scsi: use REQ_TYPE_FS for flush request
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobeb4086f7dfef9eb7efc6d202fb7a979919a551b8
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
37 * offset from end of service tree
39 #define CFQ_IDLE_DELAY (HZ / 5)
42 * below this threshold, we consider thinktime immediate
44 #define CFQ_MIN_TT (2)
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
67 static DEFINE_SPINLOCK(cic_index_lock);
68 static DEFINE_IDA(cic_index_ida);
70 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
71 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
72 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74 #define sample_valid(samples) ((samples) > 80)
75 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
83 struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
86 unsigned count;
87 unsigned total_weight;
88 u64 min_vdisktime;
89 struct rb_node *active;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
97 struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
141 pid_t pid;
143 u32 seek_history;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 struct cfq_group *orig_cfqg;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
163 * Second index in the service_trees.
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
204 * Per block device queue structure
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
213 * The priority currently being served
215 enum wl_prio_t serving_prio;
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
218 struct cfq_group *serving_group;
219 bool noidle_tree_requires_idle;
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
228 unsigned int busy_queues;
230 int rq_in_driver;
231 int rq_in_flight[2];
234 * queue-depth detection
236 int rq_queued;
237 int hw_tag;
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
248 * idle window management
250 struct timer_list idle_slice_timer;
251 struct work_struct unplug_work;
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
257 * async queue for each priority case
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
262 sector_t last_position;
265 * tunables, see top of file
267 unsigned int cfq_quantum;
268 unsigned int cfq_fifo_expire[2];
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
274 unsigned int cfq_latency;
275 unsigned int cfq_group_isolation;
277 unsigned int cic_index;
278 struct list_head cic_list;
281 * Fallback dummy cfqq for extreme OOM conditions
283 struct cfq_queue oom_cfqq;
285 unsigned long last_delayed_sync;
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list;
289 struct rcu_head rcu;
292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
296 enum wl_type_t type)
298 if (!cfqg)
299 return NULL;
301 if (prio == IDLE_WORKLOAD)
302 return &cfqg->service_tree_idle;
304 return &cfqg->service_trees[prio][type];
307 enum cfqq_state_flags {
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
318 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
323 #define CFQ_CFQQ_FNS(name) \
324 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
328 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
332 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
337 CFQ_CFQQ_FNS(on_rr);
338 CFQ_CFQQ_FNS(wait_request);
339 CFQ_CFQQ_FNS(must_dispatch);
340 CFQ_CFQQ_FNS(must_alloc_slice);
341 CFQ_CFQQ_FNS(fifo_expire);
342 CFQ_CFQQ_FNS(idle_window);
343 CFQ_CFQQ_FNS(prio_changed);
344 CFQ_CFQQ_FNS(slice_new);
345 CFQ_CFQQ_FNS(sync);
346 CFQ_CFQQ_FNS(coop);
347 CFQ_CFQQ_FNS(split_coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 #undef CFQ_CFQQ_FNS
352 #ifdef CONFIG_CFQ_GROUP_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
362 #else
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366 #endif
367 #define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
391 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
404 if (wl == IDLE_WORKLOAD)
405 return cfqg->service_tree_idle.count;
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419 static void cfq_dispatch_insert(struct request_queue *, struct request *);
420 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421 struct io_context *, gfp_t);
422 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423 struct io_context *);
425 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
426 bool is_sync)
428 return cic->cfqq[is_sync];
431 static inline void cic_set_cfqq(struct cfq_io_context *cic,
432 struct cfq_queue *cfqq, bool is_sync)
434 cic->cfqq[is_sync] = cfqq;
437 #define CIC_DEAD_KEY 1ul
438 #define CIC_DEAD_INDEX_SHIFT 1
440 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
442 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
445 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
447 struct cfq_data *cfqd = cic->key;
449 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
450 return NULL;
452 return cfqd;
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
459 static inline bool cfq_bio_sync(struct bio *bio)
461 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
468 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
470 if (cfqd->busy_queues) {
471 cfq_log(cfqd, "schedule dispatch");
472 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
476 static int cfq_queue_empty(struct request_queue *q)
478 struct cfq_data *cfqd = q->elevator->elevator_data;
480 return !cfqd->rq_queued;
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
488 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
489 unsigned short prio)
491 const int base_slice = cfqd->cfq_slice[sync];
493 WARN_ON(prio >= IOPRIO_BE_NR);
495 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
498 static inline int
499 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
501 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
504 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
506 u64 d = delta << CFQ_SERVICE_SHIFT;
508 d = d * BLKIO_WEIGHT_DEFAULT;
509 do_div(d, cfqg->weight);
510 return d;
513 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
515 s64 delta = (s64)(vdisktime - min_vdisktime);
516 if (delta > 0)
517 min_vdisktime = vdisktime;
519 return min_vdisktime;
522 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
524 s64 delta = (s64)(vdisktime - min_vdisktime);
525 if (delta < 0)
526 min_vdisktime = vdisktime;
528 return min_vdisktime;
531 static void update_min_vdisktime(struct cfq_rb_root *st)
533 u64 vdisktime = st->min_vdisktime;
534 struct cfq_group *cfqg;
536 if (st->active) {
537 cfqg = rb_entry_cfqg(st->active);
538 vdisktime = cfqg->vdisktime;
541 if (st->left) {
542 cfqg = rb_entry_cfqg(st->left);
543 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
546 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
555 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
556 struct cfq_group *cfqg, bool rt)
558 unsigned min_q, max_q;
559 unsigned mult = cfq_hist_divisor - 1;
560 unsigned round = cfq_hist_divisor / 2;
561 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
563 min_q = min(cfqg->busy_queues_avg[rt], busy);
564 max_q = max(cfqg->busy_queues_avg[rt], busy);
565 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
566 cfq_hist_divisor;
567 return cfqg->busy_queues_avg[rt];
570 static inline unsigned
571 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
573 struct cfq_rb_root *st = &cfqd->grp_service_tree;
575 return cfq_target_latency * cfqg->weight / st->total_weight;
578 static inline void
579 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
581 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
582 if (cfqd->cfq_latency) {
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
587 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
588 cfq_class_rt(cfqq));
589 unsigned sync_slice = cfqd->cfq_slice[1];
590 unsigned expect_latency = sync_slice * iq;
591 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
593 if (expect_latency > group_slice) {
594 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
597 unsigned low_slice =
598 min(slice, base_low_slice * slice / sync_slice);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
601 slice = max(slice * group_slice / expect_latency,
602 low_slice);
605 cfqq->slice_start = jiffies;
606 cfqq->slice_end = jiffies + slice;
607 cfqq->allocated_slice = slice;
608 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
616 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
618 if (cfq_cfqq_slice_new(cfqq))
619 return 0;
620 if (time_before(jiffies, cfqq->slice_end))
621 return 0;
623 return 1;
627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
628 * We choose the request that is closest to the head right now. Distance
629 * behind the head is penalized and only allowed to a certain extent.
631 static struct request *
632 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
634 sector_t s1, s2, d1 = 0, d2 = 0;
635 unsigned long back_max;
636 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
640 if (rq1 == NULL || rq1 == rq2)
641 return rq2;
642 if (rq2 == NULL)
643 return rq1;
645 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
646 return rq1;
647 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
648 return rq2;
649 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
650 return rq1;
651 else if ((rq2->cmd_flags & REQ_META) &&
652 !(rq1->cmd_flags & REQ_META))
653 return rq2;
655 s1 = blk_rq_pos(rq1);
656 s2 = blk_rq_pos(rq2);
659 * by definition, 1KiB is 2 sectors
661 back_max = cfqd->cfq_back_max * 2;
664 * Strict one way elevator _except_ in the case where we allow
665 * short backward seeks which are biased as twice the cost of a
666 * similar forward seek.
668 if (s1 >= last)
669 d1 = s1 - last;
670 else if (s1 + back_max >= last)
671 d1 = (last - s1) * cfqd->cfq_back_penalty;
672 else
673 wrap |= CFQ_RQ1_WRAP;
675 if (s2 >= last)
676 d2 = s2 - last;
677 else if (s2 + back_max >= last)
678 d2 = (last - s2) * cfqd->cfq_back_penalty;
679 else
680 wrap |= CFQ_RQ2_WRAP;
682 /* Found required data */
685 * By doing switch() on the bit mask "wrap" we avoid having to
686 * check two variables for all permutations: --> faster!
688 switch (wrap) {
689 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
690 if (d1 < d2)
691 return rq1;
692 else if (d2 < d1)
693 return rq2;
694 else {
695 if (s1 >= s2)
696 return rq1;
697 else
698 return rq2;
701 case CFQ_RQ2_WRAP:
702 return rq1;
703 case CFQ_RQ1_WRAP:
704 return rq2;
705 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
706 default:
708 * Since both rqs are wrapped,
709 * start with the one that's further behind head
710 * (--> only *one* back seek required),
711 * since back seek takes more time than forward.
713 if (s1 <= s2)
714 return rq1;
715 else
716 return rq2;
721 * The below is leftmost cache rbtree addon
723 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
725 /* Service tree is empty */
726 if (!root->count)
727 return NULL;
729 if (!root->left)
730 root->left = rb_first(&root->rb);
732 if (root->left)
733 return rb_entry(root->left, struct cfq_queue, rb_node);
735 return NULL;
738 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
740 if (!root->left)
741 root->left = rb_first(&root->rb);
743 if (root->left)
744 return rb_entry_cfqg(root->left);
746 return NULL;
749 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
751 rb_erase(n, root);
752 RB_CLEAR_NODE(n);
755 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
757 if (root->left == n)
758 root->left = NULL;
759 rb_erase_init(n, &root->rb);
760 --root->count;
764 * would be nice to take fifo expire time into account as well
766 static struct request *
767 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
768 struct request *last)
770 struct rb_node *rbnext = rb_next(&last->rb_node);
771 struct rb_node *rbprev = rb_prev(&last->rb_node);
772 struct request *next = NULL, *prev = NULL;
774 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
776 if (rbprev)
777 prev = rb_entry_rq(rbprev);
779 if (rbnext)
780 next = rb_entry_rq(rbnext);
781 else {
782 rbnext = rb_first(&cfqq->sort_list);
783 if (rbnext && rbnext != &last->rb_node)
784 next = rb_entry_rq(rbnext);
787 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
790 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
791 struct cfq_queue *cfqq)
794 * just an approximation, should be ok.
796 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
797 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
800 static inline s64
801 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
803 return cfqg->vdisktime - st->min_vdisktime;
806 static void
807 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
809 struct rb_node **node = &st->rb.rb_node;
810 struct rb_node *parent = NULL;
811 struct cfq_group *__cfqg;
812 s64 key = cfqg_key(st, cfqg);
813 int left = 1;
815 while (*node != NULL) {
816 parent = *node;
817 __cfqg = rb_entry_cfqg(parent);
819 if (key < cfqg_key(st, __cfqg))
820 node = &parent->rb_left;
821 else {
822 node = &parent->rb_right;
823 left = 0;
827 if (left)
828 st->left = &cfqg->rb_node;
830 rb_link_node(&cfqg->rb_node, parent, node);
831 rb_insert_color(&cfqg->rb_node, &st->rb);
834 static void
835 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
837 struct cfq_rb_root *st = &cfqd->grp_service_tree;
838 struct cfq_group *__cfqg;
839 struct rb_node *n;
841 cfqg->nr_cfqq++;
842 if (cfqg->on_st)
843 return;
846 * Currently put the group at the end. Later implement something
847 * so that groups get lesser vtime based on their weights, so that
848 * if group does not loose all if it was not continously backlogged.
850 n = rb_last(&st->rb);
851 if (n) {
852 __cfqg = rb_entry_cfqg(n);
853 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
854 } else
855 cfqg->vdisktime = st->min_vdisktime;
857 __cfq_group_service_tree_add(st, cfqg);
858 cfqg->on_st = true;
859 st->total_weight += cfqg->weight;
862 static void
863 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
865 struct cfq_rb_root *st = &cfqd->grp_service_tree;
867 if (st->active == &cfqg->rb_node)
868 st->active = NULL;
870 BUG_ON(cfqg->nr_cfqq < 1);
871 cfqg->nr_cfqq--;
873 /* If there are other cfq queues under this group, don't delete it */
874 if (cfqg->nr_cfqq)
875 return;
877 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
878 cfqg->on_st = false;
879 st->total_weight -= cfqg->weight;
880 if (!RB_EMPTY_NODE(&cfqg->rb_node))
881 cfq_rb_erase(&cfqg->rb_node, st);
882 cfqg->saved_workload_slice = 0;
883 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
886 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
888 unsigned int slice_used;
891 * Queue got expired before even a single request completed or
892 * got expired immediately after first request completion.
894 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
896 * Also charge the seek time incurred to the group, otherwise
897 * if there are mutiple queues in the group, each can dispatch
898 * a single request on seeky media and cause lots of seek time
899 * and group will never know it.
901 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
903 } else {
904 slice_used = jiffies - cfqq->slice_start;
905 if (slice_used > cfqq->allocated_slice)
906 slice_used = cfqq->allocated_slice;
909 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
910 return slice_used;
913 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
914 struct cfq_queue *cfqq)
916 struct cfq_rb_root *st = &cfqd->grp_service_tree;
917 unsigned int used_sl, charge_sl;
918 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
919 - cfqg->service_tree_idle.count;
921 BUG_ON(nr_sync < 0);
922 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
924 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
925 charge_sl = cfqq->allocated_slice;
927 /* Can't update vdisktime while group is on service tree */
928 cfq_rb_erase(&cfqg->rb_node, st);
929 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
930 __cfq_group_service_tree_add(st, cfqg);
932 /* This group is being expired. Save the context */
933 if (time_after(cfqd->workload_expires, jiffies)) {
934 cfqg->saved_workload_slice = cfqd->workload_expires
935 - jiffies;
936 cfqg->saved_workload = cfqd->serving_type;
937 cfqg->saved_serving_prio = cfqd->serving_prio;
938 } else
939 cfqg->saved_workload_slice = 0;
941 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
942 st->min_vdisktime);
943 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
944 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
947 #ifdef CONFIG_CFQ_GROUP_IOSCHED
948 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
950 if (blkg)
951 return container_of(blkg, struct cfq_group, blkg);
952 return NULL;
955 void
956 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
958 cfqg_of_blkg(blkg)->weight = weight;
961 static struct cfq_group *
962 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
964 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
965 struct cfq_group *cfqg = NULL;
966 void *key = cfqd;
967 int i, j;
968 struct cfq_rb_root *st;
969 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
970 unsigned int major, minor;
972 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
973 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
974 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
975 cfqg->blkg.dev = MKDEV(major, minor);
976 goto done;
978 if (cfqg || !create)
979 goto done;
981 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
982 if (!cfqg)
983 goto done;
985 for_each_cfqg_st(cfqg, i, j, st)
986 *st = CFQ_RB_ROOT;
987 RB_CLEAR_NODE(&cfqg->rb_node);
990 * Take the initial reference that will be released on destroy
991 * This can be thought of a joint reference by cgroup and
992 * elevator which will be dropped by either elevator exit
993 * or cgroup deletion path depending on who is exiting first.
995 atomic_set(&cfqg->ref, 1);
997 /* Add group onto cgroup list */
998 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
999 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1000 MKDEV(major, minor));
1001 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1003 /* Add group on cfqd list */
1004 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1006 done:
1007 return cfqg;
1011 * Search for the cfq group current task belongs to. If create = 1, then also
1012 * create the cfq group if it does not exist. request_queue lock must be held.
1014 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1016 struct cgroup *cgroup;
1017 struct cfq_group *cfqg = NULL;
1019 rcu_read_lock();
1020 cgroup = task_cgroup(current, blkio_subsys_id);
1021 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1022 if (!cfqg && create)
1023 cfqg = &cfqd->root_group;
1024 rcu_read_unlock();
1025 return cfqg;
1028 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1030 atomic_inc(&cfqg->ref);
1031 return cfqg;
1034 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1036 /* Currently, all async queues are mapped to root group */
1037 if (!cfq_cfqq_sync(cfqq))
1038 cfqg = &cfqq->cfqd->root_group;
1040 cfqq->cfqg = cfqg;
1041 /* cfqq reference on cfqg */
1042 atomic_inc(&cfqq->cfqg->ref);
1045 static void cfq_put_cfqg(struct cfq_group *cfqg)
1047 struct cfq_rb_root *st;
1048 int i, j;
1050 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1051 if (!atomic_dec_and_test(&cfqg->ref))
1052 return;
1053 for_each_cfqg_st(cfqg, i, j, st)
1054 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1055 kfree(cfqg);
1058 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1060 /* Something wrong if we are trying to remove same group twice */
1061 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1063 hlist_del_init(&cfqg->cfqd_node);
1066 * Put the reference taken at the time of creation so that when all
1067 * queues are gone, group can be destroyed.
1069 cfq_put_cfqg(cfqg);
1072 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1074 struct hlist_node *pos, *n;
1075 struct cfq_group *cfqg;
1077 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1079 * If cgroup removal path got to blk_group first and removed
1080 * it from cgroup list, then it will take care of destroying
1081 * cfqg also.
1083 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1084 cfq_destroy_cfqg(cfqd, cfqg);
1089 * Blk cgroup controller notification saying that blkio_group object is being
1090 * delinked as associated cgroup object is going away. That also means that
1091 * no new IO will come in this group. So get rid of this group as soon as
1092 * any pending IO in the group is finished.
1094 * This function is called under rcu_read_lock(). key is the rcu protected
1095 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1096 * read lock.
1098 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1099 * it should not be NULL as even if elevator was exiting, cgroup deltion
1100 * path got to it first.
1102 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1104 unsigned long flags;
1105 struct cfq_data *cfqd = key;
1107 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1108 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1109 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1112 #else /* GROUP_IOSCHED */
1113 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1115 return &cfqd->root_group;
1118 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1120 return cfqg;
1123 static inline void
1124 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1125 cfqq->cfqg = cfqg;
1128 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1129 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1131 #endif /* GROUP_IOSCHED */
1134 * The cfqd->service_trees holds all pending cfq_queue's that have
1135 * requests waiting to be processed. It is sorted in the order that
1136 * we will service the queues.
1138 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1139 bool add_front)
1141 struct rb_node **p, *parent;
1142 struct cfq_queue *__cfqq;
1143 unsigned long rb_key;
1144 struct cfq_rb_root *service_tree;
1145 int left;
1146 int new_cfqq = 1;
1147 int group_changed = 0;
1149 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1150 if (!cfqd->cfq_group_isolation
1151 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1152 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1153 /* Move this cfq to root group */
1154 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1155 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1156 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1157 cfqq->orig_cfqg = cfqq->cfqg;
1158 cfqq->cfqg = &cfqd->root_group;
1159 atomic_inc(&cfqd->root_group.ref);
1160 group_changed = 1;
1161 } else if (!cfqd->cfq_group_isolation
1162 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1163 /* cfqq is sequential now needs to go to its original group */
1164 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1165 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1166 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1167 cfq_put_cfqg(cfqq->cfqg);
1168 cfqq->cfqg = cfqq->orig_cfqg;
1169 cfqq->orig_cfqg = NULL;
1170 group_changed = 1;
1171 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1173 #endif
1175 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1176 cfqq_type(cfqq));
1177 if (cfq_class_idle(cfqq)) {
1178 rb_key = CFQ_IDLE_DELAY;
1179 parent = rb_last(&service_tree->rb);
1180 if (parent && parent != &cfqq->rb_node) {
1181 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1182 rb_key += __cfqq->rb_key;
1183 } else
1184 rb_key += jiffies;
1185 } else if (!add_front) {
1187 * Get our rb key offset. Subtract any residual slice
1188 * value carried from last service. A negative resid
1189 * count indicates slice overrun, and this should position
1190 * the next service time further away in the tree.
1192 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1193 rb_key -= cfqq->slice_resid;
1194 cfqq->slice_resid = 0;
1195 } else {
1196 rb_key = -HZ;
1197 __cfqq = cfq_rb_first(service_tree);
1198 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1201 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1202 new_cfqq = 0;
1204 * same position, nothing more to do
1206 if (rb_key == cfqq->rb_key &&
1207 cfqq->service_tree == service_tree)
1208 return;
1210 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1211 cfqq->service_tree = NULL;
1214 left = 1;
1215 parent = NULL;
1216 cfqq->service_tree = service_tree;
1217 p = &service_tree->rb.rb_node;
1218 while (*p) {
1219 struct rb_node **n;
1221 parent = *p;
1222 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1225 * sort by key, that represents service time.
1227 if (time_before(rb_key, __cfqq->rb_key))
1228 n = &(*p)->rb_left;
1229 else {
1230 n = &(*p)->rb_right;
1231 left = 0;
1234 p = n;
1237 if (left)
1238 service_tree->left = &cfqq->rb_node;
1240 cfqq->rb_key = rb_key;
1241 rb_link_node(&cfqq->rb_node, parent, p);
1242 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1243 service_tree->count++;
1244 if ((add_front || !new_cfqq) && !group_changed)
1245 return;
1246 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1249 static struct cfq_queue *
1250 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1251 sector_t sector, struct rb_node **ret_parent,
1252 struct rb_node ***rb_link)
1254 struct rb_node **p, *parent;
1255 struct cfq_queue *cfqq = NULL;
1257 parent = NULL;
1258 p = &root->rb_node;
1259 while (*p) {
1260 struct rb_node **n;
1262 parent = *p;
1263 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1266 * Sort strictly based on sector. Smallest to the left,
1267 * largest to the right.
1269 if (sector > blk_rq_pos(cfqq->next_rq))
1270 n = &(*p)->rb_right;
1271 else if (sector < blk_rq_pos(cfqq->next_rq))
1272 n = &(*p)->rb_left;
1273 else
1274 break;
1275 p = n;
1276 cfqq = NULL;
1279 *ret_parent = parent;
1280 if (rb_link)
1281 *rb_link = p;
1282 return cfqq;
1285 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1287 struct rb_node **p, *parent;
1288 struct cfq_queue *__cfqq;
1290 if (cfqq->p_root) {
1291 rb_erase(&cfqq->p_node, cfqq->p_root);
1292 cfqq->p_root = NULL;
1295 if (cfq_class_idle(cfqq))
1296 return;
1297 if (!cfqq->next_rq)
1298 return;
1300 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1301 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1302 blk_rq_pos(cfqq->next_rq), &parent, &p);
1303 if (!__cfqq) {
1304 rb_link_node(&cfqq->p_node, parent, p);
1305 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1306 } else
1307 cfqq->p_root = NULL;
1311 * Update cfqq's position in the service tree.
1313 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1316 * Resorting requires the cfqq to be on the RR list already.
1318 if (cfq_cfqq_on_rr(cfqq)) {
1319 cfq_service_tree_add(cfqd, cfqq, 0);
1320 cfq_prio_tree_add(cfqd, cfqq);
1325 * add to busy list of queues for service, trying to be fair in ordering
1326 * the pending list according to last request service
1328 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1330 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1331 BUG_ON(cfq_cfqq_on_rr(cfqq));
1332 cfq_mark_cfqq_on_rr(cfqq);
1333 cfqd->busy_queues++;
1335 cfq_resort_rr_list(cfqd, cfqq);
1339 * Called when the cfqq no longer has requests pending, remove it from
1340 * the service tree.
1342 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1344 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1345 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1346 cfq_clear_cfqq_on_rr(cfqq);
1348 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1349 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1350 cfqq->service_tree = NULL;
1352 if (cfqq->p_root) {
1353 rb_erase(&cfqq->p_node, cfqq->p_root);
1354 cfqq->p_root = NULL;
1357 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1358 BUG_ON(!cfqd->busy_queues);
1359 cfqd->busy_queues--;
1363 * rb tree support functions
1365 static void cfq_del_rq_rb(struct request *rq)
1367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1368 const int sync = rq_is_sync(rq);
1370 BUG_ON(!cfqq->queued[sync]);
1371 cfqq->queued[sync]--;
1373 elv_rb_del(&cfqq->sort_list, rq);
1375 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1377 * Queue will be deleted from service tree when we actually
1378 * expire it later. Right now just remove it from prio tree
1379 * as it is empty.
1381 if (cfqq->p_root) {
1382 rb_erase(&cfqq->p_node, cfqq->p_root);
1383 cfqq->p_root = NULL;
1388 static void cfq_add_rq_rb(struct request *rq)
1390 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1391 struct cfq_data *cfqd = cfqq->cfqd;
1392 struct request *__alias, *prev;
1394 cfqq->queued[rq_is_sync(rq)]++;
1397 * looks a little odd, but the first insert might return an alias.
1398 * if that happens, put the alias on the dispatch list
1400 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1401 cfq_dispatch_insert(cfqd->queue, __alias);
1403 if (!cfq_cfqq_on_rr(cfqq))
1404 cfq_add_cfqq_rr(cfqd, cfqq);
1407 * check if this request is a better next-serve candidate
1409 prev = cfqq->next_rq;
1410 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1413 * adjust priority tree position, if ->next_rq changes
1415 if (prev != cfqq->next_rq)
1416 cfq_prio_tree_add(cfqd, cfqq);
1418 BUG_ON(!cfqq->next_rq);
1421 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1423 elv_rb_del(&cfqq->sort_list, rq);
1424 cfqq->queued[rq_is_sync(rq)]--;
1425 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1426 rq_data_dir(rq), rq_is_sync(rq));
1427 cfq_add_rq_rb(rq);
1428 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1429 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1430 rq_is_sync(rq));
1433 static struct request *
1434 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1436 struct task_struct *tsk = current;
1437 struct cfq_io_context *cic;
1438 struct cfq_queue *cfqq;
1440 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1441 if (!cic)
1442 return NULL;
1444 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1445 if (cfqq) {
1446 sector_t sector = bio->bi_sector + bio_sectors(bio);
1448 return elv_rb_find(&cfqq->sort_list, sector);
1451 return NULL;
1454 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1456 struct cfq_data *cfqd = q->elevator->elevator_data;
1458 cfqd->rq_in_driver++;
1459 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1460 cfqd->rq_in_driver);
1462 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1465 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1467 struct cfq_data *cfqd = q->elevator->elevator_data;
1469 WARN_ON(!cfqd->rq_in_driver);
1470 cfqd->rq_in_driver--;
1471 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1472 cfqd->rq_in_driver);
1475 static void cfq_remove_request(struct request *rq)
1477 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1479 if (cfqq->next_rq == rq)
1480 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1482 list_del_init(&rq->queuelist);
1483 cfq_del_rq_rb(rq);
1485 cfqq->cfqd->rq_queued--;
1486 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1487 rq_data_dir(rq), rq_is_sync(rq));
1488 if (rq->cmd_flags & REQ_META) {
1489 WARN_ON(!cfqq->meta_pending);
1490 cfqq->meta_pending--;
1494 static int cfq_merge(struct request_queue *q, struct request **req,
1495 struct bio *bio)
1497 struct cfq_data *cfqd = q->elevator->elevator_data;
1498 struct request *__rq;
1500 __rq = cfq_find_rq_fmerge(cfqd, bio);
1501 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1502 *req = __rq;
1503 return ELEVATOR_FRONT_MERGE;
1506 return ELEVATOR_NO_MERGE;
1509 static void cfq_merged_request(struct request_queue *q, struct request *req,
1510 int type)
1512 if (type == ELEVATOR_FRONT_MERGE) {
1513 struct cfq_queue *cfqq = RQ_CFQQ(req);
1515 cfq_reposition_rq_rb(cfqq, req);
1519 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1520 struct bio *bio)
1522 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1523 bio_data_dir(bio), cfq_bio_sync(bio));
1526 static void
1527 cfq_merged_requests(struct request_queue *q, struct request *rq,
1528 struct request *next)
1530 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1532 * reposition in fifo if next is older than rq
1534 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1535 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1536 list_move(&rq->queuelist, &next->queuelist);
1537 rq_set_fifo_time(rq, rq_fifo_time(next));
1540 if (cfqq->next_rq == next)
1541 cfqq->next_rq = rq;
1542 cfq_remove_request(next);
1543 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1544 rq_data_dir(next), rq_is_sync(next));
1547 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1548 struct bio *bio)
1550 struct cfq_data *cfqd = q->elevator->elevator_data;
1551 struct cfq_io_context *cic;
1552 struct cfq_queue *cfqq;
1555 * Disallow merge of a sync bio into an async request.
1557 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1558 return false;
1561 * Lookup the cfqq that this bio will be queued with. Allow
1562 * merge only if rq is queued there.
1564 cic = cfq_cic_lookup(cfqd, current->io_context);
1565 if (!cic)
1566 return false;
1568 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1569 return cfqq == RQ_CFQQ(rq);
1572 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1574 del_timer(&cfqd->idle_slice_timer);
1575 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1578 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1579 struct cfq_queue *cfqq)
1581 if (cfqq) {
1582 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1583 cfqd->serving_prio, cfqd->serving_type);
1584 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1585 cfqq->slice_start = 0;
1586 cfqq->dispatch_start = jiffies;
1587 cfqq->allocated_slice = 0;
1588 cfqq->slice_end = 0;
1589 cfqq->slice_dispatch = 0;
1591 cfq_clear_cfqq_wait_request(cfqq);
1592 cfq_clear_cfqq_must_dispatch(cfqq);
1593 cfq_clear_cfqq_must_alloc_slice(cfqq);
1594 cfq_clear_cfqq_fifo_expire(cfqq);
1595 cfq_mark_cfqq_slice_new(cfqq);
1597 cfq_del_timer(cfqd, cfqq);
1600 cfqd->active_queue = cfqq;
1604 * current cfqq expired its slice (or was too idle), select new one
1606 static void
1607 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1608 bool timed_out)
1610 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1612 if (cfq_cfqq_wait_request(cfqq))
1613 cfq_del_timer(cfqd, cfqq);
1615 cfq_clear_cfqq_wait_request(cfqq);
1616 cfq_clear_cfqq_wait_busy(cfqq);
1619 * If this cfqq is shared between multiple processes, check to
1620 * make sure that those processes are still issuing I/Os within
1621 * the mean seek distance. If not, it may be time to break the
1622 * queues apart again.
1624 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1625 cfq_mark_cfqq_split_coop(cfqq);
1628 * store what was left of this slice, if the queue idled/timed out
1630 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1631 cfqq->slice_resid = cfqq->slice_end - jiffies;
1632 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1635 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1637 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1638 cfq_del_cfqq_rr(cfqd, cfqq);
1640 cfq_resort_rr_list(cfqd, cfqq);
1642 if (cfqq == cfqd->active_queue)
1643 cfqd->active_queue = NULL;
1645 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1646 cfqd->grp_service_tree.active = NULL;
1648 if (cfqd->active_cic) {
1649 put_io_context(cfqd->active_cic->ioc);
1650 cfqd->active_cic = NULL;
1654 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1656 struct cfq_queue *cfqq = cfqd->active_queue;
1658 if (cfqq)
1659 __cfq_slice_expired(cfqd, cfqq, timed_out);
1663 * Get next queue for service. Unless we have a queue preemption,
1664 * we'll simply select the first cfqq in the service tree.
1666 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1668 struct cfq_rb_root *service_tree =
1669 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1670 cfqd->serving_type);
1672 if (!cfqd->rq_queued)
1673 return NULL;
1675 /* There is nothing to dispatch */
1676 if (!service_tree)
1677 return NULL;
1678 if (RB_EMPTY_ROOT(&service_tree->rb))
1679 return NULL;
1680 return cfq_rb_first(service_tree);
1683 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1685 struct cfq_group *cfqg;
1686 struct cfq_queue *cfqq;
1687 int i, j;
1688 struct cfq_rb_root *st;
1690 if (!cfqd->rq_queued)
1691 return NULL;
1693 cfqg = cfq_get_next_cfqg(cfqd);
1694 if (!cfqg)
1695 return NULL;
1697 for_each_cfqg_st(cfqg, i, j, st)
1698 if ((cfqq = cfq_rb_first(st)) != NULL)
1699 return cfqq;
1700 return NULL;
1704 * Get and set a new active queue for service.
1706 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1707 struct cfq_queue *cfqq)
1709 if (!cfqq)
1710 cfqq = cfq_get_next_queue(cfqd);
1712 __cfq_set_active_queue(cfqd, cfqq);
1713 return cfqq;
1716 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1717 struct request *rq)
1719 if (blk_rq_pos(rq) >= cfqd->last_position)
1720 return blk_rq_pos(rq) - cfqd->last_position;
1721 else
1722 return cfqd->last_position - blk_rq_pos(rq);
1725 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1726 struct request *rq)
1728 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1731 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1732 struct cfq_queue *cur_cfqq)
1734 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1735 struct rb_node *parent, *node;
1736 struct cfq_queue *__cfqq;
1737 sector_t sector = cfqd->last_position;
1739 if (RB_EMPTY_ROOT(root))
1740 return NULL;
1743 * First, if we find a request starting at the end of the last
1744 * request, choose it.
1746 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1747 if (__cfqq)
1748 return __cfqq;
1751 * If the exact sector wasn't found, the parent of the NULL leaf
1752 * will contain the closest sector.
1754 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1755 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1756 return __cfqq;
1758 if (blk_rq_pos(__cfqq->next_rq) < sector)
1759 node = rb_next(&__cfqq->p_node);
1760 else
1761 node = rb_prev(&__cfqq->p_node);
1762 if (!node)
1763 return NULL;
1765 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1766 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1767 return __cfqq;
1769 return NULL;
1773 * cfqd - obvious
1774 * cur_cfqq - passed in so that we don't decide that the current queue is
1775 * closely cooperating with itself.
1777 * So, basically we're assuming that that cur_cfqq has dispatched at least
1778 * one request, and that cfqd->last_position reflects a position on the disk
1779 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1780 * assumption.
1782 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1783 struct cfq_queue *cur_cfqq)
1785 struct cfq_queue *cfqq;
1787 if (cfq_class_idle(cur_cfqq))
1788 return NULL;
1789 if (!cfq_cfqq_sync(cur_cfqq))
1790 return NULL;
1791 if (CFQQ_SEEKY(cur_cfqq))
1792 return NULL;
1795 * Don't search priority tree if it's the only queue in the group.
1797 if (cur_cfqq->cfqg->nr_cfqq == 1)
1798 return NULL;
1801 * We should notice if some of the queues are cooperating, eg
1802 * working closely on the same area of the disk. In that case,
1803 * we can group them together and don't waste time idling.
1805 cfqq = cfqq_close(cfqd, cur_cfqq);
1806 if (!cfqq)
1807 return NULL;
1809 /* If new queue belongs to different cfq_group, don't choose it */
1810 if (cur_cfqq->cfqg != cfqq->cfqg)
1811 return NULL;
1814 * It only makes sense to merge sync queues.
1816 if (!cfq_cfqq_sync(cfqq))
1817 return NULL;
1818 if (CFQQ_SEEKY(cfqq))
1819 return NULL;
1822 * Do not merge queues of different priority classes
1824 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1825 return NULL;
1827 return cfqq;
1831 * Determine whether we should enforce idle window for this queue.
1834 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1836 enum wl_prio_t prio = cfqq_prio(cfqq);
1837 struct cfq_rb_root *service_tree = cfqq->service_tree;
1839 BUG_ON(!service_tree);
1840 BUG_ON(!service_tree->count);
1842 /* We never do for idle class queues. */
1843 if (prio == IDLE_WORKLOAD)
1844 return false;
1846 /* We do for queues that were marked with idle window flag. */
1847 if (cfq_cfqq_idle_window(cfqq) &&
1848 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1849 return true;
1852 * Otherwise, we do only if they are the last ones
1853 * in their service tree.
1855 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1856 return 1;
1857 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1858 service_tree->count);
1859 return 0;
1862 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1864 struct cfq_queue *cfqq = cfqd->active_queue;
1865 struct cfq_io_context *cic;
1866 unsigned long sl;
1869 * SSD device without seek penalty, disable idling. But only do so
1870 * for devices that support queuing, otherwise we still have a problem
1871 * with sync vs async workloads.
1873 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1874 return;
1876 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1877 WARN_ON(cfq_cfqq_slice_new(cfqq));
1880 * idle is disabled, either manually or by past process history
1882 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1883 return;
1886 * still active requests from this queue, don't idle
1888 if (cfqq->dispatched)
1889 return;
1892 * task has exited, don't wait
1894 cic = cfqd->active_cic;
1895 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1896 return;
1899 * If our average think time is larger than the remaining time
1900 * slice, then don't idle. This avoids overrunning the allotted
1901 * time slice.
1903 if (sample_valid(cic->ttime_samples) &&
1904 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1905 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1906 cic->ttime_mean);
1907 return;
1910 cfq_mark_cfqq_wait_request(cfqq);
1912 sl = cfqd->cfq_slice_idle;
1914 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1915 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1916 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1920 * Move request from internal lists to the request queue dispatch list.
1922 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1924 struct cfq_data *cfqd = q->elevator->elevator_data;
1925 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1927 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1929 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1930 cfq_remove_request(rq);
1931 cfqq->dispatched++;
1932 elv_dispatch_sort(q, rq);
1934 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1935 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1936 rq_data_dir(rq), rq_is_sync(rq));
1940 * return expired entry, or NULL to just start from scratch in rbtree
1942 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1944 struct request *rq = NULL;
1946 if (cfq_cfqq_fifo_expire(cfqq))
1947 return NULL;
1949 cfq_mark_cfqq_fifo_expire(cfqq);
1951 if (list_empty(&cfqq->fifo))
1952 return NULL;
1954 rq = rq_entry_fifo(cfqq->fifo.next);
1955 if (time_before(jiffies, rq_fifo_time(rq)))
1956 rq = NULL;
1958 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1959 return rq;
1962 static inline int
1963 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1965 const int base_rq = cfqd->cfq_slice_async_rq;
1967 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1969 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1973 * Must be called with the queue_lock held.
1975 static int cfqq_process_refs(struct cfq_queue *cfqq)
1977 int process_refs, io_refs;
1979 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1980 process_refs = atomic_read(&cfqq->ref) - io_refs;
1981 BUG_ON(process_refs < 0);
1982 return process_refs;
1985 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1987 int process_refs, new_process_refs;
1988 struct cfq_queue *__cfqq;
1991 * If there are no process references on the new_cfqq, then it is
1992 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1993 * chain may have dropped their last reference (not just their
1994 * last process reference).
1996 if (!cfqq_process_refs(new_cfqq))
1997 return;
1999 /* Avoid a circular list and skip interim queue merges */
2000 while ((__cfqq = new_cfqq->new_cfqq)) {
2001 if (__cfqq == cfqq)
2002 return;
2003 new_cfqq = __cfqq;
2006 process_refs = cfqq_process_refs(cfqq);
2007 new_process_refs = cfqq_process_refs(new_cfqq);
2009 * If the process for the cfqq has gone away, there is no
2010 * sense in merging the queues.
2012 if (process_refs == 0 || new_process_refs == 0)
2013 return;
2016 * Merge in the direction of the lesser amount of work.
2018 if (new_process_refs >= process_refs) {
2019 cfqq->new_cfqq = new_cfqq;
2020 atomic_add(process_refs, &new_cfqq->ref);
2021 } else {
2022 new_cfqq->new_cfqq = cfqq;
2023 atomic_add(new_process_refs, &cfqq->ref);
2027 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2028 struct cfq_group *cfqg, enum wl_prio_t prio)
2030 struct cfq_queue *queue;
2031 int i;
2032 bool key_valid = false;
2033 unsigned long lowest_key = 0;
2034 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2036 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2037 /* select the one with lowest rb_key */
2038 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2039 if (queue &&
2040 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2041 lowest_key = queue->rb_key;
2042 cur_best = i;
2043 key_valid = true;
2047 return cur_best;
2050 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2052 unsigned slice;
2053 unsigned count;
2054 struct cfq_rb_root *st;
2055 unsigned group_slice;
2057 if (!cfqg) {
2058 cfqd->serving_prio = IDLE_WORKLOAD;
2059 cfqd->workload_expires = jiffies + 1;
2060 return;
2063 /* Choose next priority. RT > BE > IDLE */
2064 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2065 cfqd->serving_prio = RT_WORKLOAD;
2066 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2067 cfqd->serving_prio = BE_WORKLOAD;
2068 else {
2069 cfqd->serving_prio = IDLE_WORKLOAD;
2070 cfqd->workload_expires = jiffies + 1;
2071 return;
2075 * For RT and BE, we have to choose also the type
2076 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2077 * expiration time
2079 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2080 count = st->count;
2083 * check workload expiration, and that we still have other queues ready
2085 if (count && !time_after(jiffies, cfqd->workload_expires))
2086 return;
2088 /* otherwise select new workload type */
2089 cfqd->serving_type =
2090 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2091 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2092 count = st->count;
2095 * the workload slice is computed as a fraction of target latency
2096 * proportional to the number of queues in that workload, over
2097 * all the queues in the same priority class
2099 group_slice = cfq_group_slice(cfqd, cfqg);
2101 slice = group_slice * count /
2102 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2103 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2105 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2106 unsigned int tmp;
2109 * Async queues are currently system wide. Just taking
2110 * proportion of queues with-in same group will lead to higher
2111 * async ratio system wide as generally root group is going
2112 * to have higher weight. A more accurate thing would be to
2113 * calculate system wide asnc/sync ratio.
2115 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2116 tmp = tmp/cfqd->busy_queues;
2117 slice = min_t(unsigned, slice, tmp);
2119 /* async workload slice is scaled down according to
2120 * the sync/async slice ratio. */
2121 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2122 } else
2123 /* sync workload slice is at least 2 * cfq_slice_idle */
2124 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2126 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2127 cfq_log(cfqd, "workload slice:%d", slice);
2128 cfqd->workload_expires = jiffies + slice;
2129 cfqd->noidle_tree_requires_idle = false;
2132 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2134 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2135 struct cfq_group *cfqg;
2137 if (RB_EMPTY_ROOT(&st->rb))
2138 return NULL;
2139 cfqg = cfq_rb_first_group(st);
2140 st->active = &cfqg->rb_node;
2141 update_min_vdisktime(st);
2142 return cfqg;
2145 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2147 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2149 cfqd->serving_group = cfqg;
2151 /* Restore the workload type data */
2152 if (cfqg->saved_workload_slice) {
2153 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2154 cfqd->serving_type = cfqg->saved_workload;
2155 cfqd->serving_prio = cfqg->saved_serving_prio;
2156 } else
2157 cfqd->workload_expires = jiffies - 1;
2159 choose_service_tree(cfqd, cfqg);
2163 * Select a queue for service. If we have a current active queue,
2164 * check whether to continue servicing it, or retrieve and set a new one.
2166 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2168 struct cfq_queue *cfqq, *new_cfqq = NULL;
2170 cfqq = cfqd->active_queue;
2171 if (!cfqq)
2172 goto new_queue;
2174 if (!cfqd->rq_queued)
2175 return NULL;
2178 * We were waiting for group to get backlogged. Expire the queue
2180 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2181 goto expire;
2184 * The active queue has run out of time, expire it and select new.
2186 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2188 * If slice had not expired at the completion of last request
2189 * we might not have turned on wait_busy flag. Don't expire
2190 * the queue yet. Allow the group to get backlogged.
2192 * The very fact that we have used the slice, that means we
2193 * have been idling all along on this queue and it should be
2194 * ok to wait for this request to complete.
2196 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2197 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2198 cfqq = NULL;
2199 goto keep_queue;
2200 } else
2201 goto expire;
2205 * The active queue has requests and isn't expired, allow it to
2206 * dispatch.
2208 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2209 goto keep_queue;
2212 * If another queue has a request waiting within our mean seek
2213 * distance, let it run. The expire code will check for close
2214 * cooperators and put the close queue at the front of the service
2215 * tree. If possible, merge the expiring queue with the new cfqq.
2217 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2218 if (new_cfqq) {
2219 if (!cfqq->new_cfqq)
2220 cfq_setup_merge(cfqq, new_cfqq);
2221 goto expire;
2225 * No requests pending. If the active queue still has requests in
2226 * flight or is idling for a new request, allow either of these
2227 * conditions to happen (or time out) before selecting a new queue.
2229 if (timer_pending(&cfqd->idle_slice_timer) ||
2230 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2231 cfqq = NULL;
2232 goto keep_queue;
2235 expire:
2236 cfq_slice_expired(cfqd, 0);
2237 new_queue:
2239 * Current queue expired. Check if we have to switch to a new
2240 * service tree
2242 if (!new_cfqq)
2243 cfq_choose_cfqg(cfqd);
2245 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2246 keep_queue:
2247 return cfqq;
2250 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2252 int dispatched = 0;
2254 while (cfqq->next_rq) {
2255 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2256 dispatched++;
2259 BUG_ON(!list_empty(&cfqq->fifo));
2261 /* By default cfqq is not expired if it is empty. Do it explicitly */
2262 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2263 return dispatched;
2267 * Drain our current requests. Used for barriers and when switching
2268 * io schedulers on-the-fly.
2270 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2272 struct cfq_queue *cfqq;
2273 int dispatched = 0;
2275 /* Expire the timeslice of the current active queue first */
2276 cfq_slice_expired(cfqd, 0);
2277 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2278 __cfq_set_active_queue(cfqd, cfqq);
2279 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2282 BUG_ON(cfqd->busy_queues);
2284 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2285 return dispatched;
2288 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2289 struct cfq_queue *cfqq)
2291 /* the queue hasn't finished any request, can't estimate */
2292 if (cfq_cfqq_slice_new(cfqq))
2293 return 1;
2294 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2295 cfqq->slice_end))
2296 return 1;
2298 return 0;
2301 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2303 unsigned int max_dispatch;
2306 * Drain async requests before we start sync IO
2308 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2309 return false;
2312 * If this is an async queue and we have sync IO in flight, let it wait
2314 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2315 return false;
2317 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2318 if (cfq_class_idle(cfqq))
2319 max_dispatch = 1;
2322 * Does this cfqq already have too much IO in flight?
2324 if (cfqq->dispatched >= max_dispatch) {
2326 * idle queue must always only have a single IO in flight
2328 if (cfq_class_idle(cfqq))
2329 return false;
2332 * We have other queues, don't allow more IO from this one
2334 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2335 return false;
2338 * Sole queue user, no limit
2340 if (cfqd->busy_queues == 1)
2341 max_dispatch = -1;
2342 else
2344 * Normally we start throttling cfqq when cfq_quantum/2
2345 * requests have been dispatched. But we can drive
2346 * deeper queue depths at the beginning of slice
2347 * subjected to upper limit of cfq_quantum.
2348 * */
2349 max_dispatch = cfqd->cfq_quantum;
2353 * Async queues must wait a bit before being allowed dispatch.
2354 * We also ramp up the dispatch depth gradually for async IO,
2355 * based on the last sync IO we serviced
2357 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2358 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2359 unsigned int depth;
2361 depth = last_sync / cfqd->cfq_slice[1];
2362 if (!depth && !cfqq->dispatched)
2363 depth = 1;
2364 if (depth < max_dispatch)
2365 max_dispatch = depth;
2369 * If we're below the current max, allow a dispatch
2371 return cfqq->dispatched < max_dispatch;
2375 * Dispatch a request from cfqq, moving them to the request queue
2376 * dispatch list.
2378 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2380 struct request *rq;
2382 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2384 if (!cfq_may_dispatch(cfqd, cfqq))
2385 return false;
2388 * follow expired path, else get first next available
2390 rq = cfq_check_fifo(cfqq);
2391 if (!rq)
2392 rq = cfqq->next_rq;
2395 * insert request into driver dispatch list
2397 cfq_dispatch_insert(cfqd->queue, rq);
2399 if (!cfqd->active_cic) {
2400 struct cfq_io_context *cic = RQ_CIC(rq);
2402 atomic_long_inc(&cic->ioc->refcount);
2403 cfqd->active_cic = cic;
2406 return true;
2410 * Find the cfqq that we need to service and move a request from that to the
2411 * dispatch list
2413 static int cfq_dispatch_requests(struct request_queue *q, int force)
2415 struct cfq_data *cfqd = q->elevator->elevator_data;
2416 struct cfq_queue *cfqq;
2418 if (!cfqd->busy_queues)
2419 return 0;
2421 if (unlikely(force))
2422 return cfq_forced_dispatch(cfqd);
2424 cfqq = cfq_select_queue(cfqd);
2425 if (!cfqq)
2426 return 0;
2429 * Dispatch a request from this cfqq, if it is allowed
2431 if (!cfq_dispatch_request(cfqd, cfqq))
2432 return 0;
2434 cfqq->slice_dispatch++;
2435 cfq_clear_cfqq_must_dispatch(cfqq);
2438 * expire an async queue immediately if it has used up its slice. idle
2439 * queue always expire after 1 dispatch round.
2441 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2442 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2443 cfq_class_idle(cfqq))) {
2444 cfqq->slice_end = jiffies + 1;
2445 cfq_slice_expired(cfqd, 0);
2448 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2449 return 1;
2453 * task holds one reference to the queue, dropped when task exits. each rq
2454 * in-flight on this queue also holds a reference, dropped when rq is freed.
2456 * Each cfq queue took a reference on the parent group. Drop it now.
2457 * queue lock must be held here.
2459 static void cfq_put_queue(struct cfq_queue *cfqq)
2461 struct cfq_data *cfqd = cfqq->cfqd;
2462 struct cfq_group *cfqg, *orig_cfqg;
2464 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2466 if (!atomic_dec_and_test(&cfqq->ref))
2467 return;
2469 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2470 BUG_ON(rb_first(&cfqq->sort_list));
2471 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2472 cfqg = cfqq->cfqg;
2473 orig_cfqg = cfqq->orig_cfqg;
2475 if (unlikely(cfqd->active_queue == cfqq)) {
2476 __cfq_slice_expired(cfqd, cfqq, 0);
2477 cfq_schedule_dispatch(cfqd);
2480 BUG_ON(cfq_cfqq_on_rr(cfqq));
2481 kmem_cache_free(cfq_pool, cfqq);
2482 cfq_put_cfqg(cfqg);
2483 if (orig_cfqg)
2484 cfq_put_cfqg(orig_cfqg);
2488 * Must always be called with the rcu_read_lock() held
2490 static void
2491 __call_for_each_cic(struct io_context *ioc,
2492 void (*func)(struct io_context *, struct cfq_io_context *))
2494 struct cfq_io_context *cic;
2495 struct hlist_node *n;
2497 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2498 func(ioc, cic);
2502 * Call func for each cic attached to this ioc.
2504 static void
2505 call_for_each_cic(struct io_context *ioc,
2506 void (*func)(struct io_context *, struct cfq_io_context *))
2508 rcu_read_lock();
2509 __call_for_each_cic(ioc, func);
2510 rcu_read_unlock();
2513 static void cfq_cic_free_rcu(struct rcu_head *head)
2515 struct cfq_io_context *cic;
2517 cic = container_of(head, struct cfq_io_context, rcu_head);
2519 kmem_cache_free(cfq_ioc_pool, cic);
2520 elv_ioc_count_dec(cfq_ioc_count);
2522 if (ioc_gone) {
2524 * CFQ scheduler is exiting, grab exit lock and check
2525 * the pending io context count. If it hits zero,
2526 * complete ioc_gone and set it back to NULL
2528 spin_lock(&ioc_gone_lock);
2529 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2530 complete(ioc_gone);
2531 ioc_gone = NULL;
2533 spin_unlock(&ioc_gone_lock);
2537 static void cfq_cic_free(struct cfq_io_context *cic)
2539 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2542 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2544 unsigned long flags;
2545 unsigned long dead_key = (unsigned long) cic->key;
2547 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2549 spin_lock_irqsave(&ioc->lock, flags);
2550 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2551 hlist_del_rcu(&cic->cic_list);
2552 spin_unlock_irqrestore(&ioc->lock, flags);
2554 cfq_cic_free(cic);
2558 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2559 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2560 * and ->trim() which is called with the task lock held
2562 static void cfq_free_io_context(struct io_context *ioc)
2565 * ioc->refcount is zero here, or we are called from elv_unregister(),
2566 * so no more cic's are allowed to be linked into this ioc. So it
2567 * should be ok to iterate over the known list, we will see all cic's
2568 * since no new ones are added.
2570 __call_for_each_cic(ioc, cic_free_func);
2573 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2575 struct cfq_queue *__cfqq, *next;
2578 * If this queue was scheduled to merge with another queue, be
2579 * sure to drop the reference taken on that queue (and others in
2580 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2582 __cfqq = cfqq->new_cfqq;
2583 while (__cfqq) {
2584 if (__cfqq == cfqq) {
2585 WARN(1, "cfqq->new_cfqq loop detected\n");
2586 break;
2588 next = __cfqq->new_cfqq;
2589 cfq_put_queue(__cfqq);
2590 __cfqq = next;
2594 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2596 if (unlikely(cfqq == cfqd->active_queue)) {
2597 __cfq_slice_expired(cfqd, cfqq, 0);
2598 cfq_schedule_dispatch(cfqd);
2601 cfq_put_cooperator(cfqq);
2603 cfq_put_queue(cfqq);
2606 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2607 struct cfq_io_context *cic)
2609 struct io_context *ioc = cic->ioc;
2611 list_del_init(&cic->queue_list);
2614 * Make sure dead mark is seen for dead queues
2616 smp_wmb();
2617 cic->key = cfqd_dead_key(cfqd);
2619 if (ioc->ioc_data == cic)
2620 rcu_assign_pointer(ioc->ioc_data, NULL);
2622 if (cic->cfqq[BLK_RW_ASYNC]) {
2623 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2624 cic->cfqq[BLK_RW_ASYNC] = NULL;
2627 if (cic->cfqq[BLK_RW_SYNC]) {
2628 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2629 cic->cfqq[BLK_RW_SYNC] = NULL;
2633 static void cfq_exit_single_io_context(struct io_context *ioc,
2634 struct cfq_io_context *cic)
2636 struct cfq_data *cfqd = cic_to_cfqd(cic);
2638 if (cfqd) {
2639 struct request_queue *q = cfqd->queue;
2640 unsigned long flags;
2642 spin_lock_irqsave(q->queue_lock, flags);
2645 * Ensure we get a fresh copy of the ->key to prevent
2646 * race between exiting task and queue
2648 smp_read_barrier_depends();
2649 if (cic->key == cfqd)
2650 __cfq_exit_single_io_context(cfqd, cic);
2652 spin_unlock_irqrestore(q->queue_lock, flags);
2657 * The process that ioc belongs to has exited, we need to clean up
2658 * and put the internal structures we have that belongs to that process.
2660 static void cfq_exit_io_context(struct io_context *ioc)
2662 call_for_each_cic(ioc, cfq_exit_single_io_context);
2665 static struct cfq_io_context *
2666 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2668 struct cfq_io_context *cic;
2670 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2671 cfqd->queue->node);
2672 if (cic) {
2673 cic->last_end_request = jiffies;
2674 INIT_LIST_HEAD(&cic->queue_list);
2675 INIT_HLIST_NODE(&cic->cic_list);
2676 cic->dtor = cfq_free_io_context;
2677 cic->exit = cfq_exit_io_context;
2678 elv_ioc_count_inc(cfq_ioc_count);
2681 return cic;
2684 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2686 struct task_struct *tsk = current;
2687 int ioprio_class;
2689 if (!cfq_cfqq_prio_changed(cfqq))
2690 return;
2692 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2693 switch (ioprio_class) {
2694 default:
2695 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2696 case IOPRIO_CLASS_NONE:
2698 * no prio set, inherit CPU scheduling settings
2700 cfqq->ioprio = task_nice_ioprio(tsk);
2701 cfqq->ioprio_class = task_nice_ioclass(tsk);
2702 break;
2703 case IOPRIO_CLASS_RT:
2704 cfqq->ioprio = task_ioprio(ioc);
2705 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2706 break;
2707 case IOPRIO_CLASS_BE:
2708 cfqq->ioprio = task_ioprio(ioc);
2709 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2710 break;
2711 case IOPRIO_CLASS_IDLE:
2712 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2713 cfqq->ioprio = 7;
2714 cfq_clear_cfqq_idle_window(cfqq);
2715 break;
2719 * keep track of original prio settings in case we have to temporarily
2720 * elevate the priority of this queue
2722 cfqq->org_ioprio = cfqq->ioprio;
2723 cfqq->org_ioprio_class = cfqq->ioprio_class;
2724 cfq_clear_cfqq_prio_changed(cfqq);
2727 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2729 struct cfq_data *cfqd = cic_to_cfqd(cic);
2730 struct cfq_queue *cfqq;
2731 unsigned long flags;
2733 if (unlikely(!cfqd))
2734 return;
2736 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2738 cfqq = cic->cfqq[BLK_RW_ASYNC];
2739 if (cfqq) {
2740 struct cfq_queue *new_cfqq;
2741 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2742 GFP_ATOMIC);
2743 if (new_cfqq) {
2744 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2745 cfq_put_queue(cfqq);
2749 cfqq = cic->cfqq[BLK_RW_SYNC];
2750 if (cfqq)
2751 cfq_mark_cfqq_prio_changed(cfqq);
2753 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2756 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2758 call_for_each_cic(ioc, changed_ioprio);
2759 ioc->ioprio_changed = 0;
2762 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2763 pid_t pid, bool is_sync)
2765 RB_CLEAR_NODE(&cfqq->rb_node);
2766 RB_CLEAR_NODE(&cfqq->p_node);
2767 INIT_LIST_HEAD(&cfqq->fifo);
2769 atomic_set(&cfqq->ref, 0);
2770 cfqq->cfqd = cfqd;
2772 cfq_mark_cfqq_prio_changed(cfqq);
2774 if (is_sync) {
2775 if (!cfq_class_idle(cfqq))
2776 cfq_mark_cfqq_idle_window(cfqq);
2777 cfq_mark_cfqq_sync(cfqq);
2779 cfqq->pid = pid;
2782 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2783 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2785 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2786 struct cfq_data *cfqd = cic_to_cfqd(cic);
2787 unsigned long flags;
2788 struct request_queue *q;
2790 if (unlikely(!cfqd))
2791 return;
2793 q = cfqd->queue;
2795 spin_lock_irqsave(q->queue_lock, flags);
2797 if (sync_cfqq) {
2799 * Drop reference to sync queue. A new sync queue will be
2800 * assigned in new group upon arrival of a fresh request.
2802 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2803 cic_set_cfqq(cic, NULL, 1);
2804 cfq_put_queue(sync_cfqq);
2807 spin_unlock_irqrestore(q->queue_lock, flags);
2810 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2812 call_for_each_cic(ioc, changed_cgroup);
2813 ioc->cgroup_changed = 0;
2815 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2817 static struct cfq_queue *
2818 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2819 struct io_context *ioc, gfp_t gfp_mask)
2821 struct cfq_queue *cfqq, *new_cfqq = NULL;
2822 struct cfq_io_context *cic;
2823 struct cfq_group *cfqg;
2825 retry:
2826 cfqg = cfq_get_cfqg(cfqd, 1);
2827 cic = cfq_cic_lookup(cfqd, ioc);
2828 /* cic always exists here */
2829 cfqq = cic_to_cfqq(cic, is_sync);
2832 * Always try a new alloc if we fell back to the OOM cfqq
2833 * originally, since it should just be a temporary situation.
2835 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2836 cfqq = NULL;
2837 if (new_cfqq) {
2838 cfqq = new_cfqq;
2839 new_cfqq = NULL;
2840 } else if (gfp_mask & __GFP_WAIT) {
2841 spin_unlock_irq(cfqd->queue->queue_lock);
2842 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2843 gfp_mask | __GFP_ZERO,
2844 cfqd->queue->node);
2845 spin_lock_irq(cfqd->queue->queue_lock);
2846 if (new_cfqq)
2847 goto retry;
2848 } else {
2849 cfqq = kmem_cache_alloc_node(cfq_pool,
2850 gfp_mask | __GFP_ZERO,
2851 cfqd->queue->node);
2854 if (cfqq) {
2855 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2856 cfq_init_prio_data(cfqq, ioc);
2857 cfq_link_cfqq_cfqg(cfqq, cfqg);
2858 cfq_log_cfqq(cfqd, cfqq, "alloced");
2859 } else
2860 cfqq = &cfqd->oom_cfqq;
2863 if (new_cfqq)
2864 kmem_cache_free(cfq_pool, new_cfqq);
2866 return cfqq;
2869 static struct cfq_queue **
2870 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2872 switch (ioprio_class) {
2873 case IOPRIO_CLASS_RT:
2874 return &cfqd->async_cfqq[0][ioprio];
2875 case IOPRIO_CLASS_BE:
2876 return &cfqd->async_cfqq[1][ioprio];
2877 case IOPRIO_CLASS_IDLE:
2878 return &cfqd->async_idle_cfqq;
2879 default:
2880 BUG();
2884 static struct cfq_queue *
2885 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2886 gfp_t gfp_mask)
2888 const int ioprio = task_ioprio(ioc);
2889 const int ioprio_class = task_ioprio_class(ioc);
2890 struct cfq_queue **async_cfqq = NULL;
2891 struct cfq_queue *cfqq = NULL;
2893 if (!is_sync) {
2894 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2895 cfqq = *async_cfqq;
2898 if (!cfqq)
2899 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2902 * pin the queue now that it's allocated, scheduler exit will prune it
2904 if (!is_sync && !(*async_cfqq)) {
2905 atomic_inc(&cfqq->ref);
2906 *async_cfqq = cfqq;
2909 atomic_inc(&cfqq->ref);
2910 return cfqq;
2914 * We drop cfq io contexts lazily, so we may find a dead one.
2916 static void
2917 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2918 struct cfq_io_context *cic)
2920 unsigned long flags;
2922 WARN_ON(!list_empty(&cic->queue_list));
2923 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2925 spin_lock_irqsave(&ioc->lock, flags);
2927 BUG_ON(ioc->ioc_data == cic);
2929 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2930 hlist_del_rcu(&cic->cic_list);
2931 spin_unlock_irqrestore(&ioc->lock, flags);
2933 cfq_cic_free(cic);
2936 static struct cfq_io_context *
2937 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2939 struct cfq_io_context *cic;
2940 unsigned long flags;
2942 if (unlikely(!ioc))
2943 return NULL;
2945 rcu_read_lock();
2948 * we maintain a last-hit cache, to avoid browsing over the tree
2950 cic = rcu_dereference(ioc->ioc_data);
2951 if (cic && cic->key == cfqd) {
2952 rcu_read_unlock();
2953 return cic;
2956 do {
2957 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
2958 rcu_read_unlock();
2959 if (!cic)
2960 break;
2961 if (unlikely(cic->key != cfqd)) {
2962 cfq_drop_dead_cic(cfqd, ioc, cic);
2963 rcu_read_lock();
2964 continue;
2967 spin_lock_irqsave(&ioc->lock, flags);
2968 rcu_assign_pointer(ioc->ioc_data, cic);
2969 spin_unlock_irqrestore(&ioc->lock, flags);
2970 break;
2971 } while (1);
2973 return cic;
2977 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2978 * the process specific cfq io context when entered from the block layer.
2979 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2981 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2982 struct cfq_io_context *cic, gfp_t gfp_mask)
2984 unsigned long flags;
2985 int ret;
2987 ret = radix_tree_preload(gfp_mask);
2988 if (!ret) {
2989 cic->ioc = ioc;
2990 cic->key = cfqd;
2992 spin_lock_irqsave(&ioc->lock, flags);
2993 ret = radix_tree_insert(&ioc->radix_root,
2994 cfqd->cic_index, cic);
2995 if (!ret)
2996 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2997 spin_unlock_irqrestore(&ioc->lock, flags);
2999 radix_tree_preload_end();
3001 if (!ret) {
3002 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3003 list_add(&cic->queue_list, &cfqd->cic_list);
3004 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3008 if (ret)
3009 printk(KERN_ERR "cfq: cic link failed!\n");
3011 return ret;
3015 * Setup general io context and cfq io context. There can be several cfq
3016 * io contexts per general io context, if this process is doing io to more
3017 * than one device managed by cfq.
3019 static struct cfq_io_context *
3020 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3022 struct io_context *ioc = NULL;
3023 struct cfq_io_context *cic;
3025 might_sleep_if(gfp_mask & __GFP_WAIT);
3027 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3028 if (!ioc)
3029 return NULL;
3031 cic = cfq_cic_lookup(cfqd, ioc);
3032 if (cic)
3033 goto out;
3035 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3036 if (cic == NULL)
3037 goto err;
3039 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3040 goto err_free;
3042 out:
3043 smp_read_barrier_depends();
3044 if (unlikely(ioc->ioprio_changed))
3045 cfq_ioc_set_ioprio(ioc);
3047 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3048 if (unlikely(ioc->cgroup_changed))
3049 cfq_ioc_set_cgroup(ioc);
3050 #endif
3051 return cic;
3052 err_free:
3053 cfq_cic_free(cic);
3054 err:
3055 put_io_context(ioc);
3056 return NULL;
3059 static void
3060 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3062 unsigned long elapsed = jiffies - cic->last_end_request;
3063 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3065 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3066 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3067 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3070 static void
3071 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3072 struct request *rq)
3074 sector_t sdist = 0;
3075 sector_t n_sec = blk_rq_sectors(rq);
3076 if (cfqq->last_request_pos) {
3077 if (cfqq->last_request_pos < blk_rq_pos(rq))
3078 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3079 else
3080 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3083 cfqq->seek_history <<= 1;
3084 if (blk_queue_nonrot(cfqd->queue))
3085 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3086 else
3087 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3091 * Disable idle window if the process thinks too long or seeks so much that
3092 * it doesn't matter
3094 static void
3095 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3096 struct cfq_io_context *cic)
3098 int old_idle, enable_idle;
3101 * Don't idle for async or idle io prio class
3103 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3104 return;
3106 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3108 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3109 cfq_mark_cfqq_deep(cfqq);
3111 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3112 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3113 enable_idle = 0;
3114 else if (sample_valid(cic->ttime_samples)) {
3115 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3116 enable_idle = 0;
3117 else
3118 enable_idle = 1;
3121 if (old_idle != enable_idle) {
3122 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3123 if (enable_idle)
3124 cfq_mark_cfqq_idle_window(cfqq);
3125 else
3126 cfq_clear_cfqq_idle_window(cfqq);
3131 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3132 * no or if we aren't sure, a 1 will cause a preempt.
3134 static bool
3135 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3136 struct request *rq)
3138 struct cfq_queue *cfqq;
3140 cfqq = cfqd->active_queue;
3141 if (!cfqq)
3142 return false;
3144 if (cfq_class_idle(new_cfqq))
3145 return false;
3147 if (cfq_class_idle(cfqq))
3148 return true;
3151 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3153 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3154 return false;
3157 * if the new request is sync, but the currently running queue is
3158 * not, let the sync request have priority.
3160 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3161 return true;
3163 if (new_cfqq->cfqg != cfqq->cfqg)
3164 return false;
3166 if (cfq_slice_used(cfqq))
3167 return true;
3169 /* Allow preemption only if we are idling on sync-noidle tree */
3170 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3171 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3172 new_cfqq->service_tree->count == 2 &&
3173 RB_EMPTY_ROOT(&cfqq->sort_list))
3174 return true;
3177 * So both queues are sync. Let the new request get disk time if
3178 * it's a metadata request and the current queue is doing regular IO.
3180 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3181 return true;
3184 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3186 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3187 return true;
3189 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3190 return false;
3193 * if this request is as-good as one we would expect from the
3194 * current cfqq, let it preempt
3196 if (cfq_rq_close(cfqd, cfqq, rq))
3197 return true;
3199 return false;
3203 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3204 * let it have half of its nominal slice.
3206 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3208 cfq_log_cfqq(cfqd, cfqq, "preempt");
3209 cfq_slice_expired(cfqd, 1);
3212 * Put the new queue at the front of the of the current list,
3213 * so we know that it will be selected next.
3215 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3217 cfq_service_tree_add(cfqd, cfqq, 1);
3219 cfqq->slice_end = 0;
3220 cfq_mark_cfqq_slice_new(cfqq);
3224 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3225 * something we should do about it
3227 static void
3228 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3229 struct request *rq)
3231 struct cfq_io_context *cic = RQ_CIC(rq);
3233 cfqd->rq_queued++;
3234 if (rq->cmd_flags & REQ_META)
3235 cfqq->meta_pending++;
3237 cfq_update_io_thinktime(cfqd, cic);
3238 cfq_update_io_seektime(cfqd, cfqq, rq);
3239 cfq_update_idle_window(cfqd, cfqq, cic);
3241 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3243 if (cfqq == cfqd->active_queue) {
3245 * Remember that we saw a request from this process, but
3246 * don't start queuing just yet. Otherwise we risk seeing lots
3247 * of tiny requests, because we disrupt the normal plugging
3248 * and merging. If the request is already larger than a single
3249 * page, let it rip immediately. For that case we assume that
3250 * merging is already done. Ditto for a busy system that
3251 * has other work pending, don't risk delaying until the
3252 * idle timer unplug to continue working.
3254 if (cfq_cfqq_wait_request(cfqq)) {
3255 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3256 cfqd->busy_queues > 1) {
3257 cfq_del_timer(cfqd, cfqq);
3258 cfq_clear_cfqq_wait_request(cfqq);
3259 __blk_run_queue(cfqd->queue);
3260 } else {
3261 cfq_blkiocg_update_idle_time_stats(
3262 &cfqq->cfqg->blkg);
3263 cfq_mark_cfqq_must_dispatch(cfqq);
3266 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3268 * not the active queue - expire current slice if it is
3269 * idle and has expired it's mean thinktime or this new queue
3270 * has some old slice time left and is of higher priority or
3271 * this new queue is RT and the current one is BE
3273 cfq_preempt_queue(cfqd, cfqq);
3274 __blk_run_queue(cfqd->queue);
3278 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3280 struct cfq_data *cfqd = q->elevator->elevator_data;
3281 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3283 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3284 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3286 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3287 list_add_tail(&rq->queuelist, &cfqq->fifo);
3288 cfq_add_rq_rb(rq);
3289 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3290 &cfqd->serving_group->blkg, rq_data_dir(rq),
3291 rq_is_sync(rq));
3292 cfq_rq_enqueued(cfqd, cfqq, rq);
3296 * Update hw_tag based on peak queue depth over 50 samples under
3297 * sufficient load.
3299 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3301 struct cfq_queue *cfqq = cfqd->active_queue;
3303 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3304 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3306 if (cfqd->hw_tag == 1)
3307 return;
3309 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3310 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3311 return;
3314 * If active queue hasn't enough requests and can idle, cfq might not
3315 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3316 * case
3318 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3319 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3320 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3321 return;
3323 if (cfqd->hw_tag_samples++ < 50)
3324 return;
3326 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3327 cfqd->hw_tag = 1;
3328 else
3329 cfqd->hw_tag = 0;
3332 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3334 struct cfq_io_context *cic = cfqd->active_cic;
3336 /* If there are other queues in the group, don't wait */
3337 if (cfqq->cfqg->nr_cfqq > 1)
3338 return false;
3340 if (cfq_slice_used(cfqq))
3341 return true;
3343 /* if slice left is less than think time, wait busy */
3344 if (cic && sample_valid(cic->ttime_samples)
3345 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3346 return true;
3349 * If think times is less than a jiffy than ttime_mean=0 and above
3350 * will not be true. It might happen that slice has not expired yet
3351 * but will expire soon (4-5 ns) during select_queue(). To cover the
3352 * case where think time is less than a jiffy, mark the queue wait
3353 * busy if only 1 jiffy is left in the slice.
3355 if (cfqq->slice_end - jiffies == 1)
3356 return true;
3358 return false;
3361 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3363 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3364 struct cfq_data *cfqd = cfqq->cfqd;
3365 const int sync = rq_is_sync(rq);
3366 unsigned long now;
3368 now = jiffies;
3369 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3370 !!(rq->cmd_flags & REQ_NOIDLE));
3372 cfq_update_hw_tag(cfqd);
3374 WARN_ON(!cfqd->rq_in_driver);
3375 WARN_ON(!cfqq->dispatched);
3376 cfqd->rq_in_driver--;
3377 cfqq->dispatched--;
3378 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3379 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3380 rq_data_dir(rq), rq_is_sync(rq));
3382 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3384 if (sync) {
3385 RQ_CIC(rq)->last_end_request = now;
3386 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3387 cfqd->last_delayed_sync = now;
3391 * If this is the active queue, check if it needs to be expired,
3392 * or if we want to idle in case it has no pending requests.
3394 if (cfqd->active_queue == cfqq) {
3395 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3397 if (cfq_cfqq_slice_new(cfqq)) {
3398 cfq_set_prio_slice(cfqd, cfqq);
3399 cfq_clear_cfqq_slice_new(cfqq);
3403 * Should we wait for next request to come in before we expire
3404 * the queue.
3406 if (cfq_should_wait_busy(cfqd, cfqq)) {
3407 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3408 cfq_mark_cfqq_wait_busy(cfqq);
3409 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3413 * Idling is not enabled on:
3414 * - expired queues
3415 * - idle-priority queues
3416 * - async queues
3417 * - queues with still some requests queued
3418 * - when there is a close cooperator
3420 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3421 cfq_slice_expired(cfqd, 1);
3422 else if (sync && cfqq_empty &&
3423 !cfq_close_cooperator(cfqd, cfqq)) {
3424 cfqd->noidle_tree_requires_idle |=
3425 !(rq->cmd_flags & REQ_NOIDLE);
3427 * Idling is enabled for SYNC_WORKLOAD.
3428 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3429 * only if we processed at least one !REQ_NOIDLE request
3431 if (cfqd->serving_type == SYNC_WORKLOAD
3432 || cfqd->noidle_tree_requires_idle
3433 || cfqq->cfqg->nr_cfqq == 1)
3434 cfq_arm_slice_timer(cfqd);
3438 if (!cfqd->rq_in_driver)
3439 cfq_schedule_dispatch(cfqd);
3443 * we temporarily boost lower priority queues if they are holding fs exclusive
3444 * resources. they are boosted to normal prio (CLASS_BE/4)
3446 static void cfq_prio_boost(struct cfq_queue *cfqq)
3448 if (has_fs_excl()) {
3450 * boost idle prio on transactions that would lock out other
3451 * users of the filesystem
3453 if (cfq_class_idle(cfqq))
3454 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3455 if (cfqq->ioprio > IOPRIO_NORM)
3456 cfqq->ioprio = IOPRIO_NORM;
3457 } else {
3459 * unboost the queue (if needed)
3461 cfqq->ioprio_class = cfqq->org_ioprio_class;
3462 cfqq->ioprio = cfqq->org_ioprio;
3466 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3468 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3469 cfq_mark_cfqq_must_alloc_slice(cfqq);
3470 return ELV_MQUEUE_MUST;
3473 return ELV_MQUEUE_MAY;
3476 static int cfq_may_queue(struct request_queue *q, int rw)
3478 struct cfq_data *cfqd = q->elevator->elevator_data;
3479 struct task_struct *tsk = current;
3480 struct cfq_io_context *cic;
3481 struct cfq_queue *cfqq;
3484 * don't force setup of a queue from here, as a call to may_queue
3485 * does not necessarily imply that a request actually will be queued.
3486 * so just lookup a possibly existing queue, or return 'may queue'
3487 * if that fails
3489 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3490 if (!cic)
3491 return ELV_MQUEUE_MAY;
3493 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3494 if (cfqq) {
3495 cfq_init_prio_data(cfqq, cic->ioc);
3496 cfq_prio_boost(cfqq);
3498 return __cfq_may_queue(cfqq);
3501 return ELV_MQUEUE_MAY;
3505 * queue lock held here
3507 static void cfq_put_request(struct request *rq)
3509 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3511 if (cfqq) {
3512 const int rw = rq_data_dir(rq);
3514 BUG_ON(!cfqq->allocated[rw]);
3515 cfqq->allocated[rw]--;
3517 put_io_context(RQ_CIC(rq)->ioc);
3519 rq->elevator_private = NULL;
3520 rq->elevator_private2 = NULL;
3522 /* Put down rq reference on cfqg */
3523 cfq_put_cfqg(RQ_CFQG(rq));
3524 rq->elevator_private3 = NULL;
3526 cfq_put_queue(cfqq);
3530 static struct cfq_queue *
3531 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3532 struct cfq_queue *cfqq)
3534 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3535 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3536 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3537 cfq_put_queue(cfqq);
3538 return cic_to_cfqq(cic, 1);
3542 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3543 * was the last process referring to said cfqq.
3545 static struct cfq_queue *
3546 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3548 if (cfqq_process_refs(cfqq) == 1) {
3549 cfqq->pid = current->pid;
3550 cfq_clear_cfqq_coop(cfqq);
3551 cfq_clear_cfqq_split_coop(cfqq);
3552 return cfqq;
3555 cic_set_cfqq(cic, NULL, 1);
3557 cfq_put_cooperator(cfqq);
3559 cfq_put_queue(cfqq);
3560 return NULL;
3563 * Allocate cfq data structures associated with this request.
3565 static int
3566 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3568 struct cfq_data *cfqd = q->elevator->elevator_data;
3569 struct cfq_io_context *cic;
3570 const int rw = rq_data_dir(rq);
3571 const bool is_sync = rq_is_sync(rq);
3572 struct cfq_queue *cfqq;
3573 unsigned long flags;
3575 might_sleep_if(gfp_mask & __GFP_WAIT);
3577 cic = cfq_get_io_context(cfqd, gfp_mask);
3579 spin_lock_irqsave(q->queue_lock, flags);
3581 if (!cic)
3582 goto queue_fail;
3584 new_queue:
3585 cfqq = cic_to_cfqq(cic, is_sync);
3586 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3587 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3588 cic_set_cfqq(cic, cfqq, is_sync);
3589 } else {
3591 * If the queue was seeky for too long, break it apart.
3593 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3594 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3595 cfqq = split_cfqq(cic, cfqq);
3596 if (!cfqq)
3597 goto new_queue;
3601 * Check to see if this queue is scheduled to merge with
3602 * another, closely cooperating queue. The merging of
3603 * queues happens here as it must be done in process context.
3604 * The reference on new_cfqq was taken in merge_cfqqs.
3606 if (cfqq->new_cfqq)
3607 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3610 cfqq->allocated[rw]++;
3611 atomic_inc(&cfqq->ref);
3613 spin_unlock_irqrestore(q->queue_lock, flags);
3615 rq->elevator_private = cic;
3616 rq->elevator_private2 = cfqq;
3617 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3618 return 0;
3620 queue_fail:
3621 if (cic)
3622 put_io_context(cic->ioc);
3624 cfq_schedule_dispatch(cfqd);
3625 spin_unlock_irqrestore(q->queue_lock, flags);
3626 cfq_log(cfqd, "set_request fail");
3627 return 1;
3630 static void cfq_kick_queue(struct work_struct *work)
3632 struct cfq_data *cfqd =
3633 container_of(work, struct cfq_data, unplug_work);
3634 struct request_queue *q = cfqd->queue;
3636 spin_lock_irq(q->queue_lock);
3637 __blk_run_queue(cfqd->queue);
3638 spin_unlock_irq(q->queue_lock);
3642 * Timer running if the active_queue is currently idling inside its time slice
3644 static void cfq_idle_slice_timer(unsigned long data)
3646 struct cfq_data *cfqd = (struct cfq_data *) data;
3647 struct cfq_queue *cfqq;
3648 unsigned long flags;
3649 int timed_out = 1;
3651 cfq_log(cfqd, "idle timer fired");
3653 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3655 cfqq = cfqd->active_queue;
3656 if (cfqq) {
3657 timed_out = 0;
3660 * We saw a request before the queue expired, let it through
3662 if (cfq_cfqq_must_dispatch(cfqq))
3663 goto out_kick;
3666 * expired
3668 if (cfq_slice_used(cfqq))
3669 goto expire;
3672 * only expire and reinvoke request handler, if there are
3673 * other queues with pending requests
3675 if (!cfqd->busy_queues)
3676 goto out_cont;
3679 * not expired and it has a request pending, let it dispatch
3681 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3682 goto out_kick;
3685 * Queue depth flag is reset only when the idle didn't succeed
3687 cfq_clear_cfqq_deep(cfqq);
3689 expire:
3690 cfq_slice_expired(cfqd, timed_out);
3691 out_kick:
3692 cfq_schedule_dispatch(cfqd);
3693 out_cont:
3694 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3697 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3699 del_timer_sync(&cfqd->idle_slice_timer);
3700 cancel_work_sync(&cfqd->unplug_work);
3703 static void cfq_put_async_queues(struct cfq_data *cfqd)
3705 int i;
3707 for (i = 0; i < IOPRIO_BE_NR; i++) {
3708 if (cfqd->async_cfqq[0][i])
3709 cfq_put_queue(cfqd->async_cfqq[0][i]);
3710 if (cfqd->async_cfqq[1][i])
3711 cfq_put_queue(cfqd->async_cfqq[1][i]);
3714 if (cfqd->async_idle_cfqq)
3715 cfq_put_queue(cfqd->async_idle_cfqq);
3718 static void cfq_cfqd_free(struct rcu_head *head)
3720 kfree(container_of(head, struct cfq_data, rcu));
3723 static void cfq_exit_queue(struct elevator_queue *e)
3725 struct cfq_data *cfqd = e->elevator_data;
3726 struct request_queue *q = cfqd->queue;
3728 cfq_shutdown_timer_wq(cfqd);
3730 spin_lock_irq(q->queue_lock);
3732 if (cfqd->active_queue)
3733 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3735 while (!list_empty(&cfqd->cic_list)) {
3736 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3737 struct cfq_io_context,
3738 queue_list);
3740 __cfq_exit_single_io_context(cfqd, cic);
3743 cfq_put_async_queues(cfqd);
3744 cfq_release_cfq_groups(cfqd);
3745 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3747 spin_unlock_irq(q->queue_lock);
3749 cfq_shutdown_timer_wq(cfqd);
3751 spin_lock(&cic_index_lock);
3752 ida_remove(&cic_index_ida, cfqd->cic_index);
3753 spin_unlock(&cic_index_lock);
3755 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3756 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3759 static int cfq_alloc_cic_index(void)
3761 int index, error;
3763 do {
3764 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3765 return -ENOMEM;
3767 spin_lock(&cic_index_lock);
3768 error = ida_get_new(&cic_index_ida, &index);
3769 spin_unlock(&cic_index_lock);
3770 if (error && error != -EAGAIN)
3771 return error;
3772 } while (error);
3774 return index;
3777 static void *cfq_init_queue(struct request_queue *q)
3779 struct cfq_data *cfqd;
3780 int i, j;
3781 struct cfq_group *cfqg;
3782 struct cfq_rb_root *st;
3784 i = cfq_alloc_cic_index();
3785 if (i < 0)
3786 return NULL;
3788 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3789 if (!cfqd)
3790 return NULL;
3792 cfqd->cic_index = i;
3794 /* Init root service tree */
3795 cfqd->grp_service_tree = CFQ_RB_ROOT;
3797 /* Init root group */
3798 cfqg = &cfqd->root_group;
3799 for_each_cfqg_st(cfqg, i, j, st)
3800 *st = CFQ_RB_ROOT;
3801 RB_CLEAR_NODE(&cfqg->rb_node);
3803 /* Give preference to root group over other groups */
3804 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3806 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3808 * Take a reference to root group which we never drop. This is just
3809 * to make sure that cfq_put_cfqg() does not try to kfree root group
3811 atomic_set(&cfqg->ref, 1);
3812 rcu_read_lock();
3813 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3814 (void *)cfqd, 0);
3815 rcu_read_unlock();
3816 #endif
3818 * Not strictly needed (since RB_ROOT just clears the node and we
3819 * zeroed cfqd on alloc), but better be safe in case someone decides
3820 * to add magic to the rb code
3822 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3823 cfqd->prio_trees[i] = RB_ROOT;
3826 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3827 * Grab a permanent reference to it, so that the normal code flow
3828 * will not attempt to free it.
3830 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3831 atomic_inc(&cfqd->oom_cfqq.ref);
3832 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3834 INIT_LIST_HEAD(&cfqd->cic_list);
3836 cfqd->queue = q;
3838 init_timer(&cfqd->idle_slice_timer);
3839 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3840 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3842 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3844 cfqd->cfq_quantum = cfq_quantum;
3845 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3846 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3847 cfqd->cfq_back_max = cfq_back_max;
3848 cfqd->cfq_back_penalty = cfq_back_penalty;
3849 cfqd->cfq_slice[0] = cfq_slice_async;
3850 cfqd->cfq_slice[1] = cfq_slice_sync;
3851 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3852 cfqd->cfq_slice_idle = cfq_slice_idle;
3853 cfqd->cfq_latency = 1;
3854 cfqd->cfq_group_isolation = 0;
3855 cfqd->hw_tag = -1;
3857 * we optimistically start assuming sync ops weren't delayed in last
3858 * second, in order to have larger depth for async operations.
3860 cfqd->last_delayed_sync = jiffies - HZ;
3861 return cfqd;
3864 static void cfq_slab_kill(void)
3867 * Caller already ensured that pending RCU callbacks are completed,
3868 * so we should have no busy allocations at this point.
3870 if (cfq_pool)
3871 kmem_cache_destroy(cfq_pool);
3872 if (cfq_ioc_pool)
3873 kmem_cache_destroy(cfq_ioc_pool);
3876 static int __init cfq_slab_setup(void)
3878 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3879 if (!cfq_pool)
3880 goto fail;
3882 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3883 if (!cfq_ioc_pool)
3884 goto fail;
3886 return 0;
3887 fail:
3888 cfq_slab_kill();
3889 return -ENOMEM;
3893 * sysfs parts below -->
3895 static ssize_t
3896 cfq_var_show(unsigned int var, char *page)
3898 return sprintf(page, "%d\n", var);
3901 static ssize_t
3902 cfq_var_store(unsigned int *var, const char *page, size_t count)
3904 char *p = (char *) page;
3906 *var = simple_strtoul(p, &p, 10);
3907 return count;
3910 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3911 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3913 struct cfq_data *cfqd = e->elevator_data; \
3914 unsigned int __data = __VAR; \
3915 if (__CONV) \
3916 __data = jiffies_to_msecs(__data); \
3917 return cfq_var_show(__data, (page)); \
3919 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3920 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3921 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3922 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3923 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3924 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3925 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3926 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3927 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3928 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3929 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3930 #undef SHOW_FUNCTION
3932 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3933 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3935 struct cfq_data *cfqd = e->elevator_data; \
3936 unsigned int __data; \
3937 int ret = cfq_var_store(&__data, (page), count); \
3938 if (__data < (MIN)) \
3939 __data = (MIN); \
3940 else if (__data > (MAX)) \
3941 __data = (MAX); \
3942 if (__CONV) \
3943 *(__PTR) = msecs_to_jiffies(__data); \
3944 else \
3945 *(__PTR) = __data; \
3946 return ret; \
3948 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3949 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3950 UINT_MAX, 1);
3951 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3952 UINT_MAX, 1);
3953 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3954 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3955 UINT_MAX, 0);
3956 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3957 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3958 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3959 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3960 UINT_MAX, 0);
3961 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3962 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3963 #undef STORE_FUNCTION
3965 #define CFQ_ATTR(name) \
3966 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3968 static struct elv_fs_entry cfq_attrs[] = {
3969 CFQ_ATTR(quantum),
3970 CFQ_ATTR(fifo_expire_sync),
3971 CFQ_ATTR(fifo_expire_async),
3972 CFQ_ATTR(back_seek_max),
3973 CFQ_ATTR(back_seek_penalty),
3974 CFQ_ATTR(slice_sync),
3975 CFQ_ATTR(slice_async),
3976 CFQ_ATTR(slice_async_rq),
3977 CFQ_ATTR(slice_idle),
3978 CFQ_ATTR(low_latency),
3979 CFQ_ATTR(group_isolation),
3980 __ATTR_NULL
3983 static struct elevator_type iosched_cfq = {
3984 .ops = {
3985 .elevator_merge_fn = cfq_merge,
3986 .elevator_merged_fn = cfq_merged_request,
3987 .elevator_merge_req_fn = cfq_merged_requests,
3988 .elevator_allow_merge_fn = cfq_allow_merge,
3989 .elevator_bio_merged_fn = cfq_bio_merged,
3990 .elevator_dispatch_fn = cfq_dispatch_requests,
3991 .elevator_add_req_fn = cfq_insert_request,
3992 .elevator_activate_req_fn = cfq_activate_request,
3993 .elevator_deactivate_req_fn = cfq_deactivate_request,
3994 .elevator_queue_empty_fn = cfq_queue_empty,
3995 .elevator_completed_req_fn = cfq_completed_request,
3996 .elevator_former_req_fn = elv_rb_former_request,
3997 .elevator_latter_req_fn = elv_rb_latter_request,
3998 .elevator_set_req_fn = cfq_set_request,
3999 .elevator_put_req_fn = cfq_put_request,
4000 .elevator_may_queue_fn = cfq_may_queue,
4001 .elevator_init_fn = cfq_init_queue,
4002 .elevator_exit_fn = cfq_exit_queue,
4003 .trim = cfq_free_io_context,
4005 .elevator_attrs = cfq_attrs,
4006 .elevator_name = "cfq",
4007 .elevator_owner = THIS_MODULE,
4010 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4011 static struct blkio_policy_type blkio_policy_cfq = {
4012 .ops = {
4013 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4014 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4017 #else
4018 static struct blkio_policy_type blkio_policy_cfq;
4019 #endif
4021 static int __init cfq_init(void)
4024 * could be 0 on HZ < 1000 setups
4026 if (!cfq_slice_async)
4027 cfq_slice_async = 1;
4028 if (!cfq_slice_idle)
4029 cfq_slice_idle = 1;
4031 if (cfq_slab_setup())
4032 return -ENOMEM;
4034 elv_register(&iosched_cfq);
4035 blkio_policy_register(&blkio_policy_cfq);
4037 return 0;
4040 static void __exit cfq_exit(void)
4042 DECLARE_COMPLETION_ONSTACK(all_gone);
4043 blkio_policy_unregister(&blkio_policy_cfq);
4044 elv_unregister(&iosched_cfq);
4045 ioc_gone = &all_gone;
4046 /* ioc_gone's update must be visible before reading ioc_count */
4047 smp_wmb();
4050 * this also protects us from entering cfq_slab_kill() with
4051 * pending RCU callbacks
4053 if (elv_ioc_count_read(cfq_ioc_count))
4054 wait_for_completion(&all_gone);
4055 ida_destroy(&cic_index_ida);
4056 cfq_slab_kill();
4059 module_init(cfq_init);
4060 module_exit(cfq_exit);
4062 MODULE_AUTHOR("Jens Axboe");
4063 MODULE_LICENSE("GPL");
4064 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");