4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
10 * This is the core of the buffer management. Each
11 * CPU buffer is processed and entered into the
12 * global event buffer. Such processing is necessary
13 * in several circumstances, mentioned below.
15 * The processing does the job of converting the
16 * transitory EIP value into a persistent dentry/offset
17 * value that the profiler can record at its leisure.
19 * See fs/dcookies.c for a description of the dentry/offset
24 #include <linux/workqueue.h>
25 #include <linux/notifier.h>
26 #include <linux/dcookies.h>
27 #include <linux/profile.h>
28 #include <linux/module.h>
30 #include <linux/oprofile.h>
31 #include <linux/sched.h>
33 #include "oprofile_stats.h"
34 #include "event_buffer.h"
35 #include "cpu_buffer.h"
36 #include "buffer_sync.h"
38 static LIST_HEAD(dying_tasks
);
39 static LIST_HEAD(dead_tasks
);
40 static cpumask_t marked_cpus
= CPU_MASK_NONE
;
41 static DEFINE_SPINLOCK(task_mortuary
);
42 static void process_task_mortuary(void);
44 /* Take ownership of the task struct and place it on the
45 * list for processing. Only after two full buffer syncs
46 * does the task eventually get freed, because by then
47 * we are sure we will not reference it again.
48 * Can be invoked from softirq via RCU callback due to
49 * call_rcu() of the task struct, hence the _irqsave.
52 task_free_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
55 struct task_struct
*task
= data
;
56 spin_lock_irqsave(&task_mortuary
, flags
);
57 list_add(&task
->tasks
, &dying_tasks
);
58 spin_unlock_irqrestore(&task_mortuary
, flags
);
63 /* The task is on its way out. A sync of the buffer means we can catch
64 * any remaining samples for this task.
67 task_exit_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
69 /* To avoid latency problems, we only process the current CPU,
70 * hoping that most samples for the task are on this CPU
72 sync_buffer(raw_smp_processor_id());
77 /* The task is about to try a do_munmap(). We peek at what it's going to
78 * do, and if it's an executable region, process the samples first, so
79 * we don't lose any. This does not have to be exact, it's a QoI issue
83 munmap_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
85 unsigned long addr
= (unsigned long)data
;
86 struct mm_struct
*mm
= current
->mm
;
87 struct vm_area_struct
*mpnt
;
89 down_read(&mm
->mmap_sem
);
91 mpnt
= find_vma(mm
, addr
);
92 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
93 up_read(&mm
->mmap_sem
);
94 /* To avoid latency problems, we only process the current CPU,
95 * hoping that most samples for the task are on this CPU
97 sync_buffer(raw_smp_processor_id());
101 up_read(&mm
->mmap_sem
);
106 /* We need to be told about new modules so we don't attribute to a previously
107 * loaded module, or drop the samples on the floor.
110 module_load_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
112 #ifdef CONFIG_MODULES
113 if (val
!= MODULE_STATE_COMING
)
116 /* FIXME: should we process all CPU buffers ? */
117 mutex_lock(&buffer_mutex
);
118 add_event_entry(ESCAPE_CODE
);
119 add_event_entry(MODULE_LOADED_CODE
);
120 mutex_unlock(&buffer_mutex
);
126 static struct notifier_block task_free_nb
= {
127 .notifier_call
= task_free_notify
,
130 static struct notifier_block task_exit_nb
= {
131 .notifier_call
= task_exit_notify
,
134 static struct notifier_block munmap_nb
= {
135 .notifier_call
= munmap_notify
,
138 static struct notifier_block module_load_nb
= {
139 .notifier_call
= module_load_notify
,
143 static void end_sync(void)
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
158 err
= task_handoff_register(&task_free_nb
);
161 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
164 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
167 err
= register_module_notifier(&module_load_nb
);
174 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
176 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
178 task_handoff_unregister(&task_free_nb
);
187 unregister_module_notifier(&module_load_nb
);
188 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
189 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
190 task_handoff_unregister(&task_free_nb
);
195 /* Optimisation. We can manage without taking the dcookie sem
196 * because we cannot reach this code without at least one
197 * dcookie user still being registered (namely, the reader
198 * of the event buffer). */
199 static inline unsigned long fast_get_dcookie(struct path
*path
)
201 unsigned long cookie
;
203 if (path
->dentry
->d_cookie
)
204 return (unsigned long)path
->dentry
;
205 get_dcookie(path
, &cookie
);
210 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
211 * which corresponds loosely to "application name". This is
212 * not strictly necessary but allows oprofile to associate
213 * shared-library samples with particular applications
215 static unsigned long get_exec_dcookie(struct mm_struct
*mm
)
217 unsigned long cookie
= NO_COOKIE
;
218 struct vm_area_struct
*vma
;
223 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
226 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
228 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
237 /* Convert the EIP value of a sample into a persistent dentry/offset
238 * pair that can then be added to the global event buffer. We make
239 * sure to do this lookup before a mm->mmap modification happens so
240 * we don't lose track.
243 lookup_dcookie(struct mm_struct
*mm
, unsigned long addr
, off_t
*offset
)
245 unsigned long cookie
= NO_COOKIE
;
246 struct vm_area_struct
*vma
;
248 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
250 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
254 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
255 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
-
258 /* must be an anonymous map */
266 cookie
= INVALID_COOKIE
;
271 static void increment_tail(struct oprofile_cpu_buffer
*b
)
273 unsigned long new_tail
= b
->tail_pos
+ 1;
275 rmb(); /* be sure fifo pointers are synchromized */
277 if (new_tail
< b
->buffer_size
)
278 b
->tail_pos
= new_tail
;
283 static unsigned long last_cookie
= INVALID_COOKIE
;
285 static void add_cpu_switch(int i
)
287 add_event_entry(ESCAPE_CODE
);
288 add_event_entry(CPU_SWITCH_CODE
);
290 last_cookie
= INVALID_COOKIE
;
293 static void add_kernel_ctx_switch(unsigned int in_kernel
)
295 add_event_entry(ESCAPE_CODE
);
297 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
299 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
303 add_user_ctx_switch(struct task_struct
const *task
, unsigned long cookie
)
305 add_event_entry(ESCAPE_CODE
);
306 add_event_entry(CTX_SWITCH_CODE
);
307 add_event_entry(task
->pid
);
308 add_event_entry(cookie
);
309 /* Another code for daemon back-compat */
310 add_event_entry(ESCAPE_CODE
);
311 add_event_entry(CTX_TGID_CODE
);
312 add_event_entry(task
->tgid
);
316 static void add_cookie_switch(unsigned long cookie
)
318 add_event_entry(ESCAPE_CODE
);
319 add_event_entry(COOKIE_SWITCH_CODE
);
320 add_event_entry(cookie
);
324 static void add_trace_begin(void)
326 add_event_entry(ESCAPE_CODE
);
327 add_event_entry(TRACE_BEGIN_CODE
);
330 #ifdef CONFIG_OPROFILE_IBS
332 #define IBS_FETCH_CODE_SIZE 2
333 #define IBS_OP_CODE_SIZE 5
334 #define IBS_EIP(offset) \
335 (((struct op_sample *)&cpu_buf->buffer[(offset)])->eip)
336 #define IBS_EVENT(offset) \
337 (((struct op_sample *)&cpu_buf->buffer[(offset)])->event)
340 * Add IBS fetch and op entries to event buffer
342 static void add_ibs_begin(struct oprofile_cpu_buffer
*cpu_buf
, int code
,
343 struct mm_struct
*mm
)
347 unsigned long ibs_cookie
= 0;
350 increment_tail(cpu_buf
); /* move to RIP entry */
352 rip
= IBS_EIP(cpu_buf
->tail_pos
);
355 rip
+= IBS_EVENT(cpu_buf
->tail_pos
) << 32;
359 ibs_cookie
= lookup_dcookie(mm
, rip
, &offset
);
361 if (ibs_cookie
== NO_COOKIE
)
363 if (ibs_cookie
== INVALID_COOKIE
) {
364 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
367 if (ibs_cookie
!= last_cookie
) {
368 add_cookie_switch(ibs_cookie
);
369 last_cookie
= ibs_cookie
;
374 add_event_entry(ESCAPE_CODE
);
375 add_event_entry(code
);
376 add_event_entry(offset
); /* Offset from Dcookie */
378 /* we send the Dcookie offset, but send the raw Linear Add also*/
379 add_event_entry(IBS_EIP(cpu_buf
->tail_pos
));
380 add_event_entry(IBS_EVENT(cpu_buf
->tail_pos
));
382 if (code
== IBS_FETCH_CODE
)
383 count
= IBS_FETCH_CODE_SIZE
; /*IBS FETCH is 2 int64s*/
385 count
= IBS_OP_CODE_SIZE
; /*IBS OP is 5 int64s*/
387 for (i
= 0; i
< count
; i
++) {
388 increment_tail(cpu_buf
);
389 add_event_entry(IBS_EIP(cpu_buf
->tail_pos
));
390 add_event_entry(IBS_EVENT(cpu_buf
->tail_pos
));
396 static void add_sample_entry(unsigned long offset
, unsigned long event
)
398 add_event_entry(offset
);
399 add_event_entry(event
);
403 static int add_us_sample(struct mm_struct
*mm
, struct op_sample
*s
)
405 unsigned long cookie
;
408 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
410 if (cookie
== INVALID_COOKIE
) {
411 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
415 if (cookie
!= last_cookie
) {
416 add_cookie_switch(cookie
);
417 last_cookie
= cookie
;
420 add_sample_entry(offset
, s
->event
);
426 /* Add a sample to the global event buffer. If possible the
427 * sample is converted into a persistent dentry/offset pair
428 * for later lookup from userspace.
431 add_sample(struct mm_struct
*mm
, struct op_sample
*s
, int in_kernel
)
434 add_sample_entry(s
->eip
, s
->event
);
437 return add_us_sample(mm
, s
);
439 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
445 static void release_mm(struct mm_struct
*mm
)
449 up_read(&mm
->mmap_sem
);
454 static struct mm_struct
*take_tasks_mm(struct task_struct
*task
)
456 struct mm_struct
*mm
= get_task_mm(task
);
458 down_read(&mm
->mmap_sem
);
463 static inline int is_code(unsigned long val
)
465 return val
== ESCAPE_CODE
;
469 /* "acquire" as many cpu buffer slots as we can */
470 static unsigned long get_slots(struct oprofile_cpu_buffer
*b
)
472 unsigned long head
= b
->head_pos
;
473 unsigned long tail
= b
->tail_pos
;
476 * Subtle. This resets the persistent last_task
477 * and in_kernel values used for switching notes.
478 * BUT, there is a small window between reading
479 * head_pos, and this call, that means samples
480 * can appear at the new head position, but not
481 * be prefixed with the notes for switching
482 * kernel mode or a task switch. This small hole
483 * can lead to mis-attribution or samples where
484 * we don't know if it's in the kernel or not,
485 * at the start of an event buffer.
492 return head
+ (b
->buffer_size
- tail
);
496 /* Move tasks along towards death. Any tasks on dead_tasks
497 * will definitely have no remaining references in any
498 * CPU buffers at this point, because we use two lists,
499 * and to have reached the list, it must have gone through
500 * one full sync already.
502 static void process_task_mortuary(void)
505 LIST_HEAD(local_dead_tasks
);
506 struct task_struct
*task
;
507 struct task_struct
*ttask
;
509 spin_lock_irqsave(&task_mortuary
, flags
);
511 list_splice_init(&dead_tasks
, &local_dead_tasks
);
512 list_splice_init(&dying_tasks
, &dead_tasks
);
514 spin_unlock_irqrestore(&task_mortuary
, flags
);
516 list_for_each_entry_safe(task
, ttask
, &local_dead_tasks
, tasks
) {
517 list_del(&task
->tasks
);
523 static void mark_done(int cpu
)
527 cpu_set(cpu
, marked_cpus
);
529 for_each_online_cpu(i
) {
530 if (!cpu_isset(i
, marked_cpus
))
534 /* All CPUs have been processed at least once,
535 * we can process the mortuary once
537 process_task_mortuary();
539 cpus_clear(marked_cpus
);
543 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
544 * traversal, the code switch to sb_sample_start at first kernel enter/exit
545 * switch so we need a fifth state and some special handling in sync_buffer()
554 /* Sync one of the CPU's buffers into the global event buffer.
555 * Here we need to go through each batch of samples punctuated
556 * by context switch notes, taking the task's mmap_sem and doing
557 * lookup in task->mm->mmap to convert EIP into dcookie/offset
560 void sync_buffer(int cpu
)
562 struct oprofile_cpu_buffer
*cpu_buf
= &per_cpu(cpu_buffer
, cpu
);
563 struct mm_struct
*mm
= NULL
;
564 struct task_struct
*new;
565 unsigned long cookie
= 0;
567 sync_buffer_state state
= sb_buffer_start
;
568 #ifndef CONFIG_OPROFILE_IBS
570 unsigned long available
;
573 mutex_lock(&buffer_mutex
);
577 /* Remember, only we can modify tail_pos */
579 #ifndef CONFIG_OPROFILE_IBS
580 available
= get_slots(cpu_buf
);
582 for (i
= 0; i
< available
; ++i
) {
584 while (get_slots(cpu_buf
)) {
586 struct op_sample
*s
= &cpu_buf
->buffer
[cpu_buf
->tail_pos
];
588 if (is_code(s
->eip
)) {
589 if (s
->event
<= CPU_IS_KERNEL
) {
590 /* kernel/userspace switch */
591 in_kernel
= s
->event
;
592 if (state
== sb_buffer_start
)
593 state
= sb_sample_start
;
594 add_kernel_ctx_switch(s
->event
);
595 } else if (s
->event
== CPU_TRACE_BEGIN
) {
598 #ifdef CONFIG_OPROFILE_IBS
599 } else if (s
->event
== IBS_FETCH_BEGIN
) {
601 add_ibs_begin(cpu_buf
, IBS_FETCH_CODE
, mm
);
602 } else if (s
->event
== IBS_OP_BEGIN
) {
604 add_ibs_begin(cpu_buf
, IBS_OP_CODE
, mm
);
607 struct mm_struct
*oldmm
= mm
;
609 /* userspace context switch */
610 new = (struct task_struct
*)s
->event
;
613 mm
= take_tasks_mm(new);
615 cookie
= get_exec_dcookie(mm
);
616 add_user_ctx_switch(new, cookie
);
618 } else if (state
>= sb_bt_start
&&
619 !add_sample(mm
, s
, in_kernel
)) {
620 if (state
== sb_bt_start
) {
621 state
= sb_bt_ignore
;
622 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
626 increment_tail(cpu_buf
);
632 mutex_unlock(&buffer_mutex
);
635 /* The function can be used to add a buffer worth of data directly to
636 * the kernel buffer. The buffer is assumed to be a circular buffer.
637 * Take the entries from index start and end at index end, wrapping
640 void oprofile_put_buff(unsigned long *buf
, unsigned int start
,
641 unsigned int stop
, unsigned int max
)
647 mutex_lock(&buffer_mutex
);
649 add_event_entry(buf
[i
++]);
655 mutex_unlock(&buffer_mutex
);