2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
29 #include "extent_map.h"
31 #include "transaction.h"
32 #include "print-tree.h"
34 #include "async-thread.h"
36 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 struct btrfs_device
*device
);
39 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
41 static DEFINE_MUTEX(uuid_mutex
);
42 static LIST_HEAD(fs_uuids
);
44 static void lock_chunks(struct btrfs_root
*root
)
46 mutex_lock(&root
->fs_info
->chunk_mutex
);
49 static void unlock_chunks(struct btrfs_root
*root
)
51 mutex_unlock(&root
->fs_info
->chunk_mutex
);
54 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
56 struct btrfs_device
*device
;
57 WARN_ON(fs_devices
->opened
);
58 while (!list_empty(&fs_devices
->devices
)) {
59 device
= list_entry(fs_devices
->devices
.next
,
60 struct btrfs_device
, dev_list
);
61 list_del(&device
->dev_list
);
68 int btrfs_cleanup_fs_uuids(void)
70 struct btrfs_fs_devices
*fs_devices
;
72 while (!list_empty(&fs_uuids
)) {
73 fs_devices
= list_entry(fs_uuids
.next
,
74 struct btrfs_fs_devices
, list
);
75 list_del(&fs_devices
->list
);
76 free_fs_devices(fs_devices
);
81 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
84 struct btrfs_device
*dev
;
86 list_for_each_entry(dev
, head
, dev_list
) {
87 if (dev
->devid
== devid
&&
88 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
95 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
97 struct btrfs_fs_devices
*fs_devices
;
99 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
100 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
106 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
107 struct bio
*head
, struct bio
*tail
)
110 struct bio
*old_head
;
112 old_head
= pending_bios
->head
;
113 pending_bios
->head
= head
;
114 if (pending_bios
->tail
)
115 tail
->bi_next
= old_head
;
117 pending_bios
->tail
= tail
;
121 * we try to collect pending bios for a device so we don't get a large
122 * number of procs sending bios down to the same device. This greatly
123 * improves the schedulers ability to collect and merge the bios.
125 * But, it also turns into a long list of bios to process and that is sure
126 * to eventually make the worker thread block. The solution here is to
127 * make some progress and then put this work struct back at the end of
128 * the list if the block device is congested. This way, multiple devices
129 * can make progress from a single worker thread.
131 static noinline
int run_scheduled_bios(struct btrfs_device
*device
)
134 struct backing_dev_info
*bdi
;
135 struct btrfs_fs_info
*fs_info
;
136 struct btrfs_pending_bios
*pending_bios
;
140 unsigned long num_run
;
141 unsigned long batch_run
= 0;
143 unsigned long last_waited
= 0;
145 struct blk_plug plug
;
148 * this function runs all the bios we've collected for
149 * a particular device. We don't want to wander off to
150 * another device without first sending all of these down.
151 * So, setup a plug here and finish it off before we return
153 blk_start_plug(&plug
);
155 bdi
= blk_get_backing_dev_info(device
->bdev
);
156 fs_info
= device
->dev_root
->fs_info
;
157 limit
= btrfs_async_submit_limit(fs_info
);
158 limit
= limit
* 2 / 3;
161 spin_lock(&device
->io_lock
);
166 /* take all the bios off the list at once and process them
167 * later on (without the lock held). But, remember the
168 * tail and other pointers so the bios can be properly reinserted
169 * into the list if we hit congestion
171 if (!force_reg
&& device
->pending_sync_bios
.head
) {
172 pending_bios
= &device
->pending_sync_bios
;
175 pending_bios
= &device
->pending_bios
;
179 pending
= pending_bios
->head
;
180 tail
= pending_bios
->tail
;
181 WARN_ON(pending
&& !tail
);
184 * if pending was null this time around, no bios need processing
185 * at all and we can stop. Otherwise it'll loop back up again
186 * and do an additional check so no bios are missed.
188 * device->running_pending is used to synchronize with the
191 if (device
->pending_sync_bios
.head
== NULL
&&
192 device
->pending_bios
.head
== NULL
) {
194 device
->running_pending
= 0;
197 device
->running_pending
= 1;
200 pending_bios
->head
= NULL
;
201 pending_bios
->tail
= NULL
;
203 spin_unlock(&device
->io_lock
);
208 /* we want to work on both lists, but do more bios on the
209 * sync list than the regular list
212 pending_bios
!= &device
->pending_sync_bios
&&
213 device
->pending_sync_bios
.head
) ||
214 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
215 device
->pending_bios
.head
)) {
216 spin_lock(&device
->io_lock
);
217 requeue_list(pending_bios
, pending
, tail
);
222 pending
= pending
->bi_next
;
224 atomic_dec(&fs_info
->nr_async_bios
);
226 if (atomic_read(&fs_info
->nr_async_bios
) < limit
&&
227 waitqueue_active(&fs_info
->async_submit_wait
))
228 wake_up(&fs_info
->async_submit_wait
);
230 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
232 submit_bio(cur
->bi_rw
, cur
);
239 * we made progress, there is more work to do and the bdi
240 * is now congested. Back off and let other work structs
243 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
244 fs_info
->fs_devices
->open_devices
> 1) {
245 struct io_context
*ioc
;
247 ioc
= current
->io_context
;
250 * the main goal here is that we don't want to
251 * block if we're going to be able to submit
252 * more requests without blocking.
254 * This code does two great things, it pokes into
255 * the elevator code from a filesystem _and_
256 * it makes assumptions about how batching works.
258 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
259 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
261 ioc
->last_waited
== last_waited
)) {
263 * we want to go through our batch of
264 * requests and stop. So, we copy out
265 * the ioc->last_waited time and test
266 * against it before looping
268 last_waited
= ioc
->last_waited
;
273 spin_lock(&device
->io_lock
);
274 requeue_list(pending_bios
, pending
, tail
);
275 device
->running_pending
= 1;
277 spin_unlock(&device
->io_lock
);
278 btrfs_requeue_work(&device
->work
);
287 spin_lock(&device
->io_lock
);
288 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
290 spin_unlock(&device
->io_lock
);
293 blk_finish_plug(&plug
);
297 static void pending_bios_fn(struct btrfs_work
*work
)
299 struct btrfs_device
*device
;
301 device
= container_of(work
, struct btrfs_device
, work
);
302 run_scheduled_bios(device
);
305 static noinline
int device_list_add(const char *path
,
306 struct btrfs_super_block
*disk_super
,
307 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
309 struct btrfs_device
*device
;
310 struct btrfs_fs_devices
*fs_devices
;
311 u64 found_transid
= btrfs_super_generation(disk_super
);
314 fs_devices
= find_fsid(disk_super
->fsid
);
316 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
319 INIT_LIST_HEAD(&fs_devices
->devices
);
320 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
321 list_add(&fs_devices
->list
, &fs_uuids
);
322 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
323 fs_devices
->latest_devid
= devid
;
324 fs_devices
->latest_trans
= found_transid
;
325 mutex_init(&fs_devices
->device_list_mutex
);
328 device
= __find_device(&fs_devices
->devices
, devid
,
329 disk_super
->dev_item
.uuid
);
332 if (fs_devices
->opened
)
335 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
337 /* we can safely leave the fs_devices entry around */
340 device
->devid
= devid
;
341 device
->work
.func
= pending_bios_fn
;
342 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
344 spin_lock_init(&device
->io_lock
);
345 device
->name
= kstrdup(path
, GFP_NOFS
);
350 INIT_LIST_HEAD(&device
->dev_alloc_list
);
352 mutex_lock(&fs_devices
->device_list_mutex
);
353 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
354 mutex_unlock(&fs_devices
->device_list_mutex
);
356 device
->fs_devices
= fs_devices
;
357 fs_devices
->num_devices
++;
358 } else if (!device
->name
|| strcmp(device
->name
, path
)) {
359 name
= kstrdup(path
, GFP_NOFS
);
364 if (device
->missing
) {
365 fs_devices
->missing_devices
--;
370 if (found_transid
> fs_devices
->latest_trans
) {
371 fs_devices
->latest_devid
= devid
;
372 fs_devices
->latest_trans
= found_transid
;
374 *fs_devices_ret
= fs_devices
;
378 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
380 struct btrfs_fs_devices
*fs_devices
;
381 struct btrfs_device
*device
;
382 struct btrfs_device
*orig_dev
;
384 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
386 return ERR_PTR(-ENOMEM
);
388 INIT_LIST_HEAD(&fs_devices
->devices
);
389 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
390 INIT_LIST_HEAD(&fs_devices
->list
);
391 mutex_init(&fs_devices
->device_list_mutex
);
392 fs_devices
->latest_devid
= orig
->latest_devid
;
393 fs_devices
->latest_trans
= orig
->latest_trans
;
394 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
396 /* We have held the volume lock, it is safe to get the devices. */
397 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
398 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
402 device
->name
= kstrdup(orig_dev
->name
, GFP_NOFS
);
408 device
->devid
= orig_dev
->devid
;
409 device
->work
.func
= pending_bios_fn
;
410 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
411 spin_lock_init(&device
->io_lock
);
412 INIT_LIST_HEAD(&device
->dev_list
);
413 INIT_LIST_HEAD(&device
->dev_alloc_list
);
415 list_add(&device
->dev_list
, &fs_devices
->devices
);
416 device
->fs_devices
= fs_devices
;
417 fs_devices
->num_devices
++;
421 free_fs_devices(fs_devices
);
422 return ERR_PTR(-ENOMEM
);
425 int btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
)
427 struct btrfs_device
*device
, *next
;
429 mutex_lock(&uuid_mutex
);
431 /* This is the initialized path, it is safe to release the devices. */
432 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
433 if (device
->in_fs_metadata
)
437 blkdev_put(device
->bdev
, device
->mode
);
439 fs_devices
->open_devices
--;
441 if (device
->writeable
) {
442 list_del_init(&device
->dev_alloc_list
);
443 device
->writeable
= 0;
444 fs_devices
->rw_devices
--;
446 list_del_init(&device
->dev_list
);
447 fs_devices
->num_devices
--;
452 if (fs_devices
->seed
) {
453 fs_devices
= fs_devices
->seed
;
457 mutex_unlock(&uuid_mutex
);
461 static void __free_device(struct work_struct
*work
)
463 struct btrfs_device
*device
;
465 device
= container_of(work
, struct btrfs_device
, rcu_work
);
468 blkdev_put(device
->bdev
, device
->mode
);
474 static void free_device(struct rcu_head
*head
)
476 struct btrfs_device
*device
;
478 device
= container_of(head
, struct btrfs_device
, rcu
);
480 INIT_WORK(&device
->rcu_work
, __free_device
);
481 schedule_work(&device
->rcu_work
);
484 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
486 struct btrfs_device
*device
;
488 if (--fs_devices
->opened
> 0)
491 mutex_lock(&fs_devices
->device_list_mutex
);
492 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
493 struct btrfs_device
*new_device
;
496 fs_devices
->open_devices
--;
498 if (device
->writeable
) {
499 list_del_init(&device
->dev_alloc_list
);
500 fs_devices
->rw_devices
--;
503 new_device
= kmalloc(sizeof(*new_device
), GFP_NOFS
);
505 memcpy(new_device
, device
, sizeof(*new_device
));
506 new_device
->name
= kstrdup(device
->name
, GFP_NOFS
);
507 BUG_ON(device
->name
&& !new_device
->name
);
508 new_device
->bdev
= NULL
;
509 new_device
->writeable
= 0;
510 new_device
->in_fs_metadata
= 0;
511 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
513 call_rcu(&device
->rcu
, free_device
);
515 mutex_unlock(&fs_devices
->device_list_mutex
);
517 WARN_ON(fs_devices
->open_devices
);
518 WARN_ON(fs_devices
->rw_devices
);
519 fs_devices
->opened
= 0;
520 fs_devices
->seeding
= 0;
525 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
527 struct btrfs_fs_devices
*seed_devices
= NULL
;
530 mutex_lock(&uuid_mutex
);
531 ret
= __btrfs_close_devices(fs_devices
);
532 if (!fs_devices
->opened
) {
533 seed_devices
= fs_devices
->seed
;
534 fs_devices
->seed
= NULL
;
536 mutex_unlock(&uuid_mutex
);
538 while (seed_devices
) {
539 fs_devices
= seed_devices
;
540 seed_devices
= fs_devices
->seed
;
541 __btrfs_close_devices(fs_devices
);
542 free_fs_devices(fs_devices
);
547 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
548 fmode_t flags
, void *holder
)
550 struct block_device
*bdev
;
551 struct list_head
*head
= &fs_devices
->devices
;
552 struct btrfs_device
*device
;
553 struct block_device
*latest_bdev
= NULL
;
554 struct buffer_head
*bh
;
555 struct btrfs_super_block
*disk_super
;
556 u64 latest_devid
= 0;
557 u64 latest_transid
= 0;
564 list_for_each_entry(device
, head
, dev_list
) {
570 bdev
= blkdev_get_by_path(device
->name
, flags
, holder
);
572 printk(KERN_INFO
"open %s failed\n", device
->name
);
575 set_blocksize(bdev
, 4096);
577 bh
= btrfs_read_dev_super(bdev
);
583 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
584 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
585 if (devid
!= device
->devid
)
588 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
592 device
->generation
= btrfs_super_generation(disk_super
);
593 if (!latest_transid
|| device
->generation
> latest_transid
) {
594 latest_devid
= devid
;
595 latest_transid
= device
->generation
;
599 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
600 device
->writeable
= 0;
602 device
->writeable
= !bdev_read_only(bdev
);
607 device
->in_fs_metadata
= 0;
608 device
->mode
= flags
;
610 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
611 fs_devices
->rotating
= 1;
613 fs_devices
->open_devices
++;
614 if (device
->writeable
) {
615 fs_devices
->rw_devices
++;
616 list_add(&device
->dev_alloc_list
,
617 &fs_devices
->alloc_list
);
625 blkdev_put(bdev
, flags
);
629 if (fs_devices
->open_devices
== 0) {
633 fs_devices
->seeding
= seeding
;
634 fs_devices
->opened
= 1;
635 fs_devices
->latest_bdev
= latest_bdev
;
636 fs_devices
->latest_devid
= latest_devid
;
637 fs_devices
->latest_trans
= latest_transid
;
638 fs_devices
->total_rw_bytes
= 0;
643 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
644 fmode_t flags
, void *holder
)
648 mutex_lock(&uuid_mutex
);
649 if (fs_devices
->opened
) {
650 fs_devices
->opened
++;
653 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
655 mutex_unlock(&uuid_mutex
);
659 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
660 struct btrfs_fs_devices
**fs_devices_ret
)
662 struct btrfs_super_block
*disk_super
;
663 struct block_device
*bdev
;
664 struct buffer_head
*bh
;
669 mutex_lock(&uuid_mutex
);
672 bdev
= blkdev_get_by_path(path
, flags
, holder
);
679 ret
= set_blocksize(bdev
, 4096);
682 bh
= btrfs_read_dev_super(bdev
);
687 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
688 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
689 transid
= btrfs_super_generation(disk_super
);
690 if (disk_super
->label
[0])
691 printk(KERN_INFO
"device label %s ", disk_super
->label
);
693 printk(KERN_INFO
"device fsid %pU ", disk_super
->fsid
);
694 printk(KERN_CONT
"devid %llu transid %llu %s\n",
695 (unsigned long long)devid
, (unsigned long long)transid
, path
);
696 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
700 blkdev_put(bdev
, flags
);
702 mutex_unlock(&uuid_mutex
);
706 /* helper to account the used device space in the range */
707 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
708 u64 end
, u64
*length
)
710 struct btrfs_key key
;
711 struct btrfs_root
*root
= device
->dev_root
;
712 struct btrfs_dev_extent
*dev_extent
;
713 struct btrfs_path
*path
;
717 struct extent_buffer
*l
;
721 if (start
>= device
->total_bytes
)
724 path
= btrfs_alloc_path();
729 key
.objectid
= device
->devid
;
731 key
.type
= BTRFS_DEV_EXTENT_KEY
;
733 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
737 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
744 slot
= path
->slots
[0];
745 if (slot
>= btrfs_header_nritems(l
)) {
746 ret
= btrfs_next_leaf(root
, path
);
754 btrfs_item_key_to_cpu(l
, &key
, slot
);
756 if (key
.objectid
< device
->devid
)
759 if (key
.objectid
> device
->devid
)
762 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
765 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
766 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
768 if (key
.offset
<= start
&& extent_end
> end
) {
769 *length
= end
- start
+ 1;
771 } else if (key
.offset
<= start
&& extent_end
> start
)
772 *length
+= extent_end
- start
;
773 else if (key
.offset
> start
&& extent_end
<= end
)
774 *length
+= extent_end
- key
.offset
;
775 else if (key
.offset
> start
&& key
.offset
<= end
) {
776 *length
+= end
- key
.offset
+ 1;
778 } else if (key
.offset
> end
)
786 btrfs_free_path(path
);
791 * find_free_dev_extent - find free space in the specified device
792 * @trans: transaction handler
793 * @device: the device which we search the free space in
794 * @num_bytes: the size of the free space that we need
795 * @start: store the start of the free space.
796 * @len: the size of the free space. that we find, or the size of the max
797 * free space if we don't find suitable free space
799 * this uses a pretty simple search, the expectation is that it is
800 * called very infrequently and that a given device has a small number
803 * @start is used to store the start of the free space if we find. But if we
804 * don't find suitable free space, it will be used to store the start position
805 * of the max free space.
807 * @len is used to store the size of the free space that we find.
808 * But if we don't find suitable free space, it is used to store the size of
809 * the max free space.
811 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
812 struct btrfs_device
*device
, u64 num_bytes
,
813 u64
*start
, u64
*len
)
815 struct btrfs_key key
;
816 struct btrfs_root
*root
= device
->dev_root
;
817 struct btrfs_dev_extent
*dev_extent
;
818 struct btrfs_path
*path
;
824 u64 search_end
= device
->total_bytes
;
827 struct extent_buffer
*l
;
829 /* FIXME use last free of some kind */
831 /* we don't want to overwrite the superblock on the drive,
832 * so we make sure to start at an offset of at least 1MB
834 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
836 max_hole_start
= search_start
;
839 if (search_start
>= search_end
) {
844 path
= btrfs_alloc_path();
851 key
.objectid
= device
->devid
;
852 key
.offset
= search_start
;
853 key
.type
= BTRFS_DEV_EXTENT_KEY
;
855 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 0);
859 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
866 slot
= path
->slots
[0];
867 if (slot
>= btrfs_header_nritems(l
)) {
868 ret
= btrfs_next_leaf(root
, path
);
876 btrfs_item_key_to_cpu(l
, &key
, slot
);
878 if (key
.objectid
< device
->devid
)
881 if (key
.objectid
> device
->devid
)
884 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
887 if (key
.offset
> search_start
) {
888 hole_size
= key
.offset
- search_start
;
890 if (hole_size
> max_hole_size
) {
891 max_hole_start
= search_start
;
892 max_hole_size
= hole_size
;
896 * If this free space is greater than which we need,
897 * it must be the max free space that we have found
898 * until now, so max_hole_start must point to the start
899 * of this free space and the length of this free space
900 * is stored in max_hole_size. Thus, we return
901 * max_hole_start and max_hole_size and go back to the
904 if (hole_size
>= num_bytes
) {
910 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
911 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
913 if (extent_end
> search_start
)
914 search_start
= extent_end
;
920 hole_size
= search_end
- search_start
;
921 if (hole_size
> max_hole_size
) {
922 max_hole_start
= search_start
;
923 max_hole_size
= hole_size
;
927 if (hole_size
< num_bytes
)
933 btrfs_free_path(path
);
935 *start
= max_hole_start
;
937 *len
= max_hole_size
;
941 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
942 struct btrfs_device
*device
,
946 struct btrfs_path
*path
;
947 struct btrfs_root
*root
= device
->dev_root
;
948 struct btrfs_key key
;
949 struct btrfs_key found_key
;
950 struct extent_buffer
*leaf
= NULL
;
951 struct btrfs_dev_extent
*extent
= NULL
;
953 path
= btrfs_alloc_path();
957 key
.objectid
= device
->devid
;
959 key
.type
= BTRFS_DEV_EXTENT_KEY
;
961 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
963 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
964 BTRFS_DEV_EXTENT_KEY
);
967 leaf
= path
->nodes
[0];
968 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
969 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
970 struct btrfs_dev_extent
);
971 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
972 btrfs_dev_extent_length(leaf
, extent
) < start
);
973 } else if (ret
== 0) {
974 leaf
= path
->nodes
[0];
975 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
976 struct btrfs_dev_extent
);
980 if (device
->bytes_used
> 0)
981 device
->bytes_used
-= btrfs_dev_extent_length(leaf
, extent
);
982 ret
= btrfs_del_item(trans
, root
, path
);
985 btrfs_free_path(path
);
989 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
990 struct btrfs_device
*device
,
991 u64 chunk_tree
, u64 chunk_objectid
,
992 u64 chunk_offset
, u64 start
, u64 num_bytes
)
995 struct btrfs_path
*path
;
996 struct btrfs_root
*root
= device
->dev_root
;
997 struct btrfs_dev_extent
*extent
;
998 struct extent_buffer
*leaf
;
999 struct btrfs_key key
;
1001 WARN_ON(!device
->in_fs_metadata
);
1002 path
= btrfs_alloc_path();
1006 key
.objectid
= device
->devid
;
1008 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1009 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1013 leaf
= path
->nodes
[0];
1014 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1015 struct btrfs_dev_extent
);
1016 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1017 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1018 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1020 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1021 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
1024 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1025 btrfs_mark_buffer_dirty(leaf
);
1026 btrfs_free_path(path
);
1030 static noinline
int find_next_chunk(struct btrfs_root
*root
,
1031 u64 objectid
, u64
*offset
)
1033 struct btrfs_path
*path
;
1035 struct btrfs_key key
;
1036 struct btrfs_chunk
*chunk
;
1037 struct btrfs_key found_key
;
1039 path
= btrfs_alloc_path();
1042 key
.objectid
= objectid
;
1043 key
.offset
= (u64
)-1;
1044 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1046 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1052 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
1056 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1058 if (found_key
.objectid
!= objectid
)
1061 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1062 struct btrfs_chunk
);
1063 *offset
= found_key
.offset
+
1064 btrfs_chunk_length(path
->nodes
[0], chunk
);
1069 btrfs_free_path(path
);
1073 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
1076 struct btrfs_key key
;
1077 struct btrfs_key found_key
;
1078 struct btrfs_path
*path
;
1080 root
= root
->fs_info
->chunk_root
;
1082 path
= btrfs_alloc_path();
1086 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1087 key
.type
= BTRFS_DEV_ITEM_KEY
;
1088 key
.offset
= (u64
)-1;
1090 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1096 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
1097 BTRFS_DEV_ITEM_KEY
);
1101 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1103 *objectid
= found_key
.offset
+ 1;
1107 btrfs_free_path(path
);
1112 * the device information is stored in the chunk root
1113 * the btrfs_device struct should be fully filled in
1115 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1116 struct btrfs_root
*root
,
1117 struct btrfs_device
*device
)
1120 struct btrfs_path
*path
;
1121 struct btrfs_dev_item
*dev_item
;
1122 struct extent_buffer
*leaf
;
1123 struct btrfs_key key
;
1126 root
= root
->fs_info
->chunk_root
;
1128 path
= btrfs_alloc_path();
1132 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1133 key
.type
= BTRFS_DEV_ITEM_KEY
;
1134 key
.offset
= device
->devid
;
1136 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1141 leaf
= path
->nodes
[0];
1142 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1144 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1145 btrfs_set_device_generation(leaf
, dev_item
, 0);
1146 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1147 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1148 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1149 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1150 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1151 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1152 btrfs_set_device_group(leaf
, dev_item
, 0);
1153 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1154 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1155 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1157 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
1158 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1159 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
1160 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1161 btrfs_mark_buffer_dirty(leaf
);
1165 btrfs_free_path(path
);
1169 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1170 struct btrfs_device
*device
)
1173 struct btrfs_path
*path
;
1174 struct btrfs_key key
;
1175 struct btrfs_trans_handle
*trans
;
1177 root
= root
->fs_info
->chunk_root
;
1179 path
= btrfs_alloc_path();
1183 trans
= btrfs_start_transaction(root
, 0);
1184 if (IS_ERR(trans
)) {
1185 btrfs_free_path(path
);
1186 return PTR_ERR(trans
);
1188 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1189 key
.type
= BTRFS_DEV_ITEM_KEY
;
1190 key
.offset
= device
->devid
;
1193 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1202 ret
= btrfs_del_item(trans
, root
, path
);
1206 btrfs_free_path(path
);
1207 unlock_chunks(root
);
1208 btrfs_commit_transaction(trans
, root
);
1212 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1214 struct btrfs_device
*device
;
1215 struct btrfs_device
*next_device
;
1216 struct block_device
*bdev
;
1217 struct buffer_head
*bh
= NULL
;
1218 struct btrfs_super_block
*disk_super
;
1219 struct btrfs_fs_devices
*cur_devices
;
1225 bool clear_super
= false;
1227 mutex_lock(&uuid_mutex
);
1228 mutex_lock(&root
->fs_info
->volume_mutex
);
1230 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1231 root
->fs_info
->avail_system_alloc_bits
|
1232 root
->fs_info
->avail_metadata_alloc_bits
;
1234 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) &&
1235 root
->fs_info
->fs_devices
->num_devices
<= 4) {
1236 printk(KERN_ERR
"btrfs: unable to go below four devices "
1242 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) &&
1243 root
->fs_info
->fs_devices
->num_devices
<= 2) {
1244 printk(KERN_ERR
"btrfs: unable to go below two "
1245 "devices on raid1\n");
1250 if (strcmp(device_path
, "missing") == 0) {
1251 struct list_head
*devices
;
1252 struct btrfs_device
*tmp
;
1255 devices
= &root
->fs_info
->fs_devices
->devices
;
1257 * It is safe to read the devices since the volume_mutex
1260 list_for_each_entry(tmp
, devices
, dev_list
) {
1261 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1270 printk(KERN_ERR
"btrfs: no missing devices found to "
1275 bdev
= blkdev_get_by_path(device_path
, FMODE_READ
| FMODE_EXCL
,
1276 root
->fs_info
->bdev_holder
);
1278 ret
= PTR_ERR(bdev
);
1282 set_blocksize(bdev
, 4096);
1283 bh
= btrfs_read_dev_super(bdev
);
1288 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1289 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1290 dev_uuid
= disk_super
->dev_item
.uuid
;
1291 device
= btrfs_find_device(root
, devid
, dev_uuid
,
1299 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1300 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1306 if (device
->writeable
) {
1308 list_del_init(&device
->dev_alloc_list
);
1309 unlock_chunks(root
);
1310 root
->fs_info
->fs_devices
->rw_devices
--;
1314 ret
= btrfs_shrink_device(device
, 0);
1318 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1322 device
->in_fs_metadata
= 0;
1323 btrfs_scrub_cancel_dev(root
, device
);
1326 * the device list mutex makes sure that we don't change
1327 * the device list while someone else is writing out all
1328 * the device supers.
1331 cur_devices
= device
->fs_devices
;
1332 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1333 list_del_rcu(&device
->dev_list
);
1335 device
->fs_devices
->num_devices
--;
1337 if (device
->missing
)
1338 root
->fs_info
->fs_devices
->missing_devices
--;
1340 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1341 struct btrfs_device
, dev_list
);
1342 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1343 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1344 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1345 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1348 device
->fs_devices
->open_devices
--;
1350 call_rcu(&device
->rcu
, free_device
);
1351 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1353 num_devices
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
1354 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
, num_devices
);
1356 if (cur_devices
->open_devices
== 0) {
1357 struct btrfs_fs_devices
*fs_devices
;
1358 fs_devices
= root
->fs_info
->fs_devices
;
1359 while (fs_devices
) {
1360 if (fs_devices
->seed
== cur_devices
)
1362 fs_devices
= fs_devices
->seed
;
1364 fs_devices
->seed
= cur_devices
->seed
;
1365 cur_devices
->seed
= NULL
;
1367 __btrfs_close_devices(cur_devices
);
1368 unlock_chunks(root
);
1369 free_fs_devices(cur_devices
);
1373 * at this point, the device is zero sized. We want to
1374 * remove it from the devices list and zero out the old super
1377 /* make sure this device isn't detected as part of
1380 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1381 set_buffer_dirty(bh
);
1382 sync_dirty_buffer(bh
);
1391 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1393 mutex_unlock(&root
->fs_info
->volume_mutex
);
1394 mutex_unlock(&uuid_mutex
);
1397 if (device
->writeable
) {
1399 list_add(&device
->dev_alloc_list
,
1400 &root
->fs_info
->fs_devices
->alloc_list
);
1401 unlock_chunks(root
);
1402 root
->fs_info
->fs_devices
->rw_devices
++;
1408 * does all the dirty work required for changing file system's UUID.
1410 static int btrfs_prepare_sprout(struct btrfs_trans_handle
*trans
,
1411 struct btrfs_root
*root
)
1413 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1414 struct btrfs_fs_devices
*old_devices
;
1415 struct btrfs_fs_devices
*seed_devices
;
1416 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
1417 struct btrfs_device
*device
;
1420 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1421 if (!fs_devices
->seeding
)
1424 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1428 old_devices
= clone_fs_devices(fs_devices
);
1429 if (IS_ERR(old_devices
)) {
1430 kfree(seed_devices
);
1431 return PTR_ERR(old_devices
);
1434 list_add(&old_devices
->list
, &fs_uuids
);
1436 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1437 seed_devices
->opened
= 1;
1438 INIT_LIST_HEAD(&seed_devices
->devices
);
1439 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1440 mutex_init(&seed_devices
->device_list_mutex
);
1442 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1443 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1445 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1447 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1448 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1449 device
->fs_devices
= seed_devices
;
1452 fs_devices
->seeding
= 0;
1453 fs_devices
->num_devices
= 0;
1454 fs_devices
->open_devices
= 0;
1455 fs_devices
->seed
= seed_devices
;
1457 generate_random_uuid(fs_devices
->fsid
);
1458 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1459 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1460 super_flags
= btrfs_super_flags(disk_super
) &
1461 ~BTRFS_SUPER_FLAG_SEEDING
;
1462 btrfs_set_super_flags(disk_super
, super_flags
);
1468 * strore the expected generation for seed devices in device items.
1470 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1471 struct btrfs_root
*root
)
1473 struct btrfs_path
*path
;
1474 struct extent_buffer
*leaf
;
1475 struct btrfs_dev_item
*dev_item
;
1476 struct btrfs_device
*device
;
1477 struct btrfs_key key
;
1478 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1479 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1483 path
= btrfs_alloc_path();
1487 root
= root
->fs_info
->chunk_root
;
1488 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1490 key
.type
= BTRFS_DEV_ITEM_KEY
;
1493 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1497 leaf
= path
->nodes
[0];
1499 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1500 ret
= btrfs_next_leaf(root
, path
);
1505 leaf
= path
->nodes
[0];
1506 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1507 btrfs_release_path(path
);
1511 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1512 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1513 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1516 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1517 struct btrfs_dev_item
);
1518 devid
= btrfs_device_id(leaf
, dev_item
);
1519 read_extent_buffer(leaf
, dev_uuid
,
1520 (unsigned long)btrfs_device_uuid(dev_item
),
1522 read_extent_buffer(leaf
, fs_uuid
,
1523 (unsigned long)btrfs_device_fsid(dev_item
),
1525 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
1528 if (device
->fs_devices
->seeding
) {
1529 btrfs_set_device_generation(leaf
, dev_item
,
1530 device
->generation
);
1531 btrfs_mark_buffer_dirty(leaf
);
1539 btrfs_free_path(path
);
1543 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1545 struct btrfs_trans_handle
*trans
;
1546 struct btrfs_device
*device
;
1547 struct block_device
*bdev
;
1548 struct list_head
*devices
;
1549 struct super_block
*sb
= root
->fs_info
->sb
;
1551 int seeding_dev
= 0;
1554 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1557 bdev
= blkdev_get_by_path(device_path
, FMODE_EXCL
,
1558 root
->fs_info
->bdev_holder
);
1560 return PTR_ERR(bdev
);
1562 if (root
->fs_info
->fs_devices
->seeding
) {
1564 down_write(&sb
->s_umount
);
1565 mutex_lock(&uuid_mutex
);
1568 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1569 mutex_lock(&root
->fs_info
->volume_mutex
);
1571 devices
= &root
->fs_info
->fs_devices
->devices
;
1573 * we have the volume lock, so we don't need the extra
1574 * device list mutex while reading the list here.
1576 list_for_each_entry(device
, devices
, dev_list
) {
1577 if (device
->bdev
== bdev
) {
1583 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1585 /* we can safely leave the fs_devices entry around */
1590 device
->name
= kstrdup(device_path
, GFP_NOFS
);
1591 if (!device
->name
) {
1597 ret
= find_next_devid(root
, &device
->devid
);
1599 kfree(device
->name
);
1604 trans
= btrfs_start_transaction(root
, 0);
1605 if (IS_ERR(trans
)) {
1606 kfree(device
->name
);
1608 ret
= PTR_ERR(trans
);
1614 device
->writeable
= 1;
1615 device
->work
.func
= pending_bios_fn
;
1616 generate_random_uuid(device
->uuid
);
1617 spin_lock_init(&device
->io_lock
);
1618 device
->generation
= trans
->transid
;
1619 device
->io_width
= root
->sectorsize
;
1620 device
->io_align
= root
->sectorsize
;
1621 device
->sector_size
= root
->sectorsize
;
1622 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1623 device
->disk_total_bytes
= device
->total_bytes
;
1624 device
->dev_root
= root
->fs_info
->dev_root
;
1625 device
->bdev
= bdev
;
1626 device
->in_fs_metadata
= 1;
1627 device
->mode
= FMODE_EXCL
;
1628 set_blocksize(device
->bdev
, 4096);
1631 sb
->s_flags
&= ~MS_RDONLY
;
1632 ret
= btrfs_prepare_sprout(trans
, root
);
1636 device
->fs_devices
= root
->fs_info
->fs_devices
;
1639 * we don't want write_supers to jump in here with our device
1642 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1643 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1644 list_add(&device
->dev_alloc_list
,
1645 &root
->fs_info
->fs_devices
->alloc_list
);
1646 root
->fs_info
->fs_devices
->num_devices
++;
1647 root
->fs_info
->fs_devices
->open_devices
++;
1648 root
->fs_info
->fs_devices
->rw_devices
++;
1649 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1651 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1652 root
->fs_info
->fs_devices
->rotating
= 1;
1654 total_bytes
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
1655 btrfs_set_super_total_bytes(&root
->fs_info
->super_copy
,
1656 total_bytes
+ device
->total_bytes
);
1658 total_bytes
= btrfs_super_num_devices(&root
->fs_info
->super_copy
);
1659 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
,
1661 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1664 ret
= init_first_rw_device(trans
, root
, device
);
1666 ret
= btrfs_finish_sprout(trans
, root
);
1669 ret
= btrfs_add_device(trans
, root
, device
);
1673 * we've got more storage, clear any full flags on the space
1676 btrfs_clear_space_info_full(root
->fs_info
);
1678 unlock_chunks(root
);
1679 btrfs_commit_transaction(trans
, root
);
1682 mutex_unlock(&uuid_mutex
);
1683 up_write(&sb
->s_umount
);
1685 ret
= btrfs_relocate_sys_chunks(root
);
1689 mutex_unlock(&root
->fs_info
->volume_mutex
);
1692 blkdev_put(bdev
, FMODE_EXCL
);
1694 mutex_unlock(&uuid_mutex
);
1695 up_write(&sb
->s_umount
);
1700 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
1701 struct btrfs_device
*device
)
1704 struct btrfs_path
*path
;
1705 struct btrfs_root
*root
;
1706 struct btrfs_dev_item
*dev_item
;
1707 struct extent_buffer
*leaf
;
1708 struct btrfs_key key
;
1710 root
= device
->dev_root
->fs_info
->chunk_root
;
1712 path
= btrfs_alloc_path();
1716 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1717 key
.type
= BTRFS_DEV_ITEM_KEY
;
1718 key
.offset
= device
->devid
;
1720 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1729 leaf
= path
->nodes
[0];
1730 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1732 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1733 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1734 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1735 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1736 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1737 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
1738 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1739 btrfs_mark_buffer_dirty(leaf
);
1742 btrfs_free_path(path
);
1746 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1747 struct btrfs_device
*device
, u64 new_size
)
1749 struct btrfs_super_block
*super_copy
=
1750 &device
->dev_root
->fs_info
->super_copy
;
1751 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1752 u64 diff
= new_size
- device
->total_bytes
;
1754 if (!device
->writeable
)
1756 if (new_size
<= device
->total_bytes
)
1759 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
1760 device
->fs_devices
->total_rw_bytes
+= diff
;
1762 device
->total_bytes
= new_size
;
1763 device
->disk_total_bytes
= new_size
;
1764 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
1766 return btrfs_update_device(trans
, device
);
1769 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1770 struct btrfs_device
*device
, u64 new_size
)
1773 lock_chunks(device
->dev_root
);
1774 ret
= __btrfs_grow_device(trans
, device
, new_size
);
1775 unlock_chunks(device
->dev_root
);
1779 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
1780 struct btrfs_root
*root
,
1781 u64 chunk_tree
, u64 chunk_objectid
,
1785 struct btrfs_path
*path
;
1786 struct btrfs_key key
;
1788 root
= root
->fs_info
->chunk_root
;
1789 path
= btrfs_alloc_path();
1793 key
.objectid
= chunk_objectid
;
1794 key
.offset
= chunk_offset
;
1795 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1797 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1800 ret
= btrfs_del_item(trans
, root
, path
);
1802 btrfs_free_path(path
);
1806 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
1809 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1810 struct btrfs_disk_key
*disk_key
;
1811 struct btrfs_chunk
*chunk
;
1818 struct btrfs_key key
;
1820 array_size
= btrfs_super_sys_array_size(super_copy
);
1822 ptr
= super_copy
->sys_chunk_array
;
1825 while (cur
< array_size
) {
1826 disk_key
= (struct btrfs_disk_key
*)ptr
;
1827 btrfs_disk_key_to_cpu(&key
, disk_key
);
1829 len
= sizeof(*disk_key
);
1831 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
1832 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
1833 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
1834 len
+= btrfs_chunk_item_size(num_stripes
);
1839 if (key
.objectid
== chunk_objectid
&&
1840 key
.offset
== chunk_offset
) {
1841 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
1843 btrfs_set_super_sys_array_size(super_copy
, array_size
);
1852 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
1853 u64 chunk_tree
, u64 chunk_objectid
,
1856 struct extent_map_tree
*em_tree
;
1857 struct btrfs_root
*extent_root
;
1858 struct btrfs_trans_handle
*trans
;
1859 struct extent_map
*em
;
1860 struct map_lookup
*map
;
1864 root
= root
->fs_info
->chunk_root
;
1865 extent_root
= root
->fs_info
->extent_root
;
1866 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
1868 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
1872 /* step one, relocate all the extents inside this chunk */
1873 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
1877 trans
= btrfs_start_transaction(root
, 0);
1878 BUG_ON(IS_ERR(trans
));
1883 * step two, delete the device extents and the
1884 * chunk tree entries
1886 read_lock(&em_tree
->lock
);
1887 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1888 read_unlock(&em_tree
->lock
);
1890 BUG_ON(em
->start
> chunk_offset
||
1891 em
->start
+ em
->len
< chunk_offset
);
1892 map
= (struct map_lookup
*)em
->bdev
;
1894 for (i
= 0; i
< map
->num_stripes
; i
++) {
1895 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
1896 map
->stripes
[i
].physical
);
1899 if (map
->stripes
[i
].dev
) {
1900 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
1904 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
1909 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
1911 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1912 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
1916 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
1919 write_lock(&em_tree
->lock
);
1920 remove_extent_mapping(em_tree
, em
);
1921 write_unlock(&em_tree
->lock
);
1926 /* once for the tree */
1927 free_extent_map(em
);
1929 free_extent_map(em
);
1931 unlock_chunks(root
);
1932 btrfs_end_transaction(trans
, root
);
1936 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
1938 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
1939 struct btrfs_path
*path
;
1940 struct extent_buffer
*leaf
;
1941 struct btrfs_chunk
*chunk
;
1942 struct btrfs_key key
;
1943 struct btrfs_key found_key
;
1944 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
1946 bool retried
= false;
1950 path
= btrfs_alloc_path();
1955 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1956 key
.offset
= (u64
)-1;
1957 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1960 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1965 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
1972 leaf
= path
->nodes
[0];
1973 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1975 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
1976 struct btrfs_chunk
);
1977 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
1978 btrfs_release_path(path
);
1980 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1981 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
1990 if (found_key
.offset
== 0)
1992 key
.offset
= found_key
.offset
- 1;
1995 if (failed
&& !retried
) {
1999 } else if (failed
&& retried
) {
2004 btrfs_free_path(path
);
2008 static u64
div_factor(u64 num
, int factor
)
2017 int btrfs_balance(struct btrfs_root
*dev_root
)
2020 struct list_head
*devices
= &dev_root
->fs_info
->fs_devices
->devices
;
2021 struct btrfs_device
*device
;
2024 struct btrfs_path
*path
;
2025 struct btrfs_key key
;
2026 struct btrfs_root
*chunk_root
= dev_root
->fs_info
->chunk_root
;
2027 struct btrfs_trans_handle
*trans
;
2028 struct btrfs_key found_key
;
2030 if (dev_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2033 if (!capable(CAP_SYS_ADMIN
))
2036 mutex_lock(&dev_root
->fs_info
->volume_mutex
);
2037 dev_root
= dev_root
->fs_info
->dev_root
;
2039 /* step one make some room on all the devices */
2040 list_for_each_entry(device
, devices
, dev_list
) {
2041 old_size
= device
->total_bytes
;
2042 size_to_free
= div_factor(old_size
, 1);
2043 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
2044 if (!device
->writeable
||
2045 device
->total_bytes
- device
->bytes_used
> size_to_free
)
2048 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
2053 trans
= btrfs_start_transaction(dev_root
, 0);
2054 BUG_ON(IS_ERR(trans
));
2056 ret
= btrfs_grow_device(trans
, device
, old_size
);
2059 btrfs_end_transaction(trans
, dev_root
);
2062 /* step two, relocate all the chunks */
2063 path
= btrfs_alloc_path();
2066 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2067 key
.offset
= (u64
)-1;
2068 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2071 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2076 * this shouldn't happen, it means the last relocate
2082 ret
= btrfs_previous_item(chunk_root
, path
, 0,
2083 BTRFS_CHUNK_ITEM_KEY
);
2087 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2089 if (found_key
.objectid
!= key
.objectid
)
2092 /* chunk zero is special */
2093 if (found_key
.offset
== 0)
2096 btrfs_release_path(path
);
2097 ret
= btrfs_relocate_chunk(chunk_root
,
2098 chunk_root
->root_key
.objectid
,
2101 BUG_ON(ret
&& ret
!= -ENOSPC
);
2102 key
.offset
= found_key
.offset
- 1;
2106 btrfs_free_path(path
);
2107 mutex_unlock(&dev_root
->fs_info
->volume_mutex
);
2112 * shrinking a device means finding all of the device extents past
2113 * the new size, and then following the back refs to the chunks.
2114 * The chunk relocation code actually frees the device extent
2116 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
2118 struct btrfs_trans_handle
*trans
;
2119 struct btrfs_root
*root
= device
->dev_root
;
2120 struct btrfs_dev_extent
*dev_extent
= NULL
;
2121 struct btrfs_path
*path
;
2129 bool retried
= false;
2130 struct extent_buffer
*l
;
2131 struct btrfs_key key
;
2132 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
2133 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2134 u64 old_size
= device
->total_bytes
;
2135 u64 diff
= device
->total_bytes
- new_size
;
2137 if (new_size
>= device
->total_bytes
)
2140 path
= btrfs_alloc_path();
2148 device
->total_bytes
= new_size
;
2149 if (device
->writeable
)
2150 device
->fs_devices
->total_rw_bytes
-= diff
;
2151 unlock_chunks(root
);
2154 key
.objectid
= device
->devid
;
2155 key
.offset
= (u64
)-1;
2156 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2159 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2163 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
2168 btrfs_release_path(path
);
2173 slot
= path
->slots
[0];
2174 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
2176 if (key
.objectid
!= device
->devid
) {
2177 btrfs_release_path(path
);
2181 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2182 length
= btrfs_dev_extent_length(l
, dev_extent
);
2184 if (key
.offset
+ length
<= new_size
) {
2185 btrfs_release_path(path
);
2189 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2190 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2191 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2192 btrfs_release_path(path
);
2194 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
2196 if (ret
&& ret
!= -ENOSPC
)
2203 if (failed
&& !retried
) {
2207 } else if (failed
&& retried
) {
2211 device
->total_bytes
= old_size
;
2212 if (device
->writeable
)
2213 device
->fs_devices
->total_rw_bytes
+= diff
;
2214 unlock_chunks(root
);
2218 /* Shrinking succeeded, else we would be at "done". */
2219 trans
= btrfs_start_transaction(root
, 0);
2220 if (IS_ERR(trans
)) {
2221 ret
= PTR_ERR(trans
);
2227 device
->disk_total_bytes
= new_size
;
2228 /* Now btrfs_update_device() will change the on-disk size. */
2229 ret
= btrfs_update_device(trans
, device
);
2231 unlock_chunks(root
);
2232 btrfs_end_transaction(trans
, root
);
2235 WARN_ON(diff
> old_total
);
2236 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
2237 unlock_chunks(root
);
2238 btrfs_end_transaction(trans
, root
);
2240 btrfs_free_path(path
);
2244 static int btrfs_add_system_chunk(struct btrfs_trans_handle
*trans
,
2245 struct btrfs_root
*root
,
2246 struct btrfs_key
*key
,
2247 struct btrfs_chunk
*chunk
, int item_size
)
2249 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
2250 struct btrfs_disk_key disk_key
;
2254 array_size
= btrfs_super_sys_array_size(super_copy
);
2255 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
2258 ptr
= super_copy
->sys_chunk_array
+ array_size
;
2259 btrfs_cpu_key_to_disk(&disk_key
, key
);
2260 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
2261 ptr
+= sizeof(disk_key
);
2262 memcpy(ptr
, chunk
, item_size
);
2263 item_size
+= sizeof(disk_key
);
2264 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
2269 * sort the devices in descending order by max_avail, total_avail
2271 static int btrfs_cmp_device_info(const void *a
, const void *b
)
2273 const struct btrfs_device_info
*di_a
= a
;
2274 const struct btrfs_device_info
*di_b
= b
;
2276 if (di_a
->max_avail
> di_b
->max_avail
)
2278 if (di_a
->max_avail
< di_b
->max_avail
)
2280 if (di_a
->total_avail
> di_b
->total_avail
)
2282 if (di_a
->total_avail
< di_b
->total_avail
)
2287 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2288 struct btrfs_root
*extent_root
,
2289 struct map_lookup
**map_ret
,
2290 u64
*num_bytes_out
, u64
*stripe_size_out
,
2291 u64 start
, u64 type
)
2293 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
2294 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
2295 struct list_head
*cur
;
2296 struct map_lookup
*map
= NULL
;
2297 struct extent_map_tree
*em_tree
;
2298 struct extent_map
*em
;
2299 struct btrfs_device_info
*devices_info
= NULL
;
2301 int num_stripes
; /* total number of stripes to allocate */
2302 int sub_stripes
; /* sub_stripes info for map */
2303 int dev_stripes
; /* stripes per dev */
2304 int devs_max
; /* max devs to use */
2305 int devs_min
; /* min devs needed */
2306 int devs_increment
; /* ndevs has to be a multiple of this */
2307 int ncopies
; /* how many copies to data has */
2309 u64 max_stripe_size
;
2317 if ((type
& BTRFS_BLOCK_GROUP_RAID1
) &&
2318 (type
& BTRFS_BLOCK_GROUP_DUP
)) {
2320 type
&= ~BTRFS_BLOCK_GROUP_DUP
;
2323 if (list_empty(&fs_devices
->alloc_list
))
2330 devs_max
= 0; /* 0 == as many as possible */
2334 * define the properties of each RAID type.
2335 * FIXME: move this to a global table and use it in all RAID
2338 if (type
& (BTRFS_BLOCK_GROUP_DUP
)) {
2342 } else if (type
& (BTRFS_BLOCK_GROUP_RAID0
)) {
2344 } else if (type
& (BTRFS_BLOCK_GROUP_RAID1
)) {
2349 } else if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2358 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
2359 max_stripe_size
= 1024 * 1024 * 1024;
2360 max_chunk_size
= 10 * max_stripe_size
;
2361 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
2362 max_stripe_size
= 256 * 1024 * 1024;
2363 max_chunk_size
= max_stripe_size
;
2364 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2365 max_stripe_size
= 8 * 1024 * 1024;
2366 max_chunk_size
= 2 * max_stripe_size
;
2368 printk(KERN_ERR
"btrfs: invalid chunk type 0x%llx requested\n",
2373 /* we don't want a chunk larger than 10% of writeable space */
2374 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
2377 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
2382 cur
= fs_devices
->alloc_list
.next
;
2385 * in the first pass through the devices list, we gather information
2386 * about the available holes on each device.
2389 while (cur
!= &fs_devices
->alloc_list
) {
2390 struct btrfs_device
*device
;
2394 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
2398 if (!device
->writeable
) {
2400 "btrfs: read-only device in alloc_list\n");
2405 if (!device
->in_fs_metadata
)
2408 if (device
->total_bytes
> device
->bytes_used
)
2409 total_avail
= device
->total_bytes
- device
->bytes_used
;
2412 /* avail is off by max(alloc_start, 1MB), but that is the same
2413 * for all devices, so it doesn't hurt the sorting later on
2416 ret
= find_free_dev_extent(trans
, device
,
2417 max_stripe_size
* dev_stripes
,
2418 &dev_offset
, &max_avail
);
2419 if (ret
&& ret
!= -ENOSPC
)
2423 max_avail
= max_stripe_size
* dev_stripes
;
2425 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
2428 devices_info
[ndevs
].dev_offset
= dev_offset
;
2429 devices_info
[ndevs
].max_avail
= max_avail
;
2430 devices_info
[ndevs
].total_avail
= total_avail
;
2431 devices_info
[ndevs
].dev
= device
;
2436 * now sort the devices by hole size / available space
2438 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
2439 btrfs_cmp_device_info
, NULL
);
2441 /* round down to number of usable stripes */
2442 ndevs
-= ndevs
% devs_increment
;
2444 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
2449 if (devs_max
&& ndevs
> devs_max
)
2452 * the primary goal is to maximize the number of stripes, so use as many
2453 * devices as possible, even if the stripes are not maximum sized.
2455 stripe_size
= devices_info
[ndevs
-1].max_avail
;
2456 num_stripes
= ndevs
* dev_stripes
;
2458 if (stripe_size
* num_stripes
> max_chunk_size
* ncopies
) {
2459 stripe_size
= max_chunk_size
* ncopies
;
2460 do_div(stripe_size
, num_stripes
);
2463 do_div(stripe_size
, dev_stripes
);
2464 do_div(stripe_size
, BTRFS_STRIPE_LEN
);
2465 stripe_size
*= BTRFS_STRIPE_LEN
;
2467 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2472 map
->num_stripes
= num_stripes
;
2474 for (i
= 0; i
< ndevs
; ++i
) {
2475 for (j
= 0; j
< dev_stripes
; ++j
) {
2476 int s
= i
* dev_stripes
+ j
;
2477 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
2478 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
2482 map
->sector_size
= extent_root
->sectorsize
;
2483 map
->stripe_len
= BTRFS_STRIPE_LEN
;
2484 map
->io_align
= BTRFS_STRIPE_LEN
;
2485 map
->io_width
= BTRFS_STRIPE_LEN
;
2487 map
->sub_stripes
= sub_stripes
;
2490 num_bytes
= stripe_size
* (num_stripes
/ ncopies
);
2492 *stripe_size_out
= stripe_size
;
2493 *num_bytes_out
= num_bytes
;
2495 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
2497 em
= alloc_extent_map();
2502 em
->bdev
= (struct block_device
*)map
;
2504 em
->len
= num_bytes
;
2505 em
->block_start
= 0;
2506 em
->block_len
= em
->len
;
2508 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
2509 write_lock(&em_tree
->lock
);
2510 ret
= add_extent_mapping(em_tree
, em
);
2511 write_unlock(&em_tree
->lock
);
2513 free_extent_map(em
);
2515 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
2516 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2520 for (i
= 0; i
< map
->num_stripes
; ++i
) {
2521 struct btrfs_device
*device
;
2524 device
= map
->stripes
[i
].dev
;
2525 dev_offset
= map
->stripes
[i
].physical
;
2527 ret
= btrfs_alloc_dev_extent(trans
, device
,
2528 info
->chunk_root
->root_key
.objectid
,
2529 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2530 start
, dev_offset
, stripe_size
);
2534 kfree(devices_info
);
2539 kfree(devices_info
);
2543 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
2544 struct btrfs_root
*extent_root
,
2545 struct map_lookup
*map
, u64 chunk_offset
,
2546 u64 chunk_size
, u64 stripe_size
)
2549 struct btrfs_key key
;
2550 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2551 struct btrfs_device
*device
;
2552 struct btrfs_chunk
*chunk
;
2553 struct btrfs_stripe
*stripe
;
2554 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
2558 chunk
= kzalloc(item_size
, GFP_NOFS
);
2563 while (index
< map
->num_stripes
) {
2564 device
= map
->stripes
[index
].dev
;
2565 device
->bytes_used
+= stripe_size
;
2566 ret
= btrfs_update_device(trans
, device
);
2572 stripe
= &chunk
->stripe
;
2573 while (index
< map
->num_stripes
) {
2574 device
= map
->stripes
[index
].dev
;
2575 dev_offset
= map
->stripes
[index
].physical
;
2577 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
2578 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
2579 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
2584 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
2585 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
2586 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
2587 btrfs_set_stack_chunk_type(chunk
, map
->type
);
2588 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
2589 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
2590 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
2591 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
2592 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
2594 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2595 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2596 key
.offset
= chunk_offset
;
2598 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
2601 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2602 ret
= btrfs_add_system_chunk(trans
, chunk_root
, &key
, chunk
,
2612 * Chunk allocation falls into two parts. The first part does works
2613 * that make the new allocated chunk useable, but not do any operation
2614 * that modifies the chunk tree. The second part does the works that
2615 * require modifying the chunk tree. This division is important for the
2616 * bootstrap process of adding storage to a seed btrfs.
2618 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2619 struct btrfs_root
*extent_root
, u64 type
)
2624 struct map_lookup
*map
;
2625 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2628 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2633 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2634 &stripe_size
, chunk_offset
, type
);
2638 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2639 chunk_size
, stripe_size
);
2644 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
2645 struct btrfs_root
*root
,
2646 struct btrfs_device
*device
)
2649 u64 sys_chunk_offset
;
2653 u64 sys_stripe_size
;
2655 struct map_lookup
*map
;
2656 struct map_lookup
*sys_map
;
2657 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2658 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2661 ret
= find_next_chunk(fs_info
->chunk_root
,
2662 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
2665 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
2666 (fs_info
->metadata_alloc_profile
&
2667 fs_info
->avail_metadata_alloc_bits
);
2668 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2670 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2671 &stripe_size
, chunk_offset
, alloc_profile
);
2674 sys_chunk_offset
= chunk_offset
+ chunk_size
;
2676 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
2677 (fs_info
->system_alloc_profile
&
2678 fs_info
->avail_system_alloc_bits
);
2679 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2681 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
2682 &sys_chunk_size
, &sys_stripe_size
,
2683 sys_chunk_offset
, alloc_profile
);
2686 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
2690 * Modifying chunk tree needs allocating new blocks from both
2691 * system block group and metadata block group. So we only can
2692 * do operations require modifying the chunk tree after both
2693 * block groups were created.
2695 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2696 chunk_size
, stripe_size
);
2699 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
2700 sys_chunk_offset
, sys_chunk_size
,
2706 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
2708 struct extent_map
*em
;
2709 struct map_lookup
*map
;
2710 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2714 read_lock(&map_tree
->map_tree
.lock
);
2715 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2716 read_unlock(&map_tree
->map_tree
.lock
);
2720 if (btrfs_test_opt(root
, DEGRADED
)) {
2721 free_extent_map(em
);
2725 map
= (struct map_lookup
*)em
->bdev
;
2726 for (i
= 0; i
< map
->num_stripes
; i
++) {
2727 if (!map
->stripes
[i
].dev
->writeable
) {
2732 free_extent_map(em
);
2736 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
2738 extent_map_tree_init(&tree
->map_tree
);
2741 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
2743 struct extent_map
*em
;
2746 write_lock(&tree
->map_tree
.lock
);
2747 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
2749 remove_extent_mapping(&tree
->map_tree
, em
);
2750 write_unlock(&tree
->map_tree
.lock
);
2755 free_extent_map(em
);
2756 /* once for the tree */
2757 free_extent_map(em
);
2761 int btrfs_num_copies(struct btrfs_mapping_tree
*map_tree
, u64 logical
, u64 len
)
2763 struct extent_map
*em
;
2764 struct map_lookup
*map
;
2765 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2768 read_lock(&em_tree
->lock
);
2769 em
= lookup_extent_mapping(em_tree
, logical
, len
);
2770 read_unlock(&em_tree
->lock
);
2773 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2774 map
= (struct map_lookup
*)em
->bdev
;
2775 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
2776 ret
= map
->num_stripes
;
2777 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2778 ret
= map
->sub_stripes
;
2781 free_extent_map(em
);
2785 static int find_live_mirror(struct map_lookup
*map
, int first
, int num
,
2789 if (map
->stripes
[optimal
].dev
->bdev
)
2791 for (i
= first
; i
< first
+ num
; i
++) {
2792 if (map
->stripes
[i
].dev
->bdev
)
2795 /* we couldn't find one that doesn't fail. Just return something
2796 * and the io error handling code will clean up eventually
2801 static int __btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2802 u64 logical
, u64
*length
,
2803 struct btrfs_multi_bio
**multi_ret
,
2806 struct extent_map
*em
;
2807 struct map_lookup
*map
;
2808 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2811 u64 stripe_end_offset
;
2815 int stripes_allocated
= 8;
2816 int stripes_required
= 1;
2821 struct btrfs_multi_bio
*multi
= NULL
;
2823 if (multi_ret
&& !(rw
& (REQ_WRITE
| REQ_DISCARD
)))
2824 stripes_allocated
= 1;
2827 multi
= kzalloc(btrfs_multi_bio_size(stripes_allocated
),
2832 atomic_set(&multi
->error
, 0);
2835 read_lock(&em_tree
->lock
);
2836 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
2837 read_unlock(&em_tree
->lock
);
2840 printk(KERN_CRIT
"unable to find logical %llu len %llu\n",
2841 (unsigned long long)logical
,
2842 (unsigned long long)*length
);
2846 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2847 map
= (struct map_lookup
*)em
->bdev
;
2848 offset
= logical
- em
->start
;
2850 if (mirror_num
> map
->num_stripes
)
2853 /* if our multi bio struct is too small, back off and try again */
2854 if (rw
& REQ_WRITE
) {
2855 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
2856 BTRFS_BLOCK_GROUP_DUP
)) {
2857 stripes_required
= map
->num_stripes
;
2859 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2860 stripes_required
= map
->sub_stripes
;
2864 if (rw
& REQ_DISCARD
) {
2865 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
2866 BTRFS_BLOCK_GROUP_RAID1
|
2867 BTRFS_BLOCK_GROUP_DUP
|
2868 BTRFS_BLOCK_GROUP_RAID10
)) {
2869 stripes_required
= map
->num_stripes
;
2872 if (multi_ret
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
2873 stripes_allocated
< stripes_required
) {
2874 stripes_allocated
= map
->num_stripes
;
2875 free_extent_map(em
);
2881 * stripe_nr counts the total number of stripes we have to stride
2882 * to get to this block
2884 do_div(stripe_nr
, map
->stripe_len
);
2886 stripe_offset
= stripe_nr
* map
->stripe_len
;
2887 BUG_ON(offset
< stripe_offset
);
2889 /* stripe_offset is the offset of this block in its stripe*/
2890 stripe_offset
= offset
- stripe_offset
;
2892 if (rw
& REQ_DISCARD
)
2893 *length
= min_t(u64
, em
->len
- offset
, *length
);
2894 else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
2895 BTRFS_BLOCK_GROUP_RAID1
|
2896 BTRFS_BLOCK_GROUP_RAID10
|
2897 BTRFS_BLOCK_GROUP_DUP
)) {
2898 /* we limit the length of each bio to what fits in a stripe */
2899 *length
= min_t(u64
, em
->len
- offset
,
2900 map
->stripe_len
- stripe_offset
);
2902 *length
= em
->len
- offset
;
2910 stripe_nr_orig
= stripe_nr
;
2911 stripe_nr_end
= (offset
+ *length
+ map
->stripe_len
- 1) &
2912 (~(map
->stripe_len
- 1));
2913 do_div(stripe_nr_end
, map
->stripe_len
);
2914 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
2916 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2917 if (rw
& REQ_DISCARD
)
2918 num_stripes
= min_t(u64
, map
->num_stripes
,
2919 stripe_nr_end
- stripe_nr_orig
);
2920 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
2921 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2922 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
2923 num_stripes
= map
->num_stripes
;
2924 else if (mirror_num
)
2925 stripe_index
= mirror_num
- 1;
2927 stripe_index
= find_live_mirror(map
, 0,
2929 current
->pid
% map
->num_stripes
);
2932 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2933 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
2934 num_stripes
= map
->num_stripes
;
2935 else if (mirror_num
)
2936 stripe_index
= mirror_num
- 1;
2938 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2939 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2941 stripe_index
= do_div(stripe_nr
, factor
);
2942 stripe_index
*= map
->sub_stripes
;
2945 num_stripes
= map
->sub_stripes
;
2946 else if (rw
& REQ_DISCARD
)
2947 num_stripes
= min_t(u64
, map
->sub_stripes
*
2948 (stripe_nr_end
- stripe_nr_orig
),
2950 else if (mirror_num
)
2951 stripe_index
+= mirror_num
- 1;
2953 stripe_index
= find_live_mirror(map
, stripe_index
,
2954 map
->sub_stripes
, stripe_index
+
2955 current
->pid
% map
->sub_stripes
);
2959 * after this do_div call, stripe_nr is the number of stripes
2960 * on this device we have to walk to find the data, and
2961 * stripe_index is the number of our device in the stripe array
2963 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
2965 BUG_ON(stripe_index
>= map
->num_stripes
);
2967 if (rw
& REQ_DISCARD
) {
2968 for (i
= 0; i
< num_stripes
; i
++) {
2969 multi
->stripes
[i
].physical
=
2970 map
->stripes
[stripe_index
].physical
+
2971 stripe_offset
+ stripe_nr
* map
->stripe_len
;
2972 multi
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
2974 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2976 u32 last_stripe
= 0;
2979 div_u64_rem(stripe_nr_end
- 1,
2983 for (j
= 0; j
< map
->num_stripes
; j
++) {
2986 div_u64_rem(stripe_nr_end
- 1 - j
,
2987 map
->num_stripes
, &test
);
2988 if (test
== stripe_index
)
2991 stripes
= stripe_nr_end
- 1 - j
;
2992 do_div(stripes
, map
->num_stripes
);
2993 multi
->stripes
[i
].length
= map
->stripe_len
*
2994 (stripes
- stripe_nr
+ 1);
2997 multi
->stripes
[i
].length
-=
3001 if (stripe_index
== last_stripe
)
3002 multi
->stripes
[i
].length
-=
3004 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3007 int factor
= map
->num_stripes
/
3009 u32 last_stripe
= 0;
3011 div_u64_rem(stripe_nr_end
- 1,
3012 factor
, &last_stripe
);
3013 last_stripe
*= map
->sub_stripes
;
3015 for (j
= 0; j
< factor
; j
++) {
3018 div_u64_rem(stripe_nr_end
- 1 - j
,
3022 stripe_index
/ map
->sub_stripes
)
3025 stripes
= stripe_nr_end
- 1 - j
;
3026 do_div(stripes
, factor
);
3027 multi
->stripes
[i
].length
= map
->stripe_len
*
3028 (stripes
- stripe_nr
+ 1);
3030 if (i
< map
->sub_stripes
) {
3031 multi
->stripes
[i
].length
-=
3033 if (i
== map
->sub_stripes
- 1)
3036 if (stripe_index
>= last_stripe
&&
3037 stripe_index
<= (last_stripe
+
3038 map
->sub_stripes
- 1)) {
3039 multi
->stripes
[i
].length
-=
3043 multi
->stripes
[i
].length
= *length
;
3046 if (stripe_index
== map
->num_stripes
) {
3047 /* This could only happen for RAID0/10 */
3053 for (i
= 0; i
< num_stripes
; i
++) {
3054 multi
->stripes
[i
].physical
=
3055 map
->stripes
[stripe_index
].physical
+
3057 stripe_nr
* map
->stripe_len
;
3058 multi
->stripes
[i
].dev
=
3059 map
->stripes
[stripe_index
].dev
;
3065 multi
->num_stripes
= num_stripes
;
3066 multi
->max_errors
= max_errors
;
3069 free_extent_map(em
);
3073 int btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
3074 u64 logical
, u64
*length
,
3075 struct btrfs_multi_bio
**multi_ret
, int mirror_num
)
3077 return __btrfs_map_block(map_tree
, rw
, logical
, length
, multi_ret
,
3081 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
3082 u64 chunk_start
, u64 physical
, u64 devid
,
3083 u64
**logical
, int *naddrs
, int *stripe_len
)
3085 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
3086 struct extent_map
*em
;
3087 struct map_lookup
*map
;
3094 read_lock(&em_tree
->lock
);
3095 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
3096 read_unlock(&em_tree
->lock
);
3098 BUG_ON(!em
|| em
->start
!= chunk_start
);
3099 map
= (struct map_lookup
*)em
->bdev
;
3102 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
3103 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
3104 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
3105 do_div(length
, map
->num_stripes
);
3107 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
3110 for (i
= 0; i
< map
->num_stripes
; i
++) {
3111 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
3113 if (map
->stripes
[i
].physical
> physical
||
3114 map
->stripes
[i
].physical
+ length
<= physical
)
3117 stripe_nr
= physical
- map
->stripes
[i
].physical
;
3118 do_div(stripe_nr
, map
->stripe_len
);
3120 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3121 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
3122 do_div(stripe_nr
, map
->sub_stripes
);
3123 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3124 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
3126 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
3127 WARN_ON(nr
>= map
->num_stripes
);
3128 for (j
= 0; j
< nr
; j
++) {
3129 if (buf
[j
] == bytenr
)
3133 WARN_ON(nr
>= map
->num_stripes
);
3140 *stripe_len
= map
->stripe_len
;
3142 free_extent_map(em
);
3146 static void end_bio_multi_stripe(struct bio
*bio
, int err
)
3148 struct btrfs_multi_bio
*multi
= bio
->bi_private
;
3149 int is_orig_bio
= 0;
3152 atomic_inc(&multi
->error
);
3154 if (bio
== multi
->orig_bio
)
3157 if (atomic_dec_and_test(&multi
->stripes_pending
)) {
3160 bio
= multi
->orig_bio
;
3162 bio
->bi_private
= multi
->private;
3163 bio
->bi_end_io
= multi
->end_io
;
3164 /* only send an error to the higher layers if it is
3165 * beyond the tolerance of the multi-bio
3167 if (atomic_read(&multi
->error
) > multi
->max_errors
) {
3171 * this bio is actually up to date, we didn't
3172 * go over the max number of errors
3174 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3179 bio_endio(bio
, err
);
3180 } else if (!is_orig_bio
) {
3185 struct async_sched
{
3188 struct btrfs_fs_info
*info
;
3189 struct btrfs_work work
;
3193 * see run_scheduled_bios for a description of why bios are collected for
3196 * This will add one bio to the pending list for a device and make sure
3197 * the work struct is scheduled.
3199 static noinline
int schedule_bio(struct btrfs_root
*root
,
3200 struct btrfs_device
*device
,
3201 int rw
, struct bio
*bio
)
3203 int should_queue
= 1;
3204 struct btrfs_pending_bios
*pending_bios
;
3206 /* don't bother with additional async steps for reads, right now */
3207 if (!(rw
& REQ_WRITE
)) {
3209 submit_bio(rw
, bio
);
3215 * nr_async_bios allows us to reliably return congestion to the
3216 * higher layers. Otherwise, the async bio makes it appear we have
3217 * made progress against dirty pages when we've really just put it
3218 * on a queue for later
3220 atomic_inc(&root
->fs_info
->nr_async_bios
);
3221 WARN_ON(bio
->bi_next
);
3222 bio
->bi_next
= NULL
;
3225 spin_lock(&device
->io_lock
);
3226 if (bio
->bi_rw
& REQ_SYNC
)
3227 pending_bios
= &device
->pending_sync_bios
;
3229 pending_bios
= &device
->pending_bios
;
3231 if (pending_bios
->tail
)
3232 pending_bios
->tail
->bi_next
= bio
;
3234 pending_bios
->tail
= bio
;
3235 if (!pending_bios
->head
)
3236 pending_bios
->head
= bio
;
3237 if (device
->running_pending
)
3240 spin_unlock(&device
->io_lock
);
3243 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
3248 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
3249 int mirror_num
, int async_submit
)
3251 struct btrfs_mapping_tree
*map_tree
;
3252 struct btrfs_device
*dev
;
3253 struct bio
*first_bio
= bio
;
3254 u64 logical
= (u64
)bio
->bi_sector
<< 9;
3257 struct btrfs_multi_bio
*multi
= NULL
;
3262 length
= bio
->bi_size
;
3263 map_tree
= &root
->fs_info
->mapping_tree
;
3264 map_length
= length
;
3266 ret
= btrfs_map_block(map_tree
, rw
, logical
, &map_length
, &multi
,
3270 total_devs
= multi
->num_stripes
;
3271 if (map_length
< length
) {
3272 printk(KERN_CRIT
"mapping failed logical %llu bio len %llu "
3273 "len %llu\n", (unsigned long long)logical
,
3274 (unsigned long long)length
,
3275 (unsigned long long)map_length
);
3278 multi
->end_io
= first_bio
->bi_end_io
;
3279 multi
->private = first_bio
->bi_private
;
3280 multi
->orig_bio
= first_bio
;
3281 atomic_set(&multi
->stripes_pending
, multi
->num_stripes
);
3283 while (dev_nr
< total_devs
) {
3284 if (total_devs
> 1) {
3285 if (dev_nr
< total_devs
- 1) {
3286 bio
= bio_clone(first_bio
, GFP_NOFS
);
3291 bio
->bi_private
= multi
;
3292 bio
->bi_end_io
= end_bio_multi_stripe
;
3294 bio
->bi_sector
= multi
->stripes
[dev_nr
].physical
>> 9;
3295 dev
= multi
->stripes
[dev_nr
].dev
;
3296 if (dev
&& dev
->bdev
&& (rw
!= WRITE
|| dev
->writeable
)) {
3297 bio
->bi_bdev
= dev
->bdev
;
3299 schedule_bio(root
, dev
, rw
, bio
);
3301 submit_bio(rw
, bio
);
3303 bio
->bi_bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3304 bio
->bi_sector
= logical
>> 9;
3305 bio_endio(bio
, -EIO
);
3309 if (total_devs
== 1)
3314 struct btrfs_device
*btrfs_find_device(struct btrfs_root
*root
, u64 devid
,
3317 struct btrfs_device
*device
;
3318 struct btrfs_fs_devices
*cur_devices
;
3320 cur_devices
= root
->fs_info
->fs_devices
;
3321 while (cur_devices
) {
3323 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3324 device
= __find_device(&cur_devices
->devices
,
3329 cur_devices
= cur_devices
->seed
;
3334 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
3335 u64 devid
, u8
*dev_uuid
)
3337 struct btrfs_device
*device
;
3338 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
3340 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
3343 list_add(&device
->dev_list
,
3344 &fs_devices
->devices
);
3345 device
->dev_root
= root
->fs_info
->dev_root
;
3346 device
->devid
= devid
;
3347 device
->work
.func
= pending_bios_fn
;
3348 device
->fs_devices
= fs_devices
;
3349 device
->missing
= 1;
3350 fs_devices
->num_devices
++;
3351 fs_devices
->missing_devices
++;
3352 spin_lock_init(&device
->io_lock
);
3353 INIT_LIST_HEAD(&device
->dev_alloc_list
);
3354 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
3358 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
3359 struct extent_buffer
*leaf
,
3360 struct btrfs_chunk
*chunk
)
3362 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
3363 struct map_lookup
*map
;
3364 struct extent_map
*em
;
3368 u8 uuid
[BTRFS_UUID_SIZE
];
3373 logical
= key
->offset
;
3374 length
= btrfs_chunk_length(leaf
, chunk
);
3376 read_lock(&map_tree
->map_tree
.lock
);
3377 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
3378 read_unlock(&map_tree
->map_tree
.lock
);
3380 /* already mapped? */
3381 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
3382 free_extent_map(em
);
3385 free_extent_map(em
);
3388 em
= alloc_extent_map();
3391 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3392 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
3394 free_extent_map(em
);
3398 em
->bdev
= (struct block_device
*)map
;
3399 em
->start
= logical
;
3401 em
->block_start
= 0;
3402 em
->block_len
= em
->len
;
3404 map
->num_stripes
= num_stripes
;
3405 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
3406 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
3407 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
3408 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
3409 map
->type
= btrfs_chunk_type(leaf
, chunk
);
3410 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
3411 for (i
= 0; i
< num_stripes
; i
++) {
3412 map
->stripes
[i
].physical
=
3413 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
3414 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
3415 read_extent_buffer(leaf
, uuid
, (unsigned long)
3416 btrfs_stripe_dev_uuid_nr(chunk
, i
),
3418 map
->stripes
[i
].dev
= btrfs_find_device(root
, devid
, uuid
,
3420 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
3422 free_extent_map(em
);
3425 if (!map
->stripes
[i
].dev
) {
3426 map
->stripes
[i
].dev
=
3427 add_missing_dev(root
, devid
, uuid
);
3428 if (!map
->stripes
[i
].dev
) {
3430 free_extent_map(em
);
3434 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
3437 write_lock(&map_tree
->map_tree
.lock
);
3438 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
3439 write_unlock(&map_tree
->map_tree
.lock
);
3441 free_extent_map(em
);
3446 static int fill_device_from_item(struct extent_buffer
*leaf
,
3447 struct btrfs_dev_item
*dev_item
,
3448 struct btrfs_device
*device
)
3452 device
->devid
= btrfs_device_id(leaf
, dev_item
);
3453 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
3454 device
->total_bytes
= device
->disk_total_bytes
;
3455 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
3456 device
->type
= btrfs_device_type(leaf
, dev_item
);
3457 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
3458 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
3459 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
3461 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
3462 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
3467 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
3469 struct btrfs_fs_devices
*fs_devices
;
3472 mutex_lock(&uuid_mutex
);
3474 fs_devices
= root
->fs_info
->fs_devices
->seed
;
3475 while (fs_devices
) {
3476 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3480 fs_devices
= fs_devices
->seed
;
3483 fs_devices
= find_fsid(fsid
);
3489 fs_devices
= clone_fs_devices(fs_devices
);
3490 if (IS_ERR(fs_devices
)) {
3491 ret
= PTR_ERR(fs_devices
);
3495 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
3496 root
->fs_info
->bdev_holder
);
3500 if (!fs_devices
->seeding
) {
3501 __btrfs_close_devices(fs_devices
);
3502 free_fs_devices(fs_devices
);
3507 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
3508 root
->fs_info
->fs_devices
->seed
= fs_devices
;
3510 mutex_unlock(&uuid_mutex
);
3514 static int read_one_dev(struct btrfs_root
*root
,
3515 struct extent_buffer
*leaf
,
3516 struct btrfs_dev_item
*dev_item
)
3518 struct btrfs_device
*device
;
3521 u8 fs_uuid
[BTRFS_UUID_SIZE
];
3522 u8 dev_uuid
[BTRFS_UUID_SIZE
];
3524 devid
= btrfs_device_id(leaf
, dev_item
);
3525 read_extent_buffer(leaf
, dev_uuid
,
3526 (unsigned long)btrfs_device_uuid(dev_item
),
3528 read_extent_buffer(leaf
, fs_uuid
,
3529 (unsigned long)btrfs_device_fsid(dev_item
),
3532 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
3533 ret
= open_seed_devices(root
, fs_uuid
);
3534 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
3538 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
3539 if (!device
|| !device
->bdev
) {
3540 if (!btrfs_test_opt(root
, DEGRADED
))
3544 printk(KERN_WARNING
"warning devid %llu missing\n",
3545 (unsigned long long)devid
);
3546 device
= add_missing_dev(root
, devid
, dev_uuid
);
3549 } else if (!device
->missing
) {
3551 * this happens when a device that was properly setup
3552 * in the device info lists suddenly goes bad.
3553 * device->bdev is NULL, and so we have to set
3554 * device->missing to one here
3556 root
->fs_info
->fs_devices
->missing_devices
++;
3557 device
->missing
= 1;
3561 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
3562 BUG_ON(device
->writeable
);
3563 if (device
->generation
!=
3564 btrfs_device_generation(leaf
, dev_item
))
3568 fill_device_from_item(leaf
, dev_item
, device
);
3569 device
->dev_root
= root
->fs_info
->dev_root
;
3570 device
->in_fs_metadata
= 1;
3571 if (device
->writeable
)
3572 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
3577 int btrfs_read_sys_array(struct btrfs_root
*root
)
3579 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
3580 struct extent_buffer
*sb
;
3581 struct btrfs_disk_key
*disk_key
;
3582 struct btrfs_chunk
*chunk
;
3584 unsigned long sb_ptr
;
3590 struct btrfs_key key
;
3592 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
3593 BTRFS_SUPER_INFO_SIZE
);
3596 btrfs_set_buffer_uptodate(sb
);
3597 btrfs_set_buffer_lockdep_class(sb
, 0);
3599 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
3600 array_size
= btrfs_super_sys_array_size(super_copy
);
3602 ptr
= super_copy
->sys_chunk_array
;
3603 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
3606 while (cur
< array_size
) {
3607 disk_key
= (struct btrfs_disk_key
*)ptr
;
3608 btrfs_disk_key_to_cpu(&key
, disk_key
);
3610 len
= sizeof(*disk_key
); ptr
+= len
;
3614 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3615 chunk
= (struct btrfs_chunk
*)sb_ptr
;
3616 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
3619 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
3620 len
= btrfs_chunk_item_size(num_stripes
);
3629 free_extent_buffer(sb
);
3633 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
3635 struct btrfs_path
*path
;
3636 struct extent_buffer
*leaf
;
3637 struct btrfs_key key
;
3638 struct btrfs_key found_key
;
3642 root
= root
->fs_info
->chunk_root
;
3644 path
= btrfs_alloc_path();
3648 /* first we search for all of the device items, and then we
3649 * read in all of the chunk items. This way we can create chunk
3650 * mappings that reference all of the devices that are afound
3652 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
3656 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3660 leaf
= path
->nodes
[0];
3661 slot
= path
->slots
[0];
3662 if (slot
>= btrfs_header_nritems(leaf
)) {
3663 ret
= btrfs_next_leaf(root
, path
);
3670 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3671 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3672 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
3674 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
3675 struct btrfs_dev_item
*dev_item
;
3676 dev_item
= btrfs_item_ptr(leaf
, slot
,
3677 struct btrfs_dev_item
);
3678 ret
= read_one_dev(root
, leaf
, dev_item
);
3682 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3683 struct btrfs_chunk
*chunk
;
3684 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3685 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
3691 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3693 btrfs_release_path(path
);
3698 btrfs_free_path(path
);