gma500: tidy the mrst files
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / ioctl.c
bloba3c4751e07db0d7704e8ac1aa3269d7c75e3c48a
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 if (S_ISDIR(mode))
59 return flags;
60 else if (S_ISREG(mode))
61 return flags & ~FS_DIRSYNC_FL;
62 else
63 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
71 unsigned int iflags = 0;
73 if (flags & BTRFS_INODE_SYNC)
74 iflags |= FS_SYNC_FL;
75 if (flags & BTRFS_INODE_IMMUTABLE)
76 iflags |= FS_IMMUTABLE_FL;
77 if (flags & BTRFS_INODE_APPEND)
78 iflags |= FS_APPEND_FL;
79 if (flags & BTRFS_INODE_NODUMP)
80 iflags |= FS_NODUMP_FL;
81 if (flags & BTRFS_INODE_NOATIME)
82 iflags |= FS_NOATIME_FL;
83 if (flags & BTRFS_INODE_DIRSYNC)
84 iflags |= FS_DIRSYNC_FL;
85 if (flags & BTRFS_INODE_NODATACOW)
86 iflags |= FS_NOCOW_FL;
88 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
89 iflags |= FS_COMPR_FL;
90 else if (flags & BTRFS_INODE_NOCOMPRESS)
91 iflags |= FS_NOCOMP_FL;
93 return iflags;
97 * Update inode->i_flags based on the btrfs internal flags.
99 void btrfs_update_iflags(struct inode *inode)
101 struct btrfs_inode *ip = BTRFS_I(inode);
103 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
105 if (ip->flags & BTRFS_INODE_SYNC)
106 inode->i_flags |= S_SYNC;
107 if (ip->flags & BTRFS_INODE_IMMUTABLE)
108 inode->i_flags |= S_IMMUTABLE;
109 if (ip->flags & BTRFS_INODE_APPEND)
110 inode->i_flags |= S_APPEND;
111 if (ip->flags & BTRFS_INODE_NOATIME)
112 inode->i_flags |= S_NOATIME;
113 if (ip->flags & BTRFS_INODE_DIRSYNC)
114 inode->i_flags |= S_DIRSYNC;
118 * Inherit flags from the parent inode.
120 * Unlike extN we don't have any flags we don't want to inherit currently.
122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
124 unsigned int flags;
126 if (!dir)
127 return;
129 flags = BTRFS_I(dir)->flags;
131 if (S_ISREG(inode->i_mode))
132 flags &= ~BTRFS_INODE_DIRSYNC;
133 else if (!S_ISDIR(inode->i_mode))
134 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
136 BTRFS_I(inode)->flags = flags;
137 btrfs_update_iflags(inode);
140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
142 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
143 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
145 if (copy_to_user(arg, &flags, sizeof(flags)))
146 return -EFAULT;
147 return 0;
150 static int check_flags(unsigned int flags)
152 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
153 FS_NOATIME_FL | FS_NODUMP_FL | \
154 FS_SYNC_FL | FS_DIRSYNC_FL | \
155 FS_NOCOMP_FL | FS_COMPR_FL |
156 FS_NOCOW_FL))
157 return -EOPNOTSUPP;
159 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
160 return -EINVAL;
162 return 0;
165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
167 struct inode *inode = file->f_path.dentry->d_inode;
168 struct btrfs_inode *ip = BTRFS_I(inode);
169 struct btrfs_root *root = ip->root;
170 struct btrfs_trans_handle *trans;
171 unsigned int flags, oldflags;
172 int ret;
174 if (btrfs_root_readonly(root))
175 return -EROFS;
177 if (copy_from_user(&flags, arg, sizeof(flags)))
178 return -EFAULT;
180 ret = check_flags(flags);
181 if (ret)
182 return ret;
184 if (!inode_owner_or_capable(inode))
185 return -EACCES;
187 mutex_lock(&inode->i_mutex);
189 flags = btrfs_mask_flags(inode->i_mode, flags);
190 oldflags = btrfs_flags_to_ioctl(ip->flags);
191 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
192 if (!capable(CAP_LINUX_IMMUTABLE)) {
193 ret = -EPERM;
194 goto out_unlock;
198 ret = mnt_want_write(file->f_path.mnt);
199 if (ret)
200 goto out_unlock;
202 if (flags & FS_SYNC_FL)
203 ip->flags |= BTRFS_INODE_SYNC;
204 else
205 ip->flags &= ~BTRFS_INODE_SYNC;
206 if (flags & FS_IMMUTABLE_FL)
207 ip->flags |= BTRFS_INODE_IMMUTABLE;
208 else
209 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
210 if (flags & FS_APPEND_FL)
211 ip->flags |= BTRFS_INODE_APPEND;
212 else
213 ip->flags &= ~BTRFS_INODE_APPEND;
214 if (flags & FS_NODUMP_FL)
215 ip->flags |= BTRFS_INODE_NODUMP;
216 else
217 ip->flags &= ~BTRFS_INODE_NODUMP;
218 if (flags & FS_NOATIME_FL)
219 ip->flags |= BTRFS_INODE_NOATIME;
220 else
221 ip->flags &= ~BTRFS_INODE_NOATIME;
222 if (flags & FS_DIRSYNC_FL)
223 ip->flags |= BTRFS_INODE_DIRSYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_DIRSYNC;
226 if (flags & FS_NOCOW_FL)
227 ip->flags |= BTRFS_INODE_NODATACOW;
228 else
229 ip->flags &= ~BTRFS_INODE_NODATACOW;
232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233 * flag may be changed automatically if compression code won't make
234 * things smaller.
236 if (flags & FS_NOCOMP_FL) {
237 ip->flags &= ~BTRFS_INODE_COMPRESS;
238 ip->flags |= BTRFS_INODE_NOCOMPRESS;
239 } else if (flags & FS_COMPR_FL) {
240 ip->flags |= BTRFS_INODE_COMPRESS;
241 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
242 } else {
243 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
246 trans = btrfs_join_transaction(root);
247 BUG_ON(IS_ERR(trans));
249 ret = btrfs_update_inode(trans, root, inode);
250 BUG_ON(ret);
252 btrfs_update_iflags(inode);
253 inode->i_ctime = CURRENT_TIME;
254 btrfs_end_transaction(trans, root);
256 mnt_drop_write(file->f_path.mnt);
258 ret = 0;
259 out_unlock:
260 mutex_unlock(&inode->i_mutex);
261 return ret;
264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
266 struct inode *inode = file->f_path.dentry->d_inode;
268 return put_user(inode->i_generation, arg);
271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
273 struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
274 struct btrfs_fs_info *fs_info = root->fs_info;
275 struct btrfs_device *device;
276 struct request_queue *q;
277 struct fstrim_range range;
278 u64 minlen = ULLONG_MAX;
279 u64 num_devices = 0;
280 int ret;
282 if (!capable(CAP_SYS_ADMIN))
283 return -EPERM;
285 rcu_read_lock();
286 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
287 dev_list) {
288 if (!device->bdev)
289 continue;
290 q = bdev_get_queue(device->bdev);
291 if (blk_queue_discard(q)) {
292 num_devices++;
293 minlen = min((u64)q->limits.discard_granularity,
294 minlen);
297 rcu_read_unlock();
298 if (!num_devices)
299 return -EOPNOTSUPP;
301 if (copy_from_user(&range, arg, sizeof(range)))
302 return -EFAULT;
304 range.minlen = max(range.minlen, minlen);
305 ret = btrfs_trim_fs(root, &range);
306 if (ret < 0)
307 return ret;
309 if (copy_to_user(arg, &range, sizeof(range)))
310 return -EFAULT;
312 return 0;
315 static noinline int create_subvol(struct btrfs_root *root,
316 struct dentry *dentry,
317 char *name, int namelen,
318 u64 *async_transid)
320 struct btrfs_trans_handle *trans;
321 struct btrfs_key key;
322 struct btrfs_root_item root_item;
323 struct btrfs_inode_item *inode_item;
324 struct extent_buffer *leaf;
325 struct btrfs_root *new_root;
326 struct dentry *parent = dget_parent(dentry);
327 struct inode *dir;
328 int ret;
329 int err;
330 u64 objectid;
331 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
332 u64 index = 0;
334 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
335 if (ret) {
336 dput(parent);
337 return ret;
340 dir = parent->d_inode;
343 * 1 - inode item
344 * 2 - refs
345 * 1 - root item
346 * 2 - dir items
348 trans = btrfs_start_transaction(root, 6);
349 if (IS_ERR(trans)) {
350 dput(parent);
351 return PTR_ERR(trans);
354 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
355 0, objectid, NULL, 0, 0, 0);
356 if (IS_ERR(leaf)) {
357 ret = PTR_ERR(leaf);
358 goto fail;
361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
362 btrfs_set_header_bytenr(leaf, leaf->start);
363 btrfs_set_header_generation(leaf, trans->transid);
364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
365 btrfs_set_header_owner(leaf, objectid);
367 write_extent_buffer(leaf, root->fs_info->fsid,
368 (unsigned long)btrfs_header_fsid(leaf),
369 BTRFS_FSID_SIZE);
370 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
371 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
372 BTRFS_UUID_SIZE);
373 btrfs_mark_buffer_dirty(leaf);
375 inode_item = &root_item.inode;
376 memset(inode_item, 0, sizeof(*inode_item));
377 inode_item->generation = cpu_to_le64(1);
378 inode_item->size = cpu_to_le64(3);
379 inode_item->nlink = cpu_to_le32(1);
380 inode_item->nbytes = cpu_to_le64(root->leafsize);
381 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
383 root_item.flags = 0;
384 root_item.byte_limit = 0;
385 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
387 btrfs_set_root_bytenr(&root_item, leaf->start);
388 btrfs_set_root_generation(&root_item, trans->transid);
389 btrfs_set_root_level(&root_item, 0);
390 btrfs_set_root_refs(&root_item, 1);
391 btrfs_set_root_used(&root_item, leaf->len);
392 btrfs_set_root_last_snapshot(&root_item, 0);
394 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
395 root_item.drop_level = 0;
397 btrfs_tree_unlock(leaf);
398 free_extent_buffer(leaf);
399 leaf = NULL;
401 btrfs_set_root_dirid(&root_item, new_dirid);
403 key.objectid = objectid;
404 key.offset = 0;
405 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
406 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
407 &root_item);
408 if (ret)
409 goto fail;
411 key.offset = (u64)-1;
412 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
413 BUG_ON(IS_ERR(new_root));
415 btrfs_record_root_in_trans(trans, new_root);
417 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
419 * insert the directory item
421 ret = btrfs_set_inode_index(dir, &index);
422 BUG_ON(ret);
424 ret = btrfs_insert_dir_item(trans, root,
425 name, namelen, dir, &key,
426 BTRFS_FT_DIR, index);
427 if (ret)
428 goto fail;
430 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
431 ret = btrfs_update_inode(trans, root, dir);
432 BUG_ON(ret);
434 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
435 objectid, root->root_key.objectid,
436 btrfs_ino(dir), index, name, namelen);
438 BUG_ON(ret);
440 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
441 fail:
442 dput(parent);
443 if (async_transid) {
444 *async_transid = trans->transid;
445 err = btrfs_commit_transaction_async(trans, root, 1);
446 } else {
447 err = btrfs_commit_transaction(trans, root);
449 if (err && !ret)
450 ret = err;
451 return ret;
454 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
455 char *name, int namelen, u64 *async_transid,
456 bool readonly)
458 struct inode *inode;
459 struct dentry *parent;
460 struct btrfs_pending_snapshot *pending_snapshot;
461 struct btrfs_trans_handle *trans;
462 int ret;
464 if (!root->ref_cows)
465 return -EINVAL;
467 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
468 if (!pending_snapshot)
469 return -ENOMEM;
471 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
472 pending_snapshot->dentry = dentry;
473 pending_snapshot->root = root;
474 pending_snapshot->readonly = readonly;
476 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
477 if (IS_ERR(trans)) {
478 ret = PTR_ERR(trans);
479 goto fail;
482 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
483 BUG_ON(ret);
485 spin_lock(&root->fs_info->trans_lock);
486 list_add(&pending_snapshot->list,
487 &trans->transaction->pending_snapshots);
488 spin_unlock(&root->fs_info->trans_lock);
489 if (async_transid) {
490 *async_transid = trans->transid;
491 ret = btrfs_commit_transaction_async(trans,
492 root->fs_info->extent_root, 1);
493 } else {
494 ret = btrfs_commit_transaction(trans,
495 root->fs_info->extent_root);
497 BUG_ON(ret);
499 ret = pending_snapshot->error;
500 if (ret)
501 goto fail;
503 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
504 if (ret)
505 goto fail;
507 parent = dget_parent(dentry);
508 inode = btrfs_lookup_dentry(parent->d_inode, dentry);
509 dput(parent);
510 if (IS_ERR(inode)) {
511 ret = PTR_ERR(inode);
512 goto fail;
514 BUG_ON(!inode);
515 d_instantiate(dentry, inode);
516 ret = 0;
517 fail:
518 kfree(pending_snapshot);
519 return ret;
522 /* copy of check_sticky in fs/namei.c()
523 * It's inline, so penalty for filesystems that don't use sticky bit is
524 * minimal.
526 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
528 uid_t fsuid = current_fsuid();
530 if (!(dir->i_mode & S_ISVTX))
531 return 0;
532 if (inode->i_uid == fsuid)
533 return 0;
534 if (dir->i_uid == fsuid)
535 return 0;
536 return !capable(CAP_FOWNER);
539 /* copy of may_delete in fs/namei.c()
540 * Check whether we can remove a link victim from directory dir, check
541 * whether the type of victim is right.
542 * 1. We can't do it if dir is read-only (done in permission())
543 * 2. We should have write and exec permissions on dir
544 * 3. We can't remove anything from append-only dir
545 * 4. We can't do anything with immutable dir (done in permission())
546 * 5. If the sticky bit on dir is set we should either
547 * a. be owner of dir, or
548 * b. be owner of victim, or
549 * c. have CAP_FOWNER capability
550 * 6. If the victim is append-only or immutable we can't do antyhing with
551 * links pointing to it.
552 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
553 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
554 * 9. We can't remove a root or mountpoint.
555 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
556 * nfs_async_unlink().
559 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
561 int error;
563 if (!victim->d_inode)
564 return -ENOENT;
566 BUG_ON(victim->d_parent->d_inode != dir);
567 audit_inode_child(victim, dir);
569 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
570 if (error)
571 return error;
572 if (IS_APPEND(dir))
573 return -EPERM;
574 if (btrfs_check_sticky(dir, victim->d_inode)||
575 IS_APPEND(victim->d_inode)||
576 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
577 return -EPERM;
578 if (isdir) {
579 if (!S_ISDIR(victim->d_inode->i_mode))
580 return -ENOTDIR;
581 if (IS_ROOT(victim))
582 return -EBUSY;
583 } else if (S_ISDIR(victim->d_inode->i_mode))
584 return -EISDIR;
585 if (IS_DEADDIR(dir))
586 return -ENOENT;
587 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
588 return -EBUSY;
589 return 0;
592 /* copy of may_create in fs/namei.c() */
593 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
595 if (child->d_inode)
596 return -EEXIST;
597 if (IS_DEADDIR(dir))
598 return -ENOENT;
599 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
603 * Create a new subvolume below @parent. This is largely modeled after
604 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
605 * inside this filesystem so it's quite a bit simpler.
607 static noinline int btrfs_mksubvol(struct path *parent,
608 char *name, int namelen,
609 struct btrfs_root *snap_src,
610 u64 *async_transid, bool readonly)
612 struct inode *dir = parent->dentry->d_inode;
613 struct dentry *dentry;
614 int error;
616 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
618 dentry = lookup_one_len(name, parent->dentry, namelen);
619 error = PTR_ERR(dentry);
620 if (IS_ERR(dentry))
621 goto out_unlock;
623 error = -EEXIST;
624 if (dentry->d_inode)
625 goto out_dput;
627 error = mnt_want_write(parent->mnt);
628 if (error)
629 goto out_dput;
631 error = btrfs_may_create(dir, dentry);
632 if (error)
633 goto out_drop_write;
635 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
637 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
638 goto out_up_read;
640 if (snap_src) {
641 error = create_snapshot(snap_src, dentry,
642 name, namelen, async_transid, readonly);
643 } else {
644 error = create_subvol(BTRFS_I(dir)->root, dentry,
645 name, namelen, async_transid);
647 if (!error)
648 fsnotify_mkdir(dir, dentry);
649 out_up_read:
650 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
651 out_drop_write:
652 mnt_drop_write(parent->mnt);
653 out_dput:
654 dput(dentry);
655 out_unlock:
656 mutex_unlock(&dir->i_mutex);
657 return error;
661 * When we're defragging a range, we don't want to kick it off again
662 * if it is really just waiting for delalloc to send it down.
663 * If we find a nice big extent or delalloc range for the bytes in the
664 * file you want to defrag, we return 0 to let you know to skip this
665 * part of the file
667 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
669 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
670 struct extent_map *em = NULL;
671 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
672 u64 end;
674 read_lock(&em_tree->lock);
675 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
676 read_unlock(&em_tree->lock);
678 if (em) {
679 end = extent_map_end(em);
680 free_extent_map(em);
681 if (end - offset > thresh)
682 return 0;
684 /* if we already have a nice delalloc here, just stop */
685 thresh /= 2;
686 end = count_range_bits(io_tree, &offset, offset + thresh,
687 thresh, EXTENT_DELALLOC, 1);
688 if (end >= thresh)
689 return 0;
690 return 1;
694 * helper function to walk through a file and find extents
695 * newer than a specific transid, and smaller than thresh.
697 * This is used by the defragging code to find new and small
698 * extents
700 static int find_new_extents(struct btrfs_root *root,
701 struct inode *inode, u64 newer_than,
702 u64 *off, int thresh)
704 struct btrfs_path *path;
705 struct btrfs_key min_key;
706 struct btrfs_key max_key;
707 struct extent_buffer *leaf;
708 struct btrfs_file_extent_item *extent;
709 int type;
710 int ret;
711 u64 ino = btrfs_ino(inode);
713 path = btrfs_alloc_path();
714 if (!path)
715 return -ENOMEM;
717 min_key.objectid = ino;
718 min_key.type = BTRFS_EXTENT_DATA_KEY;
719 min_key.offset = *off;
721 max_key.objectid = ino;
722 max_key.type = (u8)-1;
723 max_key.offset = (u64)-1;
725 path->keep_locks = 1;
727 while(1) {
728 ret = btrfs_search_forward(root, &min_key, &max_key,
729 path, 0, newer_than);
730 if (ret != 0)
731 goto none;
732 if (min_key.objectid != ino)
733 goto none;
734 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
735 goto none;
737 leaf = path->nodes[0];
738 extent = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
741 type = btrfs_file_extent_type(leaf, extent);
742 if (type == BTRFS_FILE_EXTENT_REG &&
743 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
744 check_defrag_in_cache(inode, min_key.offset, thresh)) {
745 *off = min_key.offset;
746 btrfs_free_path(path);
747 return 0;
750 if (min_key.offset == (u64)-1)
751 goto none;
753 min_key.offset++;
754 btrfs_release_path(path);
756 none:
757 btrfs_free_path(path);
758 return -ENOENT;
761 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
762 int thresh, u64 *last_len, u64 *skip,
763 u64 *defrag_end)
765 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
766 struct extent_map *em = NULL;
767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768 int ret = 1;
771 * make sure that once we start defragging and extent, we keep on
772 * defragging it
774 if (start < *defrag_end)
775 return 1;
777 *skip = 0;
780 * hopefully we have this extent in the tree already, try without
781 * the full extent lock
783 read_lock(&em_tree->lock);
784 em = lookup_extent_mapping(em_tree, start, len);
785 read_unlock(&em_tree->lock);
787 if (!em) {
788 /* get the big lock and read metadata off disk */
789 lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
790 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
791 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
793 if (IS_ERR(em))
794 return 0;
797 /* this will cover holes, and inline extents */
798 if (em->block_start >= EXTENT_MAP_LAST_BYTE)
799 ret = 0;
802 * we hit a real extent, if it is big don't bother defragging it again
804 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
805 ret = 0;
808 * last_len ends up being a counter of how many bytes we've defragged.
809 * every time we choose not to defrag an extent, we reset *last_len
810 * so that the next tiny extent will force a defrag.
812 * The end result of this is that tiny extents before a single big
813 * extent will force at least part of that big extent to be defragged.
815 if (ret) {
816 *last_len += len;
817 *defrag_end = extent_map_end(em);
818 } else {
819 *last_len = 0;
820 *skip = extent_map_end(em);
821 *defrag_end = 0;
824 free_extent_map(em);
825 return ret;
829 * it doesn't do much good to defrag one or two pages
830 * at a time. This pulls in a nice chunk of pages
831 * to COW and defrag.
833 * It also makes sure the delalloc code has enough
834 * dirty data to avoid making new small extents as part
835 * of the defrag
837 * It's a good idea to start RA on this range
838 * before calling this.
840 static int cluster_pages_for_defrag(struct inode *inode,
841 struct page **pages,
842 unsigned long start_index,
843 int num_pages)
845 unsigned long file_end;
846 u64 isize = i_size_read(inode);
847 u64 page_start;
848 u64 page_end;
849 int ret;
850 int i;
851 int i_done;
852 struct btrfs_ordered_extent *ordered;
853 struct extent_state *cached_state = NULL;
855 if (isize == 0)
856 return 0;
857 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
859 ret = btrfs_delalloc_reserve_space(inode,
860 num_pages << PAGE_CACHE_SHIFT);
861 if (ret)
862 return ret;
863 again:
864 ret = 0;
865 i_done = 0;
867 /* step one, lock all the pages */
868 for (i = 0; i < num_pages; i++) {
869 struct page *page;
870 page = grab_cache_page(inode->i_mapping,
871 start_index + i);
872 if (!page)
873 break;
875 if (!PageUptodate(page)) {
876 btrfs_readpage(NULL, page);
877 lock_page(page);
878 if (!PageUptodate(page)) {
879 unlock_page(page);
880 page_cache_release(page);
881 ret = -EIO;
882 break;
885 isize = i_size_read(inode);
886 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
887 if (!isize || page->index > file_end ||
888 page->mapping != inode->i_mapping) {
889 /* whoops, we blew past eof, skip this page */
890 unlock_page(page);
891 page_cache_release(page);
892 break;
894 pages[i] = page;
895 i_done++;
897 if (!i_done || ret)
898 goto out;
900 if (!(inode->i_sb->s_flags & MS_ACTIVE))
901 goto out;
904 * so now we have a nice long stream of locked
905 * and up to date pages, lets wait on them
907 for (i = 0; i < i_done; i++)
908 wait_on_page_writeback(pages[i]);
910 page_start = page_offset(pages[0]);
911 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
913 lock_extent_bits(&BTRFS_I(inode)->io_tree,
914 page_start, page_end - 1, 0, &cached_state,
915 GFP_NOFS);
916 ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
917 if (ordered &&
918 ordered->file_offset + ordered->len > page_start &&
919 ordered->file_offset < page_end) {
920 btrfs_put_ordered_extent(ordered);
921 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
922 page_start, page_end - 1,
923 &cached_state, GFP_NOFS);
924 for (i = 0; i < i_done; i++) {
925 unlock_page(pages[i]);
926 page_cache_release(pages[i]);
928 btrfs_wait_ordered_range(inode, page_start,
929 page_end - page_start);
930 goto again;
932 if (ordered)
933 btrfs_put_ordered_extent(ordered);
935 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
936 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
937 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
938 GFP_NOFS);
940 if (i_done != num_pages) {
941 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
942 btrfs_delalloc_release_space(inode,
943 (num_pages - i_done) << PAGE_CACHE_SHIFT);
947 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
948 &cached_state);
950 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
951 page_start, page_end - 1, &cached_state,
952 GFP_NOFS);
954 for (i = 0; i < i_done; i++) {
955 clear_page_dirty_for_io(pages[i]);
956 ClearPageChecked(pages[i]);
957 set_page_extent_mapped(pages[i]);
958 set_page_dirty(pages[i]);
959 unlock_page(pages[i]);
960 page_cache_release(pages[i]);
962 return i_done;
963 out:
964 for (i = 0; i < i_done; i++) {
965 unlock_page(pages[i]);
966 page_cache_release(pages[i]);
968 btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
969 return ret;
973 int btrfs_defrag_file(struct inode *inode, struct file *file,
974 struct btrfs_ioctl_defrag_range_args *range,
975 u64 newer_than, unsigned long max_to_defrag)
977 struct btrfs_root *root = BTRFS_I(inode)->root;
978 struct btrfs_super_block *disk_super;
979 struct file_ra_state *ra = NULL;
980 unsigned long last_index;
981 u64 features;
982 u64 last_len = 0;
983 u64 skip = 0;
984 u64 defrag_end = 0;
985 u64 newer_off = range->start;
986 int newer_left = 0;
987 unsigned long i;
988 int ret;
989 int defrag_count = 0;
990 int compress_type = BTRFS_COMPRESS_ZLIB;
991 int extent_thresh = range->extent_thresh;
992 int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
993 u64 new_align = ~((u64)128 * 1024 - 1);
994 struct page **pages = NULL;
996 if (extent_thresh == 0)
997 extent_thresh = 256 * 1024;
999 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1000 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1001 return -EINVAL;
1002 if (range->compress_type)
1003 compress_type = range->compress_type;
1006 if (inode->i_size == 0)
1007 return 0;
1010 * if we were not given a file, allocate a readahead
1011 * context
1013 if (!file) {
1014 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1015 if (!ra)
1016 return -ENOMEM;
1017 file_ra_state_init(ra, inode->i_mapping);
1018 } else {
1019 ra = &file->f_ra;
1022 pages = kmalloc(sizeof(struct page *) * newer_cluster,
1023 GFP_NOFS);
1024 if (!pages) {
1025 ret = -ENOMEM;
1026 goto out_ra;
1029 /* find the last page to defrag */
1030 if (range->start + range->len > range->start) {
1031 last_index = min_t(u64, inode->i_size - 1,
1032 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1033 } else {
1034 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1037 if (newer_than) {
1038 ret = find_new_extents(root, inode, newer_than,
1039 &newer_off, 64 * 1024);
1040 if (!ret) {
1041 range->start = newer_off;
1043 * we always align our defrag to help keep
1044 * the extents in the file evenly spaced
1046 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1047 newer_left = newer_cluster;
1048 } else
1049 goto out_ra;
1050 } else {
1051 i = range->start >> PAGE_CACHE_SHIFT;
1053 if (!max_to_defrag)
1054 max_to_defrag = last_index - 1;
1056 while (i <= last_index && defrag_count < max_to_defrag) {
1058 * make sure we stop running if someone unmounts
1059 * the FS
1061 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1062 break;
1064 if (!newer_than &&
1065 !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1066 PAGE_CACHE_SIZE,
1067 extent_thresh,
1068 &last_len, &skip,
1069 &defrag_end)) {
1070 unsigned long next;
1072 * the should_defrag function tells us how much to skip
1073 * bump our counter by the suggested amount
1075 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1076 i = max(i + 1, next);
1077 continue;
1079 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1080 BTRFS_I(inode)->force_compress = compress_type;
1082 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
1084 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1085 if (ret < 0)
1086 goto out_ra;
1088 defrag_count += ret;
1089 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1090 i += ret;
1092 if (newer_than) {
1093 if (newer_off == (u64)-1)
1094 break;
1096 newer_off = max(newer_off + 1,
1097 (u64)i << PAGE_CACHE_SHIFT);
1099 ret = find_new_extents(root, inode,
1100 newer_than, &newer_off,
1101 64 * 1024);
1102 if (!ret) {
1103 range->start = newer_off;
1104 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1105 newer_left = newer_cluster;
1106 } else {
1107 break;
1109 } else {
1110 i++;
1114 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1115 filemap_flush(inode->i_mapping);
1117 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1118 /* the filemap_flush will queue IO into the worker threads, but
1119 * we have to make sure the IO is actually started and that
1120 * ordered extents get created before we return
1122 atomic_inc(&root->fs_info->async_submit_draining);
1123 while (atomic_read(&root->fs_info->nr_async_submits) ||
1124 atomic_read(&root->fs_info->async_delalloc_pages)) {
1125 wait_event(root->fs_info->async_submit_wait,
1126 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1127 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1129 atomic_dec(&root->fs_info->async_submit_draining);
1131 mutex_lock(&inode->i_mutex);
1132 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1133 mutex_unlock(&inode->i_mutex);
1136 disk_super = &root->fs_info->super_copy;
1137 features = btrfs_super_incompat_flags(disk_super);
1138 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1139 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1140 btrfs_set_super_incompat_flags(disk_super, features);
1143 if (!file)
1144 kfree(ra);
1145 return defrag_count;
1147 out_ra:
1148 if (!file)
1149 kfree(ra);
1150 kfree(pages);
1151 return ret;
1154 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1155 void __user *arg)
1157 u64 new_size;
1158 u64 old_size;
1159 u64 devid = 1;
1160 struct btrfs_ioctl_vol_args *vol_args;
1161 struct btrfs_trans_handle *trans;
1162 struct btrfs_device *device = NULL;
1163 char *sizestr;
1164 char *devstr = NULL;
1165 int ret = 0;
1166 int mod = 0;
1168 if (root->fs_info->sb->s_flags & MS_RDONLY)
1169 return -EROFS;
1171 if (!capable(CAP_SYS_ADMIN))
1172 return -EPERM;
1174 vol_args = memdup_user(arg, sizeof(*vol_args));
1175 if (IS_ERR(vol_args))
1176 return PTR_ERR(vol_args);
1178 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1180 mutex_lock(&root->fs_info->volume_mutex);
1181 sizestr = vol_args->name;
1182 devstr = strchr(sizestr, ':');
1183 if (devstr) {
1184 char *end;
1185 sizestr = devstr + 1;
1186 *devstr = '\0';
1187 devstr = vol_args->name;
1188 devid = simple_strtoull(devstr, &end, 10);
1189 printk(KERN_INFO "resizing devid %llu\n",
1190 (unsigned long long)devid);
1192 device = btrfs_find_device(root, devid, NULL, NULL);
1193 if (!device) {
1194 printk(KERN_INFO "resizer unable to find device %llu\n",
1195 (unsigned long long)devid);
1196 ret = -EINVAL;
1197 goto out_unlock;
1199 if (!strcmp(sizestr, "max"))
1200 new_size = device->bdev->bd_inode->i_size;
1201 else {
1202 if (sizestr[0] == '-') {
1203 mod = -1;
1204 sizestr++;
1205 } else if (sizestr[0] == '+') {
1206 mod = 1;
1207 sizestr++;
1209 new_size = memparse(sizestr, NULL);
1210 if (new_size == 0) {
1211 ret = -EINVAL;
1212 goto out_unlock;
1216 old_size = device->total_bytes;
1218 if (mod < 0) {
1219 if (new_size > old_size) {
1220 ret = -EINVAL;
1221 goto out_unlock;
1223 new_size = old_size - new_size;
1224 } else if (mod > 0) {
1225 new_size = old_size + new_size;
1228 if (new_size < 256 * 1024 * 1024) {
1229 ret = -EINVAL;
1230 goto out_unlock;
1232 if (new_size > device->bdev->bd_inode->i_size) {
1233 ret = -EFBIG;
1234 goto out_unlock;
1237 do_div(new_size, root->sectorsize);
1238 new_size *= root->sectorsize;
1240 printk(KERN_INFO "new size for %s is %llu\n",
1241 device->name, (unsigned long long)new_size);
1243 if (new_size > old_size) {
1244 trans = btrfs_start_transaction(root, 0);
1245 if (IS_ERR(trans)) {
1246 ret = PTR_ERR(trans);
1247 goto out_unlock;
1249 ret = btrfs_grow_device(trans, device, new_size);
1250 btrfs_commit_transaction(trans, root);
1251 } else {
1252 ret = btrfs_shrink_device(device, new_size);
1255 out_unlock:
1256 mutex_unlock(&root->fs_info->volume_mutex);
1257 kfree(vol_args);
1258 return ret;
1261 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1262 char *name,
1263 unsigned long fd,
1264 int subvol,
1265 u64 *transid,
1266 bool readonly)
1268 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1269 struct file *src_file;
1270 int namelen;
1271 int ret = 0;
1273 if (root->fs_info->sb->s_flags & MS_RDONLY)
1274 return -EROFS;
1276 namelen = strlen(name);
1277 if (strchr(name, '/')) {
1278 ret = -EINVAL;
1279 goto out;
1282 if (subvol) {
1283 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1284 NULL, transid, readonly);
1285 } else {
1286 struct inode *src_inode;
1287 src_file = fget(fd);
1288 if (!src_file) {
1289 ret = -EINVAL;
1290 goto out;
1293 src_inode = src_file->f_path.dentry->d_inode;
1294 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1295 printk(KERN_INFO "btrfs: Snapshot src from "
1296 "another FS\n");
1297 ret = -EINVAL;
1298 fput(src_file);
1299 goto out;
1301 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1302 BTRFS_I(src_inode)->root,
1303 transid, readonly);
1304 fput(src_file);
1306 out:
1307 return ret;
1310 static noinline int btrfs_ioctl_snap_create(struct file *file,
1311 void __user *arg, int subvol)
1313 struct btrfs_ioctl_vol_args *vol_args;
1314 int ret;
1316 vol_args = memdup_user(arg, sizeof(*vol_args));
1317 if (IS_ERR(vol_args))
1318 return PTR_ERR(vol_args);
1319 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1321 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1322 vol_args->fd, subvol,
1323 NULL, false);
1325 kfree(vol_args);
1326 return ret;
1329 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1330 void __user *arg, int subvol)
1332 struct btrfs_ioctl_vol_args_v2 *vol_args;
1333 int ret;
1334 u64 transid = 0;
1335 u64 *ptr = NULL;
1336 bool readonly = false;
1338 vol_args = memdup_user(arg, sizeof(*vol_args));
1339 if (IS_ERR(vol_args))
1340 return PTR_ERR(vol_args);
1341 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1343 if (vol_args->flags &
1344 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1345 ret = -EOPNOTSUPP;
1346 goto out;
1349 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1350 ptr = &transid;
1351 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1352 readonly = true;
1354 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1355 vol_args->fd, subvol,
1356 ptr, readonly);
1358 if (ret == 0 && ptr &&
1359 copy_to_user(arg +
1360 offsetof(struct btrfs_ioctl_vol_args_v2,
1361 transid), ptr, sizeof(*ptr)))
1362 ret = -EFAULT;
1363 out:
1364 kfree(vol_args);
1365 return ret;
1368 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1369 void __user *arg)
1371 struct inode *inode = fdentry(file)->d_inode;
1372 struct btrfs_root *root = BTRFS_I(inode)->root;
1373 int ret = 0;
1374 u64 flags = 0;
1376 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1377 return -EINVAL;
1379 down_read(&root->fs_info->subvol_sem);
1380 if (btrfs_root_readonly(root))
1381 flags |= BTRFS_SUBVOL_RDONLY;
1382 up_read(&root->fs_info->subvol_sem);
1384 if (copy_to_user(arg, &flags, sizeof(flags)))
1385 ret = -EFAULT;
1387 return ret;
1390 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1391 void __user *arg)
1393 struct inode *inode = fdentry(file)->d_inode;
1394 struct btrfs_root *root = BTRFS_I(inode)->root;
1395 struct btrfs_trans_handle *trans;
1396 u64 root_flags;
1397 u64 flags;
1398 int ret = 0;
1400 if (root->fs_info->sb->s_flags & MS_RDONLY)
1401 return -EROFS;
1403 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1404 return -EINVAL;
1406 if (copy_from_user(&flags, arg, sizeof(flags)))
1407 return -EFAULT;
1409 if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1410 return -EINVAL;
1412 if (flags & ~BTRFS_SUBVOL_RDONLY)
1413 return -EOPNOTSUPP;
1415 if (!inode_owner_or_capable(inode))
1416 return -EACCES;
1418 down_write(&root->fs_info->subvol_sem);
1420 /* nothing to do */
1421 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1422 goto out;
1424 root_flags = btrfs_root_flags(&root->root_item);
1425 if (flags & BTRFS_SUBVOL_RDONLY)
1426 btrfs_set_root_flags(&root->root_item,
1427 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1428 else
1429 btrfs_set_root_flags(&root->root_item,
1430 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1432 trans = btrfs_start_transaction(root, 1);
1433 if (IS_ERR(trans)) {
1434 ret = PTR_ERR(trans);
1435 goto out_reset;
1438 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1439 &root->root_key, &root->root_item);
1441 btrfs_commit_transaction(trans, root);
1442 out_reset:
1443 if (ret)
1444 btrfs_set_root_flags(&root->root_item, root_flags);
1445 out:
1446 up_write(&root->fs_info->subvol_sem);
1447 return ret;
1451 * helper to check if the subvolume references other subvolumes
1453 static noinline int may_destroy_subvol(struct btrfs_root *root)
1455 struct btrfs_path *path;
1456 struct btrfs_key key;
1457 int ret;
1459 path = btrfs_alloc_path();
1460 if (!path)
1461 return -ENOMEM;
1463 key.objectid = root->root_key.objectid;
1464 key.type = BTRFS_ROOT_REF_KEY;
1465 key.offset = (u64)-1;
1467 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1468 &key, path, 0, 0);
1469 if (ret < 0)
1470 goto out;
1471 BUG_ON(ret == 0);
1473 ret = 0;
1474 if (path->slots[0] > 0) {
1475 path->slots[0]--;
1476 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1477 if (key.objectid == root->root_key.objectid &&
1478 key.type == BTRFS_ROOT_REF_KEY)
1479 ret = -ENOTEMPTY;
1481 out:
1482 btrfs_free_path(path);
1483 return ret;
1486 static noinline int key_in_sk(struct btrfs_key *key,
1487 struct btrfs_ioctl_search_key *sk)
1489 struct btrfs_key test;
1490 int ret;
1492 test.objectid = sk->min_objectid;
1493 test.type = sk->min_type;
1494 test.offset = sk->min_offset;
1496 ret = btrfs_comp_cpu_keys(key, &test);
1497 if (ret < 0)
1498 return 0;
1500 test.objectid = sk->max_objectid;
1501 test.type = sk->max_type;
1502 test.offset = sk->max_offset;
1504 ret = btrfs_comp_cpu_keys(key, &test);
1505 if (ret > 0)
1506 return 0;
1507 return 1;
1510 static noinline int copy_to_sk(struct btrfs_root *root,
1511 struct btrfs_path *path,
1512 struct btrfs_key *key,
1513 struct btrfs_ioctl_search_key *sk,
1514 char *buf,
1515 unsigned long *sk_offset,
1516 int *num_found)
1518 u64 found_transid;
1519 struct extent_buffer *leaf;
1520 struct btrfs_ioctl_search_header sh;
1521 unsigned long item_off;
1522 unsigned long item_len;
1523 int nritems;
1524 int i;
1525 int slot;
1526 int ret = 0;
1528 leaf = path->nodes[0];
1529 slot = path->slots[0];
1530 nritems = btrfs_header_nritems(leaf);
1532 if (btrfs_header_generation(leaf) > sk->max_transid) {
1533 i = nritems;
1534 goto advance_key;
1536 found_transid = btrfs_header_generation(leaf);
1538 for (i = slot; i < nritems; i++) {
1539 item_off = btrfs_item_ptr_offset(leaf, i);
1540 item_len = btrfs_item_size_nr(leaf, i);
1542 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1543 item_len = 0;
1545 if (sizeof(sh) + item_len + *sk_offset >
1546 BTRFS_SEARCH_ARGS_BUFSIZE) {
1547 ret = 1;
1548 goto overflow;
1551 btrfs_item_key_to_cpu(leaf, key, i);
1552 if (!key_in_sk(key, sk))
1553 continue;
1555 sh.objectid = key->objectid;
1556 sh.offset = key->offset;
1557 sh.type = key->type;
1558 sh.len = item_len;
1559 sh.transid = found_transid;
1561 /* copy search result header */
1562 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1563 *sk_offset += sizeof(sh);
1565 if (item_len) {
1566 char *p = buf + *sk_offset;
1567 /* copy the item */
1568 read_extent_buffer(leaf, p,
1569 item_off, item_len);
1570 *sk_offset += item_len;
1572 (*num_found)++;
1574 if (*num_found >= sk->nr_items)
1575 break;
1577 advance_key:
1578 ret = 0;
1579 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1580 key->offset++;
1581 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1582 key->offset = 0;
1583 key->type++;
1584 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1585 key->offset = 0;
1586 key->type = 0;
1587 key->objectid++;
1588 } else
1589 ret = 1;
1590 overflow:
1591 return ret;
1594 static noinline int search_ioctl(struct inode *inode,
1595 struct btrfs_ioctl_search_args *args)
1597 struct btrfs_root *root;
1598 struct btrfs_key key;
1599 struct btrfs_key max_key;
1600 struct btrfs_path *path;
1601 struct btrfs_ioctl_search_key *sk = &args->key;
1602 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1603 int ret;
1604 int num_found = 0;
1605 unsigned long sk_offset = 0;
1607 path = btrfs_alloc_path();
1608 if (!path)
1609 return -ENOMEM;
1611 if (sk->tree_id == 0) {
1612 /* search the root of the inode that was passed */
1613 root = BTRFS_I(inode)->root;
1614 } else {
1615 key.objectid = sk->tree_id;
1616 key.type = BTRFS_ROOT_ITEM_KEY;
1617 key.offset = (u64)-1;
1618 root = btrfs_read_fs_root_no_name(info, &key);
1619 if (IS_ERR(root)) {
1620 printk(KERN_ERR "could not find root %llu\n",
1621 sk->tree_id);
1622 btrfs_free_path(path);
1623 return -ENOENT;
1627 key.objectid = sk->min_objectid;
1628 key.type = sk->min_type;
1629 key.offset = sk->min_offset;
1631 max_key.objectid = sk->max_objectid;
1632 max_key.type = sk->max_type;
1633 max_key.offset = sk->max_offset;
1635 path->keep_locks = 1;
1637 while(1) {
1638 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1639 sk->min_transid);
1640 if (ret != 0) {
1641 if (ret > 0)
1642 ret = 0;
1643 goto err;
1645 ret = copy_to_sk(root, path, &key, sk, args->buf,
1646 &sk_offset, &num_found);
1647 btrfs_release_path(path);
1648 if (ret || num_found >= sk->nr_items)
1649 break;
1652 ret = 0;
1653 err:
1654 sk->nr_items = num_found;
1655 btrfs_free_path(path);
1656 return ret;
1659 static noinline int btrfs_ioctl_tree_search(struct file *file,
1660 void __user *argp)
1662 struct btrfs_ioctl_search_args *args;
1663 struct inode *inode;
1664 int ret;
1666 if (!capable(CAP_SYS_ADMIN))
1667 return -EPERM;
1669 args = memdup_user(argp, sizeof(*args));
1670 if (IS_ERR(args))
1671 return PTR_ERR(args);
1673 inode = fdentry(file)->d_inode;
1674 ret = search_ioctl(inode, args);
1675 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1676 ret = -EFAULT;
1677 kfree(args);
1678 return ret;
1682 * Search INODE_REFs to identify path name of 'dirid' directory
1683 * in a 'tree_id' tree. and sets path name to 'name'.
1685 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1686 u64 tree_id, u64 dirid, char *name)
1688 struct btrfs_root *root;
1689 struct btrfs_key key;
1690 char *ptr;
1691 int ret = -1;
1692 int slot;
1693 int len;
1694 int total_len = 0;
1695 struct btrfs_inode_ref *iref;
1696 struct extent_buffer *l;
1697 struct btrfs_path *path;
1699 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1700 name[0]='\0';
1701 return 0;
1704 path = btrfs_alloc_path();
1705 if (!path)
1706 return -ENOMEM;
1708 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1710 key.objectid = tree_id;
1711 key.type = BTRFS_ROOT_ITEM_KEY;
1712 key.offset = (u64)-1;
1713 root = btrfs_read_fs_root_no_name(info, &key);
1714 if (IS_ERR(root)) {
1715 printk(KERN_ERR "could not find root %llu\n", tree_id);
1716 ret = -ENOENT;
1717 goto out;
1720 key.objectid = dirid;
1721 key.type = BTRFS_INODE_REF_KEY;
1722 key.offset = (u64)-1;
1724 while(1) {
1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726 if (ret < 0)
1727 goto out;
1729 l = path->nodes[0];
1730 slot = path->slots[0];
1731 if (ret > 0 && slot > 0)
1732 slot--;
1733 btrfs_item_key_to_cpu(l, &key, slot);
1735 if (ret > 0 && (key.objectid != dirid ||
1736 key.type != BTRFS_INODE_REF_KEY)) {
1737 ret = -ENOENT;
1738 goto out;
1741 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1742 len = btrfs_inode_ref_name_len(l, iref);
1743 ptr -= len + 1;
1744 total_len += len + 1;
1745 if (ptr < name)
1746 goto out;
1748 *(ptr + len) = '/';
1749 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1751 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1752 break;
1754 btrfs_release_path(path);
1755 key.objectid = key.offset;
1756 key.offset = (u64)-1;
1757 dirid = key.objectid;
1760 if (ptr < name)
1761 goto out;
1762 memcpy(name, ptr, total_len);
1763 name[total_len]='\0';
1764 ret = 0;
1765 out:
1766 btrfs_free_path(path);
1767 return ret;
1770 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1771 void __user *argp)
1773 struct btrfs_ioctl_ino_lookup_args *args;
1774 struct inode *inode;
1775 int ret;
1777 if (!capable(CAP_SYS_ADMIN))
1778 return -EPERM;
1780 args = memdup_user(argp, sizeof(*args));
1781 if (IS_ERR(args))
1782 return PTR_ERR(args);
1784 inode = fdentry(file)->d_inode;
1786 if (args->treeid == 0)
1787 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1789 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1790 args->treeid, args->objectid,
1791 args->name);
1793 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1794 ret = -EFAULT;
1796 kfree(args);
1797 return ret;
1800 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1801 void __user *arg)
1803 struct dentry *parent = fdentry(file);
1804 struct dentry *dentry;
1805 struct inode *dir = parent->d_inode;
1806 struct inode *inode;
1807 struct btrfs_root *root = BTRFS_I(dir)->root;
1808 struct btrfs_root *dest = NULL;
1809 struct btrfs_ioctl_vol_args *vol_args;
1810 struct btrfs_trans_handle *trans;
1811 int namelen;
1812 int ret;
1813 int err = 0;
1815 vol_args = memdup_user(arg, sizeof(*vol_args));
1816 if (IS_ERR(vol_args))
1817 return PTR_ERR(vol_args);
1819 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1820 namelen = strlen(vol_args->name);
1821 if (strchr(vol_args->name, '/') ||
1822 strncmp(vol_args->name, "..", namelen) == 0) {
1823 err = -EINVAL;
1824 goto out;
1827 err = mnt_want_write(file->f_path.mnt);
1828 if (err)
1829 goto out;
1831 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1832 dentry = lookup_one_len(vol_args->name, parent, namelen);
1833 if (IS_ERR(dentry)) {
1834 err = PTR_ERR(dentry);
1835 goto out_unlock_dir;
1838 if (!dentry->d_inode) {
1839 err = -ENOENT;
1840 goto out_dput;
1843 inode = dentry->d_inode;
1844 dest = BTRFS_I(inode)->root;
1845 if (!capable(CAP_SYS_ADMIN)){
1847 * Regular user. Only allow this with a special mount
1848 * option, when the user has write+exec access to the
1849 * subvol root, and when rmdir(2) would have been
1850 * allowed.
1852 * Note that this is _not_ check that the subvol is
1853 * empty or doesn't contain data that we wouldn't
1854 * otherwise be able to delete.
1856 * Users who want to delete empty subvols should try
1857 * rmdir(2).
1859 err = -EPERM;
1860 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1861 goto out_dput;
1864 * Do not allow deletion if the parent dir is the same
1865 * as the dir to be deleted. That means the ioctl
1866 * must be called on the dentry referencing the root
1867 * of the subvol, not a random directory contained
1868 * within it.
1870 err = -EINVAL;
1871 if (root == dest)
1872 goto out_dput;
1874 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1875 if (err)
1876 goto out_dput;
1878 /* check if subvolume may be deleted by a non-root user */
1879 err = btrfs_may_delete(dir, dentry, 1);
1880 if (err)
1881 goto out_dput;
1884 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1885 err = -EINVAL;
1886 goto out_dput;
1889 mutex_lock(&inode->i_mutex);
1890 err = d_invalidate(dentry);
1891 if (err)
1892 goto out_unlock;
1894 down_write(&root->fs_info->subvol_sem);
1896 err = may_destroy_subvol(dest);
1897 if (err)
1898 goto out_up_write;
1900 trans = btrfs_start_transaction(root, 0);
1901 if (IS_ERR(trans)) {
1902 err = PTR_ERR(trans);
1903 goto out_up_write;
1905 trans->block_rsv = &root->fs_info->global_block_rsv;
1907 ret = btrfs_unlink_subvol(trans, root, dir,
1908 dest->root_key.objectid,
1909 dentry->d_name.name,
1910 dentry->d_name.len);
1911 BUG_ON(ret);
1913 btrfs_record_root_in_trans(trans, dest);
1915 memset(&dest->root_item.drop_progress, 0,
1916 sizeof(dest->root_item.drop_progress));
1917 dest->root_item.drop_level = 0;
1918 btrfs_set_root_refs(&dest->root_item, 0);
1920 if (!xchg(&dest->orphan_item_inserted, 1)) {
1921 ret = btrfs_insert_orphan_item(trans,
1922 root->fs_info->tree_root,
1923 dest->root_key.objectid);
1924 BUG_ON(ret);
1927 ret = btrfs_end_transaction(trans, root);
1928 BUG_ON(ret);
1929 inode->i_flags |= S_DEAD;
1930 out_up_write:
1931 up_write(&root->fs_info->subvol_sem);
1932 out_unlock:
1933 mutex_unlock(&inode->i_mutex);
1934 if (!err) {
1935 shrink_dcache_sb(root->fs_info->sb);
1936 btrfs_invalidate_inodes(dest);
1937 d_delete(dentry);
1939 out_dput:
1940 dput(dentry);
1941 out_unlock_dir:
1942 mutex_unlock(&dir->i_mutex);
1943 mnt_drop_write(file->f_path.mnt);
1944 out:
1945 kfree(vol_args);
1946 return err;
1949 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1951 struct inode *inode = fdentry(file)->d_inode;
1952 struct btrfs_root *root = BTRFS_I(inode)->root;
1953 struct btrfs_ioctl_defrag_range_args *range;
1954 int ret;
1956 if (btrfs_root_readonly(root))
1957 return -EROFS;
1959 ret = mnt_want_write(file->f_path.mnt);
1960 if (ret)
1961 return ret;
1963 switch (inode->i_mode & S_IFMT) {
1964 case S_IFDIR:
1965 if (!capable(CAP_SYS_ADMIN)) {
1966 ret = -EPERM;
1967 goto out;
1969 ret = btrfs_defrag_root(root, 0);
1970 if (ret)
1971 goto out;
1972 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1973 break;
1974 case S_IFREG:
1975 if (!(file->f_mode & FMODE_WRITE)) {
1976 ret = -EINVAL;
1977 goto out;
1980 range = kzalloc(sizeof(*range), GFP_KERNEL);
1981 if (!range) {
1982 ret = -ENOMEM;
1983 goto out;
1986 if (argp) {
1987 if (copy_from_user(range, argp,
1988 sizeof(*range))) {
1989 ret = -EFAULT;
1990 kfree(range);
1991 goto out;
1993 /* compression requires us to start the IO */
1994 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1995 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1996 range->extent_thresh = (u32)-1;
1998 } else {
1999 /* the rest are all set to zero by kzalloc */
2000 range->len = (u64)-1;
2002 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2003 range, 0, 0);
2004 if (ret > 0)
2005 ret = 0;
2006 kfree(range);
2007 break;
2008 default:
2009 ret = -EINVAL;
2011 out:
2012 mnt_drop_write(file->f_path.mnt);
2013 return ret;
2016 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2018 struct btrfs_ioctl_vol_args *vol_args;
2019 int ret;
2021 if (!capable(CAP_SYS_ADMIN))
2022 return -EPERM;
2024 vol_args = memdup_user(arg, sizeof(*vol_args));
2025 if (IS_ERR(vol_args))
2026 return PTR_ERR(vol_args);
2028 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2029 ret = btrfs_init_new_device(root, vol_args->name);
2031 kfree(vol_args);
2032 return ret;
2035 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2037 struct btrfs_ioctl_vol_args *vol_args;
2038 int ret;
2040 if (!capable(CAP_SYS_ADMIN))
2041 return -EPERM;
2043 if (root->fs_info->sb->s_flags & MS_RDONLY)
2044 return -EROFS;
2046 vol_args = memdup_user(arg, sizeof(*vol_args));
2047 if (IS_ERR(vol_args))
2048 return PTR_ERR(vol_args);
2050 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2051 ret = btrfs_rm_device(root, vol_args->name);
2053 kfree(vol_args);
2054 return ret;
2057 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2059 struct btrfs_ioctl_fs_info_args *fi_args;
2060 struct btrfs_device *device;
2061 struct btrfs_device *next;
2062 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2063 int ret = 0;
2065 if (!capable(CAP_SYS_ADMIN))
2066 return -EPERM;
2068 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2069 if (!fi_args)
2070 return -ENOMEM;
2072 fi_args->num_devices = fs_devices->num_devices;
2073 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2075 mutex_lock(&fs_devices->device_list_mutex);
2076 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2077 if (device->devid > fi_args->max_id)
2078 fi_args->max_id = device->devid;
2080 mutex_unlock(&fs_devices->device_list_mutex);
2082 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2083 ret = -EFAULT;
2085 kfree(fi_args);
2086 return ret;
2089 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2091 struct btrfs_ioctl_dev_info_args *di_args;
2092 struct btrfs_device *dev;
2093 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2094 int ret = 0;
2095 char *s_uuid = NULL;
2096 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2098 if (!capable(CAP_SYS_ADMIN))
2099 return -EPERM;
2101 di_args = memdup_user(arg, sizeof(*di_args));
2102 if (IS_ERR(di_args))
2103 return PTR_ERR(di_args);
2105 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2106 s_uuid = di_args->uuid;
2108 mutex_lock(&fs_devices->device_list_mutex);
2109 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2110 mutex_unlock(&fs_devices->device_list_mutex);
2112 if (!dev) {
2113 ret = -ENODEV;
2114 goto out;
2117 di_args->devid = dev->devid;
2118 di_args->bytes_used = dev->bytes_used;
2119 di_args->total_bytes = dev->total_bytes;
2120 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2121 strncpy(di_args->path, dev->name, sizeof(di_args->path));
2123 out:
2124 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2125 ret = -EFAULT;
2127 kfree(di_args);
2128 return ret;
2131 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2132 u64 off, u64 olen, u64 destoff)
2134 struct inode *inode = fdentry(file)->d_inode;
2135 struct btrfs_root *root = BTRFS_I(inode)->root;
2136 struct file *src_file;
2137 struct inode *src;
2138 struct btrfs_trans_handle *trans;
2139 struct btrfs_path *path;
2140 struct extent_buffer *leaf;
2141 char *buf;
2142 struct btrfs_key key;
2143 u32 nritems;
2144 int slot;
2145 int ret;
2146 u64 len = olen;
2147 u64 bs = root->fs_info->sb->s_blocksize;
2148 u64 hint_byte;
2151 * TODO:
2152 * - split compressed inline extents. annoying: we need to
2153 * decompress into destination's address_space (the file offset
2154 * may change, so source mapping won't do), then recompress (or
2155 * otherwise reinsert) a subrange.
2156 * - allow ranges within the same file to be cloned (provided
2157 * they don't overlap)?
2160 /* the destination must be opened for writing */
2161 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2162 return -EINVAL;
2164 if (btrfs_root_readonly(root))
2165 return -EROFS;
2167 ret = mnt_want_write(file->f_path.mnt);
2168 if (ret)
2169 return ret;
2171 src_file = fget(srcfd);
2172 if (!src_file) {
2173 ret = -EBADF;
2174 goto out_drop_write;
2177 src = src_file->f_dentry->d_inode;
2179 ret = -EINVAL;
2180 if (src == inode)
2181 goto out_fput;
2183 /* the src must be open for reading */
2184 if (!(src_file->f_mode & FMODE_READ))
2185 goto out_fput;
2187 ret = -EISDIR;
2188 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2189 goto out_fput;
2191 ret = -EXDEV;
2192 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2193 goto out_fput;
2195 ret = -ENOMEM;
2196 buf = vmalloc(btrfs_level_size(root, 0));
2197 if (!buf)
2198 goto out_fput;
2200 path = btrfs_alloc_path();
2201 if (!path) {
2202 vfree(buf);
2203 goto out_fput;
2205 path->reada = 2;
2207 if (inode < src) {
2208 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2209 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2210 } else {
2211 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2212 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2215 /* determine range to clone */
2216 ret = -EINVAL;
2217 if (off + len > src->i_size || off + len < off)
2218 goto out_unlock;
2219 if (len == 0)
2220 olen = len = src->i_size - off;
2221 /* if we extend to eof, continue to block boundary */
2222 if (off + len == src->i_size)
2223 len = ALIGN(src->i_size, bs) - off;
2225 /* verify the end result is block aligned */
2226 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2227 !IS_ALIGNED(destoff, bs))
2228 goto out_unlock;
2230 /* do any pending delalloc/csum calc on src, one way or
2231 another, and lock file content */
2232 while (1) {
2233 struct btrfs_ordered_extent *ordered;
2234 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2235 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2236 if (!ordered &&
2237 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2238 EXTENT_DELALLOC, 0, NULL))
2239 break;
2240 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2241 if (ordered)
2242 btrfs_put_ordered_extent(ordered);
2243 btrfs_wait_ordered_range(src, off, len);
2246 /* clone data */
2247 key.objectid = btrfs_ino(src);
2248 key.type = BTRFS_EXTENT_DATA_KEY;
2249 key.offset = 0;
2251 while (1) {
2253 * note the key will change type as we walk through the
2254 * tree.
2256 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2257 if (ret < 0)
2258 goto out;
2260 nritems = btrfs_header_nritems(path->nodes[0]);
2261 if (path->slots[0] >= nritems) {
2262 ret = btrfs_next_leaf(root, path);
2263 if (ret < 0)
2264 goto out;
2265 if (ret > 0)
2266 break;
2267 nritems = btrfs_header_nritems(path->nodes[0]);
2269 leaf = path->nodes[0];
2270 slot = path->slots[0];
2272 btrfs_item_key_to_cpu(leaf, &key, slot);
2273 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2274 key.objectid != btrfs_ino(src))
2275 break;
2277 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2278 struct btrfs_file_extent_item *extent;
2279 int type;
2280 u32 size;
2281 struct btrfs_key new_key;
2282 u64 disko = 0, diskl = 0;
2283 u64 datao = 0, datal = 0;
2284 u8 comp;
2285 u64 endoff;
2287 size = btrfs_item_size_nr(leaf, slot);
2288 read_extent_buffer(leaf, buf,
2289 btrfs_item_ptr_offset(leaf, slot),
2290 size);
2292 extent = btrfs_item_ptr(leaf, slot,
2293 struct btrfs_file_extent_item);
2294 comp = btrfs_file_extent_compression(leaf, extent);
2295 type = btrfs_file_extent_type(leaf, extent);
2296 if (type == BTRFS_FILE_EXTENT_REG ||
2297 type == BTRFS_FILE_EXTENT_PREALLOC) {
2298 disko = btrfs_file_extent_disk_bytenr(leaf,
2299 extent);
2300 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2301 extent);
2302 datao = btrfs_file_extent_offset(leaf, extent);
2303 datal = btrfs_file_extent_num_bytes(leaf,
2304 extent);
2305 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2306 /* take upper bound, may be compressed */
2307 datal = btrfs_file_extent_ram_bytes(leaf,
2308 extent);
2310 btrfs_release_path(path);
2312 if (key.offset + datal <= off ||
2313 key.offset >= off+len)
2314 goto next;
2316 memcpy(&new_key, &key, sizeof(new_key));
2317 new_key.objectid = btrfs_ino(inode);
2318 if (off <= key.offset)
2319 new_key.offset = key.offset + destoff - off;
2320 else
2321 new_key.offset = destoff;
2323 trans = btrfs_start_transaction(root, 1);
2324 if (IS_ERR(trans)) {
2325 ret = PTR_ERR(trans);
2326 goto out;
2329 if (type == BTRFS_FILE_EXTENT_REG ||
2330 type == BTRFS_FILE_EXTENT_PREALLOC) {
2331 if (off > key.offset) {
2332 datao += off - key.offset;
2333 datal -= off - key.offset;
2336 if (key.offset + datal > off + len)
2337 datal = off + len - key.offset;
2339 ret = btrfs_drop_extents(trans, inode,
2340 new_key.offset,
2341 new_key.offset + datal,
2342 &hint_byte, 1);
2343 BUG_ON(ret);
2345 ret = btrfs_insert_empty_item(trans, root, path,
2346 &new_key, size);
2347 BUG_ON(ret);
2349 leaf = path->nodes[0];
2350 slot = path->slots[0];
2351 write_extent_buffer(leaf, buf,
2352 btrfs_item_ptr_offset(leaf, slot),
2353 size);
2355 extent = btrfs_item_ptr(leaf, slot,
2356 struct btrfs_file_extent_item);
2358 /* disko == 0 means it's a hole */
2359 if (!disko)
2360 datao = 0;
2362 btrfs_set_file_extent_offset(leaf, extent,
2363 datao);
2364 btrfs_set_file_extent_num_bytes(leaf, extent,
2365 datal);
2366 if (disko) {
2367 inode_add_bytes(inode, datal);
2368 ret = btrfs_inc_extent_ref(trans, root,
2369 disko, diskl, 0,
2370 root->root_key.objectid,
2371 btrfs_ino(inode),
2372 new_key.offset - datao);
2373 BUG_ON(ret);
2375 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2376 u64 skip = 0;
2377 u64 trim = 0;
2378 if (off > key.offset) {
2379 skip = off - key.offset;
2380 new_key.offset += skip;
2383 if (key.offset + datal > off+len)
2384 trim = key.offset + datal - (off+len);
2386 if (comp && (skip || trim)) {
2387 ret = -EINVAL;
2388 btrfs_end_transaction(trans, root);
2389 goto out;
2391 size -= skip + trim;
2392 datal -= skip + trim;
2394 ret = btrfs_drop_extents(trans, inode,
2395 new_key.offset,
2396 new_key.offset + datal,
2397 &hint_byte, 1);
2398 BUG_ON(ret);
2400 ret = btrfs_insert_empty_item(trans, root, path,
2401 &new_key, size);
2402 BUG_ON(ret);
2404 if (skip) {
2405 u32 start =
2406 btrfs_file_extent_calc_inline_size(0);
2407 memmove(buf+start, buf+start+skip,
2408 datal);
2411 leaf = path->nodes[0];
2412 slot = path->slots[0];
2413 write_extent_buffer(leaf, buf,
2414 btrfs_item_ptr_offset(leaf, slot),
2415 size);
2416 inode_add_bytes(inode, datal);
2419 btrfs_mark_buffer_dirty(leaf);
2420 btrfs_release_path(path);
2422 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2425 * we round up to the block size at eof when
2426 * determining which extents to clone above,
2427 * but shouldn't round up the file size
2429 endoff = new_key.offset + datal;
2430 if (endoff > destoff+olen)
2431 endoff = destoff+olen;
2432 if (endoff > inode->i_size)
2433 btrfs_i_size_write(inode, endoff);
2435 BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
2436 ret = btrfs_update_inode(trans, root, inode);
2437 BUG_ON(ret);
2438 btrfs_end_transaction(trans, root);
2440 next:
2441 btrfs_release_path(path);
2442 key.offset++;
2444 ret = 0;
2445 out:
2446 btrfs_release_path(path);
2447 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2448 out_unlock:
2449 mutex_unlock(&src->i_mutex);
2450 mutex_unlock(&inode->i_mutex);
2451 vfree(buf);
2452 btrfs_free_path(path);
2453 out_fput:
2454 fput(src_file);
2455 out_drop_write:
2456 mnt_drop_write(file->f_path.mnt);
2457 return ret;
2460 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2462 struct btrfs_ioctl_clone_range_args args;
2464 if (copy_from_user(&args, argp, sizeof(args)))
2465 return -EFAULT;
2466 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2467 args.src_length, args.dest_offset);
2471 * there are many ways the trans_start and trans_end ioctls can lead
2472 * to deadlocks. They should only be used by applications that
2473 * basically own the machine, and have a very in depth understanding
2474 * of all the possible deadlocks and enospc problems.
2476 static long btrfs_ioctl_trans_start(struct file *file)
2478 struct inode *inode = fdentry(file)->d_inode;
2479 struct btrfs_root *root = BTRFS_I(inode)->root;
2480 struct btrfs_trans_handle *trans;
2481 int ret;
2483 ret = -EPERM;
2484 if (!capable(CAP_SYS_ADMIN))
2485 goto out;
2487 ret = -EINPROGRESS;
2488 if (file->private_data)
2489 goto out;
2491 ret = -EROFS;
2492 if (btrfs_root_readonly(root))
2493 goto out;
2495 ret = mnt_want_write(file->f_path.mnt);
2496 if (ret)
2497 goto out;
2499 atomic_inc(&root->fs_info->open_ioctl_trans);
2501 ret = -ENOMEM;
2502 trans = btrfs_start_ioctl_transaction(root);
2503 if (IS_ERR(trans))
2504 goto out_drop;
2506 file->private_data = trans;
2507 return 0;
2509 out_drop:
2510 atomic_dec(&root->fs_info->open_ioctl_trans);
2511 mnt_drop_write(file->f_path.mnt);
2512 out:
2513 return ret;
2516 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2518 struct inode *inode = fdentry(file)->d_inode;
2519 struct btrfs_root *root = BTRFS_I(inode)->root;
2520 struct btrfs_root *new_root;
2521 struct btrfs_dir_item *di;
2522 struct btrfs_trans_handle *trans;
2523 struct btrfs_path *path;
2524 struct btrfs_key location;
2525 struct btrfs_disk_key disk_key;
2526 struct btrfs_super_block *disk_super;
2527 u64 features;
2528 u64 objectid = 0;
2529 u64 dir_id;
2531 if (!capable(CAP_SYS_ADMIN))
2532 return -EPERM;
2534 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2535 return -EFAULT;
2537 if (!objectid)
2538 objectid = root->root_key.objectid;
2540 location.objectid = objectid;
2541 location.type = BTRFS_ROOT_ITEM_KEY;
2542 location.offset = (u64)-1;
2544 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2545 if (IS_ERR(new_root))
2546 return PTR_ERR(new_root);
2548 if (btrfs_root_refs(&new_root->root_item) == 0)
2549 return -ENOENT;
2551 path = btrfs_alloc_path();
2552 if (!path)
2553 return -ENOMEM;
2554 path->leave_spinning = 1;
2556 trans = btrfs_start_transaction(root, 1);
2557 if (IS_ERR(trans)) {
2558 btrfs_free_path(path);
2559 return PTR_ERR(trans);
2562 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2563 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2564 dir_id, "default", 7, 1);
2565 if (IS_ERR_OR_NULL(di)) {
2566 btrfs_free_path(path);
2567 btrfs_end_transaction(trans, root);
2568 printk(KERN_ERR "Umm, you don't have the default dir item, "
2569 "this isn't going to work\n");
2570 return -ENOENT;
2573 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2574 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2575 btrfs_mark_buffer_dirty(path->nodes[0]);
2576 btrfs_free_path(path);
2578 disk_super = &root->fs_info->super_copy;
2579 features = btrfs_super_incompat_flags(disk_super);
2580 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2581 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2582 btrfs_set_super_incompat_flags(disk_super, features);
2584 btrfs_end_transaction(trans, root);
2586 return 0;
2589 static void get_block_group_info(struct list_head *groups_list,
2590 struct btrfs_ioctl_space_info *space)
2592 struct btrfs_block_group_cache *block_group;
2594 space->total_bytes = 0;
2595 space->used_bytes = 0;
2596 space->flags = 0;
2597 list_for_each_entry(block_group, groups_list, list) {
2598 space->flags = block_group->flags;
2599 space->total_bytes += block_group->key.offset;
2600 space->used_bytes +=
2601 btrfs_block_group_used(&block_group->item);
2605 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2607 struct btrfs_ioctl_space_args space_args;
2608 struct btrfs_ioctl_space_info space;
2609 struct btrfs_ioctl_space_info *dest;
2610 struct btrfs_ioctl_space_info *dest_orig;
2611 struct btrfs_ioctl_space_info __user *user_dest;
2612 struct btrfs_space_info *info;
2613 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2614 BTRFS_BLOCK_GROUP_SYSTEM,
2615 BTRFS_BLOCK_GROUP_METADATA,
2616 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2617 int num_types = 4;
2618 int alloc_size;
2619 int ret = 0;
2620 u64 slot_count = 0;
2621 int i, c;
2623 if (copy_from_user(&space_args,
2624 (struct btrfs_ioctl_space_args __user *)arg,
2625 sizeof(space_args)))
2626 return -EFAULT;
2628 for (i = 0; i < num_types; i++) {
2629 struct btrfs_space_info *tmp;
2631 info = NULL;
2632 rcu_read_lock();
2633 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2634 list) {
2635 if (tmp->flags == types[i]) {
2636 info = tmp;
2637 break;
2640 rcu_read_unlock();
2642 if (!info)
2643 continue;
2645 down_read(&info->groups_sem);
2646 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2647 if (!list_empty(&info->block_groups[c]))
2648 slot_count++;
2650 up_read(&info->groups_sem);
2653 /* space_slots == 0 means they are asking for a count */
2654 if (space_args.space_slots == 0) {
2655 space_args.total_spaces = slot_count;
2656 goto out;
2659 slot_count = min_t(u64, space_args.space_slots, slot_count);
2661 alloc_size = sizeof(*dest) * slot_count;
2663 /* we generally have at most 6 or so space infos, one for each raid
2664 * level. So, a whole page should be more than enough for everyone
2666 if (alloc_size > PAGE_CACHE_SIZE)
2667 return -ENOMEM;
2669 space_args.total_spaces = 0;
2670 dest = kmalloc(alloc_size, GFP_NOFS);
2671 if (!dest)
2672 return -ENOMEM;
2673 dest_orig = dest;
2675 /* now we have a buffer to copy into */
2676 for (i = 0; i < num_types; i++) {
2677 struct btrfs_space_info *tmp;
2679 if (!slot_count)
2680 break;
2682 info = NULL;
2683 rcu_read_lock();
2684 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2685 list) {
2686 if (tmp->flags == types[i]) {
2687 info = tmp;
2688 break;
2691 rcu_read_unlock();
2693 if (!info)
2694 continue;
2695 down_read(&info->groups_sem);
2696 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2697 if (!list_empty(&info->block_groups[c])) {
2698 get_block_group_info(&info->block_groups[c],
2699 &space);
2700 memcpy(dest, &space, sizeof(space));
2701 dest++;
2702 space_args.total_spaces++;
2703 slot_count--;
2705 if (!slot_count)
2706 break;
2708 up_read(&info->groups_sem);
2711 user_dest = (struct btrfs_ioctl_space_info *)
2712 (arg + sizeof(struct btrfs_ioctl_space_args));
2714 if (copy_to_user(user_dest, dest_orig, alloc_size))
2715 ret = -EFAULT;
2717 kfree(dest_orig);
2718 out:
2719 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2720 ret = -EFAULT;
2722 return ret;
2726 * there are many ways the trans_start and trans_end ioctls can lead
2727 * to deadlocks. They should only be used by applications that
2728 * basically own the machine, and have a very in depth understanding
2729 * of all the possible deadlocks and enospc problems.
2731 long btrfs_ioctl_trans_end(struct file *file)
2733 struct inode *inode = fdentry(file)->d_inode;
2734 struct btrfs_root *root = BTRFS_I(inode)->root;
2735 struct btrfs_trans_handle *trans;
2737 trans = file->private_data;
2738 if (!trans)
2739 return -EINVAL;
2740 file->private_data = NULL;
2742 btrfs_end_transaction(trans, root);
2744 atomic_dec(&root->fs_info->open_ioctl_trans);
2746 mnt_drop_write(file->f_path.mnt);
2747 return 0;
2750 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2752 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2753 struct btrfs_trans_handle *trans;
2754 u64 transid;
2755 int ret;
2757 trans = btrfs_start_transaction(root, 0);
2758 if (IS_ERR(trans))
2759 return PTR_ERR(trans);
2760 transid = trans->transid;
2761 ret = btrfs_commit_transaction_async(trans, root, 0);
2762 if (ret) {
2763 btrfs_end_transaction(trans, root);
2764 return ret;
2767 if (argp)
2768 if (copy_to_user(argp, &transid, sizeof(transid)))
2769 return -EFAULT;
2770 return 0;
2773 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2775 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2776 u64 transid;
2778 if (argp) {
2779 if (copy_from_user(&transid, argp, sizeof(transid)))
2780 return -EFAULT;
2781 } else {
2782 transid = 0; /* current trans */
2784 return btrfs_wait_for_commit(root, transid);
2787 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2789 int ret;
2790 struct btrfs_ioctl_scrub_args *sa;
2792 if (!capable(CAP_SYS_ADMIN))
2793 return -EPERM;
2795 sa = memdup_user(arg, sizeof(*sa));
2796 if (IS_ERR(sa))
2797 return PTR_ERR(sa);
2799 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2800 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2802 if (copy_to_user(arg, sa, sizeof(*sa)))
2803 ret = -EFAULT;
2805 kfree(sa);
2806 return ret;
2809 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2811 if (!capable(CAP_SYS_ADMIN))
2812 return -EPERM;
2814 return btrfs_scrub_cancel(root);
2817 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2818 void __user *arg)
2820 struct btrfs_ioctl_scrub_args *sa;
2821 int ret;
2823 if (!capable(CAP_SYS_ADMIN))
2824 return -EPERM;
2826 sa = memdup_user(arg, sizeof(*sa));
2827 if (IS_ERR(sa))
2828 return PTR_ERR(sa);
2830 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2832 if (copy_to_user(arg, sa, sizeof(*sa)))
2833 ret = -EFAULT;
2835 kfree(sa);
2836 return ret;
2839 long btrfs_ioctl(struct file *file, unsigned int
2840 cmd, unsigned long arg)
2842 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2843 void __user *argp = (void __user *)arg;
2845 switch (cmd) {
2846 case FS_IOC_GETFLAGS:
2847 return btrfs_ioctl_getflags(file, argp);
2848 case FS_IOC_SETFLAGS:
2849 return btrfs_ioctl_setflags(file, argp);
2850 case FS_IOC_GETVERSION:
2851 return btrfs_ioctl_getversion(file, argp);
2852 case FITRIM:
2853 return btrfs_ioctl_fitrim(file, argp);
2854 case BTRFS_IOC_SNAP_CREATE:
2855 return btrfs_ioctl_snap_create(file, argp, 0);
2856 case BTRFS_IOC_SNAP_CREATE_V2:
2857 return btrfs_ioctl_snap_create_v2(file, argp, 0);
2858 case BTRFS_IOC_SUBVOL_CREATE:
2859 return btrfs_ioctl_snap_create(file, argp, 1);
2860 case BTRFS_IOC_SNAP_DESTROY:
2861 return btrfs_ioctl_snap_destroy(file, argp);
2862 case BTRFS_IOC_SUBVOL_GETFLAGS:
2863 return btrfs_ioctl_subvol_getflags(file, argp);
2864 case BTRFS_IOC_SUBVOL_SETFLAGS:
2865 return btrfs_ioctl_subvol_setflags(file, argp);
2866 case BTRFS_IOC_DEFAULT_SUBVOL:
2867 return btrfs_ioctl_default_subvol(file, argp);
2868 case BTRFS_IOC_DEFRAG:
2869 return btrfs_ioctl_defrag(file, NULL);
2870 case BTRFS_IOC_DEFRAG_RANGE:
2871 return btrfs_ioctl_defrag(file, argp);
2872 case BTRFS_IOC_RESIZE:
2873 return btrfs_ioctl_resize(root, argp);
2874 case BTRFS_IOC_ADD_DEV:
2875 return btrfs_ioctl_add_dev(root, argp);
2876 case BTRFS_IOC_RM_DEV:
2877 return btrfs_ioctl_rm_dev(root, argp);
2878 case BTRFS_IOC_FS_INFO:
2879 return btrfs_ioctl_fs_info(root, argp);
2880 case BTRFS_IOC_DEV_INFO:
2881 return btrfs_ioctl_dev_info(root, argp);
2882 case BTRFS_IOC_BALANCE:
2883 return btrfs_balance(root->fs_info->dev_root);
2884 case BTRFS_IOC_CLONE:
2885 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2886 case BTRFS_IOC_CLONE_RANGE:
2887 return btrfs_ioctl_clone_range(file, argp);
2888 case BTRFS_IOC_TRANS_START:
2889 return btrfs_ioctl_trans_start(file);
2890 case BTRFS_IOC_TRANS_END:
2891 return btrfs_ioctl_trans_end(file);
2892 case BTRFS_IOC_TREE_SEARCH:
2893 return btrfs_ioctl_tree_search(file, argp);
2894 case BTRFS_IOC_INO_LOOKUP:
2895 return btrfs_ioctl_ino_lookup(file, argp);
2896 case BTRFS_IOC_SPACE_INFO:
2897 return btrfs_ioctl_space_info(root, argp);
2898 case BTRFS_IOC_SYNC:
2899 btrfs_sync_fs(file->f_dentry->d_sb, 1);
2900 return 0;
2901 case BTRFS_IOC_START_SYNC:
2902 return btrfs_ioctl_start_sync(file, argp);
2903 case BTRFS_IOC_WAIT_SYNC:
2904 return btrfs_ioctl_wait_sync(file, argp);
2905 case BTRFS_IOC_SCRUB:
2906 return btrfs_ioctl_scrub(root, argp);
2907 case BTRFS_IOC_SCRUB_CANCEL:
2908 return btrfs_ioctl_scrub_cancel(root, argp);
2909 case BTRFS_IOC_SCRUB_PROGRESS:
2910 return btrfs_ioctl_scrub_progress(root, argp);
2913 return -ENOTTY;