tb->HostWrite.TransportRequest)));
3504 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3505 readl(&(tb->HostWrite.CoalIntDelay)));
3506 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3507 readl(&(tb->HostWrite.CoalIntCount)));
3508 dev_info(dev, " Max outstanding commands = 0x%d\n",
3509 readl(&(tb->CmdsOutMax)));
3510 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3511 for (i = 0; i < 16; i++)
3512 temp_name[i] = readb(&(tb->ServerName[i]));
3513 temp_name[16] = '\0';
3514 dev_info(dev, " Server Name = %s\n", temp_name);
3515 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3516 readl(&(tb->HeartBeat)));
3517 #endif /* HPSA_DEBUG */
3520 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3522 int i, offset, mem_type, bar_type;
3524 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3525 return 0;
3526 offset = 0;
3527 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3528 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3529 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3530 offset += 4;
3531 else {
3532 mem_type = pci_resource_flags(pdev, i) &
3533 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3534 switch (mem_type) {
3535 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3536 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3537 offset += 4; /* 32 bit */
3538 break;
3539 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3540 offset += 8;
3541 break;
3542 default: /* reserved in PCI 2.2 */
3543 dev_warn(&pdev->dev,
3544 "base address is invalid\n");
3545 return -1;
3546 break;
3549 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3550 return i + 1;
3552 return -1;
3555 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3556 * controllers that are capable. If not, we use IO-APIC mode.
3559 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3561 #ifdef CONFIG_PCI_MSI
3562 int err;
3563 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3564 {0, 2}, {0, 3}
3567 /* Some boards advertise MSI but don't really support it */
3568 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3569 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3570 goto default_int_mode;
3571 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3572 dev_info(&h->pdev->dev, "MSIX\n");
3573 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3574 if (!err) {
3575 h->intr[0] = hpsa_msix_entries[0].vector;
3576 h->intr[1] = hpsa_msix_entries[1].vector;
3577 h->intr[2] = hpsa_msix_entries[2].vector;
3578 h->intr[3] = hpsa_msix_entries[3].vector;
3579 h->msix_vector = 1;
3580 return;
3582 if (err > 0) {
3583 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3584 "available\n", err);
3585 goto default_int_mode;
3586 } else {
3587 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3588 err);
3589 goto default_int_mode;
3592 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3593 dev_info(&h->pdev->dev, "MSI\n");
3594 if (!pci_enable_msi(h->pdev))
3595 h->msi_vector = 1;
3596 else
3597 dev_warn(&h->pdev->dev, "MSI init failed\n");
3599 default_int_mode:
3600 #endif /* CONFIG_PCI_MSI */
3601 /* if we get here we're going to use the default interrupt mode */
3602 h->intr[h->intr_mode] = h->pdev->irq;
3605 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3607 int i;
3608 u32 subsystem_vendor_id, subsystem_device_id;
3610 subsystem_vendor_id = pdev->subsystem_vendor;
3611 subsystem_device_id = pdev->subsystem_device;
3612 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3613 subsystem_vendor_id;
3615 for (i = 0; i < ARRAY_SIZE(products); i++)
3616 if (*board_id == products[i].board_id)
3617 return i;
3619 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3620 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3621 !hpsa_allow_any) {
3622 dev_warn(&pdev->dev, "unrecognized board ID: "
3623 "0x%08x, ignoring.\n", *board_id);
3624 return -ENODEV;
3626 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3629 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3631 u16 command;
3633 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3634 return ((command & PCI_COMMAND_MEMORY) == 0);
3637 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3638 unsigned long *memory_bar)
3640 int i;
3642 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3643 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3644 /* addressing mode bits already removed */
3645 *memory_bar = pci_resource_start(pdev, i);
3646 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3647 *memory_bar);
3648 return 0;
3650 dev_warn(&pdev->dev, "no memory BAR found\n");
3651 return -ENODEV;
3654 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3655 void __iomem *vaddr, int wait_for_ready)
3657 int i, iterations;
3658 u32 scratchpad;
3659 if (wait_for_ready)
3660 iterations = HPSA_BOARD_READY_ITERATIONS;
3661 else
3662 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3664 for (i = 0; i < iterations; i++) {
3665 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3666 if (wait_for_ready) {
3667 if (scratchpad == HPSA_FIRMWARE_READY)
3668 return 0;
3669 } else {
3670 if (scratchpad != HPSA_FIRMWARE_READY)
3671 return 0;
3673 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3675 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3676 return -ENODEV;
3679 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3680 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3681 u64 *cfg_offset)
3683 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3684 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3685 *cfg_base_addr &= (u32) 0x0000ffff;
3686 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3687 if (*cfg_base_addr_index == -1) {
3688 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3689 return -ENODEV;
3691 return 0;
3694 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3696 u64 cfg_offset;
3697 u32 cfg_base_addr;
3698 u64 cfg_base_addr_index;
3699 u32 trans_offset;
3700 int rc;
3702 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3703 &cfg_base_addr_index, &cfg_offset);
3704 if (rc)
3705 return rc;
3706 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3707 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3708 if (!h->cfgtable)
3709 return -ENOMEM;
3710 rc = write_driver_ver_to_cfgtable(h->cfgtable);
3711 if (rc)
3712 return rc;
3713 /* Find performant mode table. */
3714 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3715 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3716 cfg_base_addr_index)+cfg_offset+trans_offset,
3717 sizeof(*h->transtable));
3718 if (!h->transtable)
3719 return -ENOMEM;
3720 return 0;
3723 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3725 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3727 /* Limit commands in memory limited kdump scenario. */
3728 if (reset_devices && h->max_commands > 32)
3729 h->max_commands = 32;
3731 if (h->max_commands < 16) {
3732 dev_warn(&h->pdev->dev, "Controller reports "
3733 "max supported commands of %d, an obvious lie. "
3734 "Using 16. Ensure that firmware is up to date.\n",
3735 h->max_commands);
3736 h->max_commands = 16;
3740 /* Interrogate the hardware for some limits:
3741 * max commands, max SG elements without chaining, and with chaining,
3742 * SG chain block size, etc.
3744 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3746 hpsa_get_max_perf_mode_cmds(h);
3747 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3748 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3750 * Limit in-command s/g elements to 32 save dma'able memory.
3751 * Howvever spec says if 0, use 31
3753 h->max_cmd_sg_entries = 31;
3754 if (h->maxsgentries > 512) {
3755 h->max_cmd_sg_entries = 32;
3756 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3757 h->maxsgentries--; /* save one for chain pointer */
3758 } else {
3759 h->maxsgentries = 31; /* default to traditional values */
3760 h->chainsize = 0;
3764 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3766 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3767 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3768 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3769 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3770 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3771 return false;
3773 return true;
3776 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3777 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3779 #ifdef CONFIG_X86
3780 u32 prefetch;
3782 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3783 prefetch |= 0x100;
3784 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3785 #endif
3788 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3789 * in a prefetch beyond physical memory.
3791 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3793 u32 dma_prefetch;
3795 if (h->board_id != 0x3225103C)
3796 return;
3797 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3798 dma_prefetch |= 0x8000;
3799 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3802 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3804 int i;
3805 u32 doorbell_value;
3806 unsigned long flags;
3808 /* under certain very rare conditions, this can take awhile.
3809 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3810 * as we enter this code.)
3812 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3813 spin_lock_irqsave(&h->lock, flags);
3814 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3815 spin_unlock_irqrestore(&h->lock, flags);
3816 if (!(doorbell_value & CFGTBL_ChangeReq))
3817 break;
3818 /* delay and try again */
3819 usleep_range(10000, 20000);
3823 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3825 u32 trans_support;
3827 trans_support = readl(&(h->cfgtable->TransportSupport));
3828 if (!(trans_support & SIMPLE_MODE))
3829 return -ENOTSUPP;
3831 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3832 /* Update the field, and then ring the doorbell */
3833 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3834 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3835 hpsa_wait_for_mode_change_ack(h);
3836 print_cfg_table(&h->pdev->dev, h->cfgtable);
3837 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3838 dev_warn(&h->pdev->dev,
3839 "unable to get board into simple mode\n");
3840 return -ENODEV;
3842 h->transMethod = CFGTBL_Trans_Simple;
3843 return 0;
3846 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3848 int prod_index, err;
3850 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3851 if (prod_index < 0)
3852 return -ENODEV;
3853 h->product_name = products[prod_index].product_name;
3854 h->access = *(products[prod_index].access);
3856 if (hpsa_board_disabled(h->pdev)) {
3857 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3858 return -ENODEV;
3860 err = pci_enable_device(h->pdev);
3861 if (err) {
3862 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3863 return err;
3866 err = pci_request_regions(h->pdev, "hpsa");
3867 if (err) {
3868 dev_err(&h->pdev->dev,
3869 "cannot obtain PCI resources, aborting\n");
3870 return err;
3872 hpsa_interrupt_mode(h);
3873 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3874 if (err)
3875 goto err_out_free_res;
3876 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3877 if (!h->vaddr) {
3878 err = -ENOMEM;
3879 goto err_out_free_res;
3881 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3882 if (err)
3883 goto err_out_free_res;
3884 err = hpsa_find_cfgtables(h);
3885 if (err)
3886 goto err_out_free_res;
3887 hpsa_find_board_params(h);
3889 if (!hpsa_CISS_signature_present(h)) {
3890 err = -ENODEV;
3891 goto err_out_free_res;
3893 hpsa_enable_scsi_prefetch(h);
3894 hpsa_p600_dma_prefetch_quirk(h);
3895 err = hpsa_enter_simple_mode(h);
3896 if (err)
3897 goto err_out_free_res;
3898 return 0;
3900 err_out_free_res:
3901 if (h->transtable)
3902 iounmap(h->transtable);
3903 if (h->cfgtable)
3904 iounmap(h->cfgtable);
3905 if (h->vaddr)
3906 iounmap(h->vaddr);
3908 * Deliberately omit pci_disable_device(): it does something nasty to
3909 * Smart Array controllers that pci_enable_device does not undo
3911 pci_release_regions(h->pdev);
3912 return err;
3915 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3917 int rc;
3919 #define HBA_INQUIRY_BYTE_COUNT 64
3920 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3921 if (!h->hba_inquiry_data)
3922 return;
3923 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3924 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3925 if (rc != 0) {
3926 kfree(h->hba_inquiry_data);
3927 h->hba_inquiry_data = NULL;
3931 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3933 int rc, i;
3935 if (!reset_devices)
3936 return 0;
3938 /* Reset the controller with a PCI power-cycle or via doorbell */
3939 rc = hpsa_kdump_hard_reset_controller(pdev);
3941 /* -ENOTSUPP here means we cannot reset the controller
3942 * but it's already (and still) up and running in
3943 * "performant mode". Or, it might be 640x, which can't reset
3944 * due to concerns about shared bbwc between 6402/6404 pair.
3946 if (rc == -ENOTSUPP)
3947 return rc; /* just try to do the kdump anyhow. */
3948 if (rc)
3949 return -ENODEV;
3951 /* Now try to get the controller to respond to a no-op */
3952 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3953 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3954 if (hpsa_noop(pdev) == 0)
3955 break;
3956 else
3957 dev_warn(&pdev->dev, "no-op failed%s\n",
3958 (i < 11 ? "; re-trying" : ""));
3960 return 0;
3963 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3965 h->cmd_pool_bits = kzalloc(
3966 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3967 sizeof(unsigned long), GFP_KERNEL);
3968 h->cmd_pool = pci_alloc_consistent(h->pdev,
3969 h->nr_cmds * sizeof(*h->cmd_pool),
3970 &(h->cmd_pool_dhandle));
3971 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3972 h->nr_cmds * sizeof(*h->errinfo_pool),
3973 &(h->errinfo_pool_dhandle));
3974 if ((h->cmd_pool_bits == NULL)
3975 || (h->cmd_pool == NULL)
3976 || (h->errinfo_pool == NULL)) {
3977 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3978 return -ENOMEM;
3980 return 0;
3983 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3985 kfree(h->cmd_pool_bits);
3986 if (h->cmd_pool)
3987 pci_free_consistent(h->pdev,
3988 h->nr_cmds * sizeof(struct CommandList),
3989 h->cmd_pool, h->cmd_pool_dhandle);
3990 if (h->errinfo_pool)
3991 pci_free_consistent(h->pdev,
3992 h->nr_cmds * sizeof(struct ErrorInfo),
3993 h->errinfo_pool,
3994 h->errinfo_pool_dhandle);
3997 static int hpsa_request_irq(struct ctlr_info *h,
3998 irqreturn_t (*msixhandler)(int, void *),
3999 irqreturn_t (*intxhandler)(int, void *))
4001 int rc;
4003 if (h->msix_vector || h->msi_vector)
4004 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4005 IRQF_DISABLED, h->devname, h);
4006 else
4007 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4008 IRQF_DISABLED, h->devname, h);
4009 if (rc) {
4010 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4011 h->intr[h->intr_mode], h->devname);
4012 return -ENODEV;
4014 return 0;
4017 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4019 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4020 HPSA_RESET_TYPE_CONTROLLER)) {
4021 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4022 return -EIO;
4025 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4026 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4027 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4028 return -1;
4031 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4032 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4033 dev_warn(&h->pdev->dev, "Board failed to become ready "
4034 "after soft reset.\n");
4035 return -1;
4038 return 0;
4041 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4043 free_irq(h->intr[h->intr_mode], h);
4044 #ifdef CONFIG_PCI_MSI
4045 if (h->msix_vector)
4046 pci_disable_msix(h->pdev);
4047 else if (h->msi_vector)
4048 pci_disable_msi(h->pdev);
4049 #endif /* CONFIG_PCI_MSI */
4050 hpsa_free_sg_chain_blocks(h);
4051 hpsa_free_cmd_pool(h);
4052 kfree(h->blockFetchTable);
4053 pci_free_consistent(h->pdev, h->reply_pool_size,
4054 h->reply_pool, h->reply_pool_dhandle);
4055 if (h->vaddr)
4056 iounmap(h->vaddr);
4057 if (h->transtable)
4058 iounmap(h->transtable);
4059 if (h->cfgtable)
4060 iounmap(h->cfgtable);
4061 pci_release_regions(h->pdev);
4062 kfree(h);
4065 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4066 const struct pci_device_id *ent)
4068 int dac, rc;
4069 struct ctlr_info *h;
4070 int try_soft_reset = 0;
4071 unsigned long flags;
4073 if (number_of_controllers == 0)
4074 printk(KERN_INFO DRIVER_NAME "\n");
4076 rc = hpsa_init_reset_devices(pdev);
4077 if (rc) {
4078 if (rc != -ENOTSUPP)
4079 return rc;
4080 /* If the reset fails in a particular way (it has no way to do
4081 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4082 * a soft reset once we get the controller configured up to the
4083 * point that it can accept a command.
4085 try_soft_reset = 1;
4086 rc = 0;
4089 reinit_after_soft_reset:
4091 /* Command structures must be aligned on a 32-byte boundary because
4092 * the 5 lower bits of the address are used by the hardware. and by
4093 * the driver. See comments in hpsa.h for more info.
4095 #define COMMANDLIST_ALIGNMENT 32
4096 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4097 h = kzalloc(sizeof(*h), GFP_KERNEL);
4098 if (!h)
4099 return -ENOMEM;
4101 h->pdev = pdev;
4102 h->busy_initializing = 1;
4103 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4104 INIT_LIST_HEAD(&h->cmpQ);
4105 INIT_LIST_HEAD(&h->reqQ);
4106 spin_lock_init(&h->lock);
4107 spin_lock_init(&h->scan_lock);
4108 rc = hpsa_pci_init(h);
4109 if (rc != 0)
4110 goto clean1;
4112 sprintf(h->devname, "hpsa%d", number_of_controllers);
4113 h->ctlr = number_of_controllers;
4114 number_of_controllers++;
4116 /* configure PCI DMA stuff */
4117 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4118 if (rc == 0) {
4119 dac = 1;
4120 } else {
4121 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4122 if (rc == 0) {
4123 dac = 0;
4124 } else {
4125 dev_err(&pdev->dev, "no suitable DMA available\n");
4126 goto clean1;
4130 /* make sure the board interrupts are off */
4131 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4133 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4134 goto clean2;
4135 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4136 h->devname, pdev->device,
4137 h->intr[h->intr_mode], dac ? "" : " not");
4138 if (hpsa_allocate_cmd_pool(h))
4139 goto clean4;
4140 if (hpsa_allocate_sg_chain_blocks(h))
4141 goto clean4;
4142 init_waitqueue_head(&h->scan_wait_queue);
4143 h->scan_finished = 1; /* no scan currently in progress */
4145 pci_set_drvdata(pdev, h);
4146 h->ndevices = 0;
4147 h->scsi_host = NULL;
4148 spin_lock_init(&h->devlock);
4149 hpsa_put_ctlr_into_performant_mode(h);
4151 /* At this point, the controller is ready to take commands.
4152 * Now, if reset_devices and the hard reset didn't work, try
4153 * the soft reset and see if that works.
4155 if (try_soft_reset) {
4157 /* This is kind of gross. We may or may not get a completion
4158 * from the soft reset command, and if we do, then the value
4159 * from the fifo may or may not be valid. So, we wait 10 secs
4160 * after the reset throwing away any completions we get during
4161 * that time. Unregister the interrupt handler and register
4162 * fake ones to scoop up any residual completions.
4164 spin_lock_irqsave(&h->lock, flags);
4165 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4166 spin_unlock_irqrestore(&h->lock, flags);
4167 free_irq(h->intr[h->intr_mode], h);
4168 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4169 hpsa_intx_discard_completions);
4170 if (rc) {
4171 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4172 "soft reset.\n");
4173 goto clean4;
4176 rc = hpsa_kdump_soft_reset(h);
4177 if (rc)
4178 /* Neither hard nor soft reset worked, we're hosed. */
4179 goto clean4;
4181 dev_info(&h->pdev->dev, "Board READY.\n");
4182 dev_info(&h->pdev->dev,
4183 "Waiting for stale completions to drain.\n");
4184 h->access.set_intr_mask(h, HPSA_INTR_ON);
4185 msleep(10000);
4186 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4188 rc = controller_reset_failed(h->cfgtable);
4189 if (rc)
4190 dev_info(&h->pdev->dev,
4191 "Soft reset appears to have failed.\n");
4193 /* since the controller's reset, we have to go back and re-init
4194 * everything. Easiest to just forget what we've done and do it
4195 * all over again.
4197 hpsa_undo_allocations_after_kdump_soft_reset(h);
4198 try_soft_reset = 0;
4199 if (rc)
4200 /* don't go to clean4, we already unallocated */
4201 return -ENODEV;
4203 goto reinit_after_soft_reset;
4206 /* Turn the interrupts on so we can service requests */
4207 h->access.set_intr_mask(h, HPSA_INTR_ON);
4209 hpsa_hba_inquiry(h);
4210 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4211 h->busy_initializing = 0;
4212 return 1;
4214 clean4:
4215 hpsa_free_sg_chain_blocks(h);
4216 hpsa_free_cmd_pool(h);
4217 free_irq(h->intr[h->intr_mode], h);
4218 clean2:
4219 clean1:
4220 h->busy_initializing = 0;
4221 kfree(h);
4222 return rc;
4225 static void hpsa_flush_cache(struct ctlr_info *h)
4227 char *flush_buf;
4228 struct CommandList *c;
4230 flush_buf = kzalloc(4, GFP_KERNEL);
4231 if (!flush_buf)
4232 return;
4234 c = cmd_special_alloc(h);
4235 if (!c) {
4236 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4237 goto out_of_memory;
4239 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4240 RAID_CTLR_LUNID, TYPE_CMD);
4241 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4242 if (c->err_info->CommandStatus != 0)
4243 dev_warn(&h->pdev->dev,
4244 "error flushing cache on controller\n");
4245 cmd_special_free(h, c);
4246 out_of_memory:
4247 kfree(flush_buf);
4250 static void hpsa_shutdown(struct pci_dev *pdev)
4252 struct ctlr_info *h;
4254 h = pci_get_drvdata(pdev);
4255 /* Turn board interrupts off and send the flush cache command
4256 * sendcmd will turn off interrupt, and send the flush...
4257 * To write all data in the battery backed cache to disks
4259 hpsa_flush_cache(h);
4260 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4261 free_irq(h->intr[h->intr_mode], h);
4262 #ifdef CONFIG_PCI_MSI
4263 if (h->msix_vector)
4264 pci_disable_msix(h->pdev);
4265 else if (h->msi_vector)
4266 pci_disable_msi(h->pdev);
4267 #endif /* CONFIG_PCI_MSI */
4270 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4272 struct ctlr_info *h;
4274 if (pci_get_drvdata(pdev) == NULL) {
4275 dev_err(&pdev->dev, "unable to remove device \n");
4276 return;
4278 h = pci_get_drvdata(pdev);
4279 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4280 hpsa_shutdown(pdev);
4281 iounmap(h->vaddr);
4282 iounmap(h->transtable);
4283 iounmap(h->cfgtable);
4284 hpsa_free_sg_chain_blocks(h);
4285 pci_free_consistent(h->pdev,
4286 h->nr_cmds * sizeof(struct CommandList),
4287 h->cmd_pool, h->cmd_pool_dhandle);
4288 pci_free_consistent(h->pdev,
4289 h->nr_cmds * sizeof(struct ErrorInfo),
4290 h->errinfo_pool, h->errinfo_pool_dhandle);
4291 pci_free_consistent(h->pdev, h->reply_pool_size,
4292 h->reply_pool, h->reply_pool_dhandle);
4293 kfree(h->cmd_pool_bits);
4294 kfree(h->blockFetchTable);
4295 kfree(h->hba_inquiry_data);
4297 * Deliberately omit pci_disable_device(): it does something nasty to
4298 * Smart Array controllers that pci_enable_device does not undo
4300 pci_release_regions(pdev);
4301 pci_set_drvdata(pdev, NULL);
4302 kfree(h);
4305 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4306 __attribute__((unused)) pm_message_t state)
4308 return -ENOSYS;
4311 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4313 return -ENOSYS;
4316 static struct pci_driver hpsa_pci_driver = {
4317 .name = "hpsa",
4318 .probe = hpsa_init_one,
4319 .remove = __devexit_p(hpsa_remove_one),
4320 .id_table = hpsa_pci_device_id, /* id_table */
4321 .shutdown = hpsa_shutdown,
4322 .suspend = hpsa_suspend,
4323 .resume = hpsa_resume,
4326 /* Fill in bucket_map[], given nsgs (the max number of
4327 * scatter gather elements supported) and bucket[],
4328 * which is an array of 8 integers. The bucket[] array
4329 * contains 8 different DMA transfer sizes (in 16
4330 * byte increments) which the controller uses to fetch
4331 * commands. This function fills in bucket_map[], which
4332 * maps a given number of scatter gather elements to one of
4333 * the 8 DMA transfer sizes. The point of it is to allow the
4334 * controller to only do as much DMA as needed to fetch the
4335 * command, with the DMA transfer size encoded in the lower
4336 * bits of the command address.
4338 static void calc_bucket_map(int bucket[], int num_buckets,
4339 int nsgs, int *bucket_map)
4341 int i, j, b, size;
4343 /* even a command with 0 SGs requires 4 blocks */
4344 #define MINIMUM_TRANSFER_BLOCKS 4
4345 #define NUM_BUCKETS 8
4346 /* Note, bucket_map must have nsgs+1 entries. */
4347 for (i = 0; i <= nsgs; i++) {
4348 /* Compute size of a command with i SG entries */
4349 size = i + MINIMUM_TRANSFER_BLOCKS;
4350 b = num_buckets; /* Assume the biggest bucket */
4351 /* Find the bucket that is just big enough */
4352 for (j = 0; j < 8; j++) {
4353 if (bucket[j] >= size) {
4354 b = j;
4355 break;
4358 /* for a command with i SG entries, use bucket b. */
4359 bucket_map[i] = b;
4363 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4364 u32 use_short_tags)
4366 int i;
4367 unsigned long register_value;
4369 /* This is a bit complicated. There are 8 registers on
4370 * the controller which we write to to tell it 8 different
4371 * sizes of commands which there may be. It's a way of
4372 * reducing the DMA done to fetch each command. Encoded into
4373 * each command's tag are 3 bits which communicate to the controller
4374 * which of the eight sizes that command fits within. The size of
4375 * each command depends on how many scatter gather entries there are.
4376 * Each SG entry requires 16 bytes. The eight registers are programmed
4377 * with the number of 16-byte blocks a command of that size requires.
4378 * The smallest command possible requires 5 such 16 byte blocks.
4379 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4380 * blocks. Note, this only extends to the SG entries contained
4381 * within the command block, and does not extend to chained blocks
4382 * of SG elements. bft[] contains the eight values we write to
4383 * the registers. They are not evenly distributed, but have more
4384 * sizes for small commands, and fewer sizes for larger commands.
4386 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4387 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4388 /* 5 = 1 s/g entry or 4k
4389 * 6 = 2 s/g entry or 8k
4390 * 8 = 4 s/g entry or 16k
4391 * 10 = 6 s/g entry or 24k
4394 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4396 /* Controller spec: zero out this buffer. */
4397 memset(h->reply_pool, 0, h->reply_pool_size);
4398 h->reply_pool_head = h->reply_pool;
4400 bft[7] = h->max_sg_entries + 4;
4401 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4402 for (i = 0; i < 8; i++)
4403 writel(bft[i], &h->transtable->BlockFetch[i]);
4405 /* size of controller ring buffer */
4406 writel(h->max_commands, &h->transtable->RepQSize);
4407 writel(1, &h->transtable->RepQCount);
4408 writel(0, &h->transtable->RepQCtrAddrLow32);
4409 writel(0, &h->transtable->RepQCtrAddrHigh32);
4410 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4411 writel(0, &h->transtable->RepQAddr0High32);
4412 writel(CFGTBL_Trans_Performant | use_short_tags,
4413 &(h->cfgtable->HostWrite.TransportRequest));
4414 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4415 hpsa_wait_for_mode_change_ack(h);
4416 register_value = readl(&(h->cfgtable->TransportActive));
4417 if (!(register_value & CFGTBL_Trans_Performant)) {
4418 dev_warn(&h->pdev->dev, "unable to get board into"
4419 " performant mode\n");
4420 return;
4422 /* Change the access methods to the performant access methods */
4423 h->access = SA5_performant_access;
4424 h->transMethod = CFGTBL_Trans_Performant;
4427 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4429 u32 trans_support;
4431 if (hpsa_simple_mode)
4432 return;
4434 trans_support = readl(&(h->cfgtable->TransportSupport));
4435 if (!(trans_support & PERFORMANT_MODE))
4436 return;
4438 hpsa_get_max_perf_mode_cmds(h);
4439 h->max_sg_entries = 32;
4440 /* Performant mode ring buffer and supporting data structures */
4441 h->reply_pool_size = h->max_commands * sizeof(u64);
4442 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4443 &(h->reply_pool_dhandle));
4445 /* Need a block fetch table for performant mode */
4446 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4447 sizeof(u32)), GFP_KERNEL);
4449 if ((h->reply_pool == NULL)
4450 || (h->blockFetchTable == NULL))
4451 goto clean_up;
4453 hpsa_enter_performant_mode(h,
4454 trans_support & CFGTBL_Trans_use_short_tags);
4456 return;
4458 clean_up:
4459 if (h->reply_pool)
4460 pci_free_consistent(h->pdev, h->reply_pool_size,
4461 h->reply_pool, h->reply_pool_dhandle);
4462 kfree(h->blockFetchTable);
4466 * This is it. Register the PCI driver information for the cards we control
4467 * the OS will call our registered routines when it finds one of our cards.
4469 static int __init hpsa_init(void)
4471 return pci_register_driver(&hpsa_pci_driver);
4474 static void __exit hpsa_cleanup(void)
4476 pci_unregister_driver(&hpsa_pci_driver);
4479 module_init(hpsa_init);
4480 module_exit(hpsa_cleanup);