2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save
) (void) __read_mostly
;
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly
= ACPI_PROCESSOR_MAX_POWER
;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate
, uint
, 0000);
82 module_param(max_cstate
, uint
, 0644);
84 static unsigned int nocst __read_mostly
;
85 module_param(nocst
, uint
, 0000);
87 #ifndef CONFIG_CPU_IDLE
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
95 static unsigned int bm_history __read_mostly
=
96 (HZ
>= 800 ? 0xFFFFFFFF : ((1U << (HZ
/ 25)) - 1));
97 module_param(bm_history
, uint
, 0644);
99 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
);
101 #else /* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly
= 2;
103 module_param(latency_factor
, uint
, 0644);
107 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108 * For now disable this. Probably a bug somewhere else.
110 * To skip this limit, boot/load with a large max_cstate limit.
112 static int set_max_cstate(const struct dmi_system_id
*id
)
114 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
117 printk(KERN_NOTICE PREFIX
"%s detected - limiting to C%ld max_cstate."
118 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
119 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
121 max_cstate
= (long)id
->driver_data
;
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127 callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table
[] = {
129 { set_max_cstate
, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION
,"1SET70WW")}, (void *)1},
132 { set_max_cstate
, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW")}, (void *)1},
135 { set_max_cstate
, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION
,"1SET43WW") }, (void*)1},
138 { set_max_cstate
, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION
,"1SET45WW") }, (void*)1},
141 { set_max_cstate
, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION
,"1SET47WW") }, (void*)1},
144 { set_max_cstate
, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION
,"1SET50WW") }, (void*)1},
147 { set_max_cstate
, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION
,"1SET52WW") }, (void*)1},
150 { set_max_cstate
, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION
,"1SET55WW") }, (void*)1},
153 { set_max_cstate
, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION
,"1SET56WW") }, (void*)1},
156 { set_max_cstate
, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION
,"1SET59WW") }, (void*)1},
159 { set_max_cstate
, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW") }, (void*)1},
162 { set_max_cstate
, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION
,"1SET61WW") }, (void*)1},
165 { set_max_cstate
, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION
,"1SET62WW") }, (void*)1},
168 { set_max_cstate
, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION
,"1SET64WW") }, (void*)1},
171 { set_max_cstate
, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION
,"1SET65WW") }, (void*)1},
174 { set_max_cstate
, "IBM ThinkPad R40e", {
175 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
176 DMI_MATCH(DMI_BIOS_VERSION
,"1SET68WW") }, (void*)1},
177 { set_max_cstate
, "Medion 41700", {
178 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION
,"R01-A1J")}, (void *)1},
180 { set_max_cstate
, "Clevo 5600D", {
181 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
182 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
187 static inline u32
ticks_elapsed(u32 t1
, u32 t2
)
191 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
192 return (((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
194 return ((0xFFFFFFFF - t1
) + t2
);
197 static inline u32
ticks_elapsed_in_us(u32 t1
, u32 t2
)
200 return PM_TIMER_TICKS_TO_US(t2
- t1
);
201 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
202 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
204 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1
) + t2
);
208 * Callers should disable interrupts before the call and enable
209 * interrupts after return.
211 static void acpi_safe_halt(void)
213 current_thread_info()->status
&= ~TS_POLLING
;
215 * TS_POLLING-cleared state must be visible before we
219 if (!need_resched()) {
223 current_thread_info()->status
|= TS_POLLING
;
226 #ifndef CONFIG_CPU_IDLE
229 acpi_processor_power_activate(struct acpi_processor
*pr
,
230 struct acpi_processor_cx
*new)
232 struct acpi_processor_cx
*old
;
237 old
= pr
->power
.state
;
240 old
->promotion
.count
= 0;
241 new->demotion
.count
= 0;
243 /* Cleanup from old state. */
247 /* Disable bus master reload */
248 if (new->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
249 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
254 /* Prepare to use new state. */
257 /* Enable bus master reload */
258 if (old
->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
259 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
263 pr
->power
.state
= new;
268 static atomic_t c3_cpu_count
;
270 /* Common C-state entry for C2, C3, .. */
271 static void acpi_cstate_enter(struct acpi_processor_cx
*cstate
)
273 /* Don't trace irqs off for idle */
274 stop_critical_timings();
275 if (cstate
->entry_method
== ACPI_CSTATE_FFH
) {
276 /* Call into architectural FFH based C-state */
277 acpi_processor_ffh_cstate_enter(cstate
);
280 /* IO port based C-state */
281 inb(cstate
->address
);
282 /* Dummy wait op - must do something useless after P_LVL2 read
283 because chipsets cannot guarantee that STPCLK# signal
284 gets asserted in time to freeze execution properly. */
285 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
287 start_critical_timings();
289 #endif /* !CONFIG_CPU_IDLE */
291 #ifdef ARCH_APICTIMER_STOPS_ON_C3
294 * Some BIOS implementations switch to C3 in the published C2 state.
295 * This seems to be a common problem on AMD boxen, but other vendors
296 * are affected too. We pick the most conservative approach: we assume
297 * that the local APIC stops in both C2 and C3.
299 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
300 struct acpi_processor_cx
*cx
)
302 struct acpi_processor_power
*pwr
= &pr
->power
;
303 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
306 * Check, if one of the previous states already marked the lapic
309 if (pwr
->timer_broadcast_on_state
< state
)
312 if (cx
->type
>= type
)
313 pr
->power
.timer_broadcast_on_state
= state
;
316 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
)
318 unsigned long reason
;
320 reason
= pr
->power
.timer_broadcast_on_state
< INT_MAX
?
321 CLOCK_EVT_NOTIFY_BROADCAST_ON
: CLOCK_EVT_NOTIFY_BROADCAST_OFF
;
323 clockevents_notify(reason
, &pr
->id
);
326 /* Power(C) State timer broadcast control */
327 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
328 struct acpi_processor_cx
*cx
,
331 int state
= cx
- pr
->power
.states
;
333 if (state
>= pr
->power
.timer_broadcast_on_state
) {
334 unsigned long reason
;
336 reason
= broadcast
? CLOCK_EVT_NOTIFY_BROADCAST_ENTER
:
337 CLOCK_EVT_NOTIFY_BROADCAST_EXIT
;
338 clockevents_notify(reason
, &pr
->id
);
344 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
345 struct acpi_processor_cx
*cstate
) { }
346 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
) { }
347 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
348 struct acpi_processor_cx
*cx
,
356 * Suspend / resume control
358 static int acpi_idle_suspend
;
360 int acpi_processor_suspend(struct acpi_device
* device
, pm_message_t state
)
362 acpi_idle_suspend
= 1;
366 int acpi_processor_resume(struct acpi_device
* device
)
368 acpi_idle_suspend
= 0;
372 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
373 static int tsc_halts_in_c(int state
)
375 switch (boot_cpu_data
.x86_vendor
) {
377 case X86_VENDOR_INTEL
:
379 * AMD Fam10h TSC will tick in all
380 * C/P/S0/S1 states when this bit is set.
382 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
387 return state
> ACPI_STATE_C1
;
392 #ifndef CONFIG_CPU_IDLE
393 static void acpi_processor_idle(void)
395 struct acpi_processor
*pr
= NULL
;
396 struct acpi_processor_cx
*cx
= NULL
;
397 struct acpi_processor_cx
*next_state
= NULL
;
402 * Interrupts must be disabled during bus mastering calculations and
403 * for C2/C3 transitions.
407 pr
= __get_cpu_var(processors
);
414 * Check whether we truly need to go idle, or should
417 if (unlikely(need_resched())) {
422 cx
= pr
->power
.state
;
423 if (!cx
|| acpi_idle_suspend
) {
425 pm_idle_save(); /* enables IRQs */
437 * Check for bus mastering activity (if required), record, and check
440 if (pr
->flags
.bm_check
) {
442 unsigned long diff
= jiffies
- pr
->power
.bm_check_timestamp
;
447 pr
->power
.bm_activity
<<= diff
;
449 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
451 pr
->power
.bm_activity
|= 0x1;
452 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
455 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
456 * the true state of bus mastering activity; forcing us to
457 * manually check the BMIDEA bit of each IDE channel.
459 else if (errata
.piix4
.bmisx
) {
460 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
461 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
462 pr
->power
.bm_activity
|= 0x1;
465 pr
->power
.bm_check_timestamp
= jiffies
;
468 * If bus mastering is or was active this jiffy, demote
469 * to avoid a faulty transition. Note that the processor
470 * won't enter a low-power state during this call (to this
471 * function) but should upon the next.
473 * TBD: A better policy might be to fallback to the demotion
474 * state (use it for this quantum only) istead of
475 * demoting -- and rely on duration as our sole demotion
476 * qualification. This may, however, introduce DMA
477 * issues (e.g. floppy DMA transfer overrun/underrun).
479 if ((pr
->power
.bm_activity
& 0x1) &&
480 cx
->demotion
.threshold
.bm
) {
482 next_state
= cx
->demotion
.state
;
487 #ifdef CONFIG_HOTPLUG_CPU
489 * Check for P_LVL2_UP flag before entering C2 and above on
490 * an SMP system. We do it here instead of doing it at _CST/P_LVL
491 * detection phase, to work cleanly with logical CPU hotplug.
493 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
494 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
495 cx
= &pr
->power
.states
[ACPI_STATE_C1
];
501 * Invoke the current Cx state to put the processor to sleep.
503 if (cx
->type
== ACPI_STATE_C2
|| cx
->type
== ACPI_STATE_C3
) {
504 current_thread_info()->status
&= ~TS_POLLING
;
506 * TS_POLLING-cleared state must be visible before we
510 if (need_resched()) {
511 current_thread_info()->status
|= TS_POLLING
;
522 * Use the appropriate idle routine, the one that would
523 * be used without acpi C-states.
526 pm_idle_save(); /* enables IRQs */
533 * TBD: Can't get time duration while in C1, as resumes
534 * go to an ISR rather than here. Need to instrument
535 * base interrupt handler.
537 * Note: the TSC better not stop in C1, sched_clock() will
540 sleep_ticks
= 0xFFFFFFFF;
545 /* Get start time (ticks) */
546 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
547 /* Tell the scheduler that we are going deep-idle: */
548 sched_clock_idle_sleep_event();
550 acpi_state_timer_broadcast(pr
, cx
, 1);
551 acpi_cstate_enter(cx
);
552 /* Get end time (ticks) */
553 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
555 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
556 /* TSC halts in C2, so notify users */
557 if (tsc_halts_in_c(ACPI_STATE_C2
))
558 mark_tsc_unstable("possible TSC halt in C2");
560 /* Compute time (ticks) that we were actually asleep */
561 sleep_ticks
= ticks_elapsed(t1
, t2
);
563 /* Tell the scheduler how much we idled: */
564 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
566 /* Re-enable interrupts */
568 /* Do not account our idle-switching overhead: */
569 sleep_ticks
-= cx
->latency_ticks
+ C2_OVERHEAD
;
571 current_thread_info()->status
|= TS_POLLING
;
572 acpi_state_timer_broadcast(pr
, cx
, 0);
576 acpi_unlazy_tlb(smp_processor_id());
578 * Must be done before busmaster disable as we might
579 * need to access HPET !
581 acpi_state_timer_broadcast(pr
, cx
, 1);
584 * bm_check implies we need ARB_DIS
585 * !bm_check implies we need cache flush
586 * bm_control implies whether we can do ARB_DIS
588 * That leaves a case where bm_check is set and bm_control is
589 * not set. In that case we cannot do much, we enter C3
590 * without doing anything.
592 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
593 if (atomic_inc_return(&c3_cpu_count
) ==
596 * All CPUs are trying to go to C3
597 * Disable bus master arbitration
599 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
601 } else if (!pr
->flags
.bm_check
) {
602 /* SMP with no shared cache... Invalidate cache */
603 ACPI_FLUSH_CPU_CACHE();
606 /* Get start time (ticks) */
607 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
609 /* Tell the scheduler that we are going deep-idle: */
610 sched_clock_idle_sleep_event();
611 acpi_cstate_enter(cx
);
612 /* Get end time (ticks) */
613 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
614 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
615 /* Enable bus master arbitration */
616 atomic_dec(&c3_cpu_count
);
617 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
620 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
621 /* TSC halts in C3, so notify users */
622 if (tsc_halts_in_c(ACPI_STATE_C3
))
623 mark_tsc_unstable("TSC halts in C3");
625 /* Compute time (ticks) that we were actually asleep */
626 sleep_ticks
= ticks_elapsed(t1
, t2
);
627 /* Tell the scheduler how much we idled: */
628 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
630 /* Re-enable interrupts */
632 /* Do not account our idle-switching overhead: */
633 sleep_ticks
-= cx
->latency_ticks
+ C3_OVERHEAD
;
635 current_thread_info()->status
|= TS_POLLING
;
636 acpi_state_timer_broadcast(pr
, cx
, 0);
644 if ((cx
->type
!= ACPI_STATE_C1
) && (sleep_ticks
> 0))
645 cx
->time
+= sleep_ticks
;
647 next_state
= pr
->power
.state
;
649 #ifdef CONFIG_HOTPLUG_CPU
650 /* Don't do promotion/demotion */
651 if ((cx
->type
== ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
652 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
)) {
661 * Track the number of longs (time asleep is greater than threshold)
662 * and promote when the count threshold is reached. Note that bus
663 * mastering activity may prevent promotions.
664 * Do not promote above max_cstate.
666 if (cx
->promotion
.state
&&
667 ((cx
->promotion
.state
- pr
->power
.states
) <= max_cstate
)) {
668 if (sleep_ticks
> cx
->promotion
.threshold
.ticks
&&
669 cx
->promotion
.state
->latency
<=
670 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
671 cx
->promotion
.count
++;
672 cx
->demotion
.count
= 0;
673 if (cx
->promotion
.count
>=
674 cx
->promotion
.threshold
.count
) {
675 if (pr
->flags
.bm_check
) {
677 (pr
->power
.bm_activity
& cx
->
678 promotion
.threshold
.bm
)) {
684 next_state
= cx
->promotion
.state
;
694 * Track the number of shorts (time asleep is less than time threshold)
695 * and demote when the usage threshold is reached.
697 if (cx
->demotion
.state
) {
698 if (sleep_ticks
< cx
->demotion
.threshold
.ticks
) {
699 cx
->demotion
.count
++;
700 cx
->promotion
.count
= 0;
701 if (cx
->demotion
.count
>= cx
->demotion
.threshold
.count
) {
702 next_state
= cx
->demotion
.state
;
710 * Demote if current state exceeds max_cstate
711 * or if the latency of the current state is unacceptable
713 if ((pr
->power
.state
- pr
->power
.states
) > max_cstate
||
714 pr
->power
.state
->latency
>
715 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
716 if (cx
->demotion
.state
)
717 next_state
= cx
->demotion
.state
;
723 * If we're going to start using a new Cx state we must clean up
724 * from the previous and prepare to use the new.
726 if (next_state
!= pr
->power
.state
)
727 acpi_processor_power_activate(pr
, next_state
);
730 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
)
733 unsigned int state_is_set
= 0;
734 struct acpi_processor_cx
*lower
= NULL
;
735 struct acpi_processor_cx
*higher
= NULL
;
736 struct acpi_processor_cx
*cx
;
743 * This function sets the default Cx state policy (OS idle handler).
744 * Our scheme is to promote quickly to C2 but more conservatively
745 * to C3. We're favoring C2 for its characteristics of low latency
746 * (quick response), good power savings, and ability to allow bus
747 * mastering activity. Note that the Cx state policy is completely
748 * customizable and can be altered dynamically.
752 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
753 cx
= &pr
->power
.states
[i
];
758 pr
->power
.state
= cx
;
767 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
768 cx
= &pr
->power
.states
[i
];
773 cx
->demotion
.state
= lower
;
774 cx
->demotion
.threshold
.ticks
= cx
->latency_ticks
;
775 cx
->demotion
.threshold
.count
= 1;
776 if (cx
->type
== ACPI_STATE_C3
)
777 cx
->demotion
.threshold
.bm
= bm_history
;
784 for (i
= (ACPI_PROCESSOR_MAX_POWER
- 1); i
> 0; i
--) {
785 cx
= &pr
->power
.states
[i
];
790 cx
->promotion
.state
= higher
;
791 cx
->promotion
.threshold
.ticks
= cx
->latency_ticks
;
792 if (cx
->type
>= ACPI_STATE_C2
)
793 cx
->promotion
.threshold
.count
= 4;
795 cx
->promotion
.threshold
.count
= 10;
796 if (higher
->type
== ACPI_STATE_C3
)
797 cx
->promotion
.threshold
.bm
= bm_history
;
805 #endif /* !CONFIG_CPU_IDLE */
807 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
816 /* if info is obtained from pblk/fadt, type equals state */
817 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
818 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
820 #ifndef CONFIG_HOTPLUG_CPU
822 * Check for P_LVL2_UP flag before entering C2 and above on
825 if ((num_online_cpus() > 1) &&
826 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
830 /* determine C2 and C3 address from pblk */
831 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
832 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
834 /* determine latencies from FADT */
835 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.C2latency
;
836 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.C3latency
;
838 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
839 "lvl2[0x%08x] lvl3[0x%08x]\n",
840 pr
->power
.states
[ACPI_STATE_C2
].address
,
841 pr
->power
.states
[ACPI_STATE_C3
].address
));
846 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
848 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
849 /* set the first C-State to C1 */
850 /* all processors need to support C1 */
851 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
852 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
853 pr
->power
.states
[ACPI_STATE_C1
].entry_method
= ACPI_CSTATE_HALT
;
855 /* the C0 state only exists as a filler in our array */
856 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
860 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
862 acpi_status status
= 0;
866 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
867 union acpi_object
*cst
;
875 status
= acpi_evaluate_object(pr
->handle
, "_CST", NULL
, &buffer
);
876 if (ACPI_FAILURE(status
)) {
877 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _CST, giving up\n"));
881 cst
= buffer
.pointer
;
883 /* There must be at least 2 elements */
884 if (!cst
|| (cst
->type
!= ACPI_TYPE_PACKAGE
) || cst
->package
.count
< 2) {
885 printk(KERN_ERR PREFIX
"not enough elements in _CST\n");
890 count
= cst
->package
.elements
[0].integer
.value
;
892 /* Validate number of power states. */
893 if (count
< 1 || count
!= cst
->package
.count
- 1) {
894 printk(KERN_ERR PREFIX
"count given by _CST is not valid\n");
899 /* Tell driver that at least _CST is supported. */
900 pr
->flags
.has_cst
= 1;
902 for (i
= 1; i
<= count
; i
++) {
903 union acpi_object
*element
;
904 union acpi_object
*obj
;
905 struct acpi_power_register
*reg
;
906 struct acpi_processor_cx cx
;
908 memset(&cx
, 0, sizeof(cx
));
910 element
= &(cst
->package
.elements
[i
]);
911 if (element
->type
!= ACPI_TYPE_PACKAGE
)
914 if (element
->package
.count
!= 4)
917 obj
= &(element
->package
.elements
[0]);
919 if (obj
->type
!= ACPI_TYPE_BUFFER
)
922 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
924 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
925 (reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
))
928 /* There should be an easy way to extract an integer... */
929 obj
= &(element
->package
.elements
[1]);
930 if (obj
->type
!= ACPI_TYPE_INTEGER
)
933 cx
.type
= obj
->integer
.value
;
935 * Some buggy BIOSes won't list C1 in _CST -
936 * Let acpi_processor_get_power_info_default() handle them later
938 if (i
== 1 && cx
.type
!= ACPI_STATE_C1
)
941 cx
.address
= reg
->address
;
942 cx
.index
= current_count
+ 1;
944 cx
.entry_method
= ACPI_CSTATE_SYSTEMIO
;
945 if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
) {
946 if (acpi_processor_ffh_cstate_probe
947 (pr
->id
, &cx
, reg
) == 0) {
948 cx
.entry_method
= ACPI_CSTATE_FFH
;
949 } else if (cx
.type
== ACPI_STATE_C1
) {
951 * C1 is a special case where FIXED_HARDWARE
952 * can be handled in non-MWAIT way as well.
953 * In that case, save this _CST entry info.
954 * Otherwise, ignore this info and continue.
956 cx
.entry_method
= ACPI_CSTATE_HALT
;
957 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
961 if (cx
.type
== ACPI_STATE_C1
&&
962 (idle_halt
|| idle_nomwait
)) {
964 * In most cases the C1 space_id obtained from
965 * _CST object is FIXED_HARDWARE access mode.
966 * But when the option of idle=halt is added,
967 * the entry_method type should be changed from
968 * CSTATE_FFH to CSTATE_HALT.
969 * When the option of idle=nomwait is added,
970 * the C1 entry_method type should be
973 cx
.entry_method
= ACPI_CSTATE_HALT
;
974 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
977 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI IOPORT 0x%x",
981 if (cx
.type
== ACPI_STATE_C1
) {
985 obj
= &(element
->package
.elements
[2]);
986 if (obj
->type
!= ACPI_TYPE_INTEGER
)
989 cx
.latency
= obj
->integer
.value
;
991 obj
= &(element
->package
.elements
[3]);
992 if (obj
->type
!= ACPI_TYPE_INTEGER
)
995 cx
.power
= obj
->integer
.value
;
998 memcpy(&(pr
->power
.states
[current_count
]), &cx
, sizeof(cx
));
1001 * We support total ACPI_PROCESSOR_MAX_POWER - 1
1002 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
1004 if (current_count
>= (ACPI_PROCESSOR_MAX_POWER
- 1)) {
1006 "Limiting number of power states to max (%d)\n",
1007 ACPI_PROCESSOR_MAX_POWER
);
1009 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1014 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "Found %d power states\n",
1017 /* Validate number of power states discovered */
1018 if (current_count
< 2)
1022 kfree(buffer
.pointer
);
1027 static void acpi_processor_power_verify_c2(struct acpi_processor_cx
*cx
)
1034 * C2 latency must be less than or equal to 100
1037 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
1038 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1039 "latency too large [%d]\n", cx
->latency
));
1044 * Otherwise we've met all of our C2 requirements.
1045 * Normalize the C2 latency to expidite policy
1049 #ifndef CONFIG_CPU_IDLE
1050 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1052 cx
->latency_ticks
= cx
->latency
;
1058 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
1059 struct acpi_processor_cx
*cx
)
1061 static int bm_check_flag
;
1068 * C3 latency must be less than or equal to 1000
1071 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
1072 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1073 "latency too large [%d]\n", cx
->latency
));
1078 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1079 * DMA transfers are used by any ISA device to avoid livelock.
1080 * Note that we could disable Type-F DMA (as recommended by
1081 * the erratum), but this is known to disrupt certain ISA
1082 * devices thus we take the conservative approach.
1084 else if (errata
.piix4
.fdma
) {
1085 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1086 "C3 not supported on PIIX4 with Type-F DMA\n"));
1090 /* All the logic here assumes flags.bm_check is same across all CPUs */
1091 if (!bm_check_flag
) {
1092 /* Determine whether bm_check is needed based on CPU */
1093 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
1094 bm_check_flag
= pr
->flags
.bm_check
;
1096 pr
->flags
.bm_check
= bm_check_flag
;
1099 if (pr
->flags
.bm_check
) {
1100 if (!pr
->flags
.bm_control
) {
1101 if (pr
->flags
.has_cst
!= 1) {
1102 /* bus mastering control is necessary */
1103 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1104 "C3 support requires BM control\n"));
1107 /* Here we enter C3 without bus mastering */
1108 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1109 "C3 support without BM control\n"));
1114 * WBINVD should be set in fadt, for C3 state to be
1115 * supported on when bm_check is not required.
1117 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
1118 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1119 "Cache invalidation should work properly"
1120 " for C3 to be enabled on SMP systems\n"));
1123 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1127 * Otherwise we've met all of our C3 requirements.
1128 * Normalize the C3 latency to expidite policy. Enable
1129 * checking of bus mastering status (bm_check) so we can
1130 * use this in our C3 policy
1134 #ifndef CONFIG_CPU_IDLE
1135 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1137 cx
->latency_ticks
= cx
->latency
;
1143 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
1146 unsigned int working
= 0;
1148 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
1150 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1151 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
1159 acpi_processor_power_verify_c2(cx
);
1161 acpi_timer_check_state(i
, pr
, cx
);
1165 acpi_processor_power_verify_c3(pr
, cx
);
1167 acpi_timer_check_state(i
, pr
, cx
);
1175 acpi_propagate_timer_broadcast(pr
);
1180 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1186 /* NOTE: the idle thread may not be running while calling
1189 /* Zero initialize all the C-states info. */
1190 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
1192 result
= acpi_processor_get_power_info_cst(pr
);
1193 if (result
== -ENODEV
)
1194 result
= acpi_processor_get_power_info_fadt(pr
);
1199 acpi_processor_get_power_info_default(pr
);
1201 pr
->power
.count
= acpi_processor_power_verify(pr
);
1203 #ifndef CONFIG_CPU_IDLE
1205 * Set Default Policy
1206 * ------------------
1207 * Now that we know which states are supported, set the default
1208 * policy. Note that this policy can be changed dynamically
1209 * (e.g. encourage deeper sleeps to conserve battery life when
1212 result
= acpi_processor_set_power_policy(pr
);
1218 * if one state of type C2 or C3 is available, mark this
1219 * CPU as being "idle manageable"
1221 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1222 if (pr
->power
.states
[i
].valid
) {
1223 pr
->power
.count
= i
;
1224 if (pr
->power
.states
[i
].type
>= ACPI_STATE_C2
)
1225 pr
->flags
.power
= 1;
1232 static int acpi_processor_power_seq_show(struct seq_file
*seq
, void *offset
)
1234 struct acpi_processor
*pr
= seq
->private;
1241 seq_printf(seq
, "active state: C%zd\n"
1243 "bus master activity: %08x\n"
1244 "maximum allowed latency: %d usec\n",
1245 pr
->power
.state
? pr
->power
.state
- pr
->power
.states
: 0,
1246 max_cstate
, (unsigned)pr
->power
.bm_activity
,
1247 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
));
1249 seq_puts(seq
, "states:\n");
1251 for (i
= 1; i
<= pr
->power
.count
; i
++) {
1252 seq_printf(seq
, " %cC%d: ",
1253 (&pr
->power
.states
[i
] ==
1254 pr
->power
.state
? '*' : ' '), i
);
1256 if (!pr
->power
.states
[i
].valid
) {
1257 seq_puts(seq
, "<not supported>\n");
1261 switch (pr
->power
.states
[i
].type
) {
1263 seq_printf(seq
, "type[C1] ");
1266 seq_printf(seq
, "type[C2] ");
1269 seq_printf(seq
, "type[C3] ");
1272 seq_printf(seq
, "type[--] ");
1276 if (pr
->power
.states
[i
].promotion
.state
)
1277 seq_printf(seq
, "promotion[C%zd] ",
1278 (pr
->power
.states
[i
].promotion
.state
-
1281 seq_puts(seq
, "promotion[--] ");
1283 if (pr
->power
.states
[i
].demotion
.state
)
1284 seq_printf(seq
, "demotion[C%zd] ",
1285 (pr
->power
.states
[i
].demotion
.state
-
1288 seq_puts(seq
, "demotion[--] ");
1290 seq_printf(seq
, "latency[%03d] usage[%08d] duration[%020llu]\n",
1291 pr
->power
.states
[i
].latency
,
1292 pr
->power
.states
[i
].usage
,
1293 (unsigned long long)pr
->power
.states
[i
].time
);
1300 static int acpi_processor_power_open_fs(struct inode
*inode
, struct file
*file
)
1302 return single_open(file
, acpi_processor_power_seq_show
,
1306 static const struct file_operations acpi_processor_power_fops
= {
1307 .owner
= THIS_MODULE
,
1308 .open
= acpi_processor_power_open_fs
,
1310 .llseek
= seq_lseek
,
1311 .release
= single_release
,
1314 #ifndef CONFIG_CPU_IDLE
1316 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1320 if (boot_option_idle_override
)
1330 if (!pr
->flags
.power_setup_done
)
1334 * Fall back to the default idle loop, when pm_idle_save had
1338 pm_idle
= pm_idle_save
;
1339 /* Relies on interrupts forcing exit from idle. */
1340 synchronize_sched();
1343 pr
->flags
.power
= 0;
1344 result
= acpi_processor_get_power_info(pr
);
1345 if ((pr
->flags
.power
== 1) && (pr
->flags
.power_setup_done
))
1346 pm_idle
= acpi_processor_idle
;
1352 static void smp_callback(void *v
)
1354 /* we already woke the CPU up, nothing more to do */
1358 * This function gets called when a part of the kernel has a new latency
1359 * requirement. This means we need to get all processors out of their C-state,
1360 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1361 * wakes them all right up.
1363 static int acpi_processor_latency_notify(struct notifier_block
*b
,
1364 unsigned long l
, void *v
)
1366 smp_call_function(smp_callback
, NULL
, 1);
1370 static struct notifier_block acpi_processor_latency_notifier
= {
1371 .notifier_call
= acpi_processor_latency_notify
,
1376 #else /* CONFIG_CPU_IDLE */
1379 * acpi_idle_bm_check - checks if bus master activity was detected
1381 static int acpi_idle_bm_check(void)
1385 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
1387 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
1389 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1390 * the true state of bus mastering activity; forcing us to
1391 * manually check the BMIDEA bit of each IDE channel.
1393 else if (errata
.piix4
.bmisx
) {
1394 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
1395 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
1402 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1403 * @pr: the processor
1404 * @target: the new target state
1406 static inline void acpi_idle_update_bm_rld(struct acpi_processor
*pr
,
1407 struct acpi_processor_cx
*target
)
1409 if (pr
->flags
.bm_rld_set
&& target
->type
!= ACPI_STATE_C3
) {
1410 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1411 pr
->flags
.bm_rld_set
= 0;
1414 if (!pr
->flags
.bm_rld_set
&& target
->type
== ACPI_STATE_C3
) {
1415 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
1416 pr
->flags
.bm_rld_set
= 1;
1421 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1424 * Caller disables interrupt before call and enables interrupt after return.
1426 static inline void acpi_idle_do_entry(struct acpi_processor_cx
*cx
)
1428 /* Don't trace irqs off for idle */
1429 stop_critical_timings();
1430 if (cx
->entry_method
== ACPI_CSTATE_FFH
) {
1431 /* Call into architectural FFH based C-state */
1432 acpi_processor_ffh_cstate_enter(cx
);
1433 } else if (cx
->entry_method
== ACPI_CSTATE_HALT
) {
1437 /* IO port based C-state */
1439 /* Dummy wait op - must do something useless after P_LVL2 read
1440 because chipsets cannot guarantee that STPCLK# signal
1441 gets asserted in time to freeze execution properly. */
1442 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1444 start_critical_timings();
1448 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1449 * @dev: the target CPU
1450 * @state: the state data
1452 * This is equivalent to the HALT instruction.
1454 static int acpi_idle_enter_c1(struct cpuidle_device
*dev
,
1455 struct cpuidle_state
*state
)
1458 struct acpi_processor
*pr
;
1459 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1461 pr
= __get_cpu_var(processors
);
1466 local_irq_disable();
1468 /* Do not access any ACPI IO ports in suspend path */
1469 if (acpi_idle_suspend
) {
1475 if (pr
->flags
.bm_check
)
1476 acpi_idle_update_bm_rld(pr
, cx
);
1478 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1479 acpi_idle_do_entry(cx
);
1480 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1485 return ticks_elapsed_in_us(t1
, t2
);
1489 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1490 * @dev: the target CPU
1491 * @state: the state data
1493 static int acpi_idle_enter_simple(struct cpuidle_device
*dev
,
1494 struct cpuidle_state
*state
)
1496 struct acpi_processor
*pr
;
1497 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1499 int sleep_ticks
= 0;
1501 pr
= __get_cpu_var(processors
);
1506 if (acpi_idle_suspend
)
1507 return(acpi_idle_enter_c1(dev
, state
));
1509 local_irq_disable();
1510 current_thread_info()->status
&= ~TS_POLLING
;
1512 * TS_POLLING-cleared state must be visible before we test
1517 if (unlikely(need_resched())) {
1518 current_thread_info()->status
|= TS_POLLING
;
1524 * Must be done before busmaster disable as we might need to
1527 acpi_state_timer_broadcast(pr
, cx
, 1);
1529 if (pr
->flags
.bm_check
)
1530 acpi_idle_update_bm_rld(pr
, cx
);
1532 if (cx
->type
== ACPI_STATE_C3
)
1533 ACPI_FLUSH_CPU_CACHE();
1535 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1536 /* Tell the scheduler that we are going deep-idle: */
1537 sched_clock_idle_sleep_event();
1538 acpi_idle_do_entry(cx
);
1539 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1541 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1542 /* TSC could halt in idle, so notify users */
1543 if (tsc_halts_in_c(cx
->type
))
1544 mark_tsc_unstable("TSC halts in idle");;
1546 sleep_ticks
= ticks_elapsed(t1
, t2
);
1548 /* Tell the scheduler how much we idled: */
1549 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1552 current_thread_info()->status
|= TS_POLLING
;
1556 acpi_state_timer_broadcast(pr
, cx
, 0);
1557 cx
->time
+= sleep_ticks
;
1558 return ticks_elapsed_in_us(t1
, t2
);
1561 static int c3_cpu_count
;
1562 static DEFINE_SPINLOCK(c3_lock
);
1565 * acpi_idle_enter_bm - enters C3 with proper BM handling
1566 * @dev: the target CPU
1567 * @state: the state data
1569 * If BM is detected, the deepest non-C3 idle state is entered instead.
1571 static int acpi_idle_enter_bm(struct cpuidle_device
*dev
,
1572 struct cpuidle_state
*state
)
1574 struct acpi_processor
*pr
;
1575 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1577 int sleep_ticks
= 0;
1579 pr
= __get_cpu_var(processors
);
1584 if (acpi_idle_suspend
)
1585 return(acpi_idle_enter_c1(dev
, state
));
1587 if (acpi_idle_bm_check()) {
1588 if (dev
->safe_state
) {
1589 dev
->last_state
= dev
->safe_state
;
1590 return dev
->safe_state
->enter(dev
, dev
->safe_state
);
1592 local_irq_disable();
1599 local_irq_disable();
1600 current_thread_info()->status
&= ~TS_POLLING
;
1602 * TS_POLLING-cleared state must be visible before we test
1607 if (unlikely(need_resched())) {
1608 current_thread_info()->status
|= TS_POLLING
;
1613 acpi_unlazy_tlb(smp_processor_id());
1615 /* Tell the scheduler that we are going deep-idle: */
1616 sched_clock_idle_sleep_event();
1618 * Must be done before busmaster disable as we might need to
1621 acpi_state_timer_broadcast(pr
, cx
, 1);
1623 acpi_idle_update_bm_rld(pr
, cx
);
1626 * disable bus master
1627 * bm_check implies we need ARB_DIS
1628 * !bm_check implies we need cache flush
1629 * bm_control implies whether we can do ARB_DIS
1631 * That leaves a case where bm_check is set and bm_control is
1632 * not set. In that case we cannot do much, we enter C3
1633 * without doing anything.
1635 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1636 spin_lock(&c3_lock
);
1638 /* Disable bus master arbitration when all CPUs are in C3 */
1639 if (c3_cpu_count
== num_online_cpus())
1640 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
1641 spin_unlock(&c3_lock
);
1642 } else if (!pr
->flags
.bm_check
) {
1643 ACPI_FLUSH_CPU_CACHE();
1646 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1647 acpi_idle_do_entry(cx
);
1648 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1650 /* Re-enable bus master arbitration */
1651 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1652 spin_lock(&c3_lock
);
1653 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
1655 spin_unlock(&c3_lock
);
1658 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1659 /* TSC could halt in idle, so notify users */
1660 if (tsc_halts_in_c(ACPI_STATE_C3
))
1661 mark_tsc_unstable("TSC halts in idle");
1663 sleep_ticks
= ticks_elapsed(t1
, t2
);
1664 /* Tell the scheduler how much we idled: */
1665 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1668 current_thread_info()->status
|= TS_POLLING
;
1672 acpi_state_timer_broadcast(pr
, cx
, 0);
1673 cx
->time
+= sleep_ticks
;
1674 return ticks_elapsed_in_us(t1
, t2
);
1677 struct cpuidle_driver acpi_idle_driver
= {
1678 .name
= "acpi_idle",
1679 .owner
= THIS_MODULE
,
1683 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1684 * @pr: the ACPI processor
1686 static int acpi_processor_setup_cpuidle(struct acpi_processor
*pr
)
1688 int i
, count
= CPUIDLE_DRIVER_STATE_START
;
1689 struct acpi_processor_cx
*cx
;
1690 struct cpuidle_state
*state
;
1691 struct cpuidle_device
*dev
= &pr
->power
.dev
;
1693 if (!pr
->flags
.power_setup_done
)
1696 if (pr
->flags
.power
== 0) {
1701 for (i
= 0; i
< CPUIDLE_STATE_MAX
; i
++) {
1702 dev
->states
[i
].name
[0] = '\0';
1703 dev
->states
[i
].desc
[0] = '\0';
1706 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
1707 cx
= &pr
->power
.states
[i
];
1708 state
= &dev
->states
[count
];
1713 #ifdef CONFIG_HOTPLUG_CPU
1714 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
1715 !pr
->flags
.has_cst
&&
1716 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
1719 cpuidle_set_statedata(state
, cx
);
1721 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "C%d", i
);
1722 strncpy(state
->desc
, cx
->desc
, CPUIDLE_DESC_LEN
);
1723 state
->exit_latency
= cx
->latency
;
1724 state
->target_residency
= cx
->latency
* latency_factor
;
1725 state
->power_usage
= cx
->power
;
1730 state
->flags
|= CPUIDLE_FLAG_SHALLOW
;
1731 if (cx
->entry_method
== ACPI_CSTATE_FFH
)
1732 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1734 state
->enter
= acpi_idle_enter_c1
;
1735 dev
->safe_state
= state
;
1739 state
->flags
|= CPUIDLE_FLAG_BALANCED
;
1740 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1741 state
->enter
= acpi_idle_enter_simple
;
1742 dev
->safe_state
= state
;
1746 state
->flags
|= CPUIDLE_FLAG_DEEP
;
1747 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1748 state
->flags
|= CPUIDLE_FLAG_CHECK_BM
;
1749 state
->enter
= pr
->flags
.bm_check
?
1750 acpi_idle_enter_bm
:
1751 acpi_idle_enter_simple
;
1756 if (count
== CPUIDLE_STATE_MAX
)
1760 dev
->state_count
= count
;
1768 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1772 if (boot_option_idle_override
)
1782 if (!pr
->flags
.power_setup_done
)
1785 cpuidle_pause_and_lock();
1786 cpuidle_disable_device(&pr
->power
.dev
);
1787 acpi_processor_get_power_info(pr
);
1788 if (pr
->flags
.power
) {
1789 acpi_processor_setup_cpuidle(pr
);
1790 ret
= cpuidle_enable_device(&pr
->power
.dev
);
1792 cpuidle_resume_and_unlock();
1797 #endif /* CONFIG_CPU_IDLE */
1799 int __cpuinit
acpi_processor_power_init(struct acpi_processor
*pr
,
1800 struct acpi_device
*device
)
1802 acpi_status status
= 0;
1803 static int first_run
;
1804 struct proc_dir_entry
*entry
= NULL
;
1807 if (boot_option_idle_override
)
1813 * When the boot option of "idle=halt" is added, halt
1814 * is used for CPU IDLE.
1815 * In such case C2/C3 is meaningless. So the max_cstate
1820 dmi_check_system(processor_power_dmi_table
);
1821 max_cstate
= acpi_processor_cstate_check(max_cstate
);
1822 if (max_cstate
< ACPI_C_STATES_MAX
)
1824 "ACPI: processor limited to max C-state %d\n",
1827 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1828 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY
,
1829 &acpi_processor_latency_notifier
);
1836 if (acpi_gbl_FADT
.cst_control
&& !nocst
) {
1838 acpi_os_write_port(acpi_gbl_FADT
.smi_command
, acpi_gbl_FADT
.cst_control
, 8);
1839 if (ACPI_FAILURE(status
)) {
1840 ACPI_EXCEPTION((AE_INFO
, status
,
1841 "Notifying BIOS of _CST ability failed"));
1845 acpi_processor_get_power_info(pr
);
1846 pr
->flags
.power_setup_done
= 1;
1849 * Install the idle handler if processor power management is supported.
1850 * Note that we use previously set idle handler will be used on
1851 * platforms that only support C1.
1853 if (pr
->flags
.power
) {
1854 #ifdef CONFIG_CPU_IDLE
1855 acpi_processor_setup_cpuidle(pr
);
1856 if (cpuidle_register_device(&pr
->power
.dev
))
1860 printk(KERN_INFO PREFIX
"CPU%d (power states:", pr
->id
);
1861 for (i
= 1; i
<= pr
->power
.count
; i
++)
1862 if (pr
->power
.states
[i
].valid
)
1863 printk(" C%d[C%d]", i
,
1864 pr
->power
.states
[i
].type
);
1867 #ifndef CONFIG_CPU_IDLE
1869 pm_idle_save
= pm_idle
;
1870 pm_idle
= acpi_processor_idle
;
1876 entry
= proc_create_data(ACPI_PROCESSOR_FILE_POWER
,
1877 S_IRUGO
, acpi_device_dir(device
),
1878 &acpi_processor_power_fops
,
1879 acpi_driver_data(device
));
1885 int acpi_processor_power_exit(struct acpi_processor
*pr
,
1886 struct acpi_device
*device
)
1888 if (boot_option_idle_override
)
1891 #ifdef CONFIG_CPU_IDLE
1892 cpuidle_unregister_device(&pr
->power
.dev
);
1894 pr
->flags
.power_setup_done
= 0;
1896 if (acpi_device_dir(device
))
1897 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1898 acpi_device_dir(device
));
1900 #ifndef CONFIG_CPU_IDLE
1902 /* Unregister the idle handler when processor #0 is removed. */
1905 pm_idle
= pm_idle_save
;
1908 * We are about to unload the current idle thread pm callback
1909 * (pm_idle), Wait for all processors to update cached/local
1910 * copies of pm_idle before proceeding.
1914 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY
,
1915 &acpi_processor_latency_notifier
);