1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
16 * Alan Cox : Removed the Ethernet assumptions in
18 * Alan Cox : Fixed some small errors in the ARP
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
103 #include <linux/sysctl.h>
106 #include <net/net_namespace.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
112 #include <net/sock.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table
*clip_tbl_hook
;
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
124 #include <linux/netfilter_arp.h>
127 * Interface to generic neighbour cache.
129 static u32
arp_hash(const void *pkey
, const struct net_device
*dev
);
130 static int arp_constructor(struct neighbour
*neigh
);
131 static void arp_solicit(struct neighbour
*neigh
, struct sk_buff
*skb
);
132 static void arp_error_report(struct neighbour
*neigh
, struct sk_buff
*skb
);
133 static void parp_redo(struct sk_buff
*skb
);
135 static const struct neigh_ops arp_generic_ops
= {
137 .solicit
= arp_solicit
,
138 .error_report
= arp_error_report
,
139 .output
= neigh_resolve_output
,
140 .connected_output
= neigh_connected_output
,
141 .hh_output
= dev_queue_xmit
,
142 .queue_xmit
= dev_queue_xmit
,
145 static const struct neigh_ops arp_hh_ops
= {
147 .solicit
= arp_solicit
,
148 .error_report
= arp_error_report
,
149 .output
= neigh_resolve_output
,
150 .connected_output
= neigh_resolve_output
,
151 .hh_output
= dev_queue_xmit
,
152 .queue_xmit
= dev_queue_xmit
,
155 static const struct neigh_ops arp_direct_ops
= {
157 .output
= dev_queue_xmit
,
158 .connected_output
= dev_queue_xmit
,
159 .hh_output
= dev_queue_xmit
,
160 .queue_xmit
= dev_queue_xmit
,
163 const struct neigh_ops arp_broken_ops
= {
165 .solicit
= arp_solicit
,
166 .error_report
= arp_error_report
,
167 .output
= neigh_compat_output
,
168 .connected_output
= neigh_compat_output
,
169 .hh_output
= dev_queue_xmit
,
170 .queue_xmit
= dev_queue_xmit
,
173 struct neigh_table arp_tbl
= {
175 .entry_size
= sizeof(struct neighbour
) + 4,
178 .constructor
= arp_constructor
,
179 .proxy_redo
= parp_redo
,
183 .base_reachable_time
= 30 * HZ
,
184 .retrans_time
= 1 * HZ
,
185 .gc_staletime
= 60 * HZ
,
186 .reachable_time
= 30 * HZ
,
187 .delay_probe_time
= 5 * HZ
,
191 .anycast_delay
= 1 * HZ
,
192 .proxy_delay
= (8 * HZ
) / 10,
196 .gc_interval
= 30 * HZ
,
202 int arp_mc_map(__be32 addr
, u8
*haddr
, struct net_device
*dev
, int dir
)
208 ip_eth_mc_map(addr
, haddr
);
210 case ARPHRD_IEEE802_TR
:
211 ip_tr_mc_map(addr
, haddr
);
213 case ARPHRD_INFINIBAND
:
214 ip_ib_mc_map(addr
, dev
->broadcast
, haddr
);
218 memcpy(haddr
, dev
->broadcast
, dev
->addr_len
);
226 static u32
arp_hash(const void *pkey
, const struct net_device
*dev
)
228 return jhash_2words(*(u32
*)pkey
, dev
->ifindex
, arp_tbl
.hash_rnd
);
231 static int arp_constructor(struct neighbour
*neigh
)
233 __be32 addr
= *(__be32
*)neigh
->primary_key
;
234 struct net_device
*dev
= neigh
->dev
;
235 struct in_device
*in_dev
;
236 struct neigh_parms
*parms
;
239 in_dev
= __in_dev_get_rcu(dev
);
240 if (in_dev
== NULL
) {
245 neigh
->type
= inet_addr_type(dev_net(dev
), addr
);
247 parms
= in_dev
->arp_parms
;
248 __neigh_parms_put(neigh
->parms
);
249 neigh
->parms
= neigh_parms_clone(parms
);
252 if (!dev
->header_ops
) {
253 neigh
->nud_state
= NUD_NOARP
;
254 neigh
->ops
= &arp_direct_ops
;
255 neigh
->output
= neigh
->ops
->queue_xmit
;
257 /* Good devices (checked by reading texts, but only Ethernet is
260 ARPHRD_ETHER: (ethernet, apfddi)
263 ARPHRD_METRICOM: (strip)
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
293 neigh
->ops
= &arp_broken_ops
;
294 neigh
->output
= neigh
->ops
->output
;
299 if (neigh
->type
== RTN_MULTICAST
) {
300 neigh
->nud_state
= NUD_NOARP
;
301 arp_mc_map(addr
, neigh
->ha
, dev
, 1);
302 } else if (dev
->flags
&(IFF_NOARP
|IFF_LOOPBACK
)) {
303 neigh
->nud_state
= NUD_NOARP
;
304 memcpy(neigh
->ha
, dev
->dev_addr
, dev
->addr_len
);
305 } else if (neigh
->type
== RTN_BROADCAST
|| dev
->flags
&IFF_POINTOPOINT
) {
306 neigh
->nud_state
= NUD_NOARP
;
307 memcpy(neigh
->ha
, dev
->broadcast
, dev
->addr_len
);
310 if (dev
->header_ops
->cache
)
311 neigh
->ops
= &arp_hh_ops
;
313 neigh
->ops
= &arp_generic_ops
;
315 if (neigh
->nud_state
&NUD_VALID
)
316 neigh
->output
= neigh
->ops
->connected_output
;
318 neigh
->output
= neigh
->ops
->output
;
323 static void arp_error_report(struct neighbour
*neigh
, struct sk_buff
*skb
)
325 dst_link_failure(skb
);
329 static void arp_solicit(struct neighbour
*neigh
, struct sk_buff
*skb
)
333 struct net_device
*dev
= neigh
->dev
;
334 __be32 target
= *(__be32
*)neigh
->primary_key
;
335 int probes
= atomic_read(&neigh
->probes
);
336 struct in_device
*in_dev
= in_dev_get(dev
);
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev
)) {
343 case 0: /* By default announce any local IP */
344 if (skb
&& inet_addr_type(dev_net(dev
), ip_hdr(skb
)->saddr
) == RTN_LOCAL
)
345 saddr
= ip_hdr(skb
)->saddr
;
347 case 1: /* Restrict announcements of saddr in same subnet */
350 saddr
= ip_hdr(skb
)->saddr
;
351 if (inet_addr_type(dev_net(dev
), saddr
) == RTN_LOCAL
) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev
, target
, saddr
))
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
365 saddr
= inet_select_addr(dev
, target
, RT_SCOPE_LINK
);
367 if ((probes
-= neigh
->parms
->ucast_probes
) < 0) {
368 if (!(neigh
->nud_state
&NUD_VALID
))
369 printk(KERN_DEBUG
"trying to ucast probe in NUD_INVALID\n");
371 read_lock_bh(&neigh
->lock
);
372 } else if ((probes
-= neigh
->parms
->app_probes
) < 0) {
379 arp_send(ARPOP_REQUEST
, ETH_P_ARP
, target
, dev
, saddr
,
380 dst_ha
, dev
->dev_addr
, NULL
);
382 read_unlock_bh(&neigh
->lock
);
385 static int arp_ignore(struct in_device
*in_dev
, __be32 sip
, __be32 tip
)
389 switch (IN_DEV_ARP_IGNORE(in_dev
)) {
390 case 0: /* Reply, the tip is already validated */
392 case 1: /* Reply only if tip is configured on the incoming interface */
394 scope
= RT_SCOPE_HOST
;
397 * Reply only if tip is configured on the incoming interface
398 * and is in same subnet as sip
400 scope
= RT_SCOPE_HOST
;
402 case 3: /* Do not reply for scope host addresses */
404 scope
= RT_SCOPE_LINK
;
406 case 4: /* Reserved */
411 case 8: /* Do not reply */
416 return !inet_confirm_addr(in_dev
, sip
, tip
, scope
);
419 static int arp_filter(__be32 sip
, __be32 tip
, struct net_device
*dev
)
421 struct flowi fl
= { .nl_u
= { .ip4_u
= { .daddr
= sip
,
425 /*unsigned long now; */
426 struct net
*net
= dev_net(dev
);
428 if (ip_route_output_key(net
, &rt
, &fl
) < 0)
430 if (rt
->u
.dst
.dev
!= dev
) {
431 NET_INC_STATS_BH(net
, LINUX_MIB_ARPFILTER
);
438 /* OBSOLETE FUNCTIONS */
441 * Find an arp mapping in the cache. If not found, post a request.
443 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
444 * even if it exists. It is supposed that skb->dev was mangled
445 * by a virtual device (eql, shaper). Nobody but broken devices
446 * is allowed to use this function, it is scheduled to be removed. --ANK
449 static int arp_set_predefined(int addr_hint
, unsigned char * haddr
, __be32 paddr
, struct net_device
* dev
)
453 printk(KERN_DEBUG
"ARP: arp called for own IP address\n");
454 memcpy(haddr
, dev
->dev_addr
, dev
->addr_len
);
457 arp_mc_map(paddr
, haddr
, dev
, 1);
460 memcpy(haddr
, dev
->broadcast
, dev
->addr_len
);
467 int arp_find(unsigned char *haddr
, struct sk_buff
*skb
)
469 struct net_device
*dev
= skb
->dev
;
474 printk(KERN_DEBUG
"arp_find is called with dst==NULL\n");
479 paddr
= skb_rtable(skb
)->rt_gateway
;
481 if (arp_set_predefined(inet_addr_type(dev_net(dev
), paddr
), haddr
, paddr
, dev
))
484 n
= __neigh_lookup(&arp_tbl
, &paddr
, dev
, 1);
488 if (n
->nud_state
&NUD_VALID
|| neigh_event_send(n
, skb
) == 0) {
489 read_lock_bh(&n
->lock
);
490 memcpy(haddr
, n
->ha
, dev
->addr_len
);
491 read_unlock_bh(&n
->lock
);
501 /* END OF OBSOLETE FUNCTIONS */
503 int arp_bind_neighbour(struct dst_entry
*dst
)
505 struct net_device
*dev
= dst
->dev
;
506 struct neighbour
*n
= dst
->neighbour
;
511 __be32 nexthop
= ((struct rtable
*)dst
)->rt_gateway
;
512 if (dev
->flags
&(IFF_LOOPBACK
|IFF_POINTOPOINT
))
514 n
= __neigh_lookup_errno(
515 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
516 dev
->type
== ARPHRD_ATM
? clip_tbl_hook
:
518 &arp_tbl
, &nexthop
, dev
);
527 * Check if we can use proxy ARP for this path
529 static inline int arp_fwd_proxy(struct in_device
*in_dev
,
530 struct net_device
*dev
, struct rtable
*rt
)
532 struct in_device
*out_dev
;
535 if (rt
->u
.dst
.dev
== dev
)
538 if (!IN_DEV_PROXY_ARP(in_dev
))
541 if ((imi
= IN_DEV_MEDIUM_ID(in_dev
)) == 0)
546 /* place to check for proxy_arp for routes */
548 if ((out_dev
= in_dev_get(rt
->u
.dst
.dev
)) != NULL
) {
549 omi
= IN_DEV_MEDIUM_ID(out_dev
);
552 return (omi
!= imi
&& omi
!= -1);
556 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
558 * RFC3069 supports proxy arp replies back to the same interface. This
559 * is done to support (ethernet) switch features, like RFC 3069, where
560 * the individual ports are not allowed to communicate with each
561 * other, BUT they are allowed to talk to the upstream router. As
562 * described in RFC 3069, it is possible to allow these hosts to
563 * communicate through the upstream router, by proxy_arp'ing.
565 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
567 * This technology is known by different names:
568 * In RFC 3069 it is called VLAN Aggregation.
569 * Cisco and Allied Telesyn call it Private VLAN.
570 * Hewlett-Packard call it Source-Port filtering or port-isolation.
571 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
574 static inline int arp_fwd_pvlan(struct in_device
*in_dev
,
575 struct net_device
*dev
, struct rtable
*rt
,
576 __be32 sip
, __be32 tip
)
578 /* Private VLAN is only concerned about the same ethernet segment */
579 if (rt
->u
.dst
.dev
!= dev
)
582 /* Don't reply on self probes (often done by windowz boxes)*/
586 if (IN_DEV_PROXY_ARP_PVLAN(in_dev
))
593 * Interface to link layer: send routine and receive handler.
597 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
600 struct sk_buff
*arp_create(int type
, int ptype
, __be32 dest_ip
,
601 struct net_device
*dev
, __be32 src_ip
,
602 const unsigned char *dest_hw
,
603 const unsigned char *src_hw
,
604 const unsigned char *target_hw
)
608 unsigned char *arp_ptr
;
614 skb
= alloc_skb(arp_hdr_len(dev
) + LL_ALLOCATED_SPACE(dev
), GFP_ATOMIC
);
618 skb_reserve(skb
, LL_RESERVED_SPACE(dev
));
619 skb_reset_network_header(skb
);
620 arp
= (struct arphdr
*) skb_put(skb
, arp_hdr_len(dev
));
622 skb
->protocol
= htons(ETH_P_ARP
);
624 src_hw
= dev
->dev_addr
;
626 dest_hw
= dev
->broadcast
;
629 * Fill the device header for the ARP frame
631 if (dev_hard_header(skb
, dev
, ptype
, dest_hw
, src_hw
, skb
->len
) < 0)
635 * Fill out the arp protocol part.
637 * The arp hardware type should match the device type, except for FDDI,
638 * which (according to RFC 1390) should always equal 1 (Ethernet).
641 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
642 * DIX code for the protocol. Make these device structure fields.
646 arp
->ar_hrd
= htons(dev
->type
);
647 arp
->ar_pro
= htons(ETH_P_IP
);
650 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
652 arp
->ar_hrd
= htons(ARPHRD_AX25
);
653 arp
->ar_pro
= htons(AX25_P_IP
);
656 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
658 arp
->ar_hrd
= htons(ARPHRD_NETROM
);
659 arp
->ar_pro
= htons(AX25_P_IP
);
664 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
666 arp
->ar_hrd
= htons(ARPHRD_ETHER
);
667 arp
->ar_pro
= htons(ETH_P_IP
);
670 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
671 case ARPHRD_IEEE802_TR
:
672 arp
->ar_hrd
= htons(ARPHRD_IEEE802
);
673 arp
->ar_pro
= htons(ETH_P_IP
);
678 arp
->ar_hln
= dev
->addr_len
;
680 arp
->ar_op
= htons(type
);
682 arp_ptr
=(unsigned char *)(arp
+1);
684 memcpy(arp_ptr
, src_hw
, dev
->addr_len
);
685 arp_ptr
+= dev
->addr_len
;
686 memcpy(arp_ptr
, &src_ip
, 4);
688 if (target_hw
!= NULL
)
689 memcpy(arp_ptr
, target_hw
, dev
->addr_len
);
691 memset(arp_ptr
, 0, dev
->addr_len
);
692 arp_ptr
+= dev
->addr_len
;
693 memcpy(arp_ptr
, &dest_ip
, 4);
703 * Send an arp packet.
705 void arp_xmit(struct sk_buff
*skb
)
707 /* Send it off, maybe filter it using firewalling first. */
708 NF_HOOK(NFPROTO_ARP
, NF_ARP_OUT
, skb
, NULL
, skb
->dev
, dev_queue_xmit
);
712 * Create and send an arp packet.
714 void arp_send(int type
, int ptype
, __be32 dest_ip
,
715 struct net_device
*dev
, __be32 src_ip
,
716 const unsigned char *dest_hw
, const unsigned char *src_hw
,
717 const unsigned char *target_hw
)
722 * No arp on this interface.
725 if (dev
->flags
&IFF_NOARP
)
728 skb
= arp_create(type
, ptype
, dest_ip
, dev
, src_ip
,
729 dest_hw
, src_hw
, target_hw
);
738 * Process an arp request.
741 static int arp_process(struct sk_buff
*skb
)
743 struct net_device
*dev
= skb
->dev
;
744 struct in_device
*in_dev
= in_dev_get(dev
);
746 unsigned char *arp_ptr
;
750 u16 dev_type
= dev
->type
;
753 struct net
*net
= dev_net(dev
);
755 /* arp_rcv below verifies the ARP header and verifies the device
766 if (arp
->ar_pro
!= htons(ETH_P_IP
) ||
767 htons(dev_type
) != arp
->ar_hrd
)
771 case ARPHRD_IEEE802_TR
:
775 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
776 * devices, according to RFC 2625) devices will accept ARP
777 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
778 * This is the case also of FDDI, where the RFC 1390 says that
779 * FDDI devices should accept ARP hardware of (1) Ethernet,
780 * however, to be more robust, we'll accept both 1 (Ethernet)
783 if ((arp
->ar_hrd
!= htons(ARPHRD_ETHER
) &&
784 arp
->ar_hrd
!= htons(ARPHRD_IEEE802
)) ||
785 arp
->ar_pro
!= htons(ETH_P_IP
))
789 if (arp
->ar_pro
!= htons(AX25_P_IP
) ||
790 arp
->ar_hrd
!= htons(ARPHRD_AX25
))
794 if (arp
->ar_pro
!= htons(AX25_P_IP
) ||
795 arp
->ar_hrd
!= htons(ARPHRD_NETROM
))
800 /* Understand only these message types */
802 if (arp
->ar_op
!= htons(ARPOP_REPLY
) &&
803 arp
->ar_op
!= htons(ARPOP_REQUEST
))
809 arp_ptr
= (unsigned char *)(arp
+1);
811 arp_ptr
+= dev
->addr_len
;
812 memcpy(&sip
, arp_ptr
, 4);
814 arp_ptr
+= dev
->addr_len
;
815 memcpy(&tip
, arp_ptr
, 4);
817 * Check for bad requests for 127.x.x.x and requests for multicast
818 * addresses. If this is one such, delete it.
820 if (ipv4_is_loopback(tip
) || ipv4_is_multicast(tip
))
824 * Special case: We must set Frame Relay source Q.922 address
826 if (dev_type
== ARPHRD_DLCI
)
827 sha
= dev
->broadcast
;
830 * Process entry. The idea here is we want to send a reply if it is a
831 * request for us or if it is a request for someone else that we hold
832 * a proxy for. We want to add an entry to our cache if it is a reply
833 * to us or if it is a request for our address.
834 * (The assumption for this last is that if someone is requesting our
835 * address, they are probably intending to talk to us, so it saves time
836 * if we cache their address. Their address is also probably not in
837 * our cache, since ours is not in their cache.)
839 * Putting this another way, we only care about replies if they are to
840 * us, in which case we add them to the cache. For requests, we care
841 * about those for us and those for our proxies. We reply to both,
842 * and in the case of requests for us we add the requester to the arp
846 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
848 if (arp
->ar_op
== htons(ARPOP_REQUEST
) &&
849 inet_addr_type(net
, tip
) == RTN_LOCAL
&&
850 !arp_ignore(in_dev
, sip
, tip
))
851 arp_send(ARPOP_REPLY
, ETH_P_ARP
, sip
, dev
, tip
, sha
,
856 if (arp
->ar_op
== htons(ARPOP_REQUEST
) &&
857 ip_route_input_noref(skb
, tip
, sip
, 0, dev
) == 0) {
859 rt
= skb_rtable(skb
);
860 addr_type
= rt
->rt_type
;
862 if (addr_type
== RTN_LOCAL
) {
866 dont_send
|= arp_ignore(in_dev
,sip
,tip
);
867 if (!dont_send
&& IN_DEV_ARPFILTER(in_dev
))
868 dont_send
|= arp_filter(sip
,tip
,dev
);
870 n
= neigh_event_ns(&arp_tbl
, sha
, &sip
, dev
);
872 arp_send(ARPOP_REPLY
,ETH_P_ARP
,sip
,dev
,tip
,sha
,dev
->dev_addr
,sha
);
877 } else if (IN_DEV_FORWARD(in_dev
)) {
878 if (addr_type
== RTN_UNICAST
&&
879 (arp_fwd_proxy(in_dev
, dev
, rt
) ||
880 arp_fwd_pvlan(in_dev
, dev
, rt
, sip
, tip
) ||
881 pneigh_lookup(&arp_tbl
, net
, &tip
, dev
, 0)))
883 n
= neigh_event_ns(&arp_tbl
, sha
, &sip
, dev
);
887 if (NEIGH_CB(skb
)->flags
& LOCALLY_ENQUEUED
||
888 skb
->pkt_type
== PACKET_HOST
||
889 in_dev
->arp_parms
->proxy_delay
== 0) {
890 arp_send(ARPOP_REPLY
,ETH_P_ARP
,sip
,dev
,tip
,sha
,dev
->dev_addr
,sha
);
892 pneigh_enqueue(&arp_tbl
, in_dev
->arp_parms
, skb
);
901 /* Update our ARP tables */
903 n
= __neigh_lookup(&arp_tbl
, &sip
, dev
, 0);
905 if (IPV4_DEVCONF_ALL(dev_net(dev
), ARP_ACCEPT
)) {
906 /* Unsolicited ARP is not accepted by default.
907 It is possible, that this option should be enabled for some
908 devices (strip is candidate)
911 (arp
->ar_op
== htons(ARPOP_REPLY
) ||
912 (arp
->ar_op
== htons(ARPOP_REQUEST
) && tip
== sip
)) &&
913 inet_addr_type(net
, sip
) == RTN_UNICAST
)
914 n
= __neigh_lookup(&arp_tbl
, &sip
, dev
, 1);
918 int state
= NUD_REACHABLE
;
921 /* If several different ARP replies follows back-to-back,
922 use the FIRST one. It is possible, if several proxy
923 agents are active. Taking the first reply prevents
924 arp trashing and chooses the fastest router.
926 override
= time_after(jiffies
, n
->updated
+ n
->parms
->locktime
);
928 /* Broadcast replies and request packets
929 do not assert neighbour reachability.
931 if (arp
->ar_op
!= htons(ARPOP_REPLY
) ||
932 skb
->pkt_type
!= PACKET_HOST
)
934 neigh_update(n
, sha
, state
, override
? NEIGH_UPDATE_F_OVERRIDE
: 0);
945 static void parp_redo(struct sk_buff
*skb
)
952 * Receive an arp request from the device layer.
955 static int arp_rcv(struct sk_buff
*skb
, struct net_device
*dev
,
956 struct packet_type
*pt
, struct net_device
*orig_dev
)
960 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
961 if (!pskb_may_pull(skb
, arp_hdr_len(dev
)))
965 if (arp
->ar_hln
!= dev
->addr_len
||
966 dev
->flags
& IFF_NOARP
||
967 skb
->pkt_type
== PACKET_OTHERHOST
||
968 skb
->pkt_type
== PACKET_LOOPBACK
||
972 if ((skb
= skb_share_check(skb
, GFP_ATOMIC
)) == NULL
)
975 memset(NEIGH_CB(skb
), 0, sizeof(struct neighbour_cb
));
977 return NF_HOOK(NFPROTO_ARP
, NF_ARP_IN
, skb
, dev
, NULL
, arp_process
);
986 * User level interface (ioctl)
990 * Set (create) an ARP cache entry.
993 static int arp_req_set_proxy(struct net
*net
, struct net_device
*dev
, int on
)
996 IPV4_DEVCONF_ALL(net
, PROXY_ARP
) = on
;
999 if (__in_dev_get_rtnl(dev
)) {
1000 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev
), PROXY_ARP
, on
);
1006 static int arp_req_set_public(struct net
*net
, struct arpreq
*r
,
1007 struct net_device
*dev
)
1009 __be32 ip
= ((struct sockaddr_in
*)&r
->arp_pa
)->sin_addr
.s_addr
;
1010 __be32 mask
= ((struct sockaddr_in
*)&r
->arp_netmask
)->sin_addr
.s_addr
;
1012 if (mask
&& mask
!= htonl(0xFFFFFFFF))
1014 if (!dev
&& (r
->arp_flags
& ATF_COM
)) {
1015 dev
= dev_getbyhwaddr(net
, r
->arp_ha
.sa_family
,
1021 if (pneigh_lookup(&arp_tbl
, net
, &ip
, dev
, 1) == NULL
)
1026 return arp_req_set_proxy(net
, dev
, 1);
1029 static int arp_req_set(struct net
*net
, struct arpreq
*r
,
1030 struct net_device
* dev
)
1033 struct neighbour
*neigh
;
1036 if (r
->arp_flags
& ATF_PUBL
)
1037 return arp_req_set_public(net
, r
, dev
);
1039 ip
= ((struct sockaddr_in
*)&r
->arp_pa
)->sin_addr
.s_addr
;
1040 if (r
->arp_flags
& ATF_PERM
)
1041 r
->arp_flags
|= ATF_COM
;
1043 struct flowi fl
= { .nl_u
= { .ip4_u
= { .daddr
= ip
,
1044 .tos
= RTO_ONLINK
} } };
1046 if ((err
= ip_route_output_key(net
, &rt
, &fl
)) != 0)
1048 dev
= rt
->u
.dst
.dev
;
1053 switch (dev
->type
) {
1054 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1057 * According to RFC 1390, FDDI devices should accept ARP
1058 * hardware types of 1 (Ethernet). However, to be more
1059 * robust, we'll accept hardware types of either 1 (Ethernet)
1060 * or 6 (IEEE 802.2).
1062 if (r
->arp_ha
.sa_family
!= ARPHRD_FDDI
&&
1063 r
->arp_ha
.sa_family
!= ARPHRD_ETHER
&&
1064 r
->arp_ha
.sa_family
!= ARPHRD_IEEE802
)
1069 if (r
->arp_ha
.sa_family
!= dev
->type
)
1074 neigh
= __neigh_lookup_errno(&arp_tbl
, &ip
, dev
);
1075 err
= PTR_ERR(neigh
);
1076 if (!IS_ERR(neigh
)) {
1077 unsigned state
= NUD_STALE
;
1078 if (r
->arp_flags
& ATF_PERM
)
1079 state
= NUD_PERMANENT
;
1080 err
= neigh_update(neigh
, (r
->arp_flags
&ATF_COM
) ?
1081 r
->arp_ha
.sa_data
: NULL
, state
,
1082 NEIGH_UPDATE_F_OVERRIDE
|
1083 NEIGH_UPDATE_F_ADMIN
);
1084 neigh_release(neigh
);
1089 static unsigned arp_state_to_flags(struct neighbour
*neigh
)
1092 if (neigh
->nud_state
&NUD_PERMANENT
)
1093 flags
= ATF_PERM
|ATF_COM
;
1094 else if (neigh
->nud_state
&NUD_VALID
)
1100 * Get an ARP cache entry.
1103 static int arp_req_get(struct arpreq
*r
, struct net_device
*dev
)
1105 __be32 ip
= ((struct sockaddr_in
*) &r
->arp_pa
)->sin_addr
.s_addr
;
1106 struct neighbour
*neigh
;
1109 neigh
= neigh_lookup(&arp_tbl
, &ip
, dev
);
1111 read_lock_bh(&neigh
->lock
);
1112 memcpy(r
->arp_ha
.sa_data
, neigh
->ha
, dev
->addr_len
);
1113 r
->arp_flags
= arp_state_to_flags(neigh
);
1114 read_unlock_bh(&neigh
->lock
);
1115 r
->arp_ha
.sa_family
= dev
->type
;
1116 strlcpy(r
->arp_dev
, dev
->name
, sizeof(r
->arp_dev
));
1117 neigh_release(neigh
);
1123 static int arp_req_delete_public(struct net
*net
, struct arpreq
*r
,
1124 struct net_device
*dev
)
1126 __be32 ip
= ((struct sockaddr_in
*) &r
->arp_pa
)->sin_addr
.s_addr
;
1127 __be32 mask
= ((struct sockaddr_in
*)&r
->arp_netmask
)->sin_addr
.s_addr
;
1129 if (mask
== htonl(0xFFFFFFFF))
1130 return pneigh_delete(&arp_tbl
, net
, &ip
, dev
);
1135 return arp_req_set_proxy(net
, dev
, 0);
1138 static int arp_req_delete(struct net
*net
, struct arpreq
*r
,
1139 struct net_device
* dev
)
1143 struct neighbour
*neigh
;
1145 if (r
->arp_flags
& ATF_PUBL
)
1146 return arp_req_delete_public(net
, r
, dev
);
1148 ip
= ((struct sockaddr_in
*)&r
->arp_pa
)->sin_addr
.s_addr
;
1150 struct flowi fl
= { .nl_u
= { .ip4_u
= { .daddr
= ip
,
1151 .tos
= RTO_ONLINK
} } };
1153 if ((err
= ip_route_output_key(net
, &rt
, &fl
)) != 0)
1155 dev
= rt
->u
.dst
.dev
;
1161 neigh
= neigh_lookup(&arp_tbl
, &ip
, dev
);
1163 if (neigh
->nud_state
&~NUD_NOARP
)
1164 err
= neigh_update(neigh
, NULL
, NUD_FAILED
,
1165 NEIGH_UPDATE_F_OVERRIDE
|
1166 NEIGH_UPDATE_F_ADMIN
);
1167 neigh_release(neigh
);
1173 * Handle an ARP layer I/O control request.
1176 int arp_ioctl(struct net
*net
, unsigned int cmd
, void __user
*arg
)
1180 struct net_device
*dev
= NULL
;
1185 if (!capable(CAP_NET_ADMIN
))
1188 err
= copy_from_user(&r
, arg
, sizeof(struct arpreq
));
1196 if (r
.arp_pa
.sa_family
!= AF_INET
)
1197 return -EPFNOSUPPORT
;
1199 if (!(r
.arp_flags
& ATF_PUBL
) &&
1200 (r
.arp_flags
& (ATF_NETMASK
|ATF_DONTPUB
)))
1202 if (!(r
.arp_flags
& ATF_NETMASK
))
1203 ((struct sockaddr_in
*)&r
.arp_netmask
)->sin_addr
.s_addr
=
1204 htonl(0xFFFFFFFFUL
);
1208 if ((dev
= __dev_get_by_name(net
, r
.arp_dev
)) == NULL
)
1211 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1212 if (!r
.arp_ha
.sa_family
)
1213 r
.arp_ha
.sa_family
= dev
->type
;
1215 if ((r
.arp_flags
& ATF_COM
) && r
.arp_ha
.sa_family
!= dev
->type
)
1217 } else if (cmd
== SIOCGARP
) {
1224 err
= arp_req_delete(net
, &r
, dev
);
1227 err
= arp_req_set(net
, &r
, dev
);
1230 err
= arp_req_get(&r
, dev
);
1231 if (!err
&& copy_to_user(arg
, &r
, sizeof(r
)))
1240 static int arp_netdev_event(struct notifier_block
*this, unsigned long event
, void *ptr
)
1242 struct net_device
*dev
= ptr
;
1245 case NETDEV_CHANGEADDR
:
1246 neigh_changeaddr(&arp_tbl
, dev
);
1247 rt_cache_flush(dev_net(dev
), 0);
1256 static struct notifier_block arp_netdev_notifier
= {
1257 .notifier_call
= arp_netdev_event
,
1260 /* Note, that it is not on notifier chain.
1261 It is necessary, that this routine was called after route cache will be
1264 void arp_ifdown(struct net_device
*dev
)
1266 neigh_ifdown(&arp_tbl
, dev
);
1271 * Called once on startup.
1274 static struct packet_type arp_packet_type __read_mostly
= {
1275 .type
= cpu_to_be16(ETH_P_ARP
),
1279 static int arp_proc_init(void);
1281 void __init
arp_init(void)
1283 neigh_table_init(&arp_tbl
);
1285 dev_add_pack(&arp_packet_type
);
1287 #ifdef CONFIG_SYSCTL
1288 neigh_sysctl_register(NULL
, &arp_tbl
.parms
, "ipv4", NULL
);
1290 register_netdevice_notifier(&arp_netdev_notifier
);
1293 #ifdef CONFIG_PROC_FS
1294 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1296 /* ------------------------------------------------------------------------ */
1298 * ax25 -> ASCII conversion
1300 static char *ax2asc2(ax25_address
*a
, char *buf
)
1305 for (n
= 0, s
= buf
; n
< 6; n
++) {
1306 c
= (a
->ax25_call
[n
] >> 1) & 0x7F;
1308 if (c
!= ' ') *s
++ = c
;
1313 if ((n
= ((a
->ax25_call
[6] >> 1) & 0x0F)) > 9) {
1321 if (*buf
== '\0' || *buf
== '-')
1327 #endif /* CONFIG_AX25 */
1329 #define HBUFFERLEN 30
1331 static void arp_format_neigh_entry(struct seq_file
*seq
,
1332 struct neighbour
*n
)
1334 char hbuffer
[HBUFFERLEN
];
1337 struct net_device
*dev
= n
->dev
;
1338 int hatype
= dev
->type
;
1340 read_lock(&n
->lock
);
1341 /* Convert hardware address to XX:XX:XX:XX ... form. */
1342 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1343 if (hatype
== ARPHRD_AX25
|| hatype
== ARPHRD_NETROM
)
1344 ax2asc2((ax25_address
*)n
->ha
, hbuffer
);
1347 for (k
= 0, j
= 0; k
< HBUFFERLEN
- 3 && j
< dev
->addr_len
; j
++) {
1348 hbuffer
[k
++] = hex_asc_hi(n
->ha
[j
]);
1349 hbuffer
[k
++] = hex_asc_lo(n
->ha
[j
]);
1355 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1358 sprintf(tbuf
, "%pI4", n
->primary_key
);
1359 seq_printf(seq
, "%-16s 0x%-10x0x%-10x%s * %s\n",
1360 tbuf
, hatype
, arp_state_to_flags(n
), hbuffer
, dev
->name
);
1361 read_unlock(&n
->lock
);
1364 static void arp_format_pneigh_entry(struct seq_file
*seq
,
1365 struct pneigh_entry
*n
)
1367 struct net_device
*dev
= n
->dev
;
1368 int hatype
= dev
? dev
->type
: 0;
1371 sprintf(tbuf
, "%pI4", n
->key
);
1372 seq_printf(seq
, "%-16s 0x%-10x0x%-10x%s * %s\n",
1373 tbuf
, hatype
, ATF_PUBL
| ATF_PERM
, "00:00:00:00:00:00",
1374 dev
? dev
->name
: "*");
1377 static int arp_seq_show(struct seq_file
*seq
, void *v
)
1379 if (v
== SEQ_START_TOKEN
) {
1380 seq_puts(seq
, "IP address HW type Flags "
1381 "HW address Mask Device\n");
1383 struct neigh_seq_state
*state
= seq
->private;
1385 if (state
->flags
& NEIGH_SEQ_IS_PNEIGH
)
1386 arp_format_pneigh_entry(seq
, v
);
1388 arp_format_neigh_entry(seq
, v
);
1394 static void *arp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1396 /* Don't want to confuse "arp -a" w/ magic entries,
1397 * so we tell the generic iterator to skip NUD_NOARP.
1399 return neigh_seq_start(seq
, pos
, &arp_tbl
, NEIGH_SEQ_SKIP_NOARP
);
1402 /* ------------------------------------------------------------------------ */
1404 static const struct seq_operations arp_seq_ops
= {
1405 .start
= arp_seq_start
,
1406 .next
= neigh_seq_next
,
1407 .stop
= neigh_seq_stop
,
1408 .show
= arp_seq_show
,
1411 static int arp_seq_open(struct inode
*inode
, struct file
*file
)
1413 return seq_open_net(inode
, file
, &arp_seq_ops
,
1414 sizeof(struct neigh_seq_state
));
1417 static const struct file_operations arp_seq_fops
= {
1418 .owner
= THIS_MODULE
,
1419 .open
= arp_seq_open
,
1421 .llseek
= seq_lseek
,
1422 .release
= seq_release_net
,
1426 static int __net_init
arp_net_init(struct net
*net
)
1428 if (!proc_net_fops_create(net
, "arp", S_IRUGO
, &arp_seq_fops
))
1433 static void __net_exit
arp_net_exit(struct net
*net
)
1435 proc_net_remove(net
, "arp");
1438 static struct pernet_operations arp_net_ops
= {
1439 .init
= arp_net_init
,
1440 .exit
= arp_net_exit
,
1443 static int __init
arp_proc_init(void)
1445 return register_pernet_subsys(&arp_net_ops
);
1448 #else /* CONFIG_PROC_FS */
1450 static int __init
arp_proc_init(void)
1455 #endif /* CONFIG_PROC_FS */
1457 EXPORT_SYMBOL(arp_broken_ops
);
1458 EXPORT_SYMBOL(arp_find
);
1459 EXPORT_SYMBOL(arp_create
);
1460 EXPORT_SYMBOL(arp_xmit
);
1461 EXPORT_SYMBOL(arp_send
);
1462 EXPORT_SYMBOL(arp_tbl
);
1464 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1465 EXPORT_SYMBOL(clip_tbl_hook
);