tproxy: split off ipv6 defragmentation to a separate module
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page-writeback.c
blobe3bccac1f0255bb78373e6268aab787a370ee520
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
43 static long ratelimit_pages = 32;
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
48 * It should be somewhat larger than dirtied pages to ensure that reasonably
49 * large amounts of I/O are submitted.
51 static inline long sync_writeback_pages(unsigned long dirtied)
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
56 return dirtied + dirtied / 2;
59 /* The following parameters are exported via /proc/sys/vm */
62 * Start background writeback (via writeback threads) at this percentage
64 int dirty_background_ratio = 10;
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
70 unsigned long dirty_background_bytes;
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
76 int vm_highmem_is_dirtyable;
79 * The generator of dirty data starts writeback at this percentage
81 int vm_dirty_ratio = 20;
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
87 unsigned long vm_dirty_bytes;
90 * The interval between `kupdate'-style writebacks
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
95 * The longest time for which data is allowed to remain dirty
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
100 * Flag that makes the machine dump writes/reads and block dirtyings.
102 int block_dump;
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
108 int laptop_mode;
110 EXPORT_SYMBOL(laptop_mode);
112 /* End of sysctl-exported parameters */
116 * Scale the writeback cache size proportional to the relative writeout speeds.
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
135 * couple the period to the dirty_ratio:
137 * period/2 ~ roundup_pow_of_two(dirty limit)
139 static int calc_period_shift(void)
141 unsigned long dirty_total;
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
148 return 2 + ilog2(dirty_total - 1);
152 * update the period when the dirty threshold changes.
154 static void update_completion_period(void)
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162 void __user *buffer, size_t *lenp,
163 loff_t *ppos)
165 int ret;
167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174 void __user *buffer, size_t *lenp,
175 loff_t *ppos)
177 int ret;
179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186 void __user *buffer, size_t *lenp,
187 loff_t *ppos)
189 int old_ratio = vm_dirty_ratio;
190 int ret;
192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194 update_completion_period();
195 vm_dirty_bytes = 0;
197 return ret;
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202 void __user *buffer, size_t *lenp,
203 loff_t *ppos)
205 unsigned long old_bytes = vm_dirty_bytes;
206 int ret;
208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
213 return ret;
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
228 unsigned long flags;
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
236 void task_dirty_inc(struct task_struct *tsk)
238 prop_inc_single(&vm_dirties, &tsk->dirties);
242 * Obtain an accurate fraction of the BDI's portion.
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
247 if (bdi_cap_writeback_dirty(bdi)) {
248 prop_fraction_percpu(&vm_completions, &bdi->completions,
249 numerator, denominator);
250 } else {
251 *numerator = 0;
252 *denominator = 1;
256 static inline void task_dirties_fraction(struct task_struct *tsk,
257 long *numerator, long *denominator)
259 prop_fraction_single(&vm_dirties, &tsk->dirties,
260 numerator, denominator);
264 * task_dirty_limit - scale down dirty throttling threshold for one task
266 * task specific dirty limit:
268 * dirty -= (dirty/8) * p_{t}
270 * To protect light/slow dirtying tasks from heavier/fast ones, we start
271 * throttling individual tasks before reaching the bdi dirty limit.
272 * Relatively low thresholds will be allocated to heavy dirtiers. So when
273 * dirty pages grow large, heavy dirtiers will be throttled first, which will
274 * effectively curb the growth of dirty pages. Light dirtiers with high enough
275 * dirty threshold may never get throttled.
277 static unsigned long task_dirty_limit(struct task_struct *tsk,
278 unsigned long bdi_dirty)
280 long numerator, denominator;
281 unsigned long dirty = bdi_dirty;
282 u64 inv = dirty >> 3;
284 task_dirties_fraction(tsk, &numerator, &denominator);
285 inv *= numerator;
286 do_div(inv, denominator);
288 dirty -= inv;
290 return max(dirty, bdi_dirty/2);
296 static unsigned int bdi_min_ratio;
298 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
300 int ret = 0;
302 spin_lock_bh(&bdi_lock);
303 if (min_ratio > bdi->max_ratio) {
304 ret = -EINVAL;
305 } else {
306 min_ratio -= bdi->min_ratio;
307 if (bdi_min_ratio + min_ratio < 100) {
308 bdi_min_ratio += min_ratio;
309 bdi->min_ratio += min_ratio;
310 } else {
311 ret = -EINVAL;
314 spin_unlock_bh(&bdi_lock);
316 return ret;
319 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
321 int ret = 0;
323 if (max_ratio > 100)
324 return -EINVAL;
326 spin_lock_bh(&bdi_lock);
327 if (bdi->min_ratio > max_ratio) {
328 ret = -EINVAL;
329 } else {
330 bdi->max_ratio = max_ratio;
331 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
333 spin_unlock_bh(&bdi_lock);
335 return ret;
337 EXPORT_SYMBOL(bdi_set_max_ratio);
340 * Work out the current dirty-memory clamping and background writeout
341 * thresholds.
343 * The main aim here is to lower them aggressively if there is a lot of mapped
344 * memory around. To avoid stressing page reclaim with lots of unreclaimable
345 * pages. It is better to clamp down on writers than to start swapping, and
346 * performing lots of scanning.
348 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
350 * We don't permit the clamping level to fall below 5% - that is getting rather
351 * excessive.
353 * We make sure that the background writeout level is below the adjusted
354 * clamping level.
357 static unsigned long highmem_dirtyable_memory(unsigned long total)
359 #ifdef CONFIG_HIGHMEM
360 int node;
361 unsigned long x = 0;
363 for_each_node_state(node, N_HIGH_MEMORY) {
364 struct zone *z =
365 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
367 x += zone_page_state(z, NR_FREE_PAGES) +
368 zone_reclaimable_pages(z);
371 * Make sure that the number of highmem pages is never larger
372 * than the number of the total dirtyable memory. This can only
373 * occur in very strange VM situations but we want to make sure
374 * that this does not occur.
376 return min(x, total);
377 #else
378 return 0;
379 #endif
383 * determine_dirtyable_memory - amount of memory that may be used
385 * Returns the numebr of pages that can currently be freed and used
386 * by the kernel for direct mappings.
388 unsigned long determine_dirtyable_memory(void)
390 unsigned long x;
392 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
394 if (!vm_highmem_is_dirtyable)
395 x -= highmem_dirtyable_memory(x);
397 return x + 1; /* Ensure that we never return 0 */
401 * global_dirty_limits - background-writeback and dirty-throttling thresholds
403 * Calculate the dirty thresholds based on sysctl parameters
404 * - vm.dirty_background_ratio or vm.dirty_background_bytes
405 * - vm.dirty_ratio or vm.dirty_bytes
406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407 * runtime tasks.
409 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
411 unsigned long background;
412 unsigned long dirty;
413 unsigned long available_memory = determine_dirtyable_memory();
414 struct task_struct *tsk;
416 if (vm_dirty_bytes)
417 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
418 else {
419 int dirty_ratio;
421 dirty_ratio = vm_dirty_ratio;
422 if (dirty_ratio < 5)
423 dirty_ratio = 5;
424 dirty = (dirty_ratio * available_memory) / 100;
427 if (dirty_background_bytes)
428 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
429 else
430 background = (dirty_background_ratio * available_memory) / 100;
432 if (background >= dirty)
433 background = dirty / 2;
434 tsk = current;
435 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
436 background += background / 4;
437 dirty += dirty / 4;
439 *pbackground = background;
440 *pdirty = dirty;
444 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
446 * Allocate high/low dirty limits to fast/slow devices, in order to prevent
447 * - starving fast devices
448 * - piling up dirty pages (that will take long time to sync) on slow devices
450 * The bdi's share of dirty limit will be adapting to its throughput and
451 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
453 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
455 u64 bdi_dirty;
456 long numerator, denominator;
459 * Calculate this BDI's share of the dirty ratio.
461 bdi_writeout_fraction(bdi, &numerator, &denominator);
463 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
464 bdi_dirty *= numerator;
465 do_div(bdi_dirty, denominator);
467 bdi_dirty += (dirty * bdi->min_ratio) / 100;
468 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
469 bdi_dirty = dirty * bdi->max_ratio / 100;
471 return bdi_dirty;
475 * balance_dirty_pages() must be called by processes which are generating dirty
476 * data. It looks at the number of dirty pages in the machine and will force
477 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
478 * If we're over `background_thresh' then the writeback threads are woken to
479 * perform some writeout.
481 static void balance_dirty_pages(struct address_space *mapping,
482 unsigned long write_chunk)
484 long nr_reclaimable, bdi_nr_reclaimable;
485 long nr_writeback, bdi_nr_writeback;
486 unsigned long background_thresh;
487 unsigned long dirty_thresh;
488 unsigned long bdi_thresh;
489 unsigned long pages_written = 0;
490 unsigned long pause = 1;
491 bool dirty_exceeded = false;
492 struct backing_dev_info *bdi = mapping->backing_dev_info;
494 for (;;) {
495 struct writeback_control wbc = {
496 .sync_mode = WB_SYNC_NONE,
497 .older_than_this = NULL,
498 .nr_to_write = write_chunk,
499 .range_cyclic = 1,
502 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
503 global_page_state(NR_UNSTABLE_NFS);
504 nr_writeback = global_page_state(NR_WRITEBACK);
506 global_dirty_limits(&background_thresh, &dirty_thresh);
509 * Throttle it only when the background writeback cannot
510 * catch-up. This avoids (excessively) small writeouts
511 * when the bdi limits are ramping up.
513 if (nr_reclaimable + nr_writeback <
514 (background_thresh + dirty_thresh) / 2)
515 break;
517 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
518 bdi_thresh = task_dirty_limit(current, bdi_thresh);
521 * In order to avoid the stacked BDI deadlock we need
522 * to ensure we accurately count the 'dirty' pages when
523 * the threshold is low.
525 * Otherwise it would be possible to get thresh+n pages
526 * reported dirty, even though there are thresh-m pages
527 * actually dirty; with m+n sitting in the percpu
528 * deltas.
530 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
531 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
532 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
533 } else {
534 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
535 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
539 * The bdi thresh is somehow "soft" limit derived from the
540 * global "hard" limit. The former helps to prevent heavy IO
541 * bdi or process from holding back light ones; The latter is
542 * the last resort safeguard.
544 dirty_exceeded =
545 (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh)
546 || (nr_reclaimable + nr_writeback >= dirty_thresh);
548 if (!dirty_exceeded)
549 break;
551 if (!bdi->dirty_exceeded)
552 bdi->dirty_exceeded = 1;
554 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
555 * Unstable writes are a feature of certain networked
556 * filesystems (i.e. NFS) in which data may have been
557 * written to the server's write cache, but has not yet
558 * been flushed to permanent storage.
559 * Only move pages to writeback if this bdi is over its
560 * threshold otherwise wait until the disk writes catch
561 * up.
563 trace_wbc_balance_dirty_start(&wbc, bdi);
564 if (bdi_nr_reclaimable > bdi_thresh) {
565 writeback_inodes_wb(&bdi->wb, &wbc);
566 pages_written += write_chunk - wbc.nr_to_write;
567 trace_wbc_balance_dirty_written(&wbc, bdi);
568 if (pages_written >= write_chunk)
569 break; /* We've done our duty */
571 trace_wbc_balance_dirty_wait(&wbc, bdi);
572 __set_current_state(TASK_INTERRUPTIBLE);
573 io_schedule_timeout(pause);
576 * Increase the delay for each loop, up to our previous
577 * default of taking a 100ms nap.
579 pause <<= 1;
580 if (pause > HZ / 10)
581 pause = HZ / 10;
584 if (!dirty_exceeded && bdi->dirty_exceeded)
585 bdi->dirty_exceeded = 0;
587 if (writeback_in_progress(bdi))
588 return;
591 * In laptop mode, we wait until hitting the higher threshold before
592 * starting background writeout, and then write out all the way down
593 * to the lower threshold. So slow writers cause minimal disk activity.
595 * In normal mode, we start background writeout at the lower
596 * background_thresh, to keep the amount of dirty memory low.
598 if ((laptop_mode && pages_written) ||
599 (!laptop_mode && (nr_reclaimable > background_thresh)))
600 bdi_start_background_writeback(bdi);
603 void set_page_dirty_balance(struct page *page, int page_mkwrite)
605 if (set_page_dirty(page) || page_mkwrite) {
606 struct address_space *mapping = page_mapping(page);
608 if (mapping)
609 balance_dirty_pages_ratelimited(mapping);
613 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
616 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
617 * @mapping: address_space which was dirtied
618 * @nr_pages_dirtied: number of pages which the caller has just dirtied
620 * Processes which are dirtying memory should call in here once for each page
621 * which was newly dirtied. The function will periodically check the system's
622 * dirty state and will initiate writeback if needed.
624 * On really big machines, get_writeback_state is expensive, so try to avoid
625 * calling it too often (ratelimiting). But once we're over the dirty memory
626 * limit we decrease the ratelimiting by a lot, to prevent individual processes
627 * from overshooting the limit by (ratelimit_pages) each.
629 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
630 unsigned long nr_pages_dirtied)
632 unsigned long ratelimit;
633 unsigned long *p;
635 ratelimit = ratelimit_pages;
636 if (mapping->backing_dev_info->dirty_exceeded)
637 ratelimit = 8;
640 * Check the rate limiting. Also, we do not want to throttle real-time
641 * tasks in balance_dirty_pages(). Period.
643 preempt_disable();
644 p = &__get_cpu_var(bdp_ratelimits);
645 *p += nr_pages_dirtied;
646 if (unlikely(*p >= ratelimit)) {
647 ratelimit = sync_writeback_pages(*p);
648 *p = 0;
649 preempt_enable();
650 balance_dirty_pages(mapping, ratelimit);
651 return;
653 preempt_enable();
655 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
657 void throttle_vm_writeout(gfp_t gfp_mask)
659 unsigned long background_thresh;
660 unsigned long dirty_thresh;
662 for ( ; ; ) {
663 global_dirty_limits(&background_thresh, &dirty_thresh);
666 * Boost the allowable dirty threshold a bit for page
667 * allocators so they don't get DoS'ed by heavy writers
669 dirty_thresh += dirty_thresh / 10; /* wheeee... */
671 if (global_page_state(NR_UNSTABLE_NFS) +
672 global_page_state(NR_WRITEBACK) <= dirty_thresh)
673 break;
674 congestion_wait(BLK_RW_ASYNC, HZ/10);
677 * The caller might hold locks which can prevent IO completion
678 * or progress in the filesystem. So we cannot just sit here
679 * waiting for IO to complete.
681 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
682 break;
687 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
689 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
690 void __user *buffer, size_t *length, loff_t *ppos)
692 proc_dointvec(table, write, buffer, length, ppos);
693 bdi_arm_supers_timer();
694 return 0;
697 #ifdef CONFIG_BLOCK
698 void laptop_mode_timer_fn(unsigned long data)
700 struct request_queue *q = (struct request_queue *)data;
701 int nr_pages = global_page_state(NR_FILE_DIRTY) +
702 global_page_state(NR_UNSTABLE_NFS);
705 * We want to write everything out, not just down to the dirty
706 * threshold
708 if (bdi_has_dirty_io(&q->backing_dev_info))
709 bdi_start_writeback(&q->backing_dev_info, nr_pages);
713 * We've spun up the disk and we're in laptop mode: schedule writeback
714 * of all dirty data a few seconds from now. If the flush is already scheduled
715 * then push it back - the user is still using the disk.
717 void laptop_io_completion(struct backing_dev_info *info)
719 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
723 * We're in laptop mode and we've just synced. The sync's writes will have
724 * caused another writeback to be scheduled by laptop_io_completion.
725 * Nothing needs to be written back anymore, so we unschedule the writeback.
727 void laptop_sync_completion(void)
729 struct backing_dev_info *bdi;
731 rcu_read_lock();
733 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
734 del_timer(&bdi->laptop_mode_wb_timer);
736 rcu_read_unlock();
738 #endif
741 * If ratelimit_pages is too high then we can get into dirty-data overload
742 * if a large number of processes all perform writes at the same time.
743 * If it is too low then SMP machines will call the (expensive)
744 * get_writeback_state too often.
746 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
747 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
748 * thresholds before writeback cuts in.
750 * But the limit should not be set too high. Because it also controls the
751 * amount of memory which the balance_dirty_pages() caller has to write back.
752 * If this is too large then the caller will block on the IO queue all the
753 * time. So limit it to four megabytes - the balance_dirty_pages() caller
754 * will write six megabyte chunks, max.
757 void writeback_set_ratelimit(void)
759 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
760 if (ratelimit_pages < 16)
761 ratelimit_pages = 16;
762 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
763 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
766 static int __cpuinit
767 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
769 writeback_set_ratelimit();
770 return NOTIFY_DONE;
773 static struct notifier_block __cpuinitdata ratelimit_nb = {
774 .notifier_call = ratelimit_handler,
775 .next = NULL,
779 * Called early on to tune the page writeback dirty limits.
781 * We used to scale dirty pages according to how total memory
782 * related to pages that could be allocated for buffers (by
783 * comparing nr_free_buffer_pages() to vm_total_pages.
785 * However, that was when we used "dirty_ratio" to scale with
786 * all memory, and we don't do that any more. "dirty_ratio"
787 * is now applied to total non-HIGHPAGE memory (by subtracting
788 * totalhigh_pages from vm_total_pages), and as such we can't
789 * get into the old insane situation any more where we had
790 * large amounts of dirty pages compared to a small amount of
791 * non-HIGHMEM memory.
793 * But we might still want to scale the dirty_ratio by how
794 * much memory the box has..
796 void __init page_writeback_init(void)
798 int shift;
800 writeback_set_ratelimit();
801 register_cpu_notifier(&ratelimit_nb);
803 shift = calc_period_shift();
804 prop_descriptor_init(&vm_completions, shift);
805 prop_descriptor_init(&vm_dirties, shift);
809 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
810 * @mapping: address space structure to write
811 * @start: starting page index
812 * @end: ending page index (inclusive)
814 * This function scans the page range from @start to @end (inclusive) and tags
815 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
816 * that write_cache_pages (or whoever calls this function) will then use
817 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
818 * used to avoid livelocking of writeback by a process steadily creating new
819 * dirty pages in the file (thus it is important for this function to be quick
820 * so that it can tag pages faster than a dirtying process can create them).
823 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
825 void tag_pages_for_writeback(struct address_space *mapping,
826 pgoff_t start, pgoff_t end)
828 #define WRITEBACK_TAG_BATCH 4096
829 unsigned long tagged;
831 do {
832 spin_lock_irq(&mapping->tree_lock);
833 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
834 &start, end, WRITEBACK_TAG_BATCH,
835 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
836 spin_unlock_irq(&mapping->tree_lock);
837 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
838 cond_resched();
839 /* We check 'start' to handle wrapping when end == ~0UL */
840 } while (tagged >= WRITEBACK_TAG_BATCH && start);
842 EXPORT_SYMBOL(tag_pages_for_writeback);
845 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
846 * @mapping: address space structure to write
847 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
848 * @writepage: function called for each page
849 * @data: data passed to writepage function
851 * If a page is already under I/O, write_cache_pages() skips it, even
852 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
853 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
854 * and msync() need to guarantee that all the data which was dirty at the time
855 * the call was made get new I/O started against them. If wbc->sync_mode is
856 * WB_SYNC_ALL then we were called for data integrity and we must wait for
857 * existing IO to complete.
859 * To avoid livelocks (when other process dirties new pages), we first tag
860 * pages which should be written back with TOWRITE tag and only then start
861 * writing them. For data-integrity sync we have to be careful so that we do
862 * not miss some pages (e.g., because some other process has cleared TOWRITE
863 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
864 * by the process clearing the DIRTY tag (and submitting the page for IO).
866 int write_cache_pages(struct address_space *mapping,
867 struct writeback_control *wbc, writepage_t writepage,
868 void *data)
870 int ret = 0;
871 int done = 0;
872 struct pagevec pvec;
873 int nr_pages;
874 pgoff_t uninitialized_var(writeback_index);
875 pgoff_t index;
876 pgoff_t end; /* Inclusive */
877 pgoff_t done_index;
878 int cycled;
879 int range_whole = 0;
880 int tag;
882 pagevec_init(&pvec, 0);
883 if (wbc->range_cyclic) {
884 writeback_index = mapping->writeback_index; /* prev offset */
885 index = writeback_index;
886 if (index == 0)
887 cycled = 1;
888 else
889 cycled = 0;
890 end = -1;
891 } else {
892 index = wbc->range_start >> PAGE_CACHE_SHIFT;
893 end = wbc->range_end >> PAGE_CACHE_SHIFT;
894 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
895 range_whole = 1;
896 cycled = 1; /* ignore range_cyclic tests */
898 if (wbc->sync_mode == WB_SYNC_ALL)
899 tag = PAGECACHE_TAG_TOWRITE;
900 else
901 tag = PAGECACHE_TAG_DIRTY;
902 retry:
903 if (wbc->sync_mode == WB_SYNC_ALL)
904 tag_pages_for_writeback(mapping, index, end);
905 done_index = index;
906 while (!done && (index <= end)) {
907 int i;
909 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
910 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
911 if (nr_pages == 0)
912 break;
914 for (i = 0; i < nr_pages; i++) {
915 struct page *page = pvec.pages[i];
918 * At this point, the page may be truncated or
919 * invalidated (changing page->mapping to NULL), or
920 * even swizzled back from swapper_space to tmpfs file
921 * mapping. However, page->index will not change
922 * because we have a reference on the page.
924 if (page->index > end) {
926 * can't be range_cyclic (1st pass) because
927 * end == -1 in that case.
929 done = 1;
930 break;
933 done_index = page->index + 1;
935 lock_page(page);
938 * Page truncated or invalidated. We can freely skip it
939 * then, even for data integrity operations: the page
940 * has disappeared concurrently, so there could be no
941 * real expectation of this data interity operation
942 * even if there is now a new, dirty page at the same
943 * pagecache address.
945 if (unlikely(page->mapping != mapping)) {
946 continue_unlock:
947 unlock_page(page);
948 continue;
951 if (!PageDirty(page)) {
952 /* someone wrote it for us */
953 goto continue_unlock;
956 if (PageWriteback(page)) {
957 if (wbc->sync_mode != WB_SYNC_NONE)
958 wait_on_page_writeback(page);
959 else
960 goto continue_unlock;
963 BUG_ON(PageWriteback(page));
964 if (!clear_page_dirty_for_io(page))
965 goto continue_unlock;
967 trace_wbc_writepage(wbc, mapping->backing_dev_info);
968 ret = (*writepage)(page, wbc, data);
969 if (unlikely(ret)) {
970 if (ret == AOP_WRITEPAGE_ACTIVATE) {
971 unlock_page(page);
972 ret = 0;
973 } else {
975 * done_index is set past this page,
976 * so media errors will not choke
977 * background writeout for the entire
978 * file. This has consequences for
979 * range_cyclic semantics (ie. it may
980 * not be suitable for data integrity
981 * writeout).
983 done = 1;
984 break;
989 * We stop writing back only if we are not doing
990 * integrity sync. In case of integrity sync we have to
991 * keep going until we have written all the pages
992 * we tagged for writeback prior to entering this loop.
994 if (--wbc->nr_to_write <= 0 &&
995 wbc->sync_mode == WB_SYNC_NONE) {
996 done = 1;
997 break;
1000 pagevec_release(&pvec);
1001 cond_resched();
1003 if (!cycled && !done) {
1005 * range_cyclic:
1006 * We hit the last page and there is more work to be done: wrap
1007 * back to the start of the file
1009 cycled = 1;
1010 index = 0;
1011 end = writeback_index - 1;
1012 goto retry;
1014 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1015 mapping->writeback_index = done_index;
1017 return ret;
1019 EXPORT_SYMBOL(write_cache_pages);
1022 * Function used by generic_writepages to call the real writepage
1023 * function and set the mapping flags on error
1025 static int __writepage(struct page *page, struct writeback_control *wbc,
1026 void *data)
1028 struct address_space *mapping = data;
1029 int ret = mapping->a_ops->writepage(page, wbc);
1030 mapping_set_error(mapping, ret);
1031 return ret;
1035 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1036 * @mapping: address space structure to write
1037 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1039 * This is a library function, which implements the writepages()
1040 * address_space_operation.
1042 int generic_writepages(struct address_space *mapping,
1043 struct writeback_control *wbc)
1045 /* deal with chardevs and other special file */
1046 if (!mapping->a_ops->writepage)
1047 return 0;
1049 return write_cache_pages(mapping, wbc, __writepage, mapping);
1052 EXPORT_SYMBOL(generic_writepages);
1054 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1056 int ret;
1058 if (wbc->nr_to_write <= 0)
1059 return 0;
1060 if (mapping->a_ops->writepages)
1061 ret = mapping->a_ops->writepages(mapping, wbc);
1062 else
1063 ret = generic_writepages(mapping, wbc);
1064 return ret;
1068 * write_one_page - write out a single page and optionally wait on I/O
1069 * @page: the page to write
1070 * @wait: if true, wait on writeout
1072 * The page must be locked by the caller and will be unlocked upon return.
1074 * write_one_page() returns a negative error code if I/O failed.
1076 int write_one_page(struct page *page, int wait)
1078 struct address_space *mapping = page->mapping;
1079 int ret = 0;
1080 struct writeback_control wbc = {
1081 .sync_mode = WB_SYNC_ALL,
1082 .nr_to_write = 1,
1085 BUG_ON(!PageLocked(page));
1087 if (wait)
1088 wait_on_page_writeback(page);
1090 if (clear_page_dirty_for_io(page)) {
1091 page_cache_get(page);
1092 ret = mapping->a_ops->writepage(page, &wbc);
1093 if (ret == 0 && wait) {
1094 wait_on_page_writeback(page);
1095 if (PageError(page))
1096 ret = -EIO;
1098 page_cache_release(page);
1099 } else {
1100 unlock_page(page);
1102 return ret;
1104 EXPORT_SYMBOL(write_one_page);
1107 * For address_spaces which do not use buffers nor write back.
1109 int __set_page_dirty_no_writeback(struct page *page)
1111 if (!PageDirty(page))
1112 SetPageDirty(page);
1113 return 0;
1117 * Helper function for set_page_dirty family.
1118 * NOTE: This relies on being atomic wrt interrupts.
1120 void account_page_dirtied(struct page *page, struct address_space *mapping)
1122 if (mapping_cap_account_dirty(mapping)) {
1123 __inc_zone_page_state(page, NR_FILE_DIRTY);
1124 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1125 task_dirty_inc(current);
1126 task_io_account_write(PAGE_CACHE_SIZE);
1129 EXPORT_SYMBOL(account_page_dirtied);
1132 * For address_spaces which do not use buffers. Just tag the page as dirty in
1133 * its radix tree.
1135 * This is also used when a single buffer is being dirtied: we want to set the
1136 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1137 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1139 * Most callers have locked the page, which pins the address_space in memory.
1140 * But zap_pte_range() does not lock the page, however in that case the
1141 * mapping is pinned by the vma's ->vm_file reference.
1143 * We take care to handle the case where the page was truncated from the
1144 * mapping by re-checking page_mapping() inside tree_lock.
1146 int __set_page_dirty_nobuffers(struct page *page)
1148 if (!TestSetPageDirty(page)) {
1149 struct address_space *mapping = page_mapping(page);
1150 struct address_space *mapping2;
1152 if (!mapping)
1153 return 1;
1155 spin_lock_irq(&mapping->tree_lock);
1156 mapping2 = page_mapping(page);
1157 if (mapping2) { /* Race with truncate? */
1158 BUG_ON(mapping2 != mapping);
1159 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1160 account_page_dirtied(page, mapping);
1161 radix_tree_tag_set(&mapping->page_tree,
1162 page_index(page), PAGECACHE_TAG_DIRTY);
1164 spin_unlock_irq(&mapping->tree_lock);
1165 if (mapping->host) {
1166 /* !PageAnon && !swapper_space */
1167 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1169 return 1;
1171 return 0;
1173 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1176 * When a writepage implementation decides that it doesn't want to write this
1177 * page for some reason, it should redirty the locked page via
1178 * redirty_page_for_writepage() and it should then unlock the page and return 0
1180 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1182 wbc->pages_skipped++;
1183 return __set_page_dirty_nobuffers(page);
1185 EXPORT_SYMBOL(redirty_page_for_writepage);
1188 * Dirty a page.
1190 * For pages with a mapping this should be done under the page lock
1191 * for the benefit of asynchronous memory errors who prefer a consistent
1192 * dirty state. This rule can be broken in some special cases,
1193 * but should be better not to.
1195 * If the mapping doesn't provide a set_page_dirty a_op, then
1196 * just fall through and assume that it wants buffer_heads.
1198 int set_page_dirty(struct page *page)
1200 struct address_space *mapping = page_mapping(page);
1202 if (likely(mapping)) {
1203 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1204 #ifdef CONFIG_BLOCK
1205 if (!spd)
1206 spd = __set_page_dirty_buffers;
1207 #endif
1208 return (*spd)(page);
1210 if (!PageDirty(page)) {
1211 if (!TestSetPageDirty(page))
1212 return 1;
1214 return 0;
1216 EXPORT_SYMBOL(set_page_dirty);
1219 * set_page_dirty() is racy if the caller has no reference against
1220 * page->mapping->host, and if the page is unlocked. This is because another
1221 * CPU could truncate the page off the mapping and then free the mapping.
1223 * Usually, the page _is_ locked, or the caller is a user-space process which
1224 * holds a reference on the inode by having an open file.
1226 * In other cases, the page should be locked before running set_page_dirty().
1228 int set_page_dirty_lock(struct page *page)
1230 int ret;
1232 lock_page_nosync(page);
1233 ret = set_page_dirty(page);
1234 unlock_page(page);
1235 return ret;
1237 EXPORT_SYMBOL(set_page_dirty_lock);
1240 * Clear a page's dirty flag, while caring for dirty memory accounting.
1241 * Returns true if the page was previously dirty.
1243 * This is for preparing to put the page under writeout. We leave the page
1244 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1245 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1246 * implementation will run either set_page_writeback() or set_page_dirty(),
1247 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1248 * back into sync.
1250 * This incoherency between the page's dirty flag and radix-tree tag is
1251 * unfortunate, but it only exists while the page is locked.
1253 int clear_page_dirty_for_io(struct page *page)
1255 struct address_space *mapping = page_mapping(page);
1257 BUG_ON(!PageLocked(page));
1259 ClearPageReclaim(page);
1260 if (mapping && mapping_cap_account_dirty(mapping)) {
1262 * Yes, Virginia, this is indeed insane.
1264 * We use this sequence to make sure that
1265 * (a) we account for dirty stats properly
1266 * (b) we tell the low-level filesystem to
1267 * mark the whole page dirty if it was
1268 * dirty in a pagetable. Only to then
1269 * (c) clean the page again and return 1 to
1270 * cause the writeback.
1272 * This way we avoid all nasty races with the
1273 * dirty bit in multiple places and clearing
1274 * them concurrently from different threads.
1276 * Note! Normally the "set_page_dirty(page)"
1277 * has no effect on the actual dirty bit - since
1278 * that will already usually be set. But we
1279 * need the side effects, and it can help us
1280 * avoid races.
1282 * We basically use the page "master dirty bit"
1283 * as a serialization point for all the different
1284 * threads doing their things.
1286 if (page_mkclean(page))
1287 set_page_dirty(page);
1289 * We carefully synchronise fault handlers against
1290 * installing a dirty pte and marking the page dirty
1291 * at this point. We do this by having them hold the
1292 * page lock at some point after installing their
1293 * pte, but before marking the page dirty.
1294 * Pages are always locked coming in here, so we get
1295 * the desired exclusion. See mm/memory.c:do_wp_page()
1296 * for more comments.
1298 if (TestClearPageDirty(page)) {
1299 dec_zone_page_state(page, NR_FILE_DIRTY);
1300 dec_bdi_stat(mapping->backing_dev_info,
1301 BDI_RECLAIMABLE);
1302 return 1;
1304 return 0;
1306 return TestClearPageDirty(page);
1308 EXPORT_SYMBOL(clear_page_dirty_for_io);
1310 int test_clear_page_writeback(struct page *page)
1312 struct address_space *mapping = page_mapping(page);
1313 int ret;
1315 if (mapping) {
1316 struct backing_dev_info *bdi = mapping->backing_dev_info;
1317 unsigned long flags;
1319 spin_lock_irqsave(&mapping->tree_lock, flags);
1320 ret = TestClearPageWriteback(page);
1321 if (ret) {
1322 radix_tree_tag_clear(&mapping->page_tree,
1323 page_index(page),
1324 PAGECACHE_TAG_WRITEBACK);
1325 if (bdi_cap_account_writeback(bdi)) {
1326 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1327 __bdi_writeout_inc(bdi);
1330 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1331 } else {
1332 ret = TestClearPageWriteback(page);
1334 if (ret)
1335 dec_zone_page_state(page, NR_WRITEBACK);
1336 return ret;
1339 int test_set_page_writeback(struct page *page)
1341 struct address_space *mapping = page_mapping(page);
1342 int ret;
1344 if (mapping) {
1345 struct backing_dev_info *bdi = mapping->backing_dev_info;
1346 unsigned long flags;
1348 spin_lock_irqsave(&mapping->tree_lock, flags);
1349 ret = TestSetPageWriteback(page);
1350 if (!ret) {
1351 radix_tree_tag_set(&mapping->page_tree,
1352 page_index(page),
1353 PAGECACHE_TAG_WRITEBACK);
1354 if (bdi_cap_account_writeback(bdi))
1355 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1357 if (!PageDirty(page))
1358 radix_tree_tag_clear(&mapping->page_tree,
1359 page_index(page),
1360 PAGECACHE_TAG_DIRTY);
1361 radix_tree_tag_clear(&mapping->page_tree,
1362 page_index(page),
1363 PAGECACHE_TAG_TOWRITE);
1364 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1365 } else {
1366 ret = TestSetPageWriteback(page);
1368 if (!ret)
1369 inc_zone_page_state(page, NR_WRITEBACK);
1370 return ret;
1373 EXPORT_SYMBOL(test_set_page_writeback);
1376 * Return true if any of the pages in the mapping are marked with the
1377 * passed tag.
1379 int mapping_tagged(struct address_space *mapping, int tag)
1381 int ret;
1382 rcu_read_lock();
1383 ret = radix_tree_tagged(&mapping->page_tree, tag);
1384 rcu_read_unlock();
1385 return ret;
1387 EXPORT_SYMBOL(mapping_tagged);