2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
60 else if (S_ISREG(mode
))
61 return flags
& ~FS_DIRSYNC_FL
;
63 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
71 unsigned int iflags
= 0;
73 if (flags
& BTRFS_INODE_SYNC
)
75 if (flags
& BTRFS_INODE_IMMUTABLE
)
76 iflags
|= FS_IMMUTABLE_FL
;
77 if (flags
& BTRFS_INODE_APPEND
)
78 iflags
|= FS_APPEND_FL
;
79 if (flags
& BTRFS_INODE_NODUMP
)
80 iflags
|= FS_NODUMP_FL
;
81 if (flags
& BTRFS_INODE_NOATIME
)
82 iflags
|= FS_NOATIME_FL
;
83 if (flags
& BTRFS_INODE_DIRSYNC
)
84 iflags
|= FS_DIRSYNC_FL
;
85 if (flags
& BTRFS_INODE_NODATACOW
)
86 iflags
|= FS_NOCOW_FL
;
88 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
89 iflags
|= FS_COMPR_FL
;
90 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
91 iflags
|= FS_NOCOMP_FL
;
97 * Update inode->i_flags based on the btrfs internal flags.
99 void btrfs_update_iflags(struct inode
*inode
)
101 struct btrfs_inode
*ip
= BTRFS_I(inode
);
103 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
105 if (ip
->flags
& BTRFS_INODE_SYNC
)
106 inode
->i_flags
|= S_SYNC
;
107 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
108 inode
->i_flags
|= S_IMMUTABLE
;
109 if (ip
->flags
& BTRFS_INODE_APPEND
)
110 inode
->i_flags
|= S_APPEND
;
111 if (ip
->flags
& BTRFS_INODE_NOATIME
)
112 inode
->i_flags
|= S_NOATIME
;
113 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
114 inode
->i_flags
|= S_DIRSYNC
;
118 * Inherit flags from the parent inode.
120 * Unlike extN we don't have any flags we don't want to inherit currently.
122 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
129 flags
= BTRFS_I(dir
)->flags
;
131 if (S_ISREG(inode
->i_mode
))
132 flags
&= ~BTRFS_INODE_DIRSYNC
;
133 else if (!S_ISDIR(inode
->i_mode
))
134 flags
&= (BTRFS_INODE_NODUMP
| BTRFS_INODE_NOATIME
);
136 BTRFS_I(inode
)->flags
= flags
;
137 btrfs_update_iflags(inode
);
140 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
142 struct btrfs_inode
*ip
= BTRFS_I(file
->f_path
.dentry
->d_inode
);
143 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
145 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
150 static int check_flags(unsigned int flags
)
152 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
153 FS_NOATIME_FL
| FS_NODUMP_FL
| \
154 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
155 FS_NOCOMP_FL
| FS_COMPR_FL
|
159 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
165 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
167 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
168 struct btrfs_inode
*ip
= BTRFS_I(inode
);
169 struct btrfs_root
*root
= ip
->root
;
170 struct btrfs_trans_handle
*trans
;
171 unsigned int flags
, oldflags
;
174 if (btrfs_root_readonly(root
))
177 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
180 ret
= check_flags(flags
);
184 if (!inode_owner_or_capable(inode
))
187 mutex_lock(&inode
->i_mutex
);
189 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
190 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
191 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
192 if (!capable(CAP_LINUX_IMMUTABLE
)) {
198 ret
= mnt_want_write(file
->f_path
.mnt
);
202 if (flags
& FS_SYNC_FL
)
203 ip
->flags
|= BTRFS_INODE_SYNC
;
205 ip
->flags
&= ~BTRFS_INODE_SYNC
;
206 if (flags
& FS_IMMUTABLE_FL
)
207 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
209 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
210 if (flags
& FS_APPEND_FL
)
211 ip
->flags
|= BTRFS_INODE_APPEND
;
213 ip
->flags
&= ~BTRFS_INODE_APPEND
;
214 if (flags
& FS_NODUMP_FL
)
215 ip
->flags
|= BTRFS_INODE_NODUMP
;
217 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
218 if (flags
& FS_NOATIME_FL
)
219 ip
->flags
|= BTRFS_INODE_NOATIME
;
221 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
222 if (flags
& FS_DIRSYNC_FL
)
223 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
225 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
226 if (flags
& FS_NOCOW_FL
)
227 ip
->flags
|= BTRFS_INODE_NODATACOW
;
229 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233 * flag may be changed automatically if compression code won't make
236 if (flags
& FS_NOCOMP_FL
) {
237 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
238 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
239 } else if (flags
& FS_COMPR_FL
) {
240 ip
->flags
|= BTRFS_INODE_COMPRESS
;
241 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
243 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
246 trans
= btrfs_join_transaction(root
);
247 BUG_ON(IS_ERR(trans
));
249 ret
= btrfs_update_inode(trans
, root
, inode
);
252 btrfs_update_iflags(inode
);
253 inode
->i_ctime
= CURRENT_TIME
;
254 btrfs_end_transaction(trans
, root
);
256 mnt_drop_write(file
->f_path
.mnt
);
260 mutex_unlock(&inode
->i_mutex
);
264 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
266 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
268 return put_user(inode
->i_generation
, arg
);
271 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
273 struct btrfs_root
*root
= fdentry(file
)->d_sb
->s_fs_info
;
274 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
275 struct btrfs_device
*device
;
276 struct request_queue
*q
;
277 struct fstrim_range range
;
278 u64 minlen
= ULLONG_MAX
;
282 if (!capable(CAP_SYS_ADMIN
))
286 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
290 q
= bdev_get_queue(device
->bdev
);
291 if (blk_queue_discard(q
)) {
293 minlen
= min((u64
)q
->limits
.discard_granularity
,
301 if (copy_from_user(&range
, arg
, sizeof(range
)))
304 range
.minlen
= max(range
.minlen
, minlen
);
305 ret
= btrfs_trim_fs(root
, &range
);
309 if (copy_to_user(arg
, &range
, sizeof(range
)))
315 static noinline
int create_subvol(struct btrfs_root
*root
,
316 struct dentry
*dentry
,
317 char *name
, int namelen
,
320 struct btrfs_trans_handle
*trans
;
321 struct btrfs_key key
;
322 struct btrfs_root_item root_item
;
323 struct btrfs_inode_item
*inode_item
;
324 struct extent_buffer
*leaf
;
325 struct btrfs_root
*new_root
;
326 struct dentry
*parent
= dget_parent(dentry
);
331 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
334 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
340 dir
= parent
->d_inode
;
348 trans
= btrfs_start_transaction(root
, 6);
351 return PTR_ERR(trans
);
354 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
355 0, objectid
, NULL
, 0, 0, 0);
361 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
362 btrfs_set_header_bytenr(leaf
, leaf
->start
);
363 btrfs_set_header_generation(leaf
, trans
->transid
);
364 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
365 btrfs_set_header_owner(leaf
, objectid
);
367 write_extent_buffer(leaf
, root
->fs_info
->fsid
,
368 (unsigned long)btrfs_header_fsid(leaf
),
370 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
371 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
373 btrfs_mark_buffer_dirty(leaf
);
375 inode_item
= &root_item
.inode
;
376 memset(inode_item
, 0, sizeof(*inode_item
));
377 inode_item
->generation
= cpu_to_le64(1);
378 inode_item
->size
= cpu_to_le64(3);
379 inode_item
->nlink
= cpu_to_le32(1);
380 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
381 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
384 root_item
.byte_limit
= 0;
385 inode_item
->flags
= cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT
);
387 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
388 btrfs_set_root_generation(&root_item
, trans
->transid
);
389 btrfs_set_root_level(&root_item
, 0);
390 btrfs_set_root_refs(&root_item
, 1);
391 btrfs_set_root_used(&root_item
, leaf
->len
);
392 btrfs_set_root_last_snapshot(&root_item
, 0);
394 memset(&root_item
.drop_progress
, 0, sizeof(root_item
.drop_progress
));
395 root_item
.drop_level
= 0;
397 btrfs_tree_unlock(leaf
);
398 free_extent_buffer(leaf
);
401 btrfs_set_root_dirid(&root_item
, new_dirid
);
403 key
.objectid
= objectid
;
405 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
406 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
411 key
.offset
= (u64
)-1;
412 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
413 BUG_ON(IS_ERR(new_root
));
415 btrfs_record_root_in_trans(trans
, new_root
);
417 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
419 * insert the directory item
421 ret
= btrfs_set_inode_index(dir
, &index
);
424 ret
= btrfs_insert_dir_item(trans
, root
,
425 name
, namelen
, dir
, &key
,
426 BTRFS_FT_DIR
, index
);
430 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
431 ret
= btrfs_update_inode(trans
, root
, dir
);
434 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
435 objectid
, root
->root_key
.objectid
,
436 btrfs_ino(dir
), index
, name
, namelen
);
440 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
444 *async_transid
= trans
->transid
;
445 err
= btrfs_commit_transaction_async(trans
, root
, 1);
447 err
= btrfs_commit_transaction(trans
, root
);
454 static int create_snapshot(struct btrfs_root
*root
, struct dentry
*dentry
,
455 char *name
, int namelen
, u64
*async_transid
,
459 struct dentry
*parent
;
460 struct btrfs_pending_snapshot
*pending_snapshot
;
461 struct btrfs_trans_handle
*trans
;
467 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
468 if (!pending_snapshot
)
471 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
);
472 pending_snapshot
->dentry
= dentry
;
473 pending_snapshot
->root
= root
;
474 pending_snapshot
->readonly
= readonly
;
476 trans
= btrfs_start_transaction(root
->fs_info
->extent_root
, 5);
478 ret
= PTR_ERR(trans
);
482 ret
= btrfs_snap_reserve_metadata(trans
, pending_snapshot
);
485 spin_lock(&root
->fs_info
->trans_lock
);
486 list_add(&pending_snapshot
->list
,
487 &trans
->transaction
->pending_snapshots
);
488 spin_unlock(&root
->fs_info
->trans_lock
);
490 *async_transid
= trans
->transid
;
491 ret
= btrfs_commit_transaction_async(trans
,
492 root
->fs_info
->extent_root
, 1);
494 ret
= btrfs_commit_transaction(trans
,
495 root
->fs_info
->extent_root
);
499 ret
= pending_snapshot
->error
;
503 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
507 parent
= dget_parent(dentry
);
508 inode
= btrfs_lookup_dentry(parent
->d_inode
, dentry
);
511 ret
= PTR_ERR(inode
);
515 d_instantiate(dentry
, inode
);
518 kfree(pending_snapshot
);
522 /* copy of check_sticky in fs/namei.c()
523 * It's inline, so penalty for filesystems that don't use sticky bit is
526 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
528 uid_t fsuid
= current_fsuid();
530 if (!(dir
->i_mode
& S_ISVTX
))
532 if (inode
->i_uid
== fsuid
)
534 if (dir
->i_uid
== fsuid
)
536 return !capable(CAP_FOWNER
);
539 /* copy of may_delete in fs/namei.c()
540 * Check whether we can remove a link victim from directory dir, check
541 * whether the type of victim is right.
542 * 1. We can't do it if dir is read-only (done in permission())
543 * 2. We should have write and exec permissions on dir
544 * 3. We can't remove anything from append-only dir
545 * 4. We can't do anything with immutable dir (done in permission())
546 * 5. If the sticky bit on dir is set we should either
547 * a. be owner of dir, or
548 * b. be owner of victim, or
549 * c. have CAP_FOWNER capability
550 * 6. If the victim is append-only or immutable we can't do antyhing with
551 * links pointing to it.
552 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
553 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
554 * 9. We can't remove a root or mountpoint.
555 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
556 * nfs_async_unlink().
559 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
563 if (!victim
->d_inode
)
566 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
567 audit_inode_child(victim
, dir
);
569 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
574 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
575 IS_APPEND(victim
->d_inode
)||
576 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
579 if (!S_ISDIR(victim
->d_inode
->i_mode
))
583 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
587 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
592 /* copy of may_create in fs/namei.c() */
593 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
599 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
603 * Create a new subvolume below @parent. This is largely modeled after
604 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
605 * inside this filesystem so it's quite a bit simpler.
607 static noinline
int btrfs_mksubvol(struct path
*parent
,
608 char *name
, int namelen
,
609 struct btrfs_root
*snap_src
,
610 u64
*async_transid
, bool readonly
)
612 struct inode
*dir
= parent
->dentry
->d_inode
;
613 struct dentry
*dentry
;
616 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
618 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
619 error
= PTR_ERR(dentry
);
627 error
= mnt_want_write(parent
->mnt
);
631 error
= btrfs_may_create(dir
, dentry
);
635 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
637 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
641 error
= create_snapshot(snap_src
, dentry
,
642 name
, namelen
, async_transid
, readonly
);
644 error
= create_subvol(BTRFS_I(dir
)->root
, dentry
,
645 name
, namelen
, async_transid
);
648 fsnotify_mkdir(dir
, dentry
);
650 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
652 mnt_drop_write(parent
->mnt
);
656 mutex_unlock(&dir
->i_mutex
);
661 * When we're defragging a range, we don't want to kick it off again
662 * if it is really just waiting for delalloc to send it down.
663 * If we find a nice big extent or delalloc range for the bytes in the
664 * file you want to defrag, we return 0 to let you know to skip this
667 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
669 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
670 struct extent_map
*em
= NULL
;
671 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
674 read_lock(&em_tree
->lock
);
675 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
676 read_unlock(&em_tree
->lock
);
679 end
= extent_map_end(em
);
681 if (end
- offset
> thresh
)
684 /* if we already have a nice delalloc here, just stop */
686 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
687 thresh
, EXTENT_DELALLOC
, 1);
694 * helper function to walk through a file and find extents
695 * newer than a specific transid, and smaller than thresh.
697 * This is used by the defragging code to find new and small
700 static int find_new_extents(struct btrfs_root
*root
,
701 struct inode
*inode
, u64 newer_than
,
702 u64
*off
, int thresh
)
704 struct btrfs_path
*path
;
705 struct btrfs_key min_key
;
706 struct btrfs_key max_key
;
707 struct extent_buffer
*leaf
;
708 struct btrfs_file_extent_item
*extent
;
711 u64 ino
= btrfs_ino(inode
);
713 path
= btrfs_alloc_path();
717 min_key
.objectid
= ino
;
718 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
719 min_key
.offset
= *off
;
721 max_key
.objectid
= ino
;
722 max_key
.type
= (u8
)-1;
723 max_key
.offset
= (u64
)-1;
725 path
->keep_locks
= 1;
728 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
729 path
, 0, newer_than
);
732 if (min_key
.objectid
!= ino
)
734 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
737 leaf
= path
->nodes
[0];
738 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
739 struct btrfs_file_extent_item
);
741 type
= btrfs_file_extent_type(leaf
, extent
);
742 if (type
== BTRFS_FILE_EXTENT_REG
&&
743 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
744 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
745 *off
= min_key
.offset
;
746 btrfs_free_path(path
);
750 if (min_key
.offset
== (u64
)-1)
754 btrfs_release_path(path
);
757 btrfs_free_path(path
);
761 static int should_defrag_range(struct inode
*inode
, u64 start
, u64 len
,
762 int thresh
, u64
*last_len
, u64
*skip
,
765 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
766 struct extent_map
*em
= NULL
;
767 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
771 * make sure that once we start defragging and extent, we keep on
774 if (start
< *defrag_end
)
780 * hopefully we have this extent in the tree already, try without
781 * the full extent lock
783 read_lock(&em_tree
->lock
);
784 em
= lookup_extent_mapping(em_tree
, start
, len
);
785 read_unlock(&em_tree
->lock
);
788 /* get the big lock and read metadata off disk */
789 lock_extent(io_tree
, start
, start
+ len
- 1, GFP_NOFS
);
790 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
791 unlock_extent(io_tree
, start
, start
+ len
- 1, GFP_NOFS
);
797 /* this will cover holes, and inline extents */
798 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
)
802 * we hit a real extent, if it is big don't bother defragging it again
804 if ((*last_len
== 0 || *last_len
>= thresh
) && em
->len
>= thresh
)
808 * last_len ends up being a counter of how many bytes we've defragged.
809 * every time we choose not to defrag an extent, we reset *last_len
810 * so that the next tiny extent will force a defrag.
812 * The end result of this is that tiny extents before a single big
813 * extent will force at least part of that big extent to be defragged.
817 *defrag_end
= extent_map_end(em
);
820 *skip
= extent_map_end(em
);
829 * it doesn't do much good to defrag one or two pages
830 * at a time. This pulls in a nice chunk of pages
833 * It also makes sure the delalloc code has enough
834 * dirty data to avoid making new small extents as part
837 * It's a good idea to start RA on this range
838 * before calling this.
840 static int cluster_pages_for_defrag(struct inode
*inode
,
842 unsigned long start_index
,
845 unsigned long file_end
;
846 u64 isize
= i_size_read(inode
);
852 struct btrfs_ordered_extent
*ordered
;
853 struct extent_state
*cached_state
= NULL
;
857 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
859 ret
= btrfs_delalloc_reserve_space(inode
,
860 num_pages
<< PAGE_CACHE_SHIFT
);
867 /* step one, lock all the pages */
868 for (i
= 0; i
< num_pages
; i
++) {
870 page
= grab_cache_page(inode
->i_mapping
,
875 if (!PageUptodate(page
)) {
876 btrfs_readpage(NULL
, page
);
878 if (!PageUptodate(page
)) {
880 page_cache_release(page
);
885 isize
= i_size_read(inode
);
886 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
887 if (!isize
|| page
->index
> file_end
||
888 page
->mapping
!= inode
->i_mapping
) {
889 /* whoops, we blew past eof, skip this page */
891 page_cache_release(page
);
900 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
904 * so now we have a nice long stream of locked
905 * and up to date pages, lets wait on them
907 for (i
= 0; i
< i_done
; i
++)
908 wait_on_page_writeback(pages
[i
]);
910 page_start
= page_offset(pages
[0]);
911 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
913 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
914 page_start
, page_end
- 1, 0, &cached_state
,
916 ordered
= btrfs_lookup_first_ordered_extent(inode
, page_end
- 1);
918 ordered
->file_offset
+ ordered
->len
> page_start
&&
919 ordered
->file_offset
< page_end
) {
920 btrfs_put_ordered_extent(ordered
);
921 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
922 page_start
, page_end
- 1,
923 &cached_state
, GFP_NOFS
);
924 for (i
= 0; i
< i_done
; i
++) {
925 unlock_page(pages
[i
]);
926 page_cache_release(pages
[i
]);
928 btrfs_wait_ordered_range(inode
, page_start
,
929 page_end
- page_start
);
933 btrfs_put_ordered_extent(ordered
);
935 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
936 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
937 EXTENT_DO_ACCOUNTING
, 0, 0, &cached_state
,
940 if (i_done
!= num_pages
) {
941 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
942 btrfs_delalloc_release_space(inode
,
943 (num_pages
- i_done
) << PAGE_CACHE_SHIFT
);
947 btrfs_set_extent_delalloc(inode
, page_start
, page_end
- 1,
950 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
951 page_start
, page_end
- 1, &cached_state
,
954 for (i
= 0; i
< i_done
; i
++) {
955 clear_page_dirty_for_io(pages
[i
]);
956 ClearPageChecked(pages
[i
]);
957 set_page_extent_mapped(pages
[i
]);
958 set_page_dirty(pages
[i
]);
959 unlock_page(pages
[i
]);
960 page_cache_release(pages
[i
]);
964 for (i
= 0; i
< i_done
; i
++) {
965 unlock_page(pages
[i
]);
966 page_cache_release(pages
[i
]);
968 btrfs_delalloc_release_space(inode
, num_pages
<< PAGE_CACHE_SHIFT
);
973 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
974 struct btrfs_ioctl_defrag_range_args
*range
,
975 u64 newer_than
, unsigned long max_to_defrag
)
977 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
978 struct btrfs_super_block
*disk_super
;
979 struct file_ra_state
*ra
= NULL
;
980 unsigned long last_index
;
985 u64 newer_off
= range
->start
;
989 int defrag_count
= 0;
990 int compress_type
= BTRFS_COMPRESS_ZLIB
;
991 int extent_thresh
= range
->extent_thresh
;
992 int newer_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
993 u64 new_align
= ~((u64
)128 * 1024 - 1);
994 struct page
**pages
= NULL
;
996 if (extent_thresh
== 0)
997 extent_thresh
= 256 * 1024;
999 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1000 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1002 if (range
->compress_type
)
1003 compress_type
= range
->compress_type
;
1006 if (inode
->i_size
== 0)
1010 * if we were not given a file, allocate a readahead
1014 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1017 file_ra_state_init(ra
, inode
->i_mapping
);
1022 pages
= kmalloc(sizeof(struct page
*) * newer_cluster
,
1029 /* find the last page to defrag */
1030 if (range
->start
+ range
->len
> range
->start
) {
1031 last_index
= min_t(u64
, inode
->i_size
- 1,
1032 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1034 last_index
= (inode
->i_size
- 1) >> PAGE_CACHE_SHIFT
;
1038 ret
= find_new_extents(root
, inode
, newer_than
,
1039 &newer_off
, 64 * 1024);
1041 range
->start
= newer_off
;
1043 * we always align our defrag to help keep
1044 * the extents in the file evenly spaced
1046 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1047 newer_left
= newer_cluster
;
1051 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1054 max_to_defrag
= last_index
- 1;
1056 while (i
<= last_index
&& defrag_count
< max_to_defrag
) {
1058 * make sure we stop running if someone unmounts
1061 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1065 !should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1072 * the should_defrag function tells us how much to skip
1073 * bump our counter by the suggested amount
1075 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1076 i
= max(i
+ 1, next
);
1079 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1080 BTRFS_I(inode
)->force_compress
= compress_type
;
1082 btrfs_force_ra(inode
->i_mapping
, ra
, file
, i
, newer_cluster
);
1084 ret
= cluster_pages_for_defrag(inode
, pages
, i
, newer_cluster
);
1088 defrag_count
+= ret
;
1089 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, ret
);
1093 if (newer_off
== (u64
)-1)
1096 newer_off
= max(newer_off
+ 1,
1097 (u64
)i
<< PAGE_CACHE_SHIFT
);
1099 ret
= find_new_extents(root
, inode
,
1100 newer_than
, &newer_off
,
1103 range
->start
= newer_off
;
1104 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1105 newer_left
= newer_cluster
;
1114 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1115 filemap_flush(inode
->i_mapping
);
1117 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1118 /* the filemap_flush will queue IO into the worker threads, but
1119 * we have to make sure the IO is actually started and that
1120 * ordered extents get created before we return
1122 atomic_inc(&root
->fs_info
->async_submit_draining
);
1123 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1124 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1125 wait_event(root
->fs_info
->async_submit_wait
,
1126 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1127 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1129 atomic_dec(&root
->fs_info
->async_submit_draining
);
1131 mutex_lock(&inode
->i_mutex
);
1132 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1133 mutex_unlock(&inode
->i_mutex
);
1136 disk_super
= &root
->fs_info
->super_copy
;
1137 features
= btrfs_super_incompat_flags(disk_super
);
1138 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1139 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1140 btrfs_set_super_incompat_flags(disk_super
, features
);
1145 return defrag_count
;
1154 static noinline
int btrfs_ioctl_resize(struct btrfs_root
*root
,
1160 struct btrfs_ioctl_vol_args
*vol_args
;
1161 struct btrfs_trans_handle
*trans
;
1162 struct btrfs_device
*device
= NULL
;
1164 char *devstr
= NULL
;
1168 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1171 if (!capable(CAP_SYS_ADMIN
))
1174 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1175 if (IS_ERR(vol_args
))
1176 return PTR_ERR(vol_args
);
1178 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1180 mutex_lock(&root
->fs_info
->volume_mutex
);
1181 sizestr
= vol_args
->name
;
1182 devstr
= strchr(sizestr
, ':');
1185 sizestr
= devstr
+ 1;
1187 devstr
= vol_args
->name
;
1188 devid
= simple_strtoull(devstr
, &end
, 10);
1189 printk(KERN_INFO
"resizing devid %llu\n",
1190 (unsigned long long)devid
);
1192 device
= btrfs_find_device(root
, devid
, NULL
, NULL
);
1194 printk(KERN_INFO
"resizer unable to find device %llu\n",
1195 (unsigned long long)devid
);
1199 if (!strcmp(sizestr
, "max"))
1200 new_size
= device
->bdev
->bd_inode
->i_size
;
1202 if (sizestr
[0] == '-') {
1205 } else if (sizestr
[0] == '+') {
1209 new_size
= memparse(sizestr
, NULL
);
1210 if (new_size
== 0) {
1216 old_size
= device
->total_bytes
;
1219 if (new_size
> old_size
) {
1223 new_size
= old_size
- new_size
;
1224 } else if (mod
> 0) {
1225 new_size
= old_size
+ new_size
;
1228 if (new_size
< 256 * 1024 * 1024) {
1232 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1237 do_div(new_size
, root
->sectorsize
);
1238 new_size
*= root
->sectorsize
;
1240 printk(KERN_INFO
"new size for %s is %llu\n",
1241 device
->name
, (unsigned long long)new_size
);
1243 if (new_size
> old_size
) {
1244 trans
= btrfs_start_transaction(root
, 0);
1245 if (IS_ERR(trans
)) {
1246 ret
= PTR_ERR(trans
);
1249 ret
= btrfs_grow_device(trans
, device
, new_size
);
1250 btrfs_commit_transaction(trans
, root
);
1252 ret
= btrfs_shrink_device(device
, new_size
);
1256 mutex_unlock(&root
->fs_info
->volume_mutex
);
1261 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1268 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
1269 struct file
*src_file
;
1273 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1276 namelen
= strlen(name
);
1277 if (strchr(name
, '/')) {
1283 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1284 NULL
, transid
, readonly
);
1286 struct inode
*src_inode
;
1287 src_file
= fget(fd
);
1293 src_inode
= src_file
->f_path
.dentry
->d_inode
;
1294 if (src_inode
->i_sb
!= file
->f_path
.dentry
->d_inode
->i_sb
) {
1295 printk(KERN_INFO
"btrfs: Snapshot src from "
1301 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1302 BTRFS_I(src_inode
)->root
,
1310 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1311 void __user
*arg
, int subvol
)
1313 struct btrfs_ioctl_vol_args
*vol_args
;
1316 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1317 if (IS_ERR(vol_args
))
1318 return PTR_ERR(vol_args
);
1319 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1321 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1322 vol_args
->fd
, subvol
,
1329 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1330 void __user
*arg
, int subvol
)
1332 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1336 bool readonly
= false;
1338 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1339 if (IS_ERR(vol_args
))
1340 return PTR_ERR(vol_args
);
1341 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1343 if (vol_args
->flags
&
1344 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
)) {
1349 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1351 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1354 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1355 vol_args
->fd
, subvol
,
1358 if (ret
== 0 && ptr
&&
1360 offsetof(struct btrfs_ioctl_vol_args_v2
,
1361 transid
), ptr
, sizeof(*ptr
)))
1368 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1371 struct inode
*inode
= fdentry(file
)->d_inode
;
1372 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1376 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1379 down_read(&root
->fs_info
->subvol_sem
);
1380 if (btrfs_root_readonly(root
))
1381 flags
|= BTRFS_SUBVOL_RDONLY
;
1382 up_read(&root
->fs_info
->subvol_sem
);
1384 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1390 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1393 struct inode
*inode
= fdentry(file
)->d_inode
;
1394 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1395 struct btrfs_trans_handle
*trans
;
1400 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1403 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1406 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
1409 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1412 if (flags
& ~BTRFS_SUBVOL_RDONLY
)
1415 if (!inode_owner_or_capable(inode
))
1418 down_write(&root
->fs_info
->subvol_sem
);
1421 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1424 root_flags
= btrfs_root_flags(&root
->root_item
);
1425 if (flags
& BTRFS_SUBVOL_RDONLY
)
1426 btrfs_set_root_flags(&root
->root_item
,
1427 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1429 btrfs_set_root_flags(&root
->root_item
,
1430 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1432 trans
= btrfs_start_transaction(root
, 1);
1433 if (IS_ERR(trans
)) {
1434 ret
= PTR_ERR(trans
);
1438 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1439 &root
->root_key
, &root
->root_item
);
1441 btrfs_commit_transaction(trans
, root
);
1444 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1446 up_write(&root
->fs_info
->subvol_sem
);
1451 * helper to check if the subvolume references other subvolumes
1453 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1455 struct btrfs_path
*path
;
1456 struct btrfs_key key
;
1459 path
= btrfs_alloc_path();
1463 key
.objectid
= root
->root_key
.objectid
;
1464 key
.type
= BTRFS_ROOT_REF_KEY
;
1465 key
.offset
= (u64
)-1;
1467 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1474 if (path
->slots
[0] > 0) {
1476 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1477 if (key
.objectid
== root
->root_key
.objectid
&&
1478 key
.type
== BTRFS_ROOT_REF_KEY
)
1482 btrfs_free_path(path
);
1486 static noinline
int key_in_sk(struct btrfs_key
*key
,
1487 struct btrfs_ioctl_search_key
*sk
)
1489 struct btrfs_key test
;
1492 test
.objectid
= sk
->min_objectid
;
1493 test
.type
= sk
->min_type
;
1494 test
.offset
= sk
->min_offset
;
1496 ret
= btrfs_comp_cpu_keys(key
, &test
);
1500 test
.objectid
= sk
->max_objectid
;
1501 test
.type
= sk
->max_type
;
1502 test
.offset
= sk
->max_offset
;
1504 ret
= btrfs_comp_cpu_keys(key
, &test
);
1510 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1511 struct btrfs_path
*path
,
1512 struct btrfs_key
*key
,
1513 struct btrfs_ioctl_search_key
*sk
,
1515 unsigned long *sk_offset
,
1519 struct extent_buffer
*leaf
;
1520 struct btrfs_ioctl_search_header sh
;
1521 unsigned long item_off
;
1522 unsigned long item_len
;
1528 leaf
= path
->nodes
[0];
1529 slot
= path
->slots
[0];
1530 nritems
= btrfs_header_nritems(leaf
);
1532 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1536 found_transid
= btrfs_header_generation(leaf
);
1538 for (i
= slot
; i
< nritems
; i
++) {
1539 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1540 item_len
= btrfs_item_size_nr(leaf
, i
);
1542 if (item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1545 if (sizeof(sh
) + item_len
+ *sk_offset
>
1546 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1551 btrfs_item_key_to_cpu(leaf
, key
, i
);
1552 if (!key_in_sk(key
, sk
))
1555 sh
.objectid
= key
->objectid
;
1556 sh
.offset
= key
->offset
;
1557 sh
.type
= key
->type
;
1559 sh
.transid
= found_transid
;
1561 /* copy search result header */
1562 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1563 *sk_offset
+= sizeof(sh
);
1566 char *p
= buf
+ *sk_offset
;
1568 read_extent_buffer(leaf
, p
,
1569 item_off
, item_len
);
1570 *sk_offset
+= item_len
;
1574 if (*num_found
>= sk
->nr_items
)
1579 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1581 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1584 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1594 static noinline
int search_ioctl(struct inode
*inode
,
1595 struct btrfs_ioctl_search_args
*args
)
1597 struct btrfs_root
*root
;
1598 struct btrfs_key key
;
1599 struct btrfs_key max_key
;
1600 struct btrfs_path
*path
;
1601 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1602 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1605 unsigned long sk_offset
= 0;
1607 path
= btrfs_alloc_path();
1611 if (sk
->tree_id
== 0) {
1612 /* search the root of the inode that was passed */
1613 root
= BTRFS_I(inode
)->root
;
1615 key
.objectid
= sk
->tree_id
;
1616 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1617 key
.offset
= (u64
)-1;
1618 root
= btrfs_read_fs_root_no_name(info
, &key
);
1620 printk(KERN_ERR
"could not find root %llu\n",
1622 btrfs_free_path(path
);
1627 key
.objectid
= sk
->min_objectid
;
1628 key
.type
= sk
->min_type
;
1629 key
.offset
= sk
->min_offset
;
1631 max_key
.objectid
= sk
->max_objectid
;
1632 max_key
.type
= sk
->max_type
;
1633 max_key
.offset
= sk
->max_offset
;
1635 path
->keep_locks
= 1;
1638 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
, 0,
1645 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1646 &sk_offset
, &num_found
);
1647 btrfs_release_path(path
);
1648 if (ret
|| num_found
>= sk
->nr_items
)
1654 sk
->nr_items
= num_found
;
1655 btrfs_free_path(path
);
1659 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1662 struct btrfs_ioctl_search_args
*args
;
1663 struct inode
*inode
;
1666 if (!capable(CAP_SYS_ADMIN
))
1669 args
= memdup_user(argp
, sizeof(*args
));
1671 return PTR_ERR(args
);
1673 inode
= fdentry(file
)->d_inode
;
1674 ret
= search_ioctl(inode
, args
);
1675 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1682 * Search INODE_REFs to identify path name of 'dirid' directory
1683 * in a 'tree_id' tree. and sets path name to 'name'.
1685 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1686 u64 tree_id
, u64 dirid
, char *name
)
1688 struct btrfs_root
*root
;
1689 struct btrfs_key key
;
1695 struct btrfs_inode_ref
*iref
;
1696 struct extent_buffer
*l
;
1697 struct btrfs_path
*path
;
1699 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
1704 path
= btrfs_alloc_path();
1708 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
1710 key
.objectid
= tree_id
;
1711 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1712 key
.offset
= (u64
)-1;
1713 root
= btrfs_read_fs_root_no_name(info
, &key
);
1715 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
1720 key
.objectid
= dirid
;
1721 key
.type
= BTRFS_INODE_REF_KEY
;
1722 key
.offset
= (u64
)-1;
1725 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1730 slot
= path
->slots
[0];
1731 if (ret
> 0 && slot
> 0)
1733 btrfs_item_key_to_cpu(l
, &key
, slot
);
1735 if (ret
> 0 && (key
.objectid
!= dirid
||
1736 key
.type
!= BTRFS_INODE_REF_KEY
)) {
1741 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
1742 len
= btrfs_inode_ref_name_len(l
, iref
);
1744 total_len
+= len
+ 1;
1749 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
1751 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
1754 btrfs_release_path(path
);
1755 key
.objectid
= key
.offset
;
1756 key
.offset
= (u64
)-1;
1757 dirid
= key
.objectid
;
1762 memcpy(name
, ptr
, total_len
);
1763 name
[total_len
]='\0';
1766 btrfs_free_path(path
);
1770 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
1773 struct btrfs_ioctl_ino_lookup_args
*args
;
1774 struct inode
*inode
;
1777 if (!capable(CAP_SYS_ADMIN
))
1780 args
= memdup_user(argp
, sizeof(*args
));
1782 return PTR_ERR(args
);
1784 inode
= fdentry(file
)->d_inode
;
1786 if (args
->treeid
== 0)
1787 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
1789 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
1790 args
->treeid
, args
->objectid
,
1793 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1800 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
1803 struct dentry
*parent
= fdentry(file
);
1804 struct dentry
*dentry
;
1805 struct inode
*dir
= parent
->d_inode
;
1806 struct inode
*inode
;
1807 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
1808 struct btrfs_root
*dest
= NULL
;
1809 struct btrfs_ioctl_vol_args
*vol_args
;
1810 struct btrfs_trans_handle
*trans
;
1815 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1816 if (IS_ERR(vol_args
))
1817 return PTR_ERR(vol_args
);
1819 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1820 namelen
= strlen(vol_args
->name
);
1821 if (strchr(vol_args
->name
, '/') ||
1822 strncmp(vol_args
->name
, "..", namelen
) == 0) {
1827 err
= mnt_want_write(file
->f_path
.mnt
);
1831 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
1832 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
1833 if (IS_ERR(dentry
)) {
1834 err
= PTR_ERR(dentry
);
1835 goto out_unlock_dir
;
1838 if (!dentry
->d_inode
) {
1843 inode
= dentry
->d_inode
;
1844 dest
= BTRFS_I(inode
)->root
;
1845 if (!capable(CAP_SYS_ADMIN
)){
1847 * Regular user. Only allow this with a special mount
1848 * option, when the user has write+exec access to the
1849 * subvol root, and when rmdir(2) would have been
1852 * Note that this is _not_ check that the subvol is
1853 * empty or doesn't contain data that we wouldn't
1854 * otherwise be able to delete.
1856 * Users who want to delete empty subvols should try
1860 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
1864 * Do not allow deletion if the parent dir is the same
1865 * as the dir to be deleted. That means the ioctl
1866 * must be called on the dentry referencing the root
1867 * of the subvol, not a random directory contained
1874 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
1878 /* check if subvolume may be deleted by a non-root user */
1879 err
= btrfs_may_delete(dir
, dentry
, 1);
1884 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1889 mutex_lock(&inode
->i_mutex
);
1890 err
= d_invalidate(dentry
);
1894 down_write(&root
->fs_info
->subvol_sem
);
1896 err
= may_destroy_subvol(dest
);
1900 trans
= btrfs_start_transaction(root
, 0);
1901 if (IS_ERR(trans
)) {
1902 err
= PTR_ERR(trans
);
1905 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
1907 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
1908 dest
->root_key
.objectid
,
1909 dentry
->d_name
.name
,
1910 dentry
->d_name
.len
);
1913 btrfs_record_root_in_trans(trans
, dest
);
1915 memset(&dest
->root_item
.drop_progress
, 0,
1916 sizeof(dest
->root_item
.drop_progress
));
1917 dest
->root_item
.drop_level
= 0;
1918 btrfs_set_root_refs(&dest
->root_item
, 0);
1920 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
1921 ret
= btrfs_insert_orphan_item(trans
,
1922 root
->fs_info
->tree_root
,
1923 dest
->root_key
.objectid
);
1927 ret
= btrfs_end_transaction(trans
, root
);
1929 inode
->i_flags
|= S_DEAD
;
1931 up_write(&root
->fs_info
->subvol_sem
);
1933 mutex_unlock(&inode
->i_mutex
);
1935 shrink_dcache_sb(root
->fs_info
->sb
);
1936 btrfs_invalidate_inodes(dest
);
1942 mutex_unlock(&dir
->i_mutex
);
1943 mnt_drop_write(file
->f_path
.mnt
);
1949 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
1951 struct inode
*inode
= fdentry(file
)->d_inode
;
1952 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1953 struct btrfs_ioctl_defrag_range_args
*range
;
1956 if (btrfs_root_readonly(root
))
1959 ret
= mnt_want_write(file
->f_path
.mnt
);
1963 switch (inode
->i_mode
& S_IFMT
) {
1965 if (!capable(CAP_SYS_ADMIN
)) {
1969 ret
= btrfs_defrag_root(root
, 0);
1972 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
, 0);
1975 if (!(file
->f_mode
& FMODE_WRITE
)) {
1980 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
1987 if (copy_from_user(range
, argp
,
1993 /* compression requires us to start the IO */
1994 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1995 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
1996 range
->extent_thresh
= (u32
)-1;
1999 /* the rest are all set to zero by kzalloc */
2000 range
->len
= (u64
)-1;
2002 ret
= btrfs_defrag_file(fdentry(file
)->d_inode
, file
,
2012 mnt_drop_write(file
->f_path
.mnt
);
2016 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2018 struct btrfs_ioctl_vol_args
*vol_args
;
2021 if (!capable(CAP_SYS_ADMIN
))
2024 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2025 if (IS_ERR(vol_args
))
2026 return PTR_ERR(vol_args
);
2028 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2029 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2035 static long btrfs_ioctl_rm_dev(struct btrfs_root
*root
, void __user
*arg
)
2037 struct btrfs_ioctl_vol_args
*vol_args
;
2040 if (!capable(CAP_SYS_ADMIN
))
2043 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2046 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2047 if (IS_ERR(vol_args
))
2048 return PTR_ERR(vol_args
);
2050 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2051 ret
= btrfs_rm_device(root
, vol_args
->name
);
2057 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2059 struct btrfs_ioctl_fs_info_args
*fi_args
;
2060 struct btrfs_device
*device
;
2061 struct btrfs_device
*next
;
2062 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2065 if (!capable(CAP_SYS_ADMIN
))
2068 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2072 fi_args
->num_devices
= fs_devices
->num_devices
;
2073 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2075 mutex_lock(&fs_devices
->device_list_mutex
);
2076 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2077 if (device
->devid
> fi_args
->max_id
)
2078 fi_args
->max_id
= device
->devid
;
2080 mutex_unlock(&fs_devices
->device_list_mutex
);
2082 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2089 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2091 struct btrfs_ioctl_dev_info_args
*di_args
;
2092 struct btrfs_device
*dev
;
2093 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2095 char *s_uuid
= NULL
;
2096 char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
2098 if (!capable(CAP_SYS_ADMIN
))
2101 di_args
= memdup_user(arg
, sizeof(*di_args
));
2102 if (IS_ERR(di_args
))
2103 return PTR_ERR(di_args
);
2105 if (memcmp(empty_uuid
, di_args
->uuid
, BTRFS_UUID_SIZE
) != 0)
2106 s_uuid
= di_args
->uuid
;
2108 mutex_lock(&fs_devices
->device_list_mutex
);
2109 dev
= btrfs_find_device(root
, di_args
->devid
, s_uuid
, NULL
);
2110 mutex_unlock(&fs_devices
->device_list_mutex
);
2117 di_args
->devid
= dev
->devid
;
2118 di_args
->bytes_used
= dev
->bytes_used
;
2119 di_args
->total_bytes
= dev
->total_bytes
;
2120 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2121 strncpy(di_args
->path
, dev
->name
, sizeof(di_args
->path
));
2124 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2131 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
2132 u64 off
, u64 olen
, u64 destoff
)
2134 struct inode
*inode
= fdentry(file
)->d_inode
;
2135 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2136 struct file
*src_file
;
2138 struct btrfs_trans_handle
*trans
;
2139 struct btrfs_path
*path
;
2140 struct extent_buffer
*leaf
;
2142 struct btrfs_key key
;
2147 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
2152 * - split compressed inline extents. annoying: we need to
2153 * decompress into destination's address_space (the file offset
2154 * may change, so source mapping won't do), then recompress (or
2155 * otherwise reinsert) a subrange.
2156 * - allow ranges within the same file to be cloned (provided
2157 * they don't overlap)?
2160 /* the destination must be opened for writing */
2161 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
2164 if (btrfs_root_readonly(root
))
2167 ret
= mnt_want_write(file
->f_path
.mnt
);
2171 src_file
= fget(srcfd
);
2174 goto out_drop_write
;
2177 src
= src_file
->f_dentry
->d_inode
;
2183 /* the src must be open for reading */
2184 if (!(src_file
->f_mode
& FMODE_READ
))
2188 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
2192 if (src
->i_sb
!= inode
->i_sb
|| BTRFS_I(src
)->root
!= root
)
2196 buf
= vmalloc(btrfs_level_size(root
, 0));
2200 path
= btrfs_alloc_path();
2208 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
2209 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
2211 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
2212 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2215 /* determine range to clone */
2217 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
2220 olen
= len
= src
->i_size
- off
;
2221 /* if we extend to eof, continue to block boundary */
2222 if (off
+ len
== src
->i_size
)
2223 len
= ALIGN(src
->i_size
, bs
) - off
;
2225 /* verify the end result is block aligned */
2226 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
2227 !IS_ALIGNED(destoff
, bs
))
2230 /* do any pending delalloc/csum calc on src, one way or
2231 another, and lock file content */
2233 struct btrfs_ordered_extent
*ordered
;
2234 lock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2235 ordered
= btrfs_lookup_first_ordered_extent(src
, off
+len
);
2237 !test_range_bit(&BTRFS_I(src
)->io_tree
, off
, off
+len
,
2238 EXTENT_DELALLOC
, 0, NULL
))
2240 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2242 btrfs_put_ordered_extent(ordered
);
2243 btrfs_wait_ordered_range(src
, off
, len
);
2247 key
.objectid
= btrfs_ino(src
);
2248 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2253 * note the key will change type as we walk through the
2256 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2260 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2261 if (path
->slots
[0] >= nritems
) {
2262 ret
= btrfs_next_leaf(root
, path
);
2267 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2269 leaf
= path
->nodes
[0];
2270 slot
= path
->slots
[0];
2272 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2273 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2274 key
.objectid
!= btrfs_ino(src
))
2277 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2278 struct btrfs_file_extent_item
*extent
;
2281 struct btrfs_key new_key
;
2282 u64 disko
= 0, diskl
= 0;
2283 u64 datao
= 0, datal
= 0;
2287 size
= btrfs_item_size_nr(leaf
, slot
);
2288 read_extent_buffer(leaf
, buf
,
2289 btrfs_item_ptr_offset(leaf
, slot
),
2292 extent
= btrfs_item_ptr(leaf
, slot
,
2293 struct btrfs_file_extent_item
);
2294 comp
= btrfs_file_extent_compression(leaf
, extent
);
2295 type
= btrfs_file_extent_type(leaf
, extent
);
2296 if (type
== BTRFS_FILE_EXTENT_REG
||
2297 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2298 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2300 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2302 datao
= btrfs_file_extent_offset(leaf
, extent
);
2303 datal
= btrfs_file_extent_num_bytes(leaf
,
2305 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2306 /* take upper bound, may be compressed */
2307 datal
= btrfs_file_extent_ram_bytes(leaf
,
2310 btrfs_release_path(path
);
2312 if (key
.offset
+ datal
<= off
||
2313 key
.offset
>= off
+len
)
2316 memcpy(&new_key
, &key
, sizeof(new_key
));
2317 new_key
.objectid
= btrfs_ino(inode
);
2318 if (off
<= key
.offset
)
2319 new_key
.offset
= key
.offset
+ destoff
- off
;
2321 new_key
.offset
= destoff
;
2323 trans
= btrfs_start_transaction(root
, 1);
2324 if (IS_ERR(trans
)) {
2325 ret
= PTR_ERR(trans
);
2329 if (type
== BTRFS_FILE_EXTENT_REG
||
2330 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2331 if (off
> key
.offset
) {
2332 datao
+= off
- key
.offset
;
2333 datal
-= off
- key
.offset
;
2336 if (key
.offset
+ datal
> off
+ len
)
2337 datal
= off
+ len
- key
.offset
;
2339 ret
= btrfs_drop_extents(trans
, inode
,
2341 new_key
.offset
+ datal
,
2345 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2349 leaf
= path
->nodes
[0];
2350 slot
= path
->slots
[0];
2351 write_extent_buffer(leaf
, buf
,
2352 btrfs_item_ptr_offset(leaf
, slot
),
2355 extent
= btrfs_item_ptr(leaf
, slot
,
2356 struct btrfs_file_extent_item
);
2358 /* disko == 0 means it's a hole */
2362 btrfs_set_file_extent_offset(leaf
, extent
,
2364 btrfs_set_file_extent_num_bytes(leaf
, extent
,
2367 inode_add_bytes(inode
, datal
);
2368 ret
= btrfs_inc_extent_ref(trans
, root
,
2370 root
->root_key
.objectid
,
2372 new_key
.offset
- datao
);
2375 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2378 if (off
> key
.offset
) {
2379 skip
= off
- key
.offset
;
2380 new_key
.offset
+= skip
;
2383 if (key
.offset
+ datal
> off
+len
)
2384 trim
= key
.offset
+ datal
- (off
+len
);
2386 if (comp
&& (skip
|| trim
)) {
2388 btrfs_end_transaction(trans
, root
);
2391 size
-= skip
+ trim
;
2392 datal
-= skip
+ trim
;
2394 ret
= btrfs_drop_extents(trans
, inode
,
2396 new_key
.offset
+ datal
,
2400 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2406 btrfs_file_extent_calc_inline_size(0);
2407 memmove(buf
+start
, buf
+start
+skip
,
2411 leaf
= path
->nodes
[0];
2412 slot
= path
->slots
[0];
2413 write_extent_buffer(leaf
, buf
,
2414 btrfs_item_ptr_offset(leaf
, slot
),
2416 inode_add_bytes(inode
, datal
);
2419 btrfs_mark_buffer_dirty(leaf
);
2420 btrfs_release_path(path
);
2422 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2425 * we round up to the block size at eof when
2426 * determining which extents to clone above,
2427 * but shouldn't round up the file size
2429 endoff
= new_key
.offset
+ datal
;
2430 if (endoff
> destoff
+olen
)
2431 endoff
= destoff
+olen
;
2432 if (endoff
> inode
->i_size
)
2433 btrfs_i_size_write(inode
, endoff
);
2435 BTRFS_I(inode
)->flags
= BTRFS_I(src
)->flags
;
2436 ret
= btrfs_update_inode(trans
, root
, inode
);
2438 btrfs_end_transaction(trans
, root
);
2441 btrfs_release_path(path
);
2446 btrfs_release_path(path
);
2447 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2449 mutex_unlock(&src
->i_mutex
);
2450 mutex_unlock(&inode
->i_mutex
);
2452 btrfs_free_path(path
);
2456 mnt_drop_write(file
->f_path
.mnt
);
2460 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
2462 struct btrfs_ioctl_clone_range_args args
;
2464 if (copy_from_user(&args
, argp
, sizeof(args
)))
2466 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
2467 args
.src_length
, args
.dest_offset
);
2471 * there are many ways the trans_start and trans_end ioctls can lead
2472 * to deadlocks. They should only be used by applications that
2473 * basically own the machine, and have a very in depth understanding
2474 * of all the possible deadlocks and enospc problems.
2476 static long btrfs_ioctl_trans_start(struct file
*file
)
2478 struct inode
*inode
= fdentry(file
)->d_inode
;
2479 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2480 struct btrfs_trans_handle
*trans
;
2484 if (!capable(CAP_SYS_ADMIN
))
2488 if (file
->private_data
)
2492 if (btrfs_root_readonly(root
))
2495 ret
= mnt_want_write(file
->f_path
.mnt
);
2499 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
2502 trans
= btrfs_start_ioctl_transaction(root
);
2506 file
->private_data
= trans
;
2510 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2511 mnt_drop_write(file
->f_path
.mnt
);
2516 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
2518 struct inode
*inode
= fdentry(file
)->d_inode
;
2519 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2520 struct btrfs_root
*new_root
;
2521 struct btrfs_dir_item
*di
;
2522 struct btrfs_trans_handle
*trans
;
2523 struct btrfs_path
*path
;
2524 struct btrfs_key location
;
2525 struct btrfs_disk_key disk_key
;
2526 struct btrfs_super_block
*disk_super
;
2531 if (!capable(CAP_SYS_ADMIN
))
2534 if (copy_from_user(&objectid
, argp
, sizeof(objectid
)))
2538 objectid
= root
->root_key
.objectid
;
2540 location
.objectid
= objectid
;
2541 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2542 location
.offset
= (u64
)-1;
2544 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
2545 if (IS_ERR(new_root
))
2546 return PTR_ERR(new_root
);
2548 if (btrfs_root_refs(&new_root
->root_item
) == 0)
2551 path
= btrfs_alloc_path();
2554 path
->leave_spinning
= 1;
2556 trans
= btrfs_start_transaction(root
, 1);
2557 if (IS_ERR(trans
)) {
2558 btrfs_free_path(path
);
2559 return PTR_ERR(trans
);
2562 dir_id
= btrfs_super_root_dir(&root
->fs_info
->super_copy
);
2563 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
2564 dir_id
, "default", 7, 1);
2565 if (IS_ERR_OR_NULL(di
)) {
2566 btrfs_free_path(path
);
2567 btrfs_end_transaction(trans
, root
);
2568 printk(KERN_ERR
"Umm, you don't have the default dir item, "
2569 "this isn't going to work\n");
2573 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
2574 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
2575 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2576 btrfs_free_path(path
);
2578 disk_super
= &root
->fs_info
->super_copy
;
2579 features
= btrfs_super_incompat_flags(disk_super
);
2580 if (!(features
& BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
)) {
2581 features
|= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
;
2582 btrfs_set_super_incompat_flags(disk_super
, features
);
2584 btrfs_end_transaction(trans
, root
);
2589 static void get_block_group_info(struct list_head
*groups_list
,
2590 struct btrfs_ioctl_space_info
*space
)
2592 struct btrfs_block_group_cache
*block_group
;
2594 space
->total_bytes
= 0;
2595 space
->used_bytes
= 0;
2597 list_for_each_entry(block_group
, groups_list
, list
) {
2598 space
->flags
= block_group
->flags
;
2599 space
->total_bytes
+= block_group
->key
.offset
;
2600 space
->used_bytes
+=
2601 btrfs_block_group_used(&block_group
->item
);
2605 long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
2607 struct btrfs_ioctl_space_args space_args
;
2608 struct btrfs_ioctl_space_info space
;
2609 struct btrfs_ioctl_space_info
*dest
;
2610 struct btrfs_ioctl_space_info
*dest_orig
;
2611 struct btrfs_ioctl_space_info __user
*user_dest
;
2612 struct btrfs_space_info
*info
;
2613 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
2614 BTRFS_BLOCK_GROUP_SYSTEM
,
2615 BTRFS_BLOCK_GROUP_METADATA
,
2616 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
2623 if (copy_from_user(&space_args
,
2624 (struct btrfs_ioctl_space_args __user
*)arg
,
2625 sizeof(space_args
)))
2628 for (i
= 0; i
< num_types
; i
++) {
2629 struct btrfs_space_info
*tmp
;
2633 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2635 if (tmp
->flags
== types
[i
]) {
2645 down_read(&info
->groups_sem
);
2646 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2647 if (!list_empty(&info
->block_groups
[c
]))
2650 up_read(&info
->groups_sem
);
2653 /* space_slots == 0 means they are asking for a count */
2654 if (space_args
.space_slots
== 0) {
2655 space_args
.total_spaces
= slot_count
;
2659 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
2661 alloc_size
= sizeof(*dest
) * slot_count
;
2663 /* we generally have at most 6 or so space infos, one for each raid
2664 * level. So, a whole page should be more than enough for everyone
2666 if (alloc_size
> PAGE_CACHE_SIZE
)
2669 space_args
.total_spaces
= 0;
2670 dest
= kmalloc(alloc_size
, GFP_NOFS
);
2675 /* now we have a buffer to copy into */
2676 for (i
= 0; i
< num_types
; i
++) {
2677 struct btrfs_space_info
*tmp
;
2684 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2686 if (tmp
->flags
== types
[i
]) {
2695 down_read(&info
->groups_sem
);
2696 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2697 if (!list_empty(&info
->block_groups
[c
])) {
2698 get_block_group_info(&info
->block_groups
[c
],
2700 memcpy(dest
, &space
, sizeof(space
));
2702 space_args
.total_spaces
++;
2708 up_read(&info
->groups_sem
);
2711 user_dest
= (struct btrfs_ioctl_space_info
*)
2712 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
2714 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
2719 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
2726 * there are many ways the trans_start and trans_end ioctls can lead
2727 * to deadlocks. They should only be used by applications that
2728 * basically own the machine, and have a very in depth understanding
2729 * of all the possible deadlocks and enospc problems.
2731 long btrfs_ioctl_trans_end(struct file
*file
)
2733 struct inode
*inode
= fdentry(file
)->d_inode
;
2734 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2735 struct btrfs_trans_handle
*trans
;
2737 trans
= file
->private_data
;
2740 file
->private_data
= NULL
;
2742 btrfs_end_transaction(trans
, root
);
2744 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2746 mnt_drop_write(file
->f_path
.mnt
);
2750 static noinline
long btrfs_ioctl_start_sync(struct file
*file
, void __user
*argp
)
2752 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
2753 struct btrfs_trans_handle
*trans
;
2757 trans
= btrfs_start_transaction(root
, 0);
2759 return PTR_ERR(trans
);
2760 transid
= trans
->transid
;
2761 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
2763 btrfs_end_transaction(trans
, root
);
2768 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
2773 static noinline
long btrfs_ioctl_wait_sync(struct file
*file
, void __user
*argp
)
2775 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
2779 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
2782 transid
= 0; /* current trans */
2784 return btrfs_wait_for_commit(root
, transid
);
2787 static long btrfs_ioctl_scrub(struct btrfs_root
*root
, void __user
*arg
)
2790 struct btrfs_ioctl_scrub_args
*sa
;
2792 if (!capable(CAP_SYS_ADMIN
))
2795 sa
= memdup_user(arg
, sizeof(*sa
));
2799 ret
= btrfs_scrub_dev(root
, sa
->devid
, sa
->start
, sa
->end
,
2800 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
);
2802 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
2809 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
2811 if (!capable(CAP_SYS_ADMIN
))
2814 return btrfs_scrub_cancel(root
);
2817 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
2820 struct btrfs_ioctl_scrub_args
*sa
;
2823 if (!capable(CAP_SYS_ADMIN
))
2826 sa
= memdup_user(arg
, sizeof(*sa
));
2830 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
2832 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
2839 long btrfs_ioctl(struct file
*file
, unsigned int
2840 cmd
, unsigned long arg
)
2842 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
2843 void __user
*argp
= (void __user
*)arg
;
2846 case FS_IOC_GETFLAGS
:
2847 return btrfs_ioctl_getflags(file
, argp
);
2848 case FS_IOC_SETFLAGS
:
2849 return btrfs_ioctl_setflags(file
, argp
);
2850 case FS_IOC_GETVERSION
:
2851 return btrfs_ioctl_getversion(file
, argp
);
2853 return btrfs_ioctl_fitrim(file
, argp
);
2854 case BTRFS_IOC_SNAP_CREATE
:
2855 return btrfs_ioctl_snap_create(file
, argp
, 0);
2856 case BTRFS_IOC_SNAP_CREATE_V2
:
2857 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
2858 case BTRFS_IOC_SUBVOL_CREATE
:
2859 return btrfs_ioctl_snap_create(file
, argp
, 1);
2860 case BTRFS_IOC_SNAP_DESTROY
:
2861 return btrfs_ioctl_snap_destroy(file
, argp
);
2862 case BTRFS_IOC_SUBVOL_GETFLAGS
:
2863 return btrfs_ioctl_subvol_getflags(file
, argp
);
2864 case BTRFS_IOC_SUBVOL_SETFLAGS
:
2865 return btrfs_ioctl_subvol_setflags(file
, argp
);
2866 case BTRFS_IOC_DEFAULT_SUBVOL
:
2867 return btrfs_ioctl_default_subvol(file
, argp
);
2868 case BTRFS_IOC_DEFRAG
:
2869 return btrfs_ioctl_defrag(file
, NULL
);
2870 case BTRFS_IOC_DEFRAG_RANGE
:
2871 return btrfs_ioctl_defrag(file
, argp
);
2872 case BTRFS_IOC_RESIZE
:
2873 return btrfs_ioctl_resize(root
, argp
);
2874 case BTRFS_IOC_ADD_DEV
:
2875 return btrfs_ioctl_add_dev(root
, argp
);
2876 case BTRFS_IOC_RM_DEV
:
2877 return btrfs_ioctl_rm_dev(root
, argp
);
2878 case BTRFS_IOC_FS_INFO
:
2879 return btrfs_ioctl_fs_info(root
, argp
);
2880 case BTRFS_IOC_DEV_INFO
:
2881 return btrfs_ioctl_dev_info(root
, argp
);
2882 case BTRFS_IOC_BALANCE
:
2883 return btrfs_balance(root
->fs_info
->dev_root
);
2884 case BTRFS_IOC_CLONE
:
2885 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
2886 case BTRFS_IOC_CLONE_RANGE
:
2887 return btrfs_ioctl_clone_range(file
, argp
);
2888 case BTRFS_IOC_TRANS_START
:
2889 return btrfs_ioctl_trans_start(file
);
2890 case BTRFS_IOC_TRANS_END
:
2891 return btrfs_ioctl_trans_end(file
);
2892 case BTRFS_IOC_TREE_SEARCH
:
2893 return btrfs_ioctl_tree_search(file
, argp
);
2894 case BTRFS_IOC_INO_LOOKUP
:
2895 return btrfs_ioctl_ino_lookup(file
, argp
);
2896 case BTRFS_IOC_SPACE_INFO
:
2897 return btrfs_ioctl_space_info(root
, argp
);
2898 case BTRFS_IOC_SYNC
:
2899 btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
2901 case BTRFS_IOC_START_SYNC
:
2902 return btrfs_ioctl_start_sync(file
, argp
);
2903 case BTRFS_IOC_WAIT_SYNC
:
2904 return btrfs_ioctl_wait_sync(file
, argp
);
2905 case BTRFS_IOC_SCRUB
:
2906 return btrfs_ioctl_scrub(root
, argp
);
2907 case BTRFS_IOC_SCRUB_CANCEL
:
2908 return btrfs_ioctl_scrub_cancel(root
, argp
);
2909 case BTRFS_IOC_SCRUB_PROGRESS
:
2910 return btrfs_ioctl_scrub_progress(root
, argp
);