2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
49 #include <asm/tlbflush.h>
50 #include <asm/div64.h>
54 * Array of node states.
56 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
57 [N_POSSIBLE
] = NODE_MASK_ALL
,
58 [N_ONLINE
] = { { [0] = 1UL } },
60 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
62 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
64 [N_CPU
] = { { [0] = 1UL } },
67 EXPORT_SYMBOL(node_states
);
69 unsigned long totalram_pages __read_mostly
;
70 unsigned long totalreserve_pages __read_mostly
;
72 int percpu_pagelist_fraction
;
74 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75 int pageblock_order __read_mostly
;
78 static void __free_pages_ok(struct page
*page
, unsigned int order
);
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 * 1G machine -> (16M dma, 784M normal, 224M high)
84 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
91 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
92 #ifdef CONFIG_ZONE_DMA
95 #ifdef CONFIG_ZONE_DMA32
104 EXPORT_SYMBOL(totalram_pages
);
106 static char * const zone_names
[MAX_NR_ZONES
] = {
107 #ifdef CONFIG_ZONE_DMA
110 #ifdef CONFIG_ZONE_DMA32
114 #ifdef CONFIG_HIGHMEM
120 int min_free_kbytes
= 1024;
122 unsigned long __meminitdata nr_kernel_pages
;
123 unsigned long __meminitdata nr_all_pages
;
124 static unsigned long __meminitdata dma_reserve
;
126 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129 * ranges of memory (RAM) that may be registered with add_active_range().
130 * Ranges passed to add_active_range() will be merged if possible
131 * so the number of times add_active_range() can be called is
132 * related to the number of nodes and the number of holes
134 #ifdef CONFIG_MAX_ACTIVE_REGIONS
135 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #if MAX_NUMNODES >= 32
139 /* If there can be many nodes, allow up to 50 holes per node */
140 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 /* By default, allow up to 256 distinct regions */
143 #define MAX_ACTIVE_REGIONS 256
147 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
148 static int __meminitdata nr_nodemap_entries
;
149 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
150 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
151 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
153 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
154 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155 unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 EXPORT_SYMBOL(nr_node_ids
);
169 int page_group_by_mobility_disabled __read_mostly
;
171 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
173 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
174 PB_migrate
, PB_migrate_end
);
177 #ifdef CONFIG_DEBUG_VM
178 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
182 unsigned long pfn
= page_to_pfn(page
);
185 seq
= zone_span_seqbegin(zone
);
186 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
188 else if (pfn
< zone
->zone_start_pfn
)
190 } while (zone_span_seqretry(zone
, seq
));
195 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
197 if (!pfn_valid_within(page_to_pfn(page
)))
199 if (zone
!= page_zone(page
))
205 * Temporary debugging check for pages not lying within a given zone.
207 static int bad_range(struct zone
*zone
, struct page
*page
)
209 if (page_outside_zone_boundaries(zone
, page
))
211 if (!page_is_consistent(zone
, page
))
217 static inline int bad_range(struct zone
*zone
, struct page
*page
)
223 static void bad_page(struct page
*page
)
225 printk(KERN_EMERG
"Bad page state in process '%s'\n"
226 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
227 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
228 KERN_EMERG
"Backtrace:\n",
229 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
230 (unsigned long)page
->flags
, page
->mapping
,
231 page_mapcount(page
), page_count(page
));
233 page
->flags
&= ~(1 << PG_lru
|
243 set_page_count(page
, 0);
244 reset_page_mapcount(page
);
245 page
->mapping
= NULL
;
246 add_taint(TAINT_BAD_PAGE
);
250 * Higher-order pages are called "compound pages". They are structured thusly:
252 * The first PAGE_SIZE page is called the "head page".
254 * The remaining PAGE_SIZE pages are called "tail pages".
256 * All pages have PG_compound set. All pages have their ->private pointing at
257 * the head page (even the head page has this).
259 * The first tail page's ->lru.next holds the address of the compound page's
260 * put_page() function. Its ->lru.prev holds the order of allocation.
261 * This usage means that zero-order pages may not be compound.
264 static void free_compound_page(struct page
*page
)
266 __free_pages_ok(page
, compound_order(page
));
269 static void prep_compound_page(struct page
*page
, unsigned long order
)
272 int nr_pages
= 1 << order
;
274 set_compound_page_dtor(page
, free_compound_page
);
275 set_compound_order(page
, order
);
277 for (i
= 1; i
< nr_pages
; i
++) {
278 struct page
*p
= page
+ i
;
281 p
->first_page
= page
;
285 static void destroy_compound_page(struct page
*page
, unsigned long order
)
288 int nr_pages
= 1 << order
;
290 if (unlikely(compound_order(page
) != order
))
293 if (unlikely(!PageHead(page
)))
295 __ClearPageHead(page
);
296 for (i
= 1; i
< nr_pages
; i
++) {
297 struct page
*p
= page
+ i
;
299 if (unlikely(!PageTail(p
) |
300 (p
->first_page
!= page
)))
306 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
311 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
312 * and __GFP_HIGHMEM from hard or soft interrupt context.
314 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
315 for (i
= 0; i
< (1 << order
); i
++)
316 clear_highpage(page
+ i
);
319 static inline void set_page_order(struct page
*page
, int order
)
321 set_page_private(page
, order
);
322 __SetPageBuddy(page
);
325 static inline void rmv_page_order(struct page
*page
)
327 __ClearPageBuddy(page
);
328 set_page_private(page
, 0);
332 * Locate the struct page for both the matching buddy in our
333 * pair (buddy1) and the combined O(n+1) page they form (page).
335 * 1) Any buddy B1 will have an order O twin B2 which satisfies
336 * the following equation:
338 * For example, if the starting buddy (buddy2) is #8 its order
340 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
342 * 2) Any buddy B will have an order O+1 parent P which
343 * satisfies the following equation:
346 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
348 static inline struct page
*
349 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
351 unsigned long buddy_idx
= page_idx
^ (1 << order
);
353 return page
+ (buddy_idx
- page_idx
);
356 static inline unsigned long
357 __find_combined_index(unsigned long page_idx
, unsigned int order
)
359 return (page_idx
& ~(1 << order
));
363 * This function checks whether a page is free && is the buddy
364 * we can do coalesce a page and its buddy if
365 * (a) the buddy is not in a hole &&
366 * (b) the buddy is in the buddy system &&
367 * (c) a page and its buddy have the same order &&
368 * (d) a page and its buddy are in the same zone.
370 * For recording whether a page is in the buddy system, we use PG_buddy.
371 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
373 * For recording page's order, we use page_private(page).
375 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
378 if (!pfn_valid_within(page_to_pfn(buddy
)))
381 if (page_zone_id(page
) != page_zone_id(buddy
))
384 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
385 BUG_ON(page_count(buddy
) != 0);
392 * Freeing function for a buddy system allocator.
394 * The concept of a buddy system is to maintain direct-mapped table
395 * (containing bit values) for memory blocks of various "orders".
396 * The bottom level table contains the map for the smallest allocatable
397 * units of memory (here, pages), and each level above it describes
398 * pairs of units from the levels below, hence, "buddies".
399 * At a high level, all that happens here is marking the table entry
400 * at the bottom level available, and propagating the changes upward
401 * as necessary, plus some accounting needed to play nicely with other
402 * parts of the VM system.
403 * At each level, we keep a list of pages, which are heads of continuous
404 * free pages of length of (1 << order) and marked with PG_buddy. Page's
405 * order is recorded in page_private(page) field.
406 * So when we are allocating or freeing one, we can derive the state of the
407 * other. That is, if we allocate a small block, and both were
408 * free, the remainder of the region must be split into blocks.
409 * If a block is freed, and its buddy is also free, then this
410 * triggers coalescing into a block of larger size.
415 static inline void __free_one_page(struct page
*page
,
416 struct zone
*zone
, unsigned int order
)
418 unsigned long page_idx
;
419 int order_size
= 1 << order
;
420 int migratetype
= get_pageblock_migratetype(page
);
422 if (unlikely(PageCompound(page
)))
423 destroy_compound_page(page
, order
);
425 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
427 VM_BUG_ON(page_idx
& (order_size
- 1));
428 VM_BUG_ON(bad_range(zone
, page
));
430 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
431 while (order
< MAX_ORDER
-1) {
432 unsigned long combined_idx
;
435 buddy
= __page_find_buddy(page
, page_idx
, order
);
436 if (!page_is_buddy(page
, buddy
, order
))
437 break; /* Move the buddy up one level. */
439 list_del(&buddy
->lru
);
440 zone
->free_area
[order
].nr_free
--;
441 rmv_page_order(buddy
);
442 combined_idx
= __find_combined_index(page_idx
, order
);
443 page
= page
+ (combined_idx
- page_idx
);
444 page_idx
= combined_idx
;
447 set_page_order(page
, order
);
449 &zone
->free_area
[order
].free_list
[migratetype
]);
450 zone
->free_area
[order
].nr_free
++;
453 static inline int free_pages_check(struct page
*page
)
455 if (unlikely(page_mapcount(page
) |
456 (page
->mapping
!= NULL
) |
457 (page_count(page
) != 0) |
470 __ClearPageDirty(page
);
472 * For now, we report if PG_reserved was found set, but do not
473 * clear it, and do not free the page. But we shall soon need
474 * to do more, for when the ZERO_PAGE count wraps negative.
476 return PageReserved(page
);
480 * Frees a list of pages.
481 * Assumes all pages on list are in same zone, and of same order.
482 * count is the number of pages to free.
484 * If the zone was previously in an "all pages pinned" state then look to
485 * see if this freeing clears that state.
487 * And clear the zone's pages_scanned counter, to hold off the "all pages are
488 * pinned" detection logic.
490 static void free_pages_bulk(struct zone
*zone
, int count
,
491 struct list_head
*list
, int order
)
493 spin_lock(&zone
->lock
);
494 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
495 zone
->pages_scanned
= 0;
499 VM_BUG_ON(list_empty(list
));
500 page
= list_entry(list
->prev
, struct page
, lru
);
501 /* have to delete it as __free_one_page list manipulates */
502 list_del(&page
->lru
);
503 __free_one_page(page
, zone
, order
);
505 spin_unlock(&zone
->lock
);
508 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
510 spin_lock(&zone
->lock
);
511 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
512 zone
->pages_scanned
= 0;
513 __free_one_page(page
, zone
, order
);
514 spin_unlock(&zone
->lock
);
517 static void __free_pages_ok(struct page
*page
, unsigned int order
)
523 for (i
= 0 ; i
< (1 << order
) ; ++i
)
524 reserved
+= free_pages_check(page
+ i
);
528 if (!PageHighMem(page
))
529 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
530 arch_free_page(page
, order
);
531 kernel_map_pages(page
, 1 << order
, 0);
533 local_irq_save(flags
);
534 __count_vm_events(PGFREE
, 1 << order
);
535 free_one_page(page_zone(page
), page
, order
);
536 local_irq_restore(flags
);
540 * permit the bootmem allocator to evade page validation on high-order frees
542 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
545 __ClearPageReserved(page
);
546 set_page_count(page
, 0);
547 set_page_refcounted(page
);
553 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
554 struct page
*p
= &page
[loop
];
556 if (loop
+ 1 < BITS_PER_LONG
)
558 __ClearPageReserved(p
);
559 set_page_count(p
, 0);
562 set_page_refcounted(page
);
563 __free_pages(page
, order
);
569 * The order of subdivision here is critical for the IO subsystem.
570 * Please do not alter this order without good reasons and regression
571 * testing. Specifically, as large blocks of memory are subdivided,
572 * the order in which smaller blocks are delivered depends on the order
573 * they're subdivided in this function. This is the primary factor
574 * influencing the order in which pages are delivered to the IO
575 * subsystem according to empirical testing, and this is also justified
576 * by considering the behavior of a buddy system containing a single
577 * large block of memory acted on by a series of small allocations.
578 * This behavior is a critical factor in sglist merging's success.
582 static inline void expand(struct zone
*zone
, struct page
*page
,
583 int low
, int high
, struct free_area
*area
,
586 unsigned long size
= 1 << high
;
592 VM_BUG_ON(bad_range(zone
, &page
[size
]));
593 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
595 set_page_order(&page
[size
], high
);
600 * This page is about to be returned from the page allocator
602 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
604 if (unlikely(page_mapcount(page
) |
605 (page
->mapping
!= NULL
) |
606 (page_count(page
) != 0) |
621 * For now, we report if PG_reserved was found set, but do not
622 * clear it, and do not allocate the page: as a safety net.
624 if (PageReserved(page
))
627 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_readahead
|
628 1 << PG_referenced
| 1 << PG_arch_1
|
629 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
630 set_page_private(page
, 0);
631 set_page_refcounted(page
);
633 arch_alloc_page(page
, order
);
634 kernel_map_pages(page
, 1 << order
, 1);
636 if (gfp_flags
& __GFP_ZERO
)
637 prep_zero_page(page
, order
, gfp_flags
);
639 if (order
&& (gfp_flags
& __GFP_COMP
))
640 prep_compound_page(page
, order
);
646 * Go through the free lists for the given migratetype and remove
647 * the smallest available page from the freelists
649 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
652 unsigned int current_order
;
653 struct free_area
* area
;
656 /* Find a page of the appropriate size in the preferred list */
657 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
658 area
= &(zone
->free_area
[current_order
]);
659 if (list_empty(&area
->free_list
[migratetype
]))
662 page
= list_entry(area
->free_list
[migratetype
].next
,
664 list_del(&page
->lru
);
665 rmv_page_order(page
);
667 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
668 expand(zone
, page
, order
, current_order
, area
, migratetype
);
677 * This array describes the order lists are fallen back to when
678 * the free lists for the desirable migrate type are depleted
680 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
681 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
682 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
683 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
684 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
688 * Move the free pages in a range to the free lists of the requested type.
689 * Note that start_page and end_pages are not aligned on a pageblock
690 * boundary. If alignment is required, use move_freepages_block()
692 int move_freepages(struct zone
*zone
,
693 struct page
*start_page
, struct page
*end_page
,
700 #ifndef CONFIG_HOLES_IN_ZONE
702 * page_zone is not safe to call in this context when
703 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
704 * anyway as we check zone boundaries in move_freepages_block().
705 * Remove at a later date when no bug reports exist related to
706 * grouping pages by mobility
708 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
711 for (page
= start_page
; page
<= end_page
;) {
712 if (!pfn_valid_within(page_to_pfn(page
))) {
717 if (!PageBuddy(page
)) {
722 order
= page_order(page
);
723 list_del(&page
->lru
);
725 &zone
->free_area
[order
].free_list
[migratetype
]);
727 pages_moved
+= 1 << order
;
733 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
735 unsigned long start_pfn
, end_pfn
;
736 struct page
*start_page
, *end_page
;
738 start_pfn
= page_to_pfn(page
);
739 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
740 start_page
= pfn_to_page(start_pfn
);
741 end_page
= start_page
+ pageblock_nr_pages
- 1;
742 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
744 /* Do not cross zone boundaries */
745 if (start_pfn
< zone
->zone_start_pfn
)
747 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
750 return move_freepages(zone
, start_page
, end_page
, migratetype
);
753 /* Remove an element from the buddy allocator from the fallback list */
754 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
755 int start_migratetype
)
757 struct free_area
* area
;
762 /* Find the largest possible block of pages in the other list */
763 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
765 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
766 migratetype
= fallbacks
[start_migratetype
][i
];
768 /* MIGRATE_RESERVE handled later if necessary */
769 if (migratetype
== MIGRATE_RESERVE
)
772 area
= &(zone
->free_area
[current_order
]);
773 if (list_empty(&area
->free_list
[migratetype
]))
776 page
= list_entry(area
->free_list
[migratetype
].next
,
781 * If breaking a large block of pages, move all free
782 * pages to the preferred allocation list. If falling
783 * back for a reclaimable kernel allocation, be more
784 * agressive about taking ownership of free pages
786 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
787 start_migratetype
== MIGRATE_RECLAIMABLE
) {
789 pages
= move_freepages_block(zone
, page
,
792 /* Claim the whole block if over half of it is free */
793 if (pages
>= (1 << (pageblock_order
-1)))
794 set_pageblock_migratetype(page
,
797 migratetype
= start_migratetype
;
800 /* Remove the page from the freelists */
801 list_del(&page
->lru
);
802 rmv_page_order(page
);
803 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
806 if (current_order
== pageblock_order
)
807 set_pageblock_migratetype(page
,
810 expand(zone
, page
, order
, current_order
, area
, migratetype
);
815 /* Use MIGRATE_RESERVE rather than fail an allocation */
816 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
820 * Do the hard work of removing an element from the buddy allocator.
821 * Call me with the zone->lock already held.
823 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
828 page
= __rmqueue_smallest(zone
, order
, migratetype
);
831 page
= __rmqueue_fallback(zone
, order
, migratetype
);
837 * Obtain a specified number of elements from the buddy allocator, all under
838 * a single hold of the lock, for efficiency. Add them to the supplied list.
839 * Returns the number of new pages which were placed at *list.
841 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
842 unsigned long count
, struct list_head
*list
,
847 spin_lock(&zone
->lock
);
848 for (i
= 0; i
< count
; ++i
) {
849 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
850 if (unlikely(page
== NULL
))
854 * Split buddy pages returned by expand() are received here
855 * in physical page order. The page is added to the callers and
856 * list and the list head then moves forward. From the callers
857 * perspective, the linked list is ordered by page number in
858 * some conditions. This is useful for IO devices that can
859 * merge IO requests if the physical pages are ordered
862 list_add(&page
->lru
, list
);
863 set_page_private(page
, migratetype
);
866 spin_unlock(&zone
->lock
);
872 * Called from the vmstat counter updater to drain pagesets of this
873 * currently executing processor on remote nodes after they have
876 * Note that this function must be called with the thread pinned to
877 * a single processor.
879 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
884 local_irq_save(flags
);
885 if (pcp
->count
>= pcp
->batch
)
886 to_drain
= pcp
->batch
;
888 to_drain
= pcp
->count
;
889 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
890 pcp
->count
-= to_drain
;
891 local_irq_restore(flags
);
896 * Drain pages of the indicated processor.
898 * The processor must either be the current processor and the
899 * thread pinned to the current processor or a processor that
902 static void drain_pages(unsigned int cpu
)
907 for_each_zone(zone
) {
908 struct per_cpu_pageset
*pset
;
909 struct per_cpu_pages
*pcp
;
911 if (!populated_zone(zone
))
914 pset
= zone_pcp(zone
, cpu
);
917 local_irq_save(flags
);
918 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
920 local_irq_restore(flags
);
925 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
927 void drain_local_pages(void *arg
)
929 drain_pages(smp_processor_id());
933 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
935 void drain_all_pages(void)
937 on_each_cpu(drain_local_pages
, NULL
, 0, 1);
940 #ifdef CONFIG_HIBERNATION
942 void mark_free_pages(struct zone
*zone
)
944 unsigned long pfn
, max_zone_pfn
;
947 struct list_head
*curr
;
949 if (!zone
->spanned_pages
)
952 spin_lock_irqsave(&zone
->lock
, flags
);
954 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
955 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
956 if (pfn_valid(pfn
)) {
957 struct page
*page
= pfn_to_page(pfn
);
959 if (!swsusp_page_is_forbidden(page
))
960 swsusp_unset_page_free(page
);
963 for_each_migratetype_order(order
, t
) {
964 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
967 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
968 for (i
= 0; i
< (1UL << order
); i
++)
969 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
972 spin_unlock_irqrestore(&zone
->lock
, flags
);
974 #endif /* CONFIG_PM */
977 * Free a 0-order page
979 static void free_hot_cold_page(struct page
*page
, int cold
)
981 struct zone
*zone
= page_zone(page
);
982 struct per_cpu_pages
*pcp
;
986 page
->mapping
= NULL
;
987 if (free_pages_check(page
))
990 if (!PageHighMem(page
))
991 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
992 VM_BUG_ON(page_get_page_cgroup(page
));
993 arch_free_page(page
, 0);
994 kernel_map_pages(page
, 1, 0);
996 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
997 local_irq_save(flags
);
998 __count_vm_event(PGFREE
);
1000 list_add_tail(&page
->lru
, &pcp
->list
);
1002 list_add(&page
->lru
, &pcp
->list
);
1003 set_page_private(page
, get_pageblock_migratetype(page
));
1005 if (pcp
->count
>= pcp
->high
) {
1006 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1007 pcp
->count
-= pcp
->batch
;
1009 local_irq_restore(flags
);
1013 void free_hot_page(struct page
*page
)
1015 free_hot_cold_page(page
, 0);
1018 void free_cold_page(struct page
*page
)
1020 free_hot_cold_page(page
, 1);
1024 * split_page takes a non-compound higher-order page, and splits it into
1025 * n (1<<order) sub-pages: page[0..n]
1026 * Each sub-page must be freed individually.
1028 * Note: this is probably too low level an operation for use in drivers.
1029 * Please consult with lkml before using this in your driver.
1031 void split_page(struct page
*page
, unsigned int order
)
1035 VM_BUG_ON(PageCompound(page
));
1036 VM_BUG_ON(!page_count(page
));
1037 for (i
= 1; i
< (1 << order
); i
++)
1038 set_page_refcounted(page
+ i
);
1042 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1043 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1046 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
1047 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1049 unsigned long flags
;
1051 int cold
= !!(gfp_flags
& __GFP_COLD
);
1053 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1057 if (likely(order
== 0)) {
1058 struct per_cpu_pages
*pcp
;
1060 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1061 local_irq_save(flags
);
1063 pcp
->count
= rmqueue_bulk(zone
, 0,
1064 pcp
->batch
, &pcp
->list
, migratetype
);
1065 if (unlikely(!pcp
->count
))
1069 /* Find a page of the appropriate migrate type */
1071 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1072 if (page_private(page
) == migratetype
)
1075 list_for_each_entry(page
, &pcp
->list
, lru
)
1076 if (page_private(page
) == migratetype
)
1080 /* Allocate more to the pcp list if necessary */
1081 if (unlikely(&page
->lru
== &pcp
->list
)) {
1082 pcp
->count
+= rmqueue_bulk(zone
, 0,
1083 pcp
->batch
, &pcp
->list
, migratetype
);
1084 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1087 list_del(&page
->lru
);
1090 spin_lock_irqsave(&zone
->lock
, flags
);
1091 page
= __rmqueue(zone
, order
, migratetype
);
1092 spin_unlock(&zone
->lock
);
1097 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1098 zone_statistics(zonelist
, zone
);
1099 local_irq_restore(flags
);
1102 VM_BUG_ON(bad_range(zone
, page
));
1103 if (prep_new_page(page
, order
, gfp_flags
))
1108 local_irq_restore(flags
);
1113 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1114 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1115 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1116 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1117 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1118 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1119 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1121 #ifdef CONFIG_FAIL_PAGE_ALLOC
1123 static struct fail_page_alloc_attr
{
1124 struct fault_attr attr
;
1126 u32 ignore_gfp_highmem
;
1127 u32 ignore_gfp_wait
;
1130 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1132 struct dentry
*ignore_gfp_highmem_file
;
1133 struct dentry
*ignore_gfp_wait_file
;
1134 struct dentry
*min_order_file
;
1136 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1138 } fail_page_alloc
= {
1139 .attr
= FAULT_ATTR_INITIALIZER
,
1140 .ignore_gfp_wait
= 1,
1141 .ignore_gfp_highmem
= 1,
1145 static int __init
setup_fail_page_alloc(char *str
)
1147 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1149 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1151 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1153 if (order
< fail_page_alloc
.min_order
)
1155 if (gfp_mask
& __GFP_NOFAIL
)
1157 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1159 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1162 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1165 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1167 static int __init
fail_page_alloc_debugfs(void)
1169 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1173 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1177 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1179 fail_page_alloc
.ignore_gfp_wait_file
=
1180 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1181 &fail_page_alloc
.ignore_gfp_wait
);
1183 fail_page_alloc
.ignore_gfp_highmem_file
=
1184 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1185 &fail_page_alloc
.ignore_gfp_highmem
);
1186 fail_page_alloc
.min_order_file
=
1187 debugfs_create_u32("min-order", mode
, dir
,
1188 &fail_page_alloc
.min_order
);
1190 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1191 !fail_page_alloc
.ignore_gfp_highmem_file
||
1192 !fail_page_alloc
.min_order_file
) {
1194 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1195 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1196 debugfs_remove(fail_page_alloc
.min_order_file
);
1197 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1203 late_initcall(fail_page_alloc_debugfs
);
1205 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1207 #else /* CONFIG_FAIL_PAGE_ALLOC */
1209 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1214 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1217 * Return 1 if free pages are above 'mark'. This takes into account the order
1218 * of the allocation.
1220 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1221 int classzone_idx
, int alloc_flags
)
1223 /* free_pages my go negative - that's OK */
1225 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1228 if (alloc_flags
& ALLOC_HIGH
)
1230 if (alloc_flags
& ALLOC_HARDER
)
1233 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1235 for (o
= 0; o
< order
; o
++) {
1236 /* At the next order, this order's pages become unavailable */
1237 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1239 /* Require fewer higher order pages to be free */
1242 if (free_pages
<= min
)
1250 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1251 * skip over zones that are not allowed by the cpuset, or that have
1252 * been recently (in last second) found to be nearly full. See further
1253 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1254 * that have to skip over a lot of full or unallowed zones.
1256 * If the zonelist cache is present in the passed in zonelist, then
1257 * returns a pointer to the allowed node mask (either the current
1258 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1260 * If the zonelist cache is not available for this zonelist, does
1261 * nothing and returns NULL.
1263 * If the fullzones BITMAP in the zonelist cache is stale (more than
1264 * a second since last zap'd) then we zap it out (clear its bits.)
1266 * We hold off even calling zlc_setup, until after we've checked the
1267 * first zone in the zonelist, on the theory that most allocations will
1268 * be satisfied from that first zone, so best to examine that zone as
1269 * quickly as we can.
1271 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1273 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1274 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1276 zlc
= zonelist
->zlcache_ptr
;
1280 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1281 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1282 zlc
->last_full_zap
= jiffies
;
1285 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1286 &cpuset_current_mems_allowed
:
1287 &node_states
[N_HIGH_MEMORY
];
1288 return allowednodes
;
1292 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1293 * if it is worth looking at further for free memory:
1294 * 1) Check that the zone isn't thought to be full (doesn't have its
1295 * bit set in the zonelist_cache fullzones BITMAP).
1296 * 2) Check that the zones node (obtained from the zonelist_cache
1297 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1298 * Return true (non-zero) if zone is worth looking at further, or
1299 * else return false (zero) if it is not.
1301 * This check -ignores- the distinction between various watermarks,
1302 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1303 * found to be full for any variation of these watermarks, it will
1304 * be considered full for up to one second by all requests, unless
1305 * we are so low on memory on all allowed nodes that we are forced
1306 * into the second scan of the zonelist.
1308 * In the second scan we ignore this zonelist cache and exactly
1309 * apply the watermarks to all zones, even it is slower to do so.
1310 * We are low on memory in the second scan, and should leave no stone
1311 * unturned looking for a free page.
1313 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1314 nodemask_t
*allowednodes
)
1316 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1317 int i
; /* index of *z in zonelist zones */
1318 int n
; /* node that zone *z is on */
1320 zlc
= zonelist
->zlcache_ptr
;
1324 i
= z
- zonelist
->zones
;
1327 /* This zone is worth trying if it is allowed but not full */
1328 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1332 * Given 'z' scanning a zonelist, set the corresponding bit in
1333 * zlc->fullzones, so that subsequent attempts to allocate a page
1334 * from that zone don't waste time re-examining it.
1336 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1338 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1339 int i
; /* index of *z in zonelist zones */
1341 zlc
= zonelist
->zlcache_ptr
;
1345 i
= z
- zonelist
->zones
;
1347 set_bit(i
, zlc
->fullzones
);
1350 #else /* CONFIG_NUMA */
1352 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1357 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1358 nodemask_t
*allowednodes
)
1363 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1366 #endif /* CONFIG_NUMA */
1369 * get_page_from_freelist goes through the zonelist trying to allocate
1372 static struct page
*
1373 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1374 struct zonelist
*zonelist
, int alloc_flags
)
1377 struct page
*page
= NULL
;
1378 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1380 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1381 int zlc_active
= 0; /* set if using zonelist_cache */
1382 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1383 enum zone_type highest_zoneidx
= -1; /* Gets set for policy zonelists */
1387 * Scan zonelist, looking for a zone with enough free.
1388 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1390 z
= zonelist
->zones
;
1394 * In NUMA, this could be a policy zonelist which contains
1395 * zones that may not be allowed by the current gfp_mask.
1396 * Check the zone is allowed by the current flags
1398 if (unlikely(alloc_should_filter_zonelist(zonelist
))) {
1399 if (highest_zoneidx
== -1)
1400 highest_zoneidx
= gfp_zone(gfp_mask
);
1401 if (zone_idx(*z
) > highest_zoneidx
)
1405 if (NUMA_BUILD
&& zlc_active
&&
1406 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1409 if ((alloc_flags
& ALLOC_CPUSET
) &&
1410 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1413 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1415 if (alloc_flags
& ALLOC_WMARK_MIN
)
1416 mark
= zone
->pages_min
;
1417 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1418 mark
= zone
->pages_low
;
1420 mark
= zone
->pages_high
;
1421 if (!zone_watermark_ok(zone
, order
, mark
,
1422 classzone_idx
, alloc_flags
)) {
1423 if (!zone_reclaim_mode
||
1424 !zone_reclaim(zone
, gfp_mask
, order
))
1425 goto this_zone_full
;
1429 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1434 zlc_mark_zone_full(zonelist
, z
);
1436 if (NUMA_BUILD
&& !did_zlc_setup
) {
1437 /* we do zlc_setup after the first zone is tried */
1438 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1442 } while (*(++z
) != NULL
);
1444 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1445 /* Disable zlc cache for second zonelist scan */
1453 * This is the 'heart' of the zoned buddy allocator.
1456 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1457 struct zonelist
*zonelist
)
1459 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1462 struct reclaim_state reclaim_state
;
1463 struct task_struct
*p
= current
;
1466 int did_some_progress
;
1468 might_sleep_if(wait
);
1470 if (should_fail_alloc_page(gfp_mask
, order
))
1474 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1476 if (unlikely(*z
== NULL
)) {
1478 * Happens if we have an empty zonelist as a result of
1479 * GFP_THISNODE being used on a memoryless node
1484 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1485 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1490 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1491 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1492 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1493 * using a larger set of nodes after it has established that the
1494 * allowed per node queues are empty and that nodes are
1497 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1500 for (z
= zonelist
->zones
; *z
; z
++)
1501 wakeup_kswapd(*z
, order
);
1504 * OK, we're below the kswapd watermark and have kicked background
1505 * reclaim. Now things get more complex, so set up alloc_flags according
1506 * to how we want to proceed.
1508 * The caller may dip into page reserves a bit more if the caller
1509 * cannot run direct reclaim, or if the caller has realtime scheduling
1510 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1511 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1513 alloc_flags
= ALLOC_WMARK_MIN
;
1514 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1515 alloc_flags
|= ALLOC_HARDER
;
1516 if (gfp_mask
& __GFP_HIGH
)
1517 alloc_flags
|= ALLOC_HIGH
;
1519 alloc_flags
|= ALLOC_CPUSET
;
1522 * Go through the zonelist again. Let __GFP_HIGH and allocations
1523 * coming from realtime tasks go deeper into reserves.
1525 * This is the last chance, in general, before the goto nopage.
1526 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1527 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1529 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1533 /* This allocation should allow future memory freeing. */
1536 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1537 && !in_interrupt()) {
1538 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1540 /* go through the zonelist yet again, ignoring mins */
1541 page
= get_page_from_freelist(gfp_mask
, order
,
1542 zonelist
, ALLOC_NO_WATERMARKS
);
1545 if (gfp_mask
& __GFP_NOFAIL
) {
1546 congestion_wait(WRITE
, HZ
/50);
1553 /* Atomic allocations - we can't balance anything */
1559 /* We now go into synchronous reclaim */
1560 cpuset_memory_pressure_bump();
1561 p
->flags
|= PF_MEMALLOC
;
1562 reclaim_state
.reclaimed_slab
= 0;
1563 p
->reclaim_state
= &reclaim_state
;
1565 did_some_progress
= try_to_free_pages(zonelist
->zones
, order
, gfp_mask
);
1567 p
->reclaim_state
= NULL
;
1568 p
->flags
&= ~PF_MEMALLOC
;
1575 if (likely(did_some_progress
)) {
1576 page
= get_page_from_freelist(gfp_mask
, order
,
1577 zonelist
, alloc_flags
);
1580 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1581 if (!try_set_zone_oom(zonelist
)) {
1582 schedule_timeout_uninterruptible(1);
1587 * Go through the zonelist yet one more time, keep
1588 * very high watermark here, this is only to catch
1589 * a parallel oom killing, we must fail if we're still
1590 * under heavy pressure.
1592 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1593 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1595 clear_zonelist_oom(zonelist
);
1599 /* The OOM killer will not help higher order allocs so fail */
1600 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1601 clear_zonelist_oom(zonelist
);
1605 out_of_memory(zonelist
, gfp_mask
, order
);
1606 clear_zonelist_oom(zonelist
);
1611 * Don't let big-order allocations loop unless the caller explicitly
1612 * requests that. Wait for some write requests to complete then retry.
1614 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1615 * <= 3, but that may not be true in other implementations.
1618 if (!(gfp_mask
& __GFP_NORETRY
)) {
1619 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1620 (gfp_mask
& __GFP_REPEAT
))
1622 if (gfp_mask
& __GFP_NOFAIL
)
1626 congestion_wait(WRITE
, HZ
/50);
1631 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1632 printk(KERN_WARNING
"%s: page allocation failure."
1633 " order:%d, mode:0x%x\n",
1634 p
->comm
, order
, gfp_mask
);
1642 EXPORT_SYMBOL(__alloc_pages
);
1645 * Common helper functions.
1647 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1650 page
= alloc_pages(gfp_mask
, order
);
1653 return (unsigned long) page_address(page
);
1656 EXPORT_SYMBOL(__get_free_pages
);
1658 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1663 * get_zeroed_page() returns a 32-bit address, which cannot represent
1666 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1668 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1670 return (unsigned long) page_address(page
);
1674 EXPORT_SYMBOL(get_zeroed_page
);
1676 void __pagevec_free(struct pagevec
*pvec
)
1678 int i
= pagevec_count(pvec
);
1681 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1684 void __free_pages(struct page
*page
, unsigned int order
)
1686 if (put_page_testzero(page
)) {
1688 free_hot_page(page
);
1690 __free_pages_ok(page
, order
);
1694 EXPORT_SYMBOL(__free_pages
);
1696 void free_pages(unsigned long addr
, unsigned int order
)
1699 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1700 __free_pages(virt_to_page((void *)addr
), order
);
1704 EXPORT_SYMBOL(free_pages
);
1706 static unsigned int nr_free_zone_pages(int offset
)
1708 /* Just pick one node, since fallback list is circular */
1709 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1710 unsigned int sum
= 0;
1712 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1713 struct zone
**zonep
= zonelist
->zones
;
1716 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1717 unsigned long size
= zone
->present_pages
;
1718 unsigned long high
= zone
->pages_high
;
1727 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1729 unsigned int nr_free_buffer_pages(void)
1731 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1733 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1736 * Amount of free RAM allocatable within all zones
1738 unsigned int nr_free_pagecache_pages(void)
1740 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1743 static inline void show_node(struct zone
*zone
)
1746 printk("Node %d ", zone_to_nid(zone
));
1749 void si_meminfo(struct sysinfo
*val
)
1751 val
->totalram
= totalram_pages
;
1753 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1754 val
->bufferram
= nr_blockdev_pages();
1755 val
->totalhigh
= totalhigh_pages
;
1756 val
->freehigh
= nr_free_highpages();
1757 val
->mem_unit
= PAGE_SIZE
;
1760 EXPORT_SYMBOL(si_meminfo
);
1763 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1765 pg_data_t
*pgdat
= NODE_DATA(nid
);
1767 val
->totalram
= pgdat
->node_present_pages
;
1768 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1769 #ifdef CONFIG_HIGHMEM
1770 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1771 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1777 val
->mem_unit
= PAGE_SIZE
;
1781 #define K(x) ((x) << (PAGE_SHIFT-10))
1784 * Show free area list (used inside shift_scroll-lock stuff)
1785 * We also calculate the percentage fragmentation. We do this by counting the
1786 * memory on each free list with the exception of the first item on the list.
1788 void show_free_areas(void)
1793 for_each_zone(zone
) {
1794 if (!populated_zone(zone
))
1798 printk("%s per-cpu:\n", zone
->name
);
1800 for_each_online_cpu(cpu
) {
1801 struct per_cpu_pageset
*pageset
;
1803 pageset
= zone_pcp(zone
, cpu
);
1805 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1806 cpu
, pageset
->pcp
.high
,
1807 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1811 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1812 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1813 global_page_state(NR_ACTIVE
),
1814 global_page_state(NR_INACTIVE
),
1815 global_page_state(NR_FILE_DIRTY
),
1816 global_page_state(NR_WRITEBACK
),
1817 global_page_state(NR_UNSTABLE_NFS
),
1818 global_page_state(NR_FREE_PAGES
),
1819 global_page_state(NR_SLAB_RECLAIMABLE
) +
1820 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1821 global_page_state(NR_FILE_MAPPED
),
1822 global_page_state(NR_PAGETABLE
),
1823 global_page_state(NR_BOUNCE
));
1825 for_each_zone(zone
) {
1828 if (!populated_zone(zone
))
1840 " pages_scanned:%lu"
1841 " all_unreclaimable? %s"
1844 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1847 K(zone
->pages_high
),
1848 K(zone_page_state(zone
, NR_ACTIVE
)),
1849 K(zone_page_state(zone
, NR_INACTIVE
)),
1850 K(zone
->present_pages
),
1851 zone
->pages_scanned
,
1852 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1854 printk("lowmem_reserve[]:");
1855 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1856 printk(" %lu", zone
->lowmem_reserve
[i
]);
1860 for_each_zone(zone
) {
1861 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1863 if (!populated_zone(zone
))
1867 printk("%s: ", zone
->name
);
1869 spin_lock_irqsave(&zone
->lock
, flags
);
1870 for (order
= 0; order
< MAX_ORDER
; order
++) {
1871 nr
[order
] = zone
->free_area
[order
].nr_free
;
1872 total
+= nr
[order
] << order
;
1874 spin_unlock_irqrestore(&zone
->lock
, flags
);
1875 for (order
= 0; order
< MAX_ORDER
; order
++)
1876 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1877 printk("= %lukB\n", K(total
));
1880 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1882 show_swap_cache_info();
1886 * Builds allocation fallback zone lists.
1888 * Add all populated zones of a node to the zonelist.
1890 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1891 int nr_zones
, enum zone_type zone_type
)
1895 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1900 zone
= pgdat
->node_zones
+ zone_type
;
1901 if (populated_zone(zone
)) {
1902 zonelist
->zones
[nr_zones
++] = zone
;
1903 check_highest_zone(zone_type
);
1906 } while (zone_type
);
1913 * 0 = automatic detection of better ordering.
1914 * 1 = order by ([node] distance, -zonetype)
1915 * 2 = order by (-zonetype, [node] distance)
1917 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1918 * the same zonelist. So only NUMA can configure this param.
1920 #define ZONELIST_ORDER_DEFAULT 0
1921 #define ZONELIST_ORDER_NODE 1
1922 #define ZONELIST_ORDER_ZONE 2
1924 /* zonelist order in the kernel.
1925 * set_zonelist_order() will set this to NODE or ZONE.
1927 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1928 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1932 /* The value user specified ....changed by config */
1933 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1934 /* string for sysctl */
1935 #define NUMA_ZONELIST_ORDER_LEN 16
1936 char numa_zonelist_order
[16] = "default";
1939 * interface for configure zonelist ordering.
1940 * command line option "numa_zonelist_order"
1941 * = "[dD]efault - default, automatic configuration.
1942 * = "[nN]ode - order by node locality, then by zone within node
1943 * = "[zZ]one - order by zone, then by locality within zone
1946 static int __parse_numa_zonelist_order(char *s
)
1948 if (*s
== 'd' || *s
== 'D') {
1949 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1950 } else if (*s
== 'n' || *s
== 'N') {
1951 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1952 } else if (*s
== 'z' || *s
== 'Z') {
1953 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1956 "Ignoring invalid numa_zonelist_order value: "
1963 static __init
int setup_numa_zonelist_order(char *s
)
1966 return __parse_numa_zonelist_order(s
);
1969 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
1972 * sysctl handler for numa_zonelist_order
1974 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
1975 struct file
*file
, void __user
*buffer
, size_t *length
,
1978 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
1982 strncpy(saved_string
, (char*)table
->data
,
1983 NUMA_ZONELIST_ORDER_LEN
);
1984 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
1988 int oldval
= user_zonelist_order
;
1989 if (__parse_numa_zonelist_order((char*)table
->data
)) {
1991 * bogus value. restore saved string
1993 strncpy((char*)table
->data
, saved_string
,
1994 NUMA_ZONELIST_ORDER_LEN
);
1995 user_zonelist_order
= oldval
;
1996 } else if (oldval
!= user_zonelist_order
)
1997 build_all_zonelists();
2003 #define MAX_NODE_LOAD (num_online_nodes())
2004 static int node_load
[MAX_NUMNODES
];
2007 * find_next_best_node - find the next node that should appear in a given node's fallback list
2008 * @node: node whose fallback list we're appending
2009 * @used_node_mask: nodemask_t of already used nodes
2011 * We use a number of factors to determine which is the next node that should
2012 * appear on a given node's fallback list. The node should not have appeared
2013 * already in @node's fallback list, and it should be the next closest node
2014 * according to the distance array (which contains arbitrary distance values
2015 * from each node to each node in the system), and should also prefer nodes
2016 * with no CPUs, since presumably they'll have very little allocation pressure
2017 * on them otherwise.
2018 * It returns -1 if no node is found.
2020 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2023 int min_val
= INT_MAX
;
2026 /* Use the local node if we haven't already */
2027 if (!node_isset(node
, *used_node_mask
)) {
2028 node_set(node
, *used_node_mask
);
2032 for_each_node_state(n
, N_HIGH_MEMORY
) {
2035 /* Don't want a node to appear more than once */
2036 if (node_isset(n
, *used_node_mask
))
2039 /* Use the distance array to find the distance */
2040 val
= node_distance(node
, n
);
2042 /* Penalize nodes under us ("prefer the next node") */
2045 /* Give preference to headless and unused nodes */
2046 tmp
= node_to_cpumask(n
);
2047 if (!cpus_empty(tmp
))
2048 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2050 /* Slight preference for less loaded node */
2051 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2052 val
+= node_load
[n
];
2054 if (val
< min_val
) {
2061 node_set(best_node
, *used_node_mask
);
2068 * Build zonelists ordered by node and zones within node.
2069 * This results in maximum locality--normal zone overflows into local
2070 * DMA zone, if any--but risks exhausting DMA zone.
2072 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2076 struct zonelist
*zonelist
;
2078 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2079 zonelist
= pgdat
->node_zonelists
+ i
;
2080 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++)
2082 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2083 zonelist
->zones
[j
] = NULL
;
2088 * Build gfp_thisnode zonelists
2090 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2094 struct zonelist
*zonelist
;
2096 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2097 zonelist
= pgdat
->node_zonelists
+ MAX_NR_ZONES
+ i
;
2098 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2099 zonelist
->zones
[j
] = NULL
;
2104 * Build zonelists ordered by zone and nodes within zones.
2105 * This results in conserving DMA zone[s] until all Normal memory is
2106 * exhausted, but results in overflowing to remote node while memory
2107 * may still exist in local DMA zone.
2109 static int node_order
[MAX_NUMNODES
];
2111 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2115 int zone_type
; /* needs to be signed */
2117 struct zonelist
*zonelist
;
2119 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2120 zonelist
= pgdat
->node_zonelists
+ i
;
2122 for (zone_type
= i
; zone_type
>= 0; zone_type
--) {
2123 for (j
= 0; j
< nr_nodes
; j
++) {
2124 node
= node_order
[j
];
2125 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2126 if (populated_zone(z
)) {
2127 zonelist
->zones
[pos
++] = z
;
2128 check_highest_zone(zone_type
);
2132 zonelist
->zones
[pos
] = NULL
;
2136 static int default_zonelist_order(void)
2139 unsigned long low_kmem_size
,total_size
;
2143 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2144 * If they are really small and used heavily, the system can fall
2145 * into OOM very easily.
2146 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2148 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2151 for_each_online_node(nid
) {
2152 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2153 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2154 if (populated_zone(z
)) {
2155 if (zone_type
< ZONE_NORMAL
)
2156 low_kmem_size
+= z
->present_pages
;
2157 total_size
+= z
->present_pages
;
2161 if (!low_kmem_size
|| /* there are no DMA area. */
2162 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2163 return ZONELIST_ORDER_NODE
;
2165 * look into each node's config.
2166 * If there is a node whose DMA/DMA32 memory is very big area on
2167 * local memory, NODE_ORDER may be suitable.
2169 average_size
= total_size
/
2170 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2171 for_each_online_node(nid
) {
2174 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2175 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2176 if (populated_zone(z
)) {
2177 if (zone_type
< ZONE_NORMAL
)
2178 low_kmem_size
+= z
->present_pages
;
2179 total_size
+= z
->present_pages
;
2182 if (low_kmem_size
&&
2183 total_size
> average_size
&& /* ignore small node */
2184 low_kmem_size
> total_size
* 70/100)
2185 return ZONELIST_ORDER_NODE
;
2187 return ZONELIST_ORDER_ZONE
;
2190 static void set_zonelist_order(void)
2192 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2193 current_zonelist_order
= default_zonelist_order();
2195 current_zonelist_order
= user_zonelist_order
;
2198 static void build_zonelists(pg_data_t
*pgdat
)
2202 nodemask_t used_mask
;
2203 int local_node
, prev_node
;
2204 struct zonelist
*zonelist
;
2205 int order
= current_zonelist_order
;
2207 /* initialize zonelists */
2208 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2209 zonelist
= pgdat
->node_zonelists
+ i
;
2210 zonelist
->zones
[0] = NULL
;
2213 /* NUMA-aware ordering of nodes */
2214 local_node
= pgdat
->node_id
;
2215 load
= num_online_nodes();
2216 prev_node
= local_node
;
2217 nodes_clear(used_mask
);
2219 memset(node_load
, 0, sizeof(node_load
));
2220 memset(node_order
, 0, sizeof(node_order
));
2223 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2224 int distance
= node_distance(local_node
, node
);
2227 * If another node is sufficiently far away then it is better
2228 * to reclaim pages in a zone before going off node.
2230 if (distance
> RECLAIM_DISTANCE
)
2231 zone_reclaim_mode
= 1;
2234 * We don't want to pressure a particular node.
2235 * So adding penalty to the first node in same
2236 * distance group to make it round-robin.
2238 if (distance
!= node_distance(local_node
, prev_node
))
2239 node_load
[node
] = load
;
2243 if (order
== ZONELIST_ORDER_NODE
)
2244 build_zonelists_in_node_order(pgdat
, node
);
2246 node_order
[j
++] = node
; /* remember order */
2249 if (order
== ZONELIST_ORDER_ZONE
) {
2250 /* calculate node order -- i.e., DMA last! */
2251 build_zonelists_in_zone_order(pgdat
, j
);
2254 build_thisnode_zonelists(pgdat
);
2257 /* Construct the zonelist performance cache - see further mmzone.h */
2258 static void build_zonelist_cache(pg_data_t
*pgdat
)
2262 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2263 struct zonelist
*zonelist
;
2264 struct zonelist_cache
*zlc
;
2267 zonelist
= pgdat
->node_zonelists
+ i
;
2268 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2269 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2270 for (z
= zonelist
->zones
; *z
; z
++)
2271 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
2276 #else /* CONFIG_NUMA */
2278 static void set_zonelist_order(void)
2280 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2283 static void build_zonelists(pg_data_t
*pgdat
)
2285 int node
, local_node
;
2288 local_node
= pgdat
->node_id
;
2289 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2290 struct zonelist
*zonelist
;
2292 zonelist
= pgdat
->node_zonelists
+ i
;
2294 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2296 * Now we build the zonelist so that it contains the zones
2297 * of all the other nodes.
2298 * We don't want to pressure a particular node, so when
2299 * building the zones for node N, we make sure that the
2300 * zones coming right after the local ones are those from
2301 * node N+1 (modulo N)
2303 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2304 if (!node_online(node
))
2306 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2308 for (node
= 0; node
< local_node
; node
++) {
2309 if (!node_online(node
))
2311 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2314 zonelist
->zones
[j
] = NULL
;
2318 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2319 static void build_zonelist_cache(pg_data_t
*pgdat
)
2323 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2324 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
2327 #endif /* CONFIG_NUMA */
2329 /* return values int ....just for stop_machine_run() */
2330 static int __build_all_zonelists(void *dummy
)
2334 for_each_online_node(nid
) {
2335 pg_data_t
*pgdat
= NODE_DATA(nid
);
2337 build_zonelists(pgdat
);
2338 build_zonelist_cache(pgdat
);
2343 void build_all_zonelists(void)
2345 set_zonelist_order();
2347 if (system_state
== SYSTEM_BOOTING
) {
2348 __build_all_zonelists(NULL
);
2349 cpuset_init_current_mems_allowed();
2351 /* we have to stop all cpus to guarantee there is no user
2353 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2354 /* cpuset refresh routine should be here */
2356 vm_total_pages
= nr_free_pagecache_pages();
2358 * Disable grouping by mobility if the number of pages in the
2359 * system is too low to allow the mechanism to work. It would be
2360 * more accurate, but expensive to check per-zone. This check is
2361 * made on memory-hotadd so a system can start with mobility
2362 * disabled and enable it later
2364 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2365 page_group_by_mobility_disabled
= 1;
2367 page_group_by_mobility_disabled
= 0;
2369 printk("Built %i zonelists in %s order, mobility grouping %s. "
2370 "Total pages: %ld\n",
2372 zonelist_order_name
[current_zonelist_order
],
2373 page_group_by_mobility_disabled
? "off" : "on",
2376 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2381 * Helper functions to size the waitqueue hash table.
2382 * Essentially these want to choose hash table sizes sufficiently
2383 * large so that collisions trying to wait on pages are rare.
2384 * But in fact, the number of active page waitqueues on typical
2385 * systems is ridiculously low, less than 200. So this is even
2386 * conservative, even though it seems large.
2388 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2389 * waitqueues, i.e. the size of the waitq table given the number of pages.
2391 #define PAGES_PER_WAITQUEUE 256
2393 #ifndef CONFIG_MEMORY_HOTPLUG
2394 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2396 unsigned long size
= 1;
2398 pages
/= PAGES_PER_WAITQUEUE
;
2400 while (size
< pages
)
2404 * Once we have dozens or even hundreds of threads sleeping
2405 * on IO we've got bigger problems than wait queue collision.
2406 * Limit the size of the wait table to a reasonable size.
2408 size
= min(size
, 4096UL);
2410 return max(size
, 4UL);
2414 * A zone's size might be changed by hot-add, so it is not possible to determine
2415 * a suitable size for its wait_table. So we use the maximum size now.
2417 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2419 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2420 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2421 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2423 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2424 * or more by the traditional way. (See above). It equals:
2426 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2427 * ia64(16K page size) : = ( 8G + 4M)byte.
2428 * powerpc (64K page size) : = (32G +16M)byte.
2430 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2437 * This is an integer logarithm so that shifts can be used later
2438 * to extract the more random high bits from the multiplicative
2439 * hash function before the remainder is taken.
2441 static inline unsigned long wait_table_bits(unsigned long size
)
2446 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2449 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2450 * of blocks reserved is based on zone->pages_min. The memory within the
2451 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2452 * higher will lead to a bigger reserve which will get freed as contiguous
2453 * blocks as reclaim kicks in
2455 static void setup_zone_migrate_reserve(struct zone
*zone
)
2457 unsigned long start_pfn
, pfn
, end_pfn
;
2459 unsigned long reserve
, block_migratetype
;
2461 /* Get the start pfn, end pfn and the number of blocks to reserve */
2462 start_pfn
= zone
->zone_start_pfn
;
2463 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2464 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2467 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2468 if (!pfn_valid(pfn
))
2470 page
= pfn_to_page(pfn
);
2472 /* Blocks with reserved pages will never free, skip them. */
2473 if (PageReserved(page
))
2476 block_migratetype
= get_pageblock_migratetype(page
);
2478 /* If this block is reserved, account for it */
2479 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2484 /* Suitable for reserving if this block is movable */
2485 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2486 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2487 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2493 * If the reserve is met and this is a previous reserved block,
2496 if (block_migratetype
== MIGRATE_RESERVE
) {
2497 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2498 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2504 * Initially all pages are reserved - free ones are freed
2505 * up by free_all_bootmem() once the early boot process is
2506 * done. Non-atomic initialization, single-pass.
2508 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2509 unsigned long start_pfn
, enum memmap_context context
)
2512 unsigned long end_pfn
= start_pfn
+ size
;
2515 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2517 * There can be holes in boot-time mem_map[]s
2518 * handed to this function. They do not
2519 * exist on hotplugged memory.
2521 if (context
== MEMMAP_EARLY
) {
2522 if (!early_pfn_valid(pfn
))
2524 if (!early_pfn_in_nid(pfn
, nid
))
2527 page
= pfn_to_page(pfn
);
2528 set_page_links(page
, zone
, nid
, pfn
);
2529 init_page_count(page
);
2530 reset_page_mapcount(page
);
2531 page_assign_page_cgroup(page
, NULL
);
2532 SetPageReserved(page
);
2535 * Mark the block movable so that blocks are reserved for
2536 * movable at startup. This will force kernel allocations
2537 * to reserve their blocks rather than leaking throughout
2538 * the address space during boot when many long-lived
2539 * kernel allocations are made. Later some blocks near
2540 * the start are marked MIGRATE_RESERVE by
2541 * setup_zone_migrate_reserve()
2543 if ((pfn
& (pageblock_nr_pages
-1)))
2544 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2546 INIT_LIST_HEAD(&page
->lru
);
2547 #ifdef WANT_PAGE_VIRTUAL
2548 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2549 if (!is_highmem_idx(zone
))
2550 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2555 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2558 for_each_migratetype_order(order
, t
) {
2559 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2560 zone
->free_area
[order
].nr_free
= 0;
2564 #ifndef __HAVE_ARCH_MEMMAP_INIT
2565 #define memmap_init(size, nid, zone, start_pfn) \
2566 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2569 static int zone_batchsize(struct zone
*zone
)
2574 * The per-cpu-pages pools are set to around 1000th of the
2575 * size of the zone. But no more than 1/2 of a meg.
2577 * OK, so we don't know how big the cache is. So guess.
2579 batch
= zone
->present_pages
/ 1024;
2580 if (batch
* PAGE_SIZE
> 512 * 1024)
2581 batch
= (512 * 1024) / PAGE_SIZE
;
2582 batch
/= 4; /* We effectively *= 4 below */
2587 * Clamp the batch to a 2^n - 1 value. Having a power
2588 * of 2 value was found to be more likely to have
2589 * suboptimal cache aliasing properties in some cases.
2591 * For example if 2 tasks are alternately allocating
2592 * batches of pages, one task can end up with a lot
2593 * of pages of one half of the possible page colors
2594 * and the other with pages of the other colors.
2596 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2601 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2603 struct per_cpu_pages
*pcp
;
2605 memset(p
, 0, sizeof(*p
));
2609 pcp
->high
= 6 * batch
;
2610 pcp
->batch
= max(1UL, 1 * batch
);
2611 INIT_LIST_HEAD(&pcp
->list
);
2615 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2616 * to the value high for the pageset p.
2619 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2622 struct per_cpu_pages
*pcp
;
2626 pcp
->batch
= max(1UL, high
/4);
2627 if ((high
/4) > (PAGE_SHIFT
* 8))
2628 pcp
->batch
= PAGE_SHIFT
* 8;
2634 * Boot pageset table. One per cpu which is going to be used for all
2635 * zones and all nodes. The parameters will be set in such a way
2636 * that an item put on a list will immediately be handed over to
2637 * the buddy list. This is safe since pageset manipulation is done
2638 * with interrupts disabled.
2640 * Some NUMA counter updates may also be caught by the boot pagesets.
2642 * The boot_pagesets must be kept even after bootup is complete for
2643 * unused processors and/or zones. They do play a role for bootstrapping
2644 * hotplugged processors.
2646 * zoneinfo_show() and maybe other functions do
2647 * not check if the processor is online before following the pageset pointer.
2648 * Other parts of the kernel may not check if the zone is available.
2650 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2653 * Dynamically allocate memory for the
2654 * per cpu pageset array in struct zone.
2656 static int __cpuinit
process_zones(int cpu
)
2658 struct zone
*zone
, *dzone
;
2659 int node
= cpu_to_node(cpu
);
2661 node_set_state(node
, N_CPU
); /* this node has a cpu */
2663 for_each_zone(zone
) {
2665 if (!populated_zone(zone
))
2668 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2670 if (!zone_pcp(zone
, cpu
))
2673 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2675 if (percpu_pagelist_fraction
)
2676 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2677 (zone
->present_pages
/ percpu_pagelist_fraction
));
2682 for_each_zone(dzone
) {
2683 if (!populated_zone(dzone
))
2687 kfree(zone_pcp(dzone
, cpu
));
2688 zone_pcp(dzone
, cpu
) = NULL
;
2693 static inline void free_zone_pagesets(int cpu
)
2697 for_each_zone(zone
) {
2698 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2700 /* Free per_cpu_pageset if it is slab allocated */
2701 if (pset
!= &boot_pageset
[cpu
])
2703 zone_pcp(zone
, cpu
) = NULL
;
2707 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2708 unsigned long action
,
2711 int cpu
= (long)hcpu
;
2712 int ret
= NOTIFY_OK
;
2715 case CPU_UP_PREPARE
:
2716 case CPU_UP_PREPARE_FROZEN
:
2717 if (process_zones(cpu
))
2720 case CPU_UP_CANCELED
:
2721 case CPU_UP_CANCELED_FROZEN
:
2723 case CPU_DEAD_FROZEN
:
2724 free_zone_pagesets(cpu
);
2732 static struct notifier_block __cpuinitdata pageset_notifier
=
2733 { &pageset_cpuup_callback
, NULL
, 0 };
2735 void __init
setup_per_cpu_pageset(void)
2739 /* Initialize per_cpu_pageset for cpu 0.
2740 * A cpuup callback will do this for every cpu
2741 * as it comes online
2743 err
= process_zones(smp_processor_id());
2745 register_cpu_notifier(&pageset_notifier
);
2750 static noinline __init_refok
2751 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2754 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2758 * The per-page waitqueue mechanism uses hashed waitqueues
2761 zone
->wait_table_hash_nr_entries
=
2762 wait_table_hash_nr_entries(zone_size_pages
);
2763 zone
->wait_table_bits
=
2764 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2765 alloc_size
= zone
->wait_table_hash_nr_entries
2766 * sizeof(wait_queue_head_t
);
2768 if (system_state
== SYSTEM_BOOTING
) {
2769 zone
->wait_table
= (wait_queue_head_t
*)
2770 alloc_bootmem_node(pgdat
, alloc_size
);
2773 * This case means that a zone whose size was 0 gets new memory
2774 * via memory hot-add.
2775 * But it may be the case that a new node was hot-added. In
2776 * this case vmalloc() will not be able to use this new node's
2777 * memory - this wait_table must be initialized to use this new
2778 * node itself as well.
2779 * To use this new node's memory, further consideration will be
2782 zone
->wait_table
= vmalloc(alloc_size
);
2784 if (!zone
->wait_table
)
2787 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2788 init_waitqueue_head(zone
->wait_table
+ i
);
2793 static __meminit
void zone_pcp_init(struct zone
*zone
)
2796 unsigned long batch
= zone_batchsize(zone
);
2798 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2800 /* Early boot. Slab allocator not functional yet */
2801 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2802 setup_pageset(&boot_pageset
[cpu
],0);
2804 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2807 if (zone
->present_pages
)
2808 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2809 zone
->name
, zone
->present_pages
, batch
);
2812 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2813 unsigned long zone_start_pfn
,
2815 enum memmap_context context
)
2817 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2819 ret
= zone_wait_table_init(zone
, size
);
2822 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2824 zone
->zone_start_pfn
= zone_start_pfn
;
2826 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2828 zone_init_free_lists(zone
);
2833 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2835 * Basic iterator support. Return the first range of PFNs for a node
2836 * Note: nid == MAX_NUMNODES returns first region regardless of node
2838 static int __meminit
first_active_region_index_in_nid(int nid
)
2842 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2843 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2850 * Basic iterator support. Return the next active range of PFNs for a node
2851 * Note: nid == MAX_NUMNODES returns next region regardless of node
2853 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2855 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2856 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2862 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2864 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2865 * Architectures may implement their own version but if add_active_range()
2866 * was used and there are no special requirements, this is a convenient
2869 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2873 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2874 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2875 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2877 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2878 return early_node_map
[i
].nid
;
2883 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2885 /* Basic iterator support to walk early_node_map[] */
2886 #define for_each_active_range_index_in_nid(i, nid) \
2887 for (i = first_active_region_index_in_nid(nid); i != -1; \
2888 i = next_active_region_index_in_nid(i, nid))
2891 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2892 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2893 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2895 * If an architecture guarantees that all ranges registered with
2896 * add_active_ranges() contain no holes and may be freed, this
2897 * this function may be used instead of calling free_bootmem() manually.
2899 void __init
free_bootmem_with_active_regions(int nid
,
2900 unsigned long max_low_pfn
)
2904 for_each_active_range_index_in_nid(i
, nid
) {
2905 unsigned long size_pages
= 0;
2906 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2908 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2911 if (end_pfn
> max_low_pfn
)
2912 end_pfn
= max_low_pfn
;
2914 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2915 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2916 PFN_PHYS(early_node_map
[i
].start_pfn
),
2917 size_pages
<< PAGE_SHIFT
);
2922 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2923 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2925 * If an architecture guarantees that all ranges registered with
2926 * add_active_ranges() contain no holes and may be freed, this
2927 * function may be used instead of calling memory_present() manually.
2929 void __init
sparse_memory_present_with_active_regions(int nid
)
2933 for_each_active_range_index_in_nid(i
, nid
)
2934 memory_present(early_node_map
[i
].nid
,
2935 early_node_map
[i
].start_pfn
,
2936 early_node_map
[i
].end_pfn
);
2940 * push_node_boundaries - Push node boundaries to at least the requested boundary
2941 * @nid: The nid of the node to push the boundary for
2942 * @start_pfn: The start pfn of the node
2943 * @end_pfn: The end pfn of the node
2945 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2946 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2947 * be hotplugged even though no physical memory exists. This function allows
2948 * an arch to push out the node boundaries so mem_map is allocated that can
2951 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2952 void __init
push_node_boundaries(unsigned int nid
,
2953 unsigned long start_pfn
, unsigned long end_pfn
)
2955 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2956 nid
, start_pfn
, end_pfn
);
2958 /* Initialise the boundary for this node if necessary */
2959 if (node_boundary_end_pfn
[nid
] == 0)
2960 node_boundary_start_pfn
[nid
] = -1UL;
2962 /* Update the boundaries */
2963 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2964 node_boundary_start_pfn
[nid
] = start_pfn
;
2965 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2966 node_boundary_end_pfn
[nid
] = end_pfn
;
2969 /* If necessary, push the node boundary out for reserve hotadd */
2970 static void __meminit
account_node_boundary(unsigned int nid
,
2971 unsigned long *start_pfn
, unsigned long *end_pfn
)
2973 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2974 nid
, *start_pfn
, *end_pfn
);
2976 /* Return if boundary information has not been provided */
2977 if (node_boundary_end_pfn
[nid
] == 0)
2980 /* Check the boundaries and update if necessary */
2981 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2982 *start_pfn
= node_boundary_start_pfn
[nid
];
2983 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2984 *end_pfn
= node_boundary_end_pfn
[nid
];
2987 void __init
push_node_boundaries(unsigned int nid
,
2988 unsigned long start_pfn
, unsigned long end_pfn
) {}
2990 static void __meminit
account_node_boundary(unsigned int nid
,
2991 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
2996 * get_pfn_range_for_nid - Return the start and end page frames for a node
2997 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2998 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2999 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3001 * It returns the start and end page frame of a node based on information
3002 * provided by an arch calling add_active_range(). If called for a node
3003 * with no available memory, a warning is printed and the start and end
3006 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3007 unsigned long *start_pfn
, unsigned long *end_pfn
)
3013 for_each_active_range_index_in_nid(i
, nid
) {
3014 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3015 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3018 if (*start_pfn
== -1UL)
3021 /* Push the node boundaries out if requested */
3022 account_node_boundary(nid
, start_pfn
, end_pfn
);
3026 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3027 * assumption is made that zones within a node are ordered in monotonic
3028 * increasing memory addresses so that the "highest" populated zone is used
3030 void __init
find_usable_zone_for_movable(void)
3033 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3034 if (zone_index
== ZONE_MOVABLE
)
3037 if (arch_zone_highest_possible_pfn
[zone_index
] >
3038 arch_zone_lowest_possible_pfn
[zone_index
])
3042 VM_BUG_ON(zone_index
== -1);
3043 movable_zone
= zone_index
;
3047 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3048 * because it is sized independant of architecture. Unlike the other zones,
3049 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3050 * in each node depending on the size of each node and how evenly kernelcore
3051 * is distributed. This helper function adjusts the zone ranges
3052 * provided by the architecture for a given node by using the end of the
3053 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3054 * zones within a node are in order of monotonic increases memory addresses
3056 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3057 unsigned long zone_type
,
3058 unsigned long node_start_pfn
,
3059 unsigned long node_end_pfn
,
3060 unsigned long *zone_start_pfn
,
3061 unsigned long *zone_end_pfn
)
3063 /* Only adjust if ZONE_MOVABLE is on this node */
3064 if (zone_movable_pfn
[nid
]) {
3065 /* Size ZONE_MOVABLE */
3066 if (zone_type
== ZONE_MOVABLE
) {
3067 *zone_start_pfn
= zone_movable_pfn
[nid
];
3068 *zone_end_pfn
= min(node_end_pfn
,
3069 arch_zone_highest_possible_pfn
[movable_zone
]);
3071 /* Adjust for ZONE_MOVABLE starting within this range */
3072 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3073 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3074 *zone_end_pfn
= zone_movable_pfn
[nid
];
3076 /* Check if this whole range is within ZONE_MOVABLE */
3077 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3078 *zone_start_pfn
= *zone_end_pfn
;
3083 * Return the number of pages a zone spans in a node, including holes
3084 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3086 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3087 unsigned long zone_type
,
3088 unsigned long *ignored
)
3090 unsigned long node_start_pfn
, node_end_pfn
;
3091 unsigned long zone_start_pfn
, zone_end_pfn
;
3093 /* Get the start and end of the node and zone */
3094 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3095 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3096 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3097 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3098 node_start_pfn
, node_end_pfn
,
3099 &zone_start_pfn
, &zone_end_pfn
);
3101 /* Check that this node has pages within the zone's required range */
3102 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3105 /* Move the zone boundaries inside the node if necessary */
3106 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3107 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3109 /* Return the spanned pages */
3110 return zone_end_pfn
- zone_start_pfn
;
3114 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3115 * then all holes in the requested range will be accounted for.
3117 unsigned long __meminit
__absent_pages_in_range(int nid
,
3118 unsigned long range_start_pfn
,
3119 unsigned long range_end_pfn
)
3122 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3123 unsigned long start_pfn
;
3125 /* Find the end_pfn of the first active range of pfns in the node */
3126 i
= first_active_region_index_in_nid(nid
);
3130 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3132 /* Account for ranges before physical memory on this node */
3133 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3134 hole_pages
= prev_end_pfn
- range_start_pfn
;
3136 /* Find all holes for the zone within the node */
3137 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3139 /* No need to continue if prev_end_pfn is outside the zone */
3140 if (prev_end_pfn
>= range_end_pfn
)
3143 /* Make sure the end of the zone is not within the hole */
3144 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3145 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3147 /* Update the hole size cound and move on */
3148 if (start_pfn
> range_start_pfn
) {
3149 BUG_ON(prev_end_pfn
> start_pfn
);
3150 hole_pages
+= start_pfn
- prev_end_pfn
;
3152 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3155 /* Account for ranges past physical memory on this node */
3156 if (range_end_pfn
> prev_end_pfn
)
3157 hole_pages
+= range_end_pfn
-
3158 max(range_start_pfn
, prev_end_pfn
);
3164 * absent_pages_in_range - Return number of page frames in holes within a range
3165 * @start_pfn: The start PFN to start searching for holes
3166 * @end_pfn: The end PFN to stop searching for holes
3168 * It returns the number of pages frames in memory holes within a range.
3170 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3171 unsigned long end_pfn
)
3173 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3176 /* Return the number of page frames in holes in a zone on a node */
3177 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3178 unsigned long zone_type
,
3179 unsigned long *ignored
)
3181 unsigned long node_start_pfn
, node_end_pfn
;
3182 unsigned long zone_start_pfn
, zone_end_pfn
;
3184 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3185 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3187 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3190 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3191 node_start_pfn
, node_end_pfn
,
3192 &zone_start_pfn
, &zone_end_pfn
);
3193 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3197 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3198 unsigned long zone_type
,
3199 unsigned long *zones_size
)
3201 return zones_size
[zone_type
];
3204 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3205 unsigned long zone_type
,
3206 unsigned long *zholes_size
)
3211 return zholes_size
[zone_type
];
3216 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3217 unsigned long *zones_size
, unsigned long *zholes_size
)
3219 unsigned long realtotalpages
, totalpages
= 0;
3222 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3223 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3225 pgdat
->node_spanned_pages
= totalpages
;
3227 realtotalpages
= totalpages
;
3228 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3230 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3232 pgdat
->node_present_pages
= realtotalpages
;
3233 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3237 #ifndef CONFIG_SPARSEMEM
3239 * Calculate the size of the zone->blockflags rounded to an unsigned long
3240 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3241 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3242 * round what is now in bits to nearest long in bits, then return it in
3245 static unsigned long __init
usemap_size(unsigned long zonesize
)
3247 unsigned long usemapsize
;
3249 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3250 usemapsize
= usemapsize
>> pageblock_order
;
3251 usemapsize
*= NR_PAGEBLOCK_BITS
;
3252 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3254 return usemapsize
/ 8;
3257 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3258 struct zone
*zone
, unsigned long zonesize
)
3260 unsigned long usemapsize
= usemap_size(zonesize
);
3261 zone
->pageblock_flags
= NULL
;
3263 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3264 memset(zone
->pageblock_flags
, 0, usemapsize
);
3268 static void inline setup_usemap(struct pglist_data
*pgdat
,
3269 struct zone
*zone
, unsigned long zonesize
) {}
3270 #endif /* CONFIG_SPARSEMEM */
3272 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3274 /* Return a sensible default order for the pageblock size. */
3275 static inline int pageblock_default_order(void)
3277 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3278 return HUGETLB_PAGE_ORDER
;
3283 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3284 static inline void __init
set_pageblock_order(unsigned int order
)
3286 /* Check that pageblock_nr_pages has not already been setup */
3287 if (pageblock_order
)
3291 * Assume the largest contiguous order of interest is a huge page.
3292 * This value may be variable depending on boot parameters on IA64
3294 pageblock_order
= order
;
3296 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3299 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3300 * and pageblock_default_order() are unused as pageblock_order is set
3301 * at compile-time. See include/linux/pageblock-flags.h for the values of
3302 * pageblock_order based on the kernel config
3304 static inline int pageblock_default_order(unsigned int order
)
3308 #define set_pageblock_order(x) do {} while (0)
3310 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3313 * Set up the zone data structures:
3314 * - mark all pages reserved
3315 * - mark all memory queues empty
3316 * - clear the memory bitmaps
3318 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3319 unsigned long *zones_size
, unsigned long *zholes_size
)
3322 int nid
= pgdat
->node_id
;
3323 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3326 pgdat_resize_init(pgdat
);
3327 pgdat
->nr_zones
= 0;
3328 init_waitqueue_head(&pgdat
->kswapd_wait
);
3329 pgdat
->kswapd_max_order
= 0;
3331 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3332 struct zone
*zone
= pgdat
->node_zones
+ j
;
3333 unsigned long size
, realsize
, memmap_pages
;
3335 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3336 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3340 * Adjust realsize so that it accounts for how much memory
3341 * is used by this zone for memmap. This affects the watermark
3342 * and per-cpu initialisations
3344 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3345 if (realsize
>= memmap_pages
) {
3346 realsize
-= memmap_pages
;
3348 " %s zone: %lu pages used for memmap\n",
3349 zone_names
[j
], memmap_pages
);
3352 " %s zone: %lu pages exceeds realsize %lu\n",
3353 zone_names
[j
], memmap_pages
, realsize
);
3355 /* Account for reserved pages */
3356 if (j
== 0 && realsize
> dma_reserve
) {
3357 realsize
-= dma_reserve
;
3358 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3359 zone_names
[0], dma_reserve
);
3362 if (!is_highmem_idx(j
))
3363 nr_kernel_pages
+= realsize
;
3364 nr_all_pages
+= realsize
;
3366 zone
->spanned_pages
= size
;
3367 zone
->present_pages
= realsize
;
3370 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3372 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3374 zone
->name
= zone_names
[j
];
3375 spin_lock_init(&zone
->lock
);
3376 spin_lock_init(&zone
->lru_lock
);
3377 zone_seqlock_init(zone
);
3378 zone
->zone_pgdat
= pgdat
;
3380 zone
->prev_priority
= DEF_PRIORITY
;
3382 zone_pcp_init(zone
);
3383 INIT_LIST_HEAD(&zone
->active_list
);
3384 INIT_LIST_HEAD(&zone
->inactive_list
);
3385 zone
->nr_scan_active
= 0;
3386 zone
->nr_scan_inactive
= 0;
3387 zap_zone_vm_stats(zone
);
3392 set_pageblock_order(pageblock_default_order());
3393 setup_usemap(pgdat
, zone
, size
);
3394 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3395 size
, MEMMAP_EARLY
);
3397 zone_start_pfn
+= size
;
3401 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3403 /* Skip empty nodes */
3404 if (!pgdat
->node_spanned_pages
)
3407 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3408 /* ia64 gets its own node_mem_map, before this, without bootmem */
3409 if (!pgdat
->node_mem_map
) {
3410 unsigned long size
, start
, end
;
3414 * The zone's endpoints aren't required to be MAX_ORDER
3415 * aligned but the node_mem_map endpoints must be in order
3416 * for the buddy allocator to function correctly.
3418 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3419 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3420 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3421 size
= (end
- start
) * sizeof(struct page
);
3422 map
= alloc_remap(pgdat
->node_id
, size
);
3424 map
= alloc_bootmem_node(pgdat
, size
);
3425 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3427 #ifndef CONFIG_NEED_MULTIPLE_NODES
3429 * With no DISCONTIG, the global mem_map is just set as node 0's
3431 if (pgdat
== NODE_DATA(0)) {
3432 mem_map
= NODE_DATA(0)->node_mem_map
;
3433 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3434 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3435 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3436 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3439 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3442 void __paginginit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3443 unsigned long *zones_size
, unsigned long node_start_pfn
,
3444 unsigned long *zholes_size
)
3446 pgdat
->node_id
= nid
;
3447 pgdat
->node_start_pfn
= node_start_pfn
;
3448 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3450 alloc_node_mem_map(pgdat
);
3452 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3455 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3457 #if MAX_NUMNODES > 1
3459 * Figure out the number of possible node ids.
3461 static void __init
setup_nr_node_ids(void)
3464 unsigned int highest
= 0;
3466 for_each_node_mask(node
, node_possible_map
)
3468 nr_node_ids
= highest
+ 1;
3471 static inline void setup_nr_node_ids(void)
3477 * add_active_range - Register a range of PFNs backed by physical memory
3478 * @nid: The node ID the range resides on
3479 * @start_pfn: The start PFN of the available physical memory
3480 * @end_pfn: The end PFN of the available physical memory
3482 * These ranges are stored in an early_node_map[] and later used by
3483 * free_area_init_nodes() to calculate zone sizes and holes. If the
3484 * range spans a memory hole, it is up to the architecture to ensure
3485 * the memory is not freed by the bootmem allocator. If possible
3486 * the range being registered will be merged with existing ranges.
3488 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3489 unsigned long end_pfn
)
3493 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3494 "%d entries of %d used\n",
3495 nid
, start_pfn
, end_pfn
,
3496 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3498 /* Merge with existing active regions if possible */
3499 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3500 if (early_node_map
[i
].nid
!= nid
)
3503 /* Skip if an existing region covers this new one */
3504 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3505 end_pfn
<= early_node_map
[i
].end_pfn
)
3508 /* Merge forward if suitable */
3509 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3510 end_pfn
> early_node_map
[i
].end_pfn
) {
3511 early_node_map
[i
].end_pfn
= end_pfn
;
3515 /* Merge backward if suitable */
3516 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3517 end_pfn
>= early_node_map
[i
].start_pfn
) {
3518 early_node_map
[i
].start_pfn
= start_pfn
;
3523 /* Check that early_node_map is large enough */
3524 if (i
>= MAX_ACTIVE_REGIONS
) {
3525 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3526 MAX_ACTIVE_REGIONS
);
3530 early_node_map
[i
].nid
= nid
;
3531 early_node_map
[i
].start_pfn
= start_pfn
;
3532 early_node_map
[i
].end_pfn
= end_pfn
;
3533 nr_nodemap_entries
= i
+ 1;
3537 * shrink_active_range - Shrink an existing registered range of PFNs
3538 * @nid: The node id the range is on that should be shrunk
3539 * @old_end_pfn: The old end PFN of the range
3540 * @new_end_pfn: The new PFN of the range
3542 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3543 * The map is kept at the end physical page range that has already been
3544 * registered with add_active_range(). This function allows an arch to shrink
3545 * an existing registered range.
3547 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3548 unsigned long new_end_pfn
)
3552 /* Find the old active region end and shrink */
3553 for_each_active_range_index_in_nid(i
, nid
)
3554 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3555 early_node_map
[i
].end_pfn
= new_end_pfn
;
3561 * remove_all_active_ranges - Remove all currently registered regions
3563 * During discovery, it may be found that a table like SRAT is invalid
3564 * and an alternative discovery method must be used. This function removes
3565 * all currently registered regions.
3567 void __init
remove_all_active_ranges(void)
3569 memset(early_node_map
, 0, sizeof(early_node_map
));
3570 nr_nodemap_entries
= 0;
3571 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3572 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3573 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3574 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3577 /* Compare two active node_active_regions */
3578 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3580 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3581 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3583 /* Done this way to avoid overflows */
3584 if (arange
->start_pfn
> brange
->start_pfn
)
3586 if (arange
->start_pfn
< brange
->start_pfn
)
3592 /* sort the node_map by start_pfn */
3593 static void __init
sort_node_map(void)
3595 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3596 sizeof(struct node_active_region
),
3597 cmp_node_active_region
, NULL
);
3600 /* Find the lowest pfn for a node */
3601 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3604 unsigned long min_pfn
= ULONG_MAX
;
3606 /* Assuming a sorted map, the first range found has the starting pfn */
3607 for_each_active_range_index_in_nid(i
, nid
)
3608 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3610 if (min_pfn
== ULONG_MAX
) {
3612 "Could not find start_pfn for node %lu\n", nid
);
3620 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3622 * It returns the minimum PFN based on information provided via
3623 * add_active_range().
3625 unsigned long __init
find_min_pfn_with_active_regions(void)
3627 return find_min_pfn_for_node(MAX_NUMNODES
);
3631 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3633 * It returns the maximum PFN based on information provided via
3634 * add_active_range().
3636 unsigned long __init
find_max_pfn_with_active_regions(void)
3639 unsigned long max_pfn
= 0;
3641 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3642 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3648 * early_calculate_totalpages()
3649 * Sum pages in active regions for movable zone.
3650 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3652 static unsigned long __init
early_calculate_totalpages(void)
3655 unsigned long totalpages
= 0;
3657 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3658 unsigned long pages
= early_node_map
[i
].end_pfn
-
3659 early_node_map
[i
].start_pfn
;
3660 totalpages
+= pages
;
3662 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3668 * Find the PFN the Movable zone begins in each node. Kernel memory
3669 * is spread evenly between nodes as long as the nodes have enough
3670 * memory. When they don't, some nodes will have more kernelcore than
3673 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3676 unsigned long usable_startpfn
;
3677 unsigned long kernelcore_node
, kernelcore_remaining
;
3678 unsigned long totalpages
= early_calculate_totalpages();
3679 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3682 * If movablecore was specified, calculate what size of
3683 * kernelcore that corresponds so that memory usable for
3684 * any allocation type is evenly spread. If both kernelcore
3685 * and movablecore are specified, then the value of kernelcore
3686 * will be used for required_kernelcore if it's greater than
3687 * what movablecore would have allowed.
3689 if (required_movablecore
) {
3690 unsigned long corepages
;
3693 * Round-up so that ZONE_MOVABLE is at least as large as what
3694 * was requested by the user
3696 required_movablecore
=
3697 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3698 corepages
= totalpages
- required_movablecore
;
3700 required_kernelcore
= max(required_kernelcore
, corepages
);
3703 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3704 if (!required_kernelcore
)
3707 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3708 find_usable_zone_for_movable();
3709 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3712 /* Spread kernelcore memory as evenly as possible throughout nodes */
3713 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3714 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3716 * Recalculate kernelcore_node if the division per node
3717 * now exceeds what is necessary to satisfy the requested
3718 * amount of memory for the kernel
3720 if (required_kernelcore
< kernelcore_node
)
3721 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3724 * As the map is walked, we track how much memory is usable
3725 * by the kernel using kernelcore_remaining. When it is
3726 * 0, the rest of the node is usable by ZONE_MOVABLE
3728 kernelcore_remaining
= kernelcore_node
;
3730 /* Go through each range of PFNs within this node */
3731 for_each_active_range_index_in_nid(i
, nid
) {
3732 unsigned long start_pfn
, end_pfn
;
3733 unsigned long size_pages
;
3735 start_pfn
= max(early_node_map
[i
].start_pfn
,
3736 zone_movable_pfn
[nid
]);
3737 end_pfn
= early_node_map
[i
].end_pfn
;
3738 if (start_pfn
>= end_pfn
)
3741 /* Account for what is only usable for kernelcore */
3742 if (start_pfn
< usable_startpfn
) {
3743 unsigned long kernel_pages
;
3744 kernel_pages
= min(end_pfn
, usable_startpfn
)
3747 kernelcore_remaining
-= min(kernel_pages
,
3748 kernelcore_remaining
);
3749 required_kernelcore
-= min(kernel_pages
,
3750 required_kernelcore
);
3752 /* Continue if range is now fully accounted */
3753 if (end_pfn
<= usable_startpfn
) {
3756 * Push zone_movable_pfn to the end so
3757 * that if we have to rebalance
3758 * kernelcore across nodes, we will
3759 * not double account here
3761 zone_movable_pfn
[nid
] = end_pfn
;
3764 start_pfn
= usable_startpfn
;
3768 * The usable PFN range for ZONE_MOVABLE is from
3769 * start_pfn->end_pfn. Calculate size_pages as the
3770 * number of pages used as kernelcore
3772 size_pages
= end_pfn
- start_pfn
;
3773 if (size_pages
> kernelcore_remaining
)
3774 size_pages
= kernelcore_remaining
;
3775 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3778 * Some kernelcore has been met, update counts and
3779 * break if the kernelcore for this node has been
3782 required_kernelcore
-= min(required_kernelcore
,
3784 kernelcore_remaining
-= size_pages
;
3785 if (!kernelcore_remaining
)
3791 * If there is still required_kernelcore, we do another pass with one
3792 * less node in the count. This will push zone_movable_pfn[nid] further
3793 * along on the nodes that still have memory until kernelcore is
3797 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3800 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3801 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3802 zone_movable_pfn
[nid
] =
3803 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3806 /* Any regular memory on that node ? */
3807 static void check_for_regular_memory(pg_data_t
*pgdat
)
3809 #ifdef CONFIG_HIGHMEM
3810 enum zone_type zone_type
;
3812 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3813 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3814 if (zone
->present_pages
)
3815 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3821 * free_area_init_nodes - Initialise all pg_data_t and zone data
3822 * @max_zone_pfn: an array of max PFNs for each zone
3824 * This will call free_area_init_node() for each active node in the system.
3825 * Using the page ranges provided by add_active_range(), the size of each
3826 * zone in each node and their holes is calculated. If the maximum PFN
3827 * between two adjacent zones match, it is assumed that the zone is empty.
3828 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3829 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3830 * starts where the previous one ended. For example, ZONE_DMA32 starts
3831 * at arch_max_dma_pfn.
3833 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3838 /* Sort early_node_map as initialisation assumes it is sorted */
3841 /* Record where the zone boundaries are */
3842 memset(arch_zone_lowest_possible_pfn
, 0,
3843 sizeof(arch_zone_lowest_possible_pfn
));
3844 memset(arch_zone_highest_possible_pfn
, 0,
3845 sizeof(arch_zone_highest_possible_pfn
));
3846 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3847 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3848 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3849 if (i
== ZONE_MOVABLE
)
3851 arch_zone_lowest_possible_pfn
[i
] =
3852 arch_zone_highest_possible_pfn
[i
-1];
3853 arch_zone_highest_possible_pfn
[i
] =
3854 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3856 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3857 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3859 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3860 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3861 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3863 /* Print out the zone ranges */
3864 printk("Zone PFN ranges:\n");
3865 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3866 if (i
== ZONE_MOVABLE
)
3868 printk(" %-8s %8lu -> %8lu\n",
3870 arch_zone_lowest_possible_pfn
[i
],
3871 arch_zone_highest_possible_pfn
[i
]);
3874 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3875 printk("Movable zone start PFN for each node\n");
3876 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3877 if (zone_movable_pfn
[i
])
3878 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3881 /* Print out the early_node_map[] */
3882 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3883 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3884 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3885 early_node_map
[i
].start_pfn
,
3886 early_node_map
[i
].end_pfn
);
3888 /* Initialise every node */
3889 setup_nr_node_ids();
3890 for_each_online_node(nid
) {
3891 pg_data_t
*pgdat
= NODE_DATA(nid
);
3892 free_area_init_node(nid
, pgdat
, NULL
,
3893 find_min_pfn_for_node(nid
), NULL
);
3895 /* Any memory on that node */
3896 if (pgdat
->node_present_pages
)
3897 node_set_state(nid
, N_HIGH_MEMORY
);
3898 check_for_regular_memory(pgdat
);
3902 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3904 unsigned long long coremem
;
3908 coremem
= memparse(p
, &p
);
3909 *core
= coremem
>> PAGE_SHIFT
;
3911 /* Paranoid check that UL is enough for the coremem value */
3912 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3918 * kernelcore=size sets the amount of memory for use for allocations that
3919 * cannot be reclaimed or migrated.
3921 static int __init
cmdline_parse_kernelcore(char *p
)
3923 return cmdline_parse_core(p
, &required_kernelcore
);
3927 * movablecore=size sets the amount of memory for use for allocations that
3928 * can be reclaimed or migrated.
3930 static int __init
cmdline_parse_movablecore(char *p
)
3932 return cmdline_parse_core(p
, &required_movablecore
);
3935 early_param("kernelcore", cmdline_parse_kernelcore
);
3936 early_param("movablecore", cmdline_parse_movablecore
);
3938 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3941 * set_dma_reserve - set the specified number of pages reserved in the first zone
3942 * @new_dma_reserve: The number of pages to mark reserved
3944 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3945 * In the DMA zone, a significant percentage may be consumed by kernel image
3946 * and other unfreeable allocations which can skew the watermarks badly. This
3947 * function may optionally be used to account for unfreeable pages in the
3948 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3949 * smaller per-cpu batchsize.
3951 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3953 dma_reserve
= new_dma_reserve
;
3956 #ifndef CONFIG_NEED_MULTIPLE_NODES
3957 static bootmem_data_t contig_bootmem_data
;
3958 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3960 EXPORT_SYMBOL(contig_page_data
);
3963 void __init
free_area_init(unsigned long *zones_size
)
3965 free_area_init_node(0, NODE_DATA(0), zones_size
,
3966 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3969 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3970 unsigned long action
, void *hcpu
)
3972 int cpu
= (unsigned long)hcpu
;
3974 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3978 * Spill the event counters of the dead processor
3979 * into the current processors event counters.
3980 * This artificially elevates the count of the current
3983 vm_events_fold_cpu(cpu
);
3986 * Zero the differential counters of the dead processor
3987 * so that the vm statistics are consistent.
3989 * This is only okay since the processor is dead and cannot
3990 * race with what we are doing.
3992 refresh_cpu_vm_stats(cpu
);
3997 void __init
page_alloc_init(void)
3999 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4003 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4004 * or min_free_kbytes changes.
4006 static void calculate_totalreserve_pages(void)
4008 struct pglist_data
*pgdat
;
4009 unsigned long reserve_pages
= 0;
4010 enum zone_type i
, j
;
4012 for_each_online_pgdat(pgdat
) {
4013 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4014 struct zone
*zone
= pgdat
->node_zones
+ i
;
4015 unsigned long max
= 0;
4017 /* Find valid and maximum lowmem_reserve in the zone */
4018 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4019 if (zone
->lowmem_reserve
[j
] > max
)
4020 max
= zone
->lowmem_reserve
[j
];
4023 /* we treat pages_high as reserved pages. */
4024 max
+= zone
->pages_high
;
4026 if (max
> zone
->present_pages
)
4027 max
= zone
->present_pages
;
4028 reserve_pages
+= max
;
4031 totalreserve_pages
= reserve_pages
;
4035 * setup_per_zone_lowmem_reserve - called whenever
4036 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4037 * has a correct pages reserved value, so an adequate number of
4038 * pages are left in the zone after a successful __alloc_pages().
4040 static void setup_per_zone_lowmem_reserve(void)
4042 struct pglist_data
*pgdat
;
4043 enum zone_type j
, idx
;
4045 for_each_online_pgdat(pgdat
) {
4046 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4047 struct zone
*zone
= pgdat
->node_zones
+ j
;
4048 unsigned long present_pages
= zone
->present_pages
;
4050 zone
->lowmem_reserve
[j
] = 0;
4054 struct zone
*lower_zone
;
4058 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4059 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4061 lower_zone
= pgdat
->node_zones
+ idx
;
4062 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4063 sysctl_lowmem_reserve_ratio
[idx
];
4064 present_pages
+= lower_zone
->present_pages
;
4069 /* update totalreserve_pages */
4070 calculate_totalreserve_pages();
4074 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4076 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4077 * with respect to min_free_kbytes.
4079 void setup_per_zone_pages_min(void)
4081 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4082 unsigned long lowmem_pages
= 0;
4084 unsigned long flags
;
4086 /* Calculate total number of !ZONE_HIGHMEM pages */
4087 for_each_zone(zone
) {
4088 if (!is_highmem(zone
))
4089 lowmem_pages
+= zone
->present_pages
;
4092 for_each_zone(zone
) {
4095 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4096 tmp
= (u64
)pages_min
* zone
->present_pages
;
4097 do_div(tmp
, lowmem_pages
);
4098 if (is_highmem(zone
)) {
4100 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4101 * need highmem pages, so cap pages_min to a small
4104 * The (pages_high-pages_low) and (pages_low-pages_min)
4105 * deltas controls asynch page reclaim, and so should
4106 * not be capped for highmem.
4110 min_pages
= zone
->present_pages
/ 1024;
4111 if (min_pages
< SWAP_CLUSTER_MAX
)
4112 min_pages
= SWAP_CLUSTER_MAX
;
4113 if (min_pages
> 128)
4115 zone
->pages_min
= min_pages
;
4118 * If it's a lowmem zone, reserve a number of pages
4119 * proportionate to the zone's size.
4121 zone
->pages_min
= tmp
;
4124 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4125 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4126 setup_zone_migrate_reserve(zone
);
4127 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4130 /* update totalreserve_pages */
4131 calculate_totalreserve_pages();
4135 * Initialise min_free_kbytes.
4137 * For small machines we want it small (128k min). For large machines
4138 * we want it large (64MB max). But it is not linear, because network
4139 * bandwidth does not increase linearly with machine size. We use
4141 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4142 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4158 static int __init
init_per_zone_pages_min(void)
4160 unsigned long lowmem_kbytes
;
4162 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4164 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4165 if (min_free_kbytes
< 128)
4166 min_free_kbytes
= 128;
4167 if (min_free_kbytes
> 65536)
4168 min_free_kbytes
= 65536;
4169 setup_per_zone_pages_min();
4170 setup_per_zone_lowmem_reserve();
4173 module_init(init_per_zone_pages_min
)
4176 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4177 * that we can call two helper functions whenever min_free_kbytes
4180 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4181 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4183 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4185 setup_per_zone_pages_min();
4190 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4191 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4196 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4201 zone
->min_unmapped_pages
= (zone
->present_pages
*
4202 sysctl_min_unmapped_ratio
) / 100;
4206 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4207 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4212 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4217 zone
->min_slab_pages
= (zone
->present_pages
*
4218 sysctl_min_slab_ratio
) / 100;
4224 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4225 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4226 * whenever sysctl_lowmem_reserve_ratio changes.
4228 * The reserve ratio obviously has absolutely no relation with the
4229 * pages_min watermarks. The lowmem reserve ratio can only make sense
4230 * if in function of the boot time zone sizes.
4232 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4233 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4235 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4236 setup_per_zone_lowmem_reserve();
4241 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4242 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4243 * can have before it gets flushed back to buddy allocator.
4246 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4247 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4253 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4254 if (!write
|| (ret
== -EINVAL
))
4256 for_each_zone(zone
) {
4257 for_each_online_cpu(cpu
) {
4259 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4260 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4266 int hashdist
= HASHDIST_DEFAULT
;
4269 static int __init
set_hashdist(char *str
)
4273 hashdist
= simple_strtoul(str
, &str
, 0);
4276 __setup("hashdist=", set_hashdist
);
4280 * allocate a large system hash table from bootmem
4281 * - it is assumed that the hash table must contain an exact power-of-2
4282 * quantity of entries
4283 * - limit is the number of hash buckets, not the total allocation size
4285 void *__init
alloc_large_system_hash(const char *tablename
,
4286 unsigned long bucketsize
,
4287 unsigned long numentries
,
4290 unsigned int *_hash_shift
,
4291 unsigned int *_hash_mask
,
4292 unsigned long limit
)
4294 unsigned long long max
= limit
;
4295 unsigned long log2qty
, size
;
4298 /* allow the kernel cmdline to have a say */
4300 /* round applicable memory size up to nearest megabyte */
4301 numentries
= nr_kernel_pages
;
4302 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4303 numentries
>>= 20 - PAGE_SHIFT
;
4304 numentries
<<= 20 - PAGE_SHIFT
;
4306 /* limit to 1 bucket per 2^scale bytes of low memory */
4307 if (scale
> PAGE_SHIFT
)
4308 numentries
>>= (scale
- PAGE_SHIFT
);
4310 numentries
<<= (PAGE_SHIFT
- scale
);
4312 /* Make sure we've got at least a 0-order allocation.. */
4313 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4314 numentries
= PAGE_SIZE
/ bucketsize
;
4316 numentries
= roundup_pow_of_two(numentries
);
4318 /* limit allocation size to 1/16 total memory by default */
4320 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4321 do_div(max
, bucketsize
);
4324 if (numentries
> max
)
4327 log2qty
= ilog2(numentries
);
4330 size
= bucketsize
<< log2qty
;
4331 if (flags
& HASH_EARLY
)
4332 table
= alloc_bootmem(size
);
4334 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4336 unsigned long order
;
4337 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
4339 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4341 * If bucketsize is not a power-of-two, we may free
4342 * some pages at the end of hash table.
4345 unsigned long alloc_end
= (unsigned long)table
+
4346 (PAGE_SIZE
<< order
);
4347 unsigned long used
= (unsigned long)table
+
4349 split_page(virt_to_page(table
), order
);
4350 while (used
< alloc_end
) {
4356 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4359 panic("Failed to allocate %s hash table\n", tablename
);
4361 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4364 ilog2(size
) - PAGE_SHIFT
,
4368 *_hash_shift
= log2qty
;
4370 *_hash_mask
= (1 << log2qty
) - 1;
4375 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4376 struct page
*pfn_to_page(unsigned long pfn
)
4378 return __pfn_to_page(pfn
);
4380 unsigned long page_to_pfn(struct page
*page
)
4382 return __page_to_pfn(page
);
4384 EXPORT_SYMBOL(pfn_to_page
);
4385 EXPORT_SYMBOL(page_to_pfn
);
4386 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4388 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4389 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4392 #ifdef CONFIG_SPARSEMEM
4393 return __pfn_to_section(pfn
)->pageblock_flags
;
4395 return zone
->pageblock_flags
;
4396 #endif /* CONFIG_SPARSEMEM */
4399 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4401 #ifdef CONFIG_SPARSEMEM
4402 pfn
&= (PAGES_PER_SECTION
-1);
4403 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4405 pfn
= pfn
- zone
->zone_start_pfn
;
4406 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4407 #endif /* CONFIG_SPARSEMEM */
4411 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4412 * @page: The page within the block of interest
4413 * @start_bitidx: The first bit of interest to retrieve
4414 * @end_bitidx: The last bit of interest
4415 * returns pageblock_bits flags
4417 unsigned long get_pageblock_flags_group(struct page
*page
,
4418 int start_bitidx
, int end_bitidx
)
4421 unsigned long *bitmap
;
4422 unsigned long pfn
, bitidx
;
4423 unsigned long flags
= 0;
4424 unsigned long value
= 1;
4426 zone
= page_zone(page
);
4427 pfn
= page_to_pfn(page
);
4428 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4429 bitidx
= pfn_to_bitidx(zone
, pfn
);
4431 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4432 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4439 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4440 * @page: The page within the block of interest
4441 * @start_bitidx: The first bit of interest
4442 * @end_bitidx: The last bit of interest
4443 * @flags: The flags to set
4445 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4446 int start_bitidx
, int end_bitidx
)
4449 unsigned long *bitmap
;
4450 unsigned long pfn
, bitidx
;
4451 unsigned long value
= 1;
4453 zone
= page_zone(page
);
4454 pfn
= page_to_pfn(page
);
4455 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4456 bitidx
= pfn_to_bitidx(zone
, pfn
);
4458 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4460 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4462 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4466 * This is designed as sub function...plz see page_isolation.c also.
4467 * set/clear page block's type to be ISOLATE.
4468 * page allocater never alloc memory from ISOLATE block.
4471 int set_migratetype_isolate(struct page
*page
)
4474 unsigned long flags
;
4477 zone
= page_zone(page
);
4478 spin_lock_irqsave(&zone
->lock
, flags
);
4480 * In future, more migrate types will be able to be isolation target.
4482 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4484 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4485 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4488 spin_unlock_irqrestore(&zone
->lock
, flags
);
4494 void unset_migratetype_isolate(struct page
*page
)
4497 unsigned long flags
;
4498 zone
= page_zone(page
);
4499 spin_lock_irqsave(&zone
->lock
, flags
);
4500 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4502 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4503 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4505 spin_unlock_irqrestore(&zone
->lock
, flags
);
4508 #ifdef CONFIG_MEMORY_HOTREMOVE
4510 * All pages in the range must be isolated before calling this.
4513 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4519 unsigned long flags
;
4520 /* find the first valid pfn */
4521 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4526 zone
= page_zone(pfn_to_page(pfn
));
4527 spin_lock_irqsave(&zone
->lock
, flags
);
4529 while (pfn
< end_pfn
) {
4530 if (!pfn_valid(pfn
)) {
4534 page
= pfn_to_page(pfn
);
4535 BUG_ON(page_count(page
));
4536 BUG_ON(!PageBuddy(page
));
4537 order
= page_order(page
);
4538 #ifdef CONFIG_DEBUG_VM
4539 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4540 pfn
, 1 << order
, end_pfn
);
4542 list_del(&page
->lru
);
4543 rmv_page_order(page
);
4544 zone
->free_area
[order
].nr_free
--;
4545 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4547 for (i
= 0; i
< (1 << order
); i
++)
4548 SetPageReserved((page
+i
));
4549 pfn
+= (1 << order
);
4551 spin_unlock_irqrestore(&zone
->lock
, flags
);