[ARM] Orion5x: add GPIO LED and buttons for wrt350n v2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / input / input.c
blobab060710688fa6064f02dabfca13dc3ef512d43e
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
29 MODULE_DESCRIPTION("Input core");
30 MODULE_LICENSE("GPL");
32 #define INPUT_DEVICES 256
35 * EV_ABS events which should not be cached are listed here.
37 static unsigned int input_abs_bypass_init_data[] __initdata = {
38 ABS_MT_TOUCH_MAJOR,
39 ABS_MT_TOUCH_MINOR,
40 ABS_MT_WIDTH_MAJOR,
41 ABS_MT_WIDTH_MINOR,
42 ABS_MT_ORIENTATION,
43 ABS_MT_POSITION_X,
44 ABS_MT_POSITION_Y,
45 ABS_MT_TOOL_TYPE,
46 ABS_MT_BLOB_ID,
47 ABS_MT_TRACKING_ID,
50 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
52 static LIST_HEAD(input_dev_list);
53 static LIST_HEAD(input_handler_list);
56 * input_mutex protects access to both input_dev_list and input_handler_list.
57 * This also causes input_[un]register_device and input_[un]register_handler
58 * be mutually exclusive which simplifies locking in drivers implementing
59 * input handlers.
61 static DEFINE_MUTEX(input_mutex);
63 static struct input_handler *input_table[8];
65 static inline int is_event_supported(unsigned int code,
66 unsigned long *bm, unsigned int max)
68 return code <= max && test_bit(code, bm);
71 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
73 if (fuzz) {
74 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
75 return old_val;
77 if (value > old_val - fuzz && value < old_val + fuzz)
78 return (old_val * 3 + value) / 4;
80 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
81 return (old_val + value) / 2;
84 return value;
88 * Pass event through all open handles. This function is called with
89 * dev->event_lock held and interrupts disabled.
91 static void input_pass_event(struct input_dev *dev,
92 unsigned int type, unsigned int code, int value)
94 struct input_handle *handle;
96 rcu_read_lock();
98 handle = rcu_dereference(dev->grab);
99 if (handle)
100 handle->handler->event(handle, type, code, value);
101 else
102 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
103 if (handle->open)
104 handle->handler->event(handle,
105 type, code, value);
106 rcu_read_unlock();
110 * Generate software autorepeat event. Note that we take
111 * dev->event_lock here to avoid racing with input_event
112 * which may cause keys get "stuck".
114 static void input_repeat_key(unsigned long data)
116 struct input_dev *dev = (void *) data;
117 unsigned long flags;
119 spin_lock_irqsave(&dev->event_lock, flags);
121 if (test_bit(dev->repeat_key, dev->key) &&
122 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126 if (dev->sync) {
128 * Only send SYN_REPORT if we are not in a middle
129 * of driver parsing a new hardware packet.
130 * Otherwise assume that the driver will send
131 * SYN_REPORT once it's done.
133 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
136 if (dev->rep[REP_PERIOD])
137 mod_timer(&dev->timer, jiffies +
138 msecs_to_jiffies(dev->rep[REP_PERIOD]));
141 spin_unlock_irqrestore(&dev->event_lock, flags);
144 static void input_start_autorepeat(struct input_dev *dev, int code)
146 if (test_bit(EV_REP, dev->evbit) &&
147 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 dev->timer.data) {
149 dev->repeat_key = code;
150 mod_timer(&dev->timer,
151 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
155 static void input_stop_autorepeat(struct input_dev *dev)
157 del_timer(&dev->timer);
160 #define INPUT_IGNORE_EVENT 0
161 #define INPUT_PASS_TO_HANDLERS 1
162 #define INPUT_PASS_TO_DEVICE 2
163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165 static void input_handle_event(struct input_dev *dev,
166 unsigned int type, unsigned int code, int value)
168 int disposition = INPUT_IGNORE_EVENT;
170 switch (type) {
172 case EV_SYN:
173 switch (code) {
174 case SYN_CONFIG:
175 disposition = INPUT_PASS_TO_ALL;
176 break;
178 case SYN_REPORT:
179 if (!dev->sync) {
180 dev->sync = 1;
181 disposition = INPUT_PASS_TO_HANDLERS;
183 break;
184 case SYN_MT_REPORT:
185 dev->sync = 0;
186 disposition = INPUT_PASS_TO_HANDLERS;
187 break;
189 break;
191 case EV_KEY:
192 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
193 !!test_bit(code, dev->key) != value) {
195 if (value != 2) {
196 __change_bit(code, dev->key);
197 if (value)
198 input_start_autorepeat(dev, code);
199 else
200 input_stop_autorepeat(dev);
203 disposition = INPUT_PASS_TO_HANDLERS;
205 break;
207 case EV_SW:
208 if (is_event_supported(code, dev->swbit, SW_MAX) &&
209 !!test_bit(code, dev->sw) != value) {
211 __change_bit(code, dev->sw);
212 disposition = INPUT_PASS_TO_HANDLERS;
214 break;
216 case EV_ABS:
217 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
219 if (test_bit(code, input_abs_bypass)) {
220 disposition = INPUT_PASS_TO_HANDLERS;
221 break;
224 value = input_defuzz_abs_event(value,
225 dev->abs[code], dev->absfuzz[code]);
227 if (dev->abs[code] != value) {
228 dev->abs[code] = value;
229 disposition = INPUT_PASS_TO_HANDLERS;
232 break;
234 case EV_REL:
235 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
236 disposition = INPUT_PASS_TO_HANDLERS;
238 break;
240 case EV_MSC:
241 if (is_event_supported(code, dev->mscbit, MSC_MAX))
242 disposition = INPUT_PASS_TO_ALL;
244 break;
246 case EV_LED:
247 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
248 !!test_bit(code, dev->led) != value) {
250 __change_bit(code, dev->led);
251 disposition = INPUT_PASS_TO_ALL;
253 break;
255 case EV_SND:
256 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
258 if (!!test_bit(code, dev->snd) != !!value)
259 __change_bit(code, dev->snd);
260 disposition = INPUT_PASS_TO_ALL;
262 break;
264 case EV_REP:
265 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
266 dev->rep[code] = value;
267 disposition = INPUT_PASS_TO_ALL;
269 break;
271 case EV_FF:
272 if (value >= 0)
273 disposition = INPUT_PASS_TO_ALL;
274 break;
276 case EV_PWR:
277 disposition = INPUT_PASS_TO_ALL;
278 break;
281 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
282 dev->sync = 0;
284 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
285 dev->event(dev, type, code, value);
287 if (disposition & INPUT_PASS_TO_HANDLERS)
288 input_pass_event(dev, type, code, value);
292 * input_event() - report new input event
293 * @dev: device that generated the event
294 * @type: type of the event
295 * @code: event code
296 * @value: value of the event
298 * This function should be used by drivers implementing various input
299 * devices to report input events. See also input_inject_event().
301 * NOTE: input_event() may be safely used right after input device was
302 * allocated with input_allocate_device(), even before it is registered
303 * with input_register_device(), but the event will not reach any of the
304 * input handlers. Such early invocation of input_event() may be used
305 * to 'seed' initial state of a switch or initial position of absolute
306 * axis, etc.
308 void input_event(struct input_dev *dev,
309 unsigned int type, unsigned int code, int value)
311 unsigned long flags;
313 if (is_event_supported(type, dev->evbit, EV_MAX)) {
315 spin_lock_irqsave(&dev->event_lock, flags);
316 add_input_randomness(type, code, value);
317 input_handle_event(dev, type, code, value);
318 spin_unlock_irqrestore(&dev->event_lock, flags);
321 EXPORT_SYMBOL(input_event);
324 * input_inject_event() - send input event from input handler
325 * @handle: input handle to send event through
326 * @type: type of the event
327 * @code: event code
328 * @value: value of the event
330 * Similar to input_event() but will ignore event if device is
331 * "grabbed" and handle injecting event is not the one that owns
332 * the device.
334 void input_inject_event(struct input_handle *handle,
335 unsigned int type, unsigned int code, int value)
337 struct input_dev *dev = handle->dev;
338 struct input_handle *grab;
339 unsigned long flags;
341 if (is_event_supported(type, dev->evbit, EV_MAX)) {
342 spin_lock_irqsave(&dev->event_lock, flags);
344 rcu_read_lock();
345 grab = rcu_dereference(dev->grab);
346 if (!grab || grab == handle)
347 input_handle_event(dev, type, code, value);
348 rcu_read_unlock();
350 spin_unlock_irqrestore(&dev->event_lock, flags);
353 EXPORT_SYMBOL(input_inject_event);
356 * input_grab_device - grabs device for exclusive use
357 * @handle: input handle that wants to own the device
359 * When a device is grabbed by an input handle all events generated by
360 * the device are delivered only to this handle. Also events injected
361 * by other input handles are ignored while device is grabbed.
363 int input_grab_device(struct input_handle *handle)
365 struct input_dev *dev = handle->dev;
366 int retval;
368 retval = mutex_lock_interruptible(&dev->mutex);
369 if (retval)
370 return retval;
372 if (dev->grab) {
373 retval = -EBUSY;
374 goto out;
377 rcu_assign_pointer(dev->grab, handle);
378 synchronize_rcu();
380 out:
381 mutex_unlock(&dev->mutex);
382 return retval;
384 EXPORT_SYMBOL(input_grab_device);
386 static void __input_release_device(struct input_handle *handle)
388 struct input_dev *dev = handle->dev;
390 if (dev->grab == handle) {
391 rcu_assign_pointer(dev->grab, NULL);
392 /* Make sure input_pass_event() notices that grab is gone */
393 synchronize_rcu();
395 list_for_each_entry(handle, &dev->h_list, d_node)
396 if (handle->open && handle->handler->start)
397 handle->handler->start(handle);
402 * input_release_device - release previously grabbed device
403 * @handle: input handle that owns the device
405 * Releases previously grabbed device so that other input handles can
406 * start receiving input events. Upon release all handlers attached
407 * to the device have their start() method called so they have a change
408 * to synchronize device state with the rest of the system.
410 void input_release_device(struct input_handle *handle)
412 struct input_dev *dev = handle->dev;
414 mutex_lock(&dev->mutex);
415 __input_release_device(handle);
416 mutex_unlock(&dev->mutex);
418 EXPORT_SYMBOL(input_release_device);
421 * input_open_device - open input device
422 * @handle: handle through which device is being accessed
424 * This function should be called by input handlers when they
425 * want to start receive events from given input device.
427 int input_open_device(struct input_handle *handle)
429 struct input_dev *dev = handle->dev;
430 int retval;
432 retval = mutex_lock_interruptible(&dev->mutex);
433 if (retval)
434 return retval;
436 if (dev->going_away) {
437 retval = -ENODEV;
438 goto out;
441 handle->open++;
443 if (!dev->users++ && dev->open)
444 retval = dev->open(dev);
446 if (retval) {
447 dev->users--;
448 if (!--handle->open) {
450 * Make sure we are not delivering any more events
451 * through this handle
453 synchronize_rcu();
457 out:
458 mutex_unlock(&dev->mutex);
459 return retval;
461 EXPORT_SYMBOL(input_open_device);
463 int input_flush_device(struct input_handle *handle, struct file *file)
465 struct input_dev *dev = handle->dev;
466 int retval;
468 retval = mutex_lock_interruptible(&dev->mutex);
469 if (retval)
470 return retval;
472 if (dev->flush)
473 retval = dev->flush(dev, file);
475 mutex_unlock(&dev->mutex);
476 return retval;
478 EXPORT_SYMBOL(input_flush_device);
481 * input_close_device - close input device
482 * @handle: handle through which device is being accessed
484 * This function should be called by input handlers when they
485 * want to stop receive events from given input device.
487 void input_close_device(struct input_handle *handle)
489 struct input_dev *dev = handle->dev;
491 mutex_lock(&dev->mutex);
493 __input_release_device(handle);
495 if (!--dev->users && dev->close)
496 dev->close(dev);
498 if (!--handle->open) {
500 * synchronize_rcu() makes sure that input_pass_event()
501 * completed and that no more input events are delivered
502 * through this handle
504 synchronize_rcu();
507 mutex_unlock(&dev->mutex);
509 EXPORT_SYMBOL(input_close_device);
512 * Prepare device for unregistering
514 static void input_disconnect_device(struct input_dev *dev)
516 struct input_handle *handle;
517 int code;
520 * Mark device as going away. Note that we take dev->mutex here
521 * not to protect access to dev->going_away but rather to ensure
522 * that there are no threads in the middle of input_open_device()
524 mutex_lock(&dev->mutex);
525 dev->going_away = true;
526 mutex_unlock(&dev->mutex);
528 spin_lock_irq(&dev->event_lock);
531 * Simulate keyup events for all pressed keys so that handlers
532 * are not left with "stuck" keys. The driver may continue
533 * generate events even after we done here but they will not
534 * reach any handlers.
536 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
537 for (code = 0; code <= KEY_MAX; code++) {
538 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
539 __test_and_clear_bit(code, dev->key)) {
540 input_pass_event(dev, EV_KEY, code, 0);
543 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
546 list_for_each_entry(handle, &dev->h_list, d_node)
547 handle->open = 0;
549 spin_unlock_irq(&dev->event_lock);
552 static int input_fetch_keycode(struct input_dev *dev, int scancode)
554 switch (dev->keycodesize) {
555 case 1:
556 return ((u8 *)dev->keycode)[scancode];
558 case 2:
559 return ((u16 *)dev->keycode)[scancode];
561 default:
562 return ((u32 *)dev->keycode)[scancode];
566 static int input_default_getkeycode(struct input_dev *dev,
567 int scancode, int *keycode)
569 if (!dev->keycodesize)
570 return -EINVAL;
572 if (scancode >= dev->keycodemax)
573 return -EINVAL;
575 *keycode = input_fetch_keycode(dev, scancode);
577 return 0;
580 static int input_default_setkeycode(struct input_dev *dev,
581 int scancode, int keycode)
583 int old_keycode;
584 int i;
586 if (scancode >= dev->keycodemax)
587 return -EINVAL;
589 if (!dev->keycodesize)
590 return -EINVAL;
592 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
593 return -EINVAL;
595 switch (dev->keycodesize) {
596 case 1: {
597 u8 *k = (u8 *)dev->keycode;
598 old_keycode = k[scancode];
599 k[scancode] = keycode;
600 break;
602 case 2: {
603 u16 *k = (u16 *)dev->keycode;
604 old_keycode = k[scancode];
605 k[scancode] = keycode;
606 break;
608 default: {
609 u32 *k = (u32 *)dev->keycode;
610 old_keycode = k[scancode];
611 k[scancode] = keycode;
612 break;
616 clear_bit(old_keycode, dev->keybit);
617 set_bit(keycode, dev->keybit);
619 for (i = 0; i < dev->keycodemax; i++) {
620 if (input_fetch_keycode(dev, i) == old_keycode) {
621 set_bit(old_keycode, dev->keybit);
622 break; /* Setting the bit twice is useless, so break */
626 return 0;
630 * input_get_keycode - retrieve keycode currently mapped to a given scancode
631 * @dev: input device which keymap is being queried
632 * @scancode: scancode (or its equivalent for device in question) for which
633 * keycode is needed
634 * @keycode: result
636 * This function should be called by anyone interested in retrieving current
637 * keymap. Presently keyboard and evdev handlers use it.
639 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
641 if (scancode < 0)
642 return -EINVAL;
644 return dev->getkeycode(dev, scancode, keycode);
646 EXPORT_SYMBOL(input_get_keycode);
649 * input_get_keycode - assign new keycode to a given scancode
650 * @dev: input device which keymap is being updated
651 * @scancode: scancode (or its equivalent for device in question)
652 * @keycode: new keycode to be assigned to the scancode
654 * This function should be called by anyone needing to update current
655 * keymap. Presently keyboard and evdev handlers use it.
657 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
659 unsigned long flags;
660 int old_keycode;
661 int retval;
663 if (scancode < 0)
664 return -EINVAL;
666 if (keycode < 0 || keycode > KEY_MAX)
667 return -EINVAL;
669 spin_lock_irqsave(&dev->event_lock, flags);
671 retval = dev->getkeycode(dev, scancode, &old_keycode);
672 if (retval)
673 goto out;
675 retval = dev->setkeycode(dev, scancode, keycode);
676 if (retval)
677 goto out;
680 * Simulate keyup event if keycode is not present
681 * in the keymap anymore
683 if (test_bit(EV_KEY, dev->evbit) &&
684 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
685 __test_and_clear_bit(old_keycode, dev->key)) {
687 input_pass_event(dev, EV_KEY, old_keycode, 0);
688 if (dev->sync)
689 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
692 out:
693 spin_unlock_irqrestore(&dev->event_lock, flags);
695 return retval;
697 EXPORT_SYMBOL(input_set_keycode);
699 #define MATCH_BIT(bit, max) \
700 for (i = 0; i < BITS_TO_LONGS(max); i++) \
701 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
702 break; \
703 if (i != BITS_TO_LONGS(max)) \
704 continue;
706 static const struct input_device_id *input_match_device(const struct input_device_id *id,
707 struct input_dev *dev)
709 int i;
711 for (; id->flags || id->driver_info; id++) {
713 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
714 if (id->bustype != dev->id.bustype)
715 continue;
717 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
718 if (id->vendor != dev->id.vendor)
719 continue;
721 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
722 if (id->product != dev->id.product)
723 continue;
725 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
726 if (id->version != dev->id.version)
727 continue;
729 MATCH_BIT(evbit, EV_MAX);
730 MATCH_BIT(keybit, KEY_MAX);
731 MATCH_BIT(relbit, REL_MAX);
732 MATCH_BIT(absbit, ABS_MAX);
733 MATCH_BIT(mscbit, MSC_MAX);
734 MATCH_BIT(ledbit, LED_MAX);
735 MATCH_BIT(sndbit, SND_MAX);
736 MATCH_BIT(ffbit, FF_MAX);
737 MATCH_BIT(swbit, SW_MAX);
739 return id;
742 return NULL;
745 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
747 const struct input_device_id *id;
748 int error;
750 if (handler->blacklist && input_match_device(handler->blacklist, dev))
751 return -ENODEV;
753 id = input_match_device(handler->id_table, dev);
754 if (!id)
755 return -ENODEV;
757 error = handler->connect(handler, dev, id);
758 if (error && error != -ENODEV)
759 printk(KERN_ERR
760 "input: failed to attach handler %s to device %s, "
761 "error: %d\n",
762 handler->name, kobject_name(&dev->dev.kobj), error);
764 return error;
768 #ifdef CONFIG_PROC_FS
770 static struct proc_dir_entry *proc_bus_input_dir;
771 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
772 static int input_devices_state;
774 static inline void input_wakeup_procfs_readers(void)
776 input_devices_state++;
777 wake_up(&input_devices_poll_wait);
780 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
782 poll_wait(file, &input_devices_poll_wait, wait);
783 if (file->f_version != input_devices_state) {
784 file->f_version = input_devices_state;
785 return POLLIN | POLLRDNORM;
788 return 0;
791 union input_seq_state {
792 struct {
793 unsigned short pos;
794 bool mutex_acquired;
796 void *p;
799 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
801 union input_seq_state *state = (union input_seq_state *)&seq->private;
802 int error;
804 /* We need to fit into seq->private pointer */
805 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
807 error = mutex_lock_interruptible(&input_mutex);
808 if (error) {
809 state->mutex_acquired = false;
810 return ERR_PTR(error);
813 state->mutex_acquired = true;
815 return seq_list_start(&input_dev_list, *pos);
818 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
820 return seq_list_next(v, &input_dev_list, pos);
823 static void input_seq_stop(struct seq_file *seq, void *v)
825 union input_seq_state *state = (union input_seq_state *)&seq->private;
827 if (state->mutex_acquired)
828 mutex_unlock(&input_mutex);
831 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
832 unsigned long *bitmap, int max)
834 int i;
836 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
837 if (bitmap[i])
838 break;
840 seq_printf(seq, "B: %s=", name);
841 for (; i >= 0; i--)
842 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
843 seq_putc(seq, '\n');
846 static int input_devices_seq_show(struct seq_file *seq, void *v)
848 struct input_dev *dev = container_of(v, struct input_dev, node);
849 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
850 struct input_handle *handle;
852 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
853 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
855 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
856 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
857 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
858 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
859 seq_printf(seq, "H: Handlers=");
861 list_for_each_entry(handle, &dev->h_list, d_node)
862 seq_printf(seq, "%s ", handle->name);
863 seq_putc(seq, '\n');
865 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
866 if (test_bit(EV_KEY, dev->evbit))
867 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
868 if (test_bit(EV_REL, dev->evbit))
869 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
870 if (test_bit(EV_ABS, dev->evbit))
871 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
872 if (test_bit(EV_MSC, dev->evbit))
873 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
874 if (test_bit(EV_LED, dev->evbit))
875 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
876 if (test_bit(EV_SND, dev->evbit))
877 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
878 if (test_bit(EV_FF, dev->evbit))
879 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
880 if (test_bit(EV_SW, dev->evbit))
881 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
883 seq_putc(seq, '\n');
885 kfree(path);
886 return 0;
889 static const struct seq_operations input_devices_seq_ops = {
890 .start = input_devices_seq_start,
891 .next = input_devices_seq_next,
892 .stop = input_seq_stop,
893 .show = input_devices_seq_show,
896 static int input_proc_devices_open(struct inode *inode, struct file *file)
898 return seq_open(file, &input_devices_seq_ops);
901 static const struct file_operations input_devices_fileops = {
902 .owner = THIS_MODULE,
903 .open = input_proc_devices_open,
904 .poll = input_proc_devices_poll,
905 .read = seq_read,
906 .llseek = seq_lseek,
907 .release = seq_release,
910 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
912 union input_seq_state *state = (union input_seq_state *)&seq->private;
913 int error;
915 /* We need to fit into seq->private pointer */
916 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
918 error = mutex_lock_interruptible(&input_mutex);
919 if (error) {
920 state->mutex_acquired = false;
921 return ERR_PTR(error);
924 state->mutex_acquired = true;
925 state->pos = *pos;
927 return seq_list_start(&input_handler_list, *pos);
930 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
932 union input_seq_state *state = (union input_seq_state *)&seq->private;
934 state->pos = *pos + 1;
935 return seq_list_next(v, &input_handler_list, pos);
938 static int input_handlers_seq_show(struct seq_file *seq, void *v)
940 struct input_handler *handler = container_of(v, struct input_handler, node);
941 union input_seq_state *state = (union input_seq_state *)&seq->private;
943 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
944 if (handler->fops)
945 seq_printf(seq, " Minor=%d", handler->minor);
946 seq_putc(seq, '\n');
948 return 0;
951 static const struct seq_operations input_handlers_seq_ops = {
952 .start = input_handlers_seq_start,
953 .next = input_handlers_seq_next,
954 .stop = input_seq_stop,
955 .show = input_handlers_seq_show,
958 static int input_proc_handlers_open(struct inode *inode, struct file *file)
960 return seq_open(file, &input_handlers_seq_ops);
963 static const struct file_operations input_handlers_fileops = {
964 .owner = THIS_MODULE,
965 .open = input_proc_handlers_open,
966 .read = seq_read,
967 .llseek = seq_lseek,
968 .release = seq_release,
971 static int __init input_proc_init(void)
973 struct proc_dir_entry *entry;
975 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
976 if (!proc_bus_input_dir)
977 return -ENOMEM;
979 entry = proc_create("devices", 0, proc_bus_input_dir,
980 &input_devices_fileops);
981 if (!entry)
982 goto fail1;
984 entry = proc_create("handlers", 0, proc_bus_input_dir,
985 &input_handlers_fileops);
986 if (!entry)
987 goto fail2;
989 return 0;
991 fail2: remove_proc_entry("devices", proc_bus_input_dir);
992 fail1: remove_proc_entry("bus/input", NULL);
993 return -ENOMEM;
996 static void input_proc_exit(void)
998 remove_proc_entry("devices", proc_bus_input_dir);
999 remove_proc_entry("handlers", proc_bus_input_dir);
1000 remove_proc_entry("bus/input", NULL);
1003 #else /* !CONFIG_PROC_FS */
1004 static inline void input_wakeup_procfs_readers(void) { }
1005 static inline int input_proc_init(void) { return 0; }
1006 static inline void input_proc_exit(void) { }
1007 #endif
1009 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1010 static ssize_t input_dev_show_##name(struct device *dev, \
1011 struct device_attribute *attr, \
1012 char *buf) \
1014 struct input_dev *input_dev = to_input_dev(dev); \
1016 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1017 input_dev->name ? input_dev->name : ""); \
1019 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1021 INPUT_DEV_STRING_ATTR_SHOW(name);
1022 INPUT_DEV_STRING_ATTR_SHOW(phys);
1023 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1025 static int input_print_modalias_bits(char *buf, int size,
1026 char name, unsigned long *bm,
1027 unsigned int min_bit, unsigned int max_bit)
1029 int len = 0, i;
1031 len += snprintf(buf, max(size, 0), "%c", name);
1032 for (i = min_bit; i < max_bit; i++)
1033 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1034 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1035 return len;
1038 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1039 int add_cr)
1041 int len;
1043 len = snprintf(buf, max(size, 0),
1044 "input:b%04Xv%04Xp%04Xe%04X-",
1045 id->id.bustype, id->id.vendor,
1046 id->id.product, id->id.version);
1048 len += input_print_modalias_bits(buf + len, size - len,
1049 'e', id->evbit, 0, EV_MAX);
1050 len += input_print_modalias_bits(buf + len, size - len,
1051 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1052 len += input_print_modalias_bits(buf + len, size - len,
1053 'r', id->relbit, 0, REL_MAX);
1054 len += input_print_modalias_bits(buf + len, size - len,
1055 'a', id->absbit, 0, ABS_MAX);
1056 len += input_print_modalias_bits(buf + len, size - len,
1057 'm', id->mscbit, 0, MSC_MAX);
1058 len += input_print_modalias_bits(buf + len, size - len,
1059 'l', id->ledbit, 0, LED_MAX);
1060 len += input_print_modalias_bits(buf + len, size - len,
1061 's', id->sndbit, 0, SND_MAX);
1062 len += input_print_modalias_bits(buf + len, size - len,
1063 'f', id->ffbit, 0, FF_MAX);
1064 len += input_print_modalias_bits(buf + len, size - len,
1065 'w', id->swbit, 0, SW_MAX);
1067 if (add_cr)
1068 len += snprintf(buf + len, max(size - len, 0), "\n");
1070 return len;
1073 static ssize_t input_dev_show_modalias(struct device *dev,
1074 struct device_attribute *attr,
1075 char *buf)
1077 struct input_dev *id = to_input_dev(dev);
1078 ssize_t len;
1080 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1082 return min_t(int, len, PAGE_SIZE);
1084 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1086 static struct attribute *input_dev_attrs[] = {
1087 &dev_attr_name.attr,
1088 &dev_attr_phys.attr,
1089 &dev_attr_uniq.attr,
1090 &dev_attr_modalias.attr,
1091 NULL
1094 static struct attribute_group input_dev_attr_group = {
1095 .attrs = input_dev_attrs,
1098 #define INPUT_DEV_ID_ATTR(name) \
1099 static ssize_t input_dev_show_id_##name(struct device *dev, \
1100 struct device_attribute *attr, \
1101 char *buf) \
1103 struct input_dev *input_dev = to_input_dev(dev); \
1104 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1106 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1108 INPUT_DEV_ID_ATTR(bustype);
1109 INPUT_DEV_ID_ATTR(vendor);
1110 INPUT_DEV_ID_ATTR(product);
1111 INPUT_DEV_ID_ATTR(version);
1113 static struct attribute *input_dev_id_attrs[] = {
1114 &dev_attr_bustype.attr,
1115 &dev_attr_vendor.attr,
1116 &dev_attr_product.attr,
1117 &dev_attr_version.attr,
1118 NULL
1121 static struct attribute_group input_dev_id_attr_group = {
1122 .name = "id",
1123 .attrs = input_dev_id_attrs,
1126 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1127 int max, int add_cr)
1129 int i;
1130 int len = 0;
1132 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1133 if (bitmap[i])
1134 break;
1136 for (; i >= 0; i--)
1137 len += snprintf(buf + len, max(buf_size - len, 0),
1138 "%lx%s", bitmap[i], i > 0 ? " " : "");
1140 if (add_cr)
1141 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1143 return len;
1146 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1147 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1148 struct device_attribute *attr, \
1149 char *buf) \
1151 struct input_dev *input_dev = to_input_dev(dev); \
1152 int len = input_print_bitmap(buf, PAGE_SIZE, \
1153 input_dev->bm##bit, ev##_MAX, 1); \
1154 return min_t(int, len, PAGE_SIZE); \
1156 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1158 INPUT_DEV_CAP_ATTR(EV, ev);
1159 INPUT_DEV_CAP_ATTR(KEY, key);
1160 INPUT_DEV_CAP_ATTR(REL, rel);
1161 INPUT_DEV_CAP_ATTR(ABS, abs);
1162 INPUT_DEV_CAP_ATTR(MSC, msc);
1163 INPUT_DEV_CAP_ATTR(LED, led);
1164 INPUT_DEV_CAP_ATTR(SND, snd);
1165 INPUT_DEV_CAP_ATTR(FF, ff);
1166 INPUT_DEV_CAP_ATTR(SW, sw);
1168 static struct attribute *input_dev_caps_attrs[] = {
1169 &dev_attr_ev.attr,
1170 &dev_attr_key.attr,
1171 &dev_attr_rel.attr,
1172 &dev_attr_abs.attr,
1173 &dev_attr_msc.attr,
1174 &dev_attr_led.attr,
1175 &dev_attr_snd.attr,
1176 &dev_attr_ff.attr,
1177 &dev_attr_sw.attr,
1178 NULL
1181 static struct attribute_group input_dev_caps_attr_group = {
1182 .name = "capabilities",
1183 .attrs = input_dev_caps_attrs,
1186 static const struct attribute_group *input_dev_attr_groups[] = {
1187 &input_dev_attr_group,
1188 &input_dev_id_attr_group,
1189 &input_dev_caps_attr_group,
1190 NULL
1193 static void input_dev_release(struct device *device)
1195 struct input_dev *dev = to_input_dev(device);
1197 input_ff_destroy(dev);
1198 kfree(dev);
1200 module_put(THIS_MODULE);
1204 * Input uevent interface - loading event handlers based on
1205 * device bitfields.
1207 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1208 const char *name, unsigned long *bitmap, int max)
1210 int len;
1212 if (add_uevent_var(env, "%s=", name))
1213 return -ENOMEM;
1215 len = input_print_bitmap(&env->buf[env->buflen - 1],
1216 sizeof(env->buf) - env->buflen,
1217 bitmap, max, 0);
1218 if (len >= (sizeof(env->buf) - env->buflen))
1219 return -ENOMEM;
1221 env->buflen += len;
1222 return 0;
1225 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1226 struct input_dev *dev)
1228 int len;
1230 if (add_uevent_var(env, "MODALIAS="))
1231 return -ENOMEM;
1233 len = input_print_modalias(&env->buf[env->buflen - 1],
1234 sizeof(env->buf) - env->buflen,
1235 dev, 0);
1236 if (len >= (sizeof(env->buf) - env->buflen))
1237 return -ENOMEM;
1239 env->buflen += len;
1240 return 0;
1243 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1244 do { \
1245 int err = add_uevent_var(env, fmt, val); \
1246 if (err) \
1247 return err; \
1248 } while (0)
1250 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1251 do { \
1252 int err = input_add_uevent_bm_var(env, name, bm, max); \
1253 if (err) \
1254 return err; \
1255 } while (0)
1257 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1258 do { \
1259 int err = input_add_uevent_modalias_var(env, dev); \
1260 if (err) \
1261 return err; \
1262 } while (0)
1264 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1266 struct input_dev *dev = to_input_dev(device);
1268 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1269 dev->id.bustype, dev->id.vendor,
1270 dev->id.product, dev->id.version);
1271 if (dev->name)
1272 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1273 if (dev->phys)
1274 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1275 if (dev->uniq)
1276 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1278 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1279 if (test_bit(EV_KEY, dev->evbit))
1280 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1281 if (test_bit(EV_REL, dev->evbit))
1282 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1283 if (test_bit(EV_ABS, dev->evbit))
1284 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1285 if (test_bit(EV_MSC, dev->evbit))
1286 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1287 if (test_bit(EV_LED, dev->evbit))
1288 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1289 if (test_bit(EV_SND, dev->evbit))
1290 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1291 if (test_bit(EV_FF, dev->evbit))
1292 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1293 if (test_bit(EV_SW, dev->evbit))
1294 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1296 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1298 return 0;
1301 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1302 do { \
1303 int i; \
1304 bool active; \
1306 if (!test_bit(EV_##type, dev->evbit)) \
1307 break; \
1309 for (i = 0; i < type##_MAX; i++) { \
1310 if (!test_bit(i, dev->bits##bit)) \
1311 continue; \
1313 active = test_bit(i, dev->bits); \
1314 if (!active && !on) \
1315 continue; \
1317 dev->event(dev, EV_##type, i, on ? active : 0); \
1319 } while (0)
1321 #ifdef CONFIG_PM
1322 static void input_dev_reset(struct input_dev *dev, bool activate)
1324 if (!dev->event)
1325 return;
1327 INPUT_DO_TOGGLE(dev, LED, led, activate);
1328 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1330 if (activate && test_bit(EV_REP, dev->evbit)) {
1331 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1332 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1336 static int input_dev_suspend(struct device *dev)
1338 struct input_dev *input_dev = to_input_dev(dev);
1340 mutex_lock(&input_dev->mutex);
1341 input_dev_reset(input_dev, false);
1342 mutex_unlock(&input_dev->mutex);
1344 return 0;
1347 static int input_dev_resume(struct device *dev)
1349 struct input_dev *input_dev = to_input_dev(dev);
1351 mutex_lock(&input_dev->mutex);
1352 input_dev_reset(input_dev, true);
1353 mutex_unlock(&input_dev->mutex);
1355 return 0;
1358 static const struct dev_pm_ops input_dev_pm_ops = {
1359 .suspend = input_dev_suspend,
1360 .resume = input_dev_resume,
1361 .poweroff = input_dev_suspend,
1362 .restore = input_dev_resume,
1364 #endif /* CONFIG_PM */
1366 static struct device_type input_dev_type = {
1367 .groups = input_dev_attr_groups,
1368 .release = input_dev_release,
1369 .uevent = input_dev_uevent,
1370 #ifdef CONFIG_PM
1371 .pm = &input_dev_pm_ops,
1372 #endif
1375 static char *input_devnode(struct device *dev, mode_t *mode)
1377 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1380 struct class input_class = {
1381 .name = "input",
1382 .devnode = input_devnode,
1384 EXPORT_SYMBOL_GPL(input_class);
1387 * input_allocate_device - allocate memory for new input device
1389 * Returns prepared struct input_dev or NULL.
1391 * NOTE: Use input_free_device() to free devices that have not been
1392 * registered; input_unregister_device() should be used for already
1393 * registered devices.
1395 struct input_dev *input_allocate_device(void)
1397 struct input_dev *dev;
1399 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1400 if (dev) {
1401 dev->dev.type = &input_dev_type;
1402 dev->dev.class = &input_class;
1403 device_initialize(&dev->dev);
1404 mutex_init(&dev->mutex);
1405 spin_lock_init(&dev->event_lock);
1406 INIT_LIST_HEAD(&dev->h_list);
1407 INIT_LIST_HEAD(&dev->node);
1409 __module_get(THIS_MODULE);
1412 return dev;
1414 EXPORT_SYMBOL(input_allocate_device);
1417 * input_free_device - free memory occupied by input_dev structure
1418 * @dev: input device to free
1420 * This function should only be used if input_register_device()
1421 * was not called yet or if it failed. Once device was registered
1422 * use input_unregister_device() and memory will be freed once last
1423 * reference to the device is dropped.
1425 * Device should be allocated by input_allocate_device().
1427 * NOTE: If there are references to the input device then memory
1428 * will not be freed until last reference is dropped.
1430 void input_free_device(struct input_dev *dev)
1432 if (dev)
1433 input_put_device(dev);
1435 EXPORT_SYMBOL(input_free_device);
1438 * input_set_capability - mark device as capable of a certain event
1439 * @dev: device that is capable of emitting or accepting event
1440 * @type: type of the event (EV_KEY, EV_REL, etc...)
1441 * @code: event code
1443 * In addition to setting up corresponding bit in appropriate capability
1444 * bitmap the function also adjusts dev->evbit.
1446 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1448 switch (type) {
1449 case EV_KEY:
1450 __set_bit(code, dev->keybit);
1451 break;
1453 case EV_REL:
1454 __set_bit(code, dev->relbit);
1455 break;
1457 case EV_ABS:
1458 __set_bit(code, dev->absbit);
1459 break;
1461 case EV_MSC:
1462 __set_bit(code, dev->mscbit);
1463 break;
1465 case EV_SW:
1466 __set_bit(code, dev->swbit);
1467 break;
1469 case EV_LED:
1470 __set_bit(code, dev->ledbit);
1471 break;
1473 case EV_SND:
1474 __set_bit(code, dev->sndbit);
1475 break;
1477 case EV_FF:
1478 __set_bit(code, dev->ffbit);
1479 break;
1481 case EV_PWR:
1482 /* do nothing */
1483 break;
1485 default:
1486 printk(KERN_ERR
1487 "input_set_capability: unknown type %u (code %u)\n",
1488 type, code);
1489 dump_stack();
1490 return;
1493 __set_bit(type, dev->evbit);
1495 EXPORT_SYMBOL(input_set_capability);
1498 * input_register_device - register device with input core
1499 * @dev: device to be registered
1501 * This function registers device with input core. The device must be
1502 * allocated with input_allocate_device() and all it's capabilities
1503 * set up before registering.
1504 * If function fails the device must be freed with input_free_device().
1505 * Once device has been successfully registered it can be unregistered
1506 * with input_unregister_device(); input_free_device() should not be
1507 * called in this case.
1509 int input_register_device(struct input_dev *dev)
1511 static atomic_t input_no = ATOMIC_INIT(0);
1512 struct input_handler *handler;
1513 const char *path;
1514 int error;
1516 __set_bit(EV_SYN, dev->evbit);
1519 * If delay and period are pre-set by the driver, then autorepeating
1520 * is handled by the driver itself and we don't do it in input.c.
1523 init_timer(&dev->timer);
1524 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1525 dev->timer.data = (long) dev;
1526 dev->timer.function = input_repeat_key;
1527 dev->rep[REP_DELAY] = 250;
1528 dev->rep[REP_PERIOD] = 33;
1531 if (!dev->getkeycode)
1532 dev->getkeycode = input_default_getkeycode;
1534 if (!dev->setkeycode)
1535 dev->setkeycode = input_default_setkeycode;
1537 dev_set_name(&dev->dev, "input%ld",
1538 (unsigned long) atomic_inc_return(&input_no) - 1);
1540 error = device_add(&dev->dev);
1541 if (error)
1542 return error;
1544 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1545 printk(KERN_INFO "input: %s as %s\n",
1546 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1547 kfree(path);
1549 error = mutex_lock_interruptible(&input_mutex);
1550 if (error) {
1551 device_del(&dev->dev);
1552 return error;
1555 list_add_tail(&dev->node, &input_dev_list);
1557 list_for_each_entry(handler, &input_handler_list, node)
1558 input_attach_handler(dev, handler);
1560 input_wakeup_procfs_readers();
1562 mutex_unlock(&input_mutex);
1564 return 0;
1566 EXPORT_SYMBOL(input_register_device);
1569 * input_unregister_device - unregister previously registered device
1570 * @dev: device to be unregistered
1572 * This function unregisters an input device. Once device is unregistered
1573 * the caller should not try to access it as it may get freed at any moment.
1575 void input_unregister_device(struct input_dev *dev)
1577 struct input_handle *handle, *next;
1579 input_disconnect_device(dev);
1581 mutex_lock(&input_mutex);
1583 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1584 handle->handler->disconnect(handle);
1585 WARN_ON(!list_empty(&dev->h_list));
1587 del_timer_sync(&dev->timer);
1588 list_del_init(&dev->node);
1590 input_wakeup_procfs_readers();
1592 mutex_unlock(&input_mutex);
1594 device_unregister(&dev->dev);
1596 EXPORT_SYMBOL(input_unregister_device);
1599 * input_register_handler - register a new input handler
1600 * @handler: handler to be registered
1602 * This function registers a new input handler (interface) for input
1603 * devices in the system and attaches it to all input devices that
1604 * are compatible with the handler.
1606 int input_register_handler(struct input_handler *handler)
1608 struct input_dev *dev;
1609 int retval;
1611 retval = mutex_lock_interruptible(&input_mutex);
1612 if (retval)
1613 return retval;
1615 INIT_LIST_HEAD(&handler->h_list);
1617 if (handler->fops != NULL) {
1618 if (input_table[handler->minor >> 5]) {
1619 retval = -EBUSY;
1620 goto out;
1622 input_table[handler->minor >> 5] = handler;
1625 list_add_tail(&handler->node, &input_handler_list);
1627 list_for_each_entry(dev, &input_dev_list, node)
1628 input_attach_handler(dev, handler);
1630 input_wakeup_procfs_readers();
1632 out:
1633 mutex_unlock(&input_mutex);
1634 return retval;
1636 EXPORT_SYMBOL(input_register_handler);
1639 * input_unregister_handler - unregisters an input handler
1640 * @handler: handler to be unregistered
1642 * This function disconnects a handler from its input devices and
1643 * removes it from lists of known handlers.
1645 void input_unregister_handler(struct input_handler *handler)
1647 struct input_handle *handle, *next;
1649 mutex_lock(&input_mutex);
1651 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1652 handler->disconnect(handle);
1653 WARN_ON(!list_empty(&handler->h_list));
1655 list_del_init(&handler->node);
1657 if (handler->fops != NULL)
1658 input_table[handler->minor >> 5] = NULL;
1660 input_wakeup_procfs_readers();
1662 mutex_unlock(&input_mutex);
1664 EXPORT_SYMBOL(input_unregister_handler);
1667 * input_handler_for_each_handle - handle iterator
1668 * @handler: input handler to iterate
1669 * @data: data for the callback
1670 * @fn: function to be called for each handle
1672 * Iterate over @bus's list of devices, and call @fn for each, passing
1673 * it @data and stop when @fn returns a non-zero value. The function is
1674 * using RCU to traverse the list and therefore may be usind in atonic
1675 * contexts. The @fn callback is invoked from RCU critical section and
1676 * thus must not sleep.
1678 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1679 int (*fn)(struct input_handle *, void *))
1681 struct input_handle *handle;
1682 int retval = 0;
1684 rcu_read_lock();
1686 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1687 retval = fn(handle, data);
1688 if (retval)
1689 break;
1692 rcu_read_unlock();
1694 return retval;
1696 EXPORT_SYMBOL(input_handler_for_each_handle);
1699 * input_register_handle - register a new input handle
1700 * @handle: handle to register
1702 * This function puts a new input handle onto device's
1703 * and handler's lists so that events can flow through
1704 * it once it is opened using input_open_device().
1706 * This function is supposed to be called from handler's
1707 * connect() method.
1709 int input_register_handle(struct input_handle *handle)
1711 struct input_handler *handler = handle->handler;
1712 struct input_dev *dev = handle->dev;
1713 int error;
1716 * We take dev->mutex here to prevent race with
1717 * input_release_device().
1719 error = mutex_lock_interruptible(&dev->mutex);
1720 if (error)
1721 return error;
1722 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1723 mutex_unlock(&dev->mutex);
1726 * Since we are supposed to be called from ->connect()
1727 * which is mutually exclusive with ->disconnect()
1728 * we can't be racing with input_unregister_handle()
1729 * and so separate lock is not needed here.
1731 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1733 if (handler->start)
1734 handler->start(handle);
1736 return 0;
1738 EXPORT_SYMBOL(input_register_handle);
1741 * input_unregister_handle - unregister an input handle
1742 * @handle: handle to unregister
1744 * This function removes input handle from device's
1745 * and handler's lists.
1747 * This function is supposed to be called from handler's
1748 * disconnect() method.
1750 void input_unregister_handle(struct input_handle *handle)
1752 struct input_dev *dev = handle->dev;
1754 list_del_rcu(&handle->h_node);
1757 * Take dev->mutex to prevent race with input_release_device().
1759 mutex_lock(&dev->mutex);
1760 list_del_rcu(&handle->d_node);
1761 mutex_unlock(&dev->mutex);
1763 synchronize_rcu();
1765 EXPORT_SYMBOL(input_unregister_handle);
1767 static int input_open_file(struct inode *inode, struct file *file)
1769 struct input_handler *handler;
1770 const struct file_operations *old_fops, *new_fops = NULL;
1771 int err;
1773 lock_kernel();
1774 /* No load-on-demand here? */
1775 handler = input_table[iminor(inode) >> 5];
1776 if (!handler || !(new_fops = fops_get(handler->fops))) {
1777 err = -ENODEV;
1778 goto out;
1782 * That's _really_ odd. Usually NULL ->open means "nothing special",
1783 * not "no device". Oh, well...
1785 if (!new_fops->open) {
1786 fops_put(new_fops);
1787 err = -ENODEV;
1788 goto out;
1790 old_fops = file->f_op;
1791 file->f_op = new_fops;
1793 err = new_fops->open(inode, file);
1795 if (err) {
1796 fops_put(file->f_op);
1797 file->f_op = fops_get(old_fops);
1799 fops_put(old_fops);
1800 out:
1801 unlock_kernel();
1802 return err;
1805 static const struct file_operations input_fops = {
1806 .owner = THIS_MODULE,
1807 .open = input_open_file,
1810 static void __init input_init_abs_bypass(void)
1812 const unsigned int *p;
1814 for (p = input_abs_bypass_init_data; *p; p++)
1815 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1818 static int __init input_init(void)
1820 int err;
1822 input_init_abs_bypass();
1824 err = class_register(&input_class);
1825 if (err) {
1826 printk(KERN_ERR "input: unable to register input_dev class\n");
1827 return err;
1830 err = input_proc_init();
1831 if (err)
1832 goto fail1;
1834 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1835 if (err) {
1836 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1837 goto fail2;
1840 return 0;
1842 fail2: input_proc_exit();
1843 fail1: class_unregister(&input_class);
1844 return err;
1847 static void __exit input_exit(void)
1849 input_proc_exit();
1850 unregister_chrdev(INPUT_MAJOR, "input");
1851 class_unregister(&input_class);
1854 subsys_initcall(input_init);
1855 module_exit(input_exit);