2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
23 * PCI DMA mapping code partly based on work by Francois Romieu.
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/config.h>
32 #include <linux/module.h>
33 #include <linux/types.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/netdevice.h>
39 #include <linux/hippidevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/init.h>
42 #include <linux/delay.h>
46 #include <asm/system.h>
47 #include <asm/cache.h>
48 #include <asm/byteorder.h>
51 #include <asm/uaccess.h>
53 #define rr_if_busy(dev) netif_queue_stopped(dev)
54 #define rr_if_running(dev) netif_running(dev)
58 #define RUN_AT(x) (jiffies + (x))
61 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
62 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
63 MODULE_LICENSE("GPL");
65 static char version
[] __devinitdata
= "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
68 * Implementation notes:
70 * The DMA engine only allows for DMA within physical 64KB chunks of
71 * memory. The current approach of the driver (and stack) is to use
72 * linear blocks of memory for the skbuffs. However, as the data block
73 * is always the first part of the skb and skbs are 2^n aligned so we
74 * are guarantted to get the whole block within one 64KB align 64KB
77 * On the long term, relying on being able to allocate 64KB linear
78 * chunks of memory is not feasible and the skb handling code and the
79 * stack will need to know about I/O vectors or something similar.
83 * These are checked at init time to see if they are at least 256KB
84 * and increased to 256KB if they are not. This is done to avoid ending
85 * up with socket buffers smaller than the MTU size,
87 extern __u32 sysctl_wmem_max
;
88 extern __u32 sysctl_rmem_max
;
90 static int __devinit
rr_init_one(struct pci_dev
*pdev
,
91 const struct pci_device_id
*ent
)
93 struct net_device
*dev
;
94 static int version_disp
;
96 struct rr_private
*rrpriv
;
101 dev
= alloc_hippi_dev(sizeof(struct rr_private
));
105 ret
= pci_enable_device(pdev
);
111 rrpriv
= netdev_priv(dev
);
113 SET_MODULE_OWNER(dev
);
114 SET_NETDEV_DEV(dev
, &pdev
->dev
);
116 if (pci_request_regions(pdev
, "rrunner")) {
121 pci_set_drvdata(pdev
, dev
);
123 rrpriv
->pci_dev
= pdev
;
125 spin_lock_init(&rrpriv
->lock
);
127 dev
->irq
= pdev
->irq
;
128 dev
->open
= &rr_open
;
129 dev
->hard_start_xmit
= &rr_start_xmit
;
130 dev
->stop
= &rr_close
;
131 dev
->get_stats
= &rr_get_stats
;
132 dev
->do_ioctl
= &rr_ioctl
;
134 dev
->base_addr
= pci_resource_start(pdev
, 0);
136 /* display version info if adapter is found */
138 /* set display flag to TRUE so that */
139 /* we only display this string ONCE */
144 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &pci_latency
);
145 if (pci_latency
<= 0x58){
147 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, pci_latency
);
150 pci_set_master(pdev
);
152 printk(KERN_INFO
"%s: Essential RoadRunner serial HIPPI "
153 "at 0x%08lx, irq %i, PCI latency %i\n", dev
->name
,
154 dev
->base_addr
, dev
->irq
, pci_latency
);
157 * Remap the regs into kernel space.
160 rrpriv
->regs
= ioremap(dev
->base_addr
, 0x1000);
163 printk(KERN_ERR
"%s: Unable to map I/O register, "
164 "RoadRunner will be disabled.\n", dev
->name
);
169 tmpptr
= pci_alloc_consistent(pdev
, TX_TOTAL_SIZE
, &ring_dma
);
170 rrpriv
->tx_ring
= tmpptr
;
171 rrpriv
->tx_ring_dma
= ring_dma
;
178 tmpptr
= pci_alloc_consistent(pdev
, RX_TOTAL_SIZE
, &ring_dma
);
179 rrpriv
->rx_ring
= tmpptr
;
180 rrpriv
->rx_ring_dma
= ring_dma
;
187 tmpptr
= pci_alloc_consistent(pdev
, EVT_RING_SIZE
, &ring_dma
);
188 rrpriv
->evt_ring
= tmpptr
;
189 rrpriv
->evt_ring_dma
= ring_dma
;
197 * Don't access any register before this point!
200 writel(readl(&rrpriv
->regs
->HostCtrl
) | NO_SWAP
,
201 &rrpriv
->regs
->HostCtrl
);
204 * Need to add a case for little-endian 64-bit hosts here.
211 ret
= register_netdev(dev
);
218 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rrpriv
->rx_ring
,
219 rrpriv
->rx_ring_dma
);
221 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rrpriv
->tx_ring
,
222 rrpriv
->tx_ring_dma
);
224 iounmap(rrpriv
->regs
);
226 pci_release_regions(pdev
);
227 pci_set_drvdata(pdev
, NULL
);
235 static void __devexit
rr_remove_one (struct pci_dev
*pdev
)
237 struct net_device
*dev
= pci_get_drvdata(pdev
);
240 struct rr_private
*rr
= netdev_priv(dev
);
242 if (!(readl(&rr
->regs
->HostCtrl
) & NIC_HALTED
)){
243 printk(KERN_ERR
"%s: trying to unload running NIC\n",
245 writel(HALT_NIC
, &rr
->regs
->HostCtrl
);
248 pci_free_consistent(pdev
, EVT_RING_SIZE
, rr
->evt_ring
,
250 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rr
->rx_ring
,
252 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rr
->tx_ring
,
254 unregister_netdev(dev
);
257 pci_release_regions(pdev
);
258 pci_disable_device(pdev
);
259 pci_set_drvdata(pdev
, NULL
);
265 * Commands are considered to be slow, thus there is no reason to
268 static void rr_issue_cmd(struct rr_private
*rrpriv
, struct cmd
*cmd
)
270 struct rr_regs __iomem
*regs
;
275 * This is temporary - it will go away in the final version.
276 * We probably also want to make this function inline.
278 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
279 printk("issuing command for halted NIC, code 0x%x, "
280 "HostCtrl %08x\n", cmd
->code
, readl(®s
->HostCtrl
));
281 if (readl(®s
->Mode
) & FATAL_ERR
)
282 printk("error codes Fail1 %02x, Fail2 %02x\n",
283 readl(®s
->Fail1
), readl(®s
->Fail2
));
286 idx
= rrpriv
->info
->cmd_ctrl
.pi
;
288 writel(*(u32
*)(cmd
), ®s
->CmdRing
[idx
]);
291 idx
= (idx
- 1) % CMD_RING_ENTRIES
;
292 rrpriv
->info
->cmd_ctrl
.pi
= idx
;
295 if (readl(®s
->Mode
) & FATAL_ERR
)
296 printk("error code %02x\n", readl(®s
->Fail1
));
301 * Reset the board in a sensible manner. The NIC is already halted
302 * when we get here and a spin-lock is held.
304 static int rr_reset(struct net_device
*dev
)
306 struct rr_private
*rrpriv
;
307 struct rr_regs __iomem
*regs
;
308 struct eeprom
*hw
= NULL
;
312 rrpriv
= netdev_priv(dev
);
315 rr_load_firmware(dev
);
317 writel(0x01000000, ®s
->TX_state
);
318 writel(0xff800000, ®s
->RX_state
);
319 writel(0, ®s
->AssistState
);
320 writel(CLEAR_INTA
, ®s
->LocalCtrl
);
321 writel(0x01, ®s
->BrkPt
);
322 writel(0, ®s
->Timer
);
323 writel(0, ®s
->TimerRef
);
324 writel(RESET_DMA
, ®s
->DmaReadState
);
325 writel(RESET_DMA
, ®s
->DmaWriteState
);
326 writel(0, ®s
->DmaWriteHostHi
);
327 writel(0, ®s
->DmaWriteHostLo
);
328 writel(0, ®s
->DmaReadHostHi
);
329 writel(0, ®s
->DmaReadHostLo
);
330 writel(0, ®s
->DmaReadLen
);
331 writel(0, ®s
->DmaWriteLen
);
332 writel(0, ®s
->DmaWriteLcl
);
333 writel(0, ®s
->DmaWriteIPchecksum
);
334 writel(0, ®s
->DmaReadLcl
);
335 writel(0, ®s
->DmaReadIPchecksum
);
336 writel(0, ®s
->PciState
);
337 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
338 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_SWAP
, ®s
->Mode
);
339 #elif (BITS_PER_LONG == 64)
340 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
342 writel(SWAP_DATA
| PTR32BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
347 * Don't worry, this is just black magic.
349 writel(0xdf000, ®s
->RxBase
);
350 writel(0xdf000, ®s
->RxPrd
);
351 writel(0xdf000, ®s
->RxCon
);
352 writel(0xce000, ®s
->TxBase
);
353 writel(0xce000, ®s
->TxPrd
);
354 writel(0xce000, ®s
->TxCon
);
355 writel(0, ®s
->RxIndPro
);
356 writel(0, ®s
->RxIndCon
);
357 writel(0, ®s
->RxIndRef
);
358 writel(0, ®s
->TxIndPro
);
359 writel(0, ®s
->TxIndCon
);
360 writel(0, ®s
->TxIndRef
);
361 writel(0xcc000, ®s
->pad10
[0]);
362 writel(0, ®s
->DrCmndPro
);
363 writel(0, ®s
->DrCmndCon
);
364 writel(0, ®s
->DwCmndPro
);
365 writel(0, ®s
->DwCmndCon
);
366 writel(0, ®s
->DwCmndRef
);
367 writel(0, ®s
->DrDataPro
);
368 writel(0, ®s
->DrDataCon
);
369 writel(0, ®s
->DrDataRef
);
370 writel(0, ®s
->DwDataPro
);
371 writel(0, ®s
->DwDataCon
);
372 writel(0, ®s
->DwDataRef
);
375 writel(0xffffffff, ®s
->MbEvent
);
376 writel(0, ®s
->Event
);
378 writel(0, ®s
->TxPi
);
379 writel(0, ®s
->IpRxPi
);
381 writel(0, ®s
->EvtCon
);
382 writel(0, ®s
->EvtPrd
);
384 rrpriv
->info
->evt_ctrl
.pi
= 0;
386 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
387 writel(0, ®s
->CmdRing
[i
]);
390 * Why 32 ? is this not cache line size dependent?
392 writel(RBURST_64
|WBURST_64
, ®s
->PciState
);
395 start_pc
= rr_read_eeprom_word(rrpriv
, &hw
->rncd_info
.FwStart
);
398 printk("%s: Executing firmware at address 0x%06x\n",
399 dev
->name
, start_pc
);
402 writel(start_pc
+ 0x800, ®s
->Pc
);
406 writel(start_pc
, ®s
->Pc
);
414 * Read a string from the EEPROM.
416 static unsigned int rr_read_eeprom(struct rr_private
*rrpriv
,
417 unsigned long offset
,
419 unsigned long length
)
421 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
422 u32 misc
, io
, host
, i
;
424 io
= readl(®s
->ExtIo
);
425 writel(0, ®s
->ExtIo
);
426 misc
= readl(®s
->LocalCtrl
);
427 writel(0, ®s
->LocalCtrl
);
428 host
= readl(®s
->HostCtrl
);
429 writel(host
| HALT_NIC
, ®s
->HostCtrl
);
432 for (i
= 0; i
< length
; i
++){
433 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
435 buf
[i
] = (readl(®s
->WinData
) >> 24) & 0xff;
439 writel(host
, ®s
->HostCtrl
);
440 writel(misc
, ®s
->LocalCtrl
);
441 writel(io
, ®s
->ExtIo
);
448 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
449 * it to our CPU byte-order.
451 static u32
rr_read_eeprom_word(struct rr_private
*rrpriv
,
456 if ((rr_read_eeprom(rrpriv
, (unsigned long)offset
,
457 (char *)&word
, 4) == 4))
458 return be32_to_cpu(word
);
464 * Write a string to the EEPROM.
466 * This is only called when the firmware is not running.
468 static unsigned int write_eeprom(struct rr_private
*rrpriv
,
469 unsigned long offset
,
471 unsigned long length
)
473 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
474 u32 misc
, io
, data
, i
, j
, ready
, error
= 0;
476 io
= readl(®s
->ExtIo
);
477 writel(0, ®s
->ExtIo
);
478 misc
= readl(®s
->LocalCtrl
);
479 writel(ENABLE_EEPROM_WRITE
, ®s
->LocalCtrl
);
482 for (i
= 0; i
< length
; i
++){
483 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
487 * Only try to write the data if it is not the same
490 if ((readl(®s
->WinData
) & 0xff000000) != data
){
491 writel(data
, ®s
->WinData
);
497 if ((readl(®s
->WinData
) & 0xff000000) ==
502 printk("data mismatch: %08x, "
503 "WinData %08x\n", data
,
504 readl(®s
->WinData
));
512 writel(misc
, ®s
->LocalCtrl
);
513 writel(io
, ®s
->ExtIo
);
520 static int __init
rr_init(struct net_device
*dev
)
522 struct rr_private
*rrpriv
;
523 struct rr_regs __iomem
*regs
;
524 struct eeprom
*hw
= NULL
;
528 rrpriv
= netdev_priv(dev
);
531 rev
= readl(®s
->FwRev
);
532 rrpriv
->fw_rev
= rev
;
533 if (rev
> 0x00020024)
534 printk(" Firmware revision: %i.%i.%i\n", (rev
>> 16),
535 ((rev
>> 8) & 0xff), (rev
& 0xff));
536 else if (rev
>= 0x00020000) {
537 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
538 "later is recommended)\n", (rev
>> 16),
539 ((rev
>> 8) & 0xff), (rev
& 0xff));
541 printk(" Firmware revision too old: %i.%i.%i, please "
542 "upgrade to 2.0.37 or later.\n",
543 (rev
>> 16), ((rev
>> 8) & 0xff), (rev
& 0xff));
547 printk(" Maximum receive rings %i\n", readl(®s
->MaxRxRng
));
551 * Read the hardware address from the eeprom. The HW address
552 * is not really necessary for HIPPI but awfully convenient.
553 * The pointer arithmetic to put it in dev_addr is ugly, but
554 * Donald Becker does it this way for the GigE version of this
555 * card and it's shorter and more portable than any
556 * other method I've seen. -VAL
559 *(u16
*)(dev
->dev_addr
) =
560 htons(rr_read_eeprom_word(rrpriv
, &hw
->manf
.BoardULA
));
561 *(u32
*)(dev
->dev_addr
+2) =
562 htonl(rr_read_eeprom_word(rrpriv
, &hw
->manf
.BoardULA
[4]));
566 for (i
= 0; i
< 5; i
++)
567 printk("%2.2x:", dev
->dev_addr
[i
]);
568 printk("%2.2x\n", dev
->dev_addr
[i
]);
570 sram_size
= rr_read_eeprom_word(rrpriv
, (void *)8);
571 printk(" SRAM size 0x%06x\n", sram_size
);
573 if (sysctl_rmem_max
< 262144){
574 printk(" Receive socket buffer limit too low (%i), "
575 "setting to 262144\n", sysctl_rmem_max
);
576 sysctl_rmem_max
= 262144;
579 if (sysctl_wmem_max
< 262144){
580 printk(" Transmit socket buffer limit too low (%i), "
581 "setting to 262144\n", sysctl_wmem_max
);
582 sysctl_wmem_max
= 262144;
589 static int rr_init1(struct net_device
*dev
)
591 struct rr_private
*rrpriv
;
592 struct rr_regs __iomem
*regs
;
593 unsigned long myjif
, flags
;
599 rrpriv
= netdev_priv(dev
);
602 spin_lock_irqsave(&rrpriv
->lock
, flags
);
604 hostctrl
= readl(®s
->HostCtrl
);
605 writel(hostctrl
| HALT_NIC
| RR_CLEAR_INT
, ®s
->HostCtrl
);
608 if (hostctrl
& PARITY_ERR
){
609 printk("%s: Parity error halting NIC - this is serious!\n",
611 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
616 set_rxaddr(regs
, rrpriv
->rx_ctrl_dma
);
617 set_infoaddr(regs
, rrpriv
->info_dma
);
619 rrpriv
->info
->evt_ctrl
.entry_size
= sizeof(struct event
);
620 rrpriv
->info
->evt_ctrl
.entries
= EVT_RING_ENTRIES
;
621 rrpriv
->info
->evt_ctrl
.mode
= 0;
622 rrpriv
->info
->evt_ctrl
.pi
= 0;
623 set_rraddr(&rrpriv
->info
->evt_ctrl
.rngptr
, rrpriv
->evt_ring_dma
);
625 rrpriv
->info
->cmd_ctrl
.entry_size
= sizeof(struct cmd
);
626 rrpriv
->info
->cmd_ctrl
.entries
= CMD_RING_ENTRIES
;
627 rrpriv
->info
->cmd_ctrl
.mode
= 0;
628 rrpriv
->info
->cmd_ctrl
.pi
= 15;
630 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++) {
631 writel(0, ®s
->CmdRing
[i
]);
634 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
635 rrpriv
->tx_ring
[i
].size
= 0;
636 set_rraddr(&rrpriv
->tx_ring
[i
].addr
, 0);
637 rrpriv
->tx_skbuff
[i
] = NULL
;
639 rrpriv
->info
->tx_ctrl
.entry_size
= sizeof(struct tx_desc
);
640 rrpriv
->info
->tx_ctrl
.entries
= TX_RING_ENTRIES
;
641 rrpriv
->info
->tx_ctrl
.mode
= 0;
642 rrpriv
->info
->tx_ctrl
.pi
= 0;
643 set_rraddr(&rrpriv
->info
->tx_ctrl
.rngptr
, rrpriv
->tx_ring_dma
);
646 * Set dirty_tx before we start receiving interrupts, otherwise
647 * the interrupt handler might think it is supposed to process
648 * tx ints before we are up and running, which may cause a null
649 * pointer access in the int handler.
653 rrpriv
->dirty_rx
= rrpriv
->dirty_tx
= 0;
658 writel(0x5000, ®s
->ConRetry
);
659 writel(0x100, ®s
->ConRetryTmr
);
660 writel(0x500000, ®s
->ConTmout
);
661 writel(0x60, ®s
->IntrTmr
);
662 writel(0x500000, ®s
->TxDataMvTimeout
);
663 writel(0x200000, ®s
->RxDataMvTimeout
);
664 writel(0x80, ®s
->WriteDmaThresh
);
665 writel(0x80, ®s
->ReadDmaThresh
);
667 rrpriv
->fw_running
= 0;
670 hostctrl
&= ~(HALT_NIC
| INVALID_INST_B
| PARITY_ERR
);
671 writel(hostctrl
, ®s
->HostCtrl
);
674 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
676 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
680 rrpriv
->rx_ring
[i
].mode
= 0;
681 skb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
, GFP_ATOMIC
);
683 printk(KERN_WARNING
"%s: Unable to allocate memory "
684 "for receive ring - halting NIC\n", dev
->name
);
688 rrpriv
->rx_skbuff
[i
] = skb
;
689 addr
= pci_map_single(rrpriv
->pci_dev
, skb
->data
,
690 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
692 * Sanity test to see if we conflict with the DMA
693 * limitations of the Roadrunner.
695 if ((((unsigned long)skb
->data
) & 0xfff) > ~65320)
696 printk("skb alloc error\n");
698 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, addr
);
699 rrpriv
->rx_ring
[i
].size
= dev
->mtu
+ HIPPI_HLEN
;
702 rrpriv
->rx_ctrl
[4].entry_size
= sizeof(struct rx_desc
);
703 rrpriv
->rx_ctrl
[4].entries
= RX_RING_ENTRIES
;
704 rrpriv
->rx_ctrl
[4].mode
= 8;
705 rrpriv
->rx_ctrl
[4].pi
= 0;
707 set_rraddr(&rrpriv
->rx_ctrl
[4].rngptr
, rrpriv
->rx_ring_dma
);
712 * Now start the FirmWare.
714 cmd
.code
= C_START_FW
;
718 rr_issue_cmd(rrpriv
, &cmd
);
721 * Give the FirmWare time to chew on the `get running' command.
723 myjif
= jiffies
+ 5 * HZ
;
724 while (time_before(jiffies
, myjif
) && !rrpriv
->fw_running
)
727 netif_start_queue(dev
);
733 * We might have gotten here because we are out of memory,
734 * make sure we release everything we allocated before failing
736 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
737 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
740 pci_unmap_single(rrpriv
->pci_dev
,
741 rrpriv
->rx_ring
[i
].addr
.addrlo
,
742 dev
->mtu
+ HIPPI_HLEN
,
744 rrpriv
->rx_ring
[i
].size
= 0;
745 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, 0);
747 rrpriv
->rx_skbuff
[i
] = NULL
;
755 * All events are considered to be slow (RX/TX ints do not generate
756 * events) and are handled here, outside the main interrupt handler,
757 * to reduce the size of the handler.
759 static u32
rr_handle_event(struct net_device
*dev
, u32 prodidx
, u32 eidx
)
761 struct rr_private
*rrpriv
;
762 struct rr_regs __iomem
*regs
;
765 rrpriv
= netdev_priv(dev
);
768 while (prodidx
!= eidx
){
769 switch (rrpriv
->evt_ring
[eidx
].code
){
771 tmp
= readl(®s
->FwRev
);
772 printk(KERN_INFO
"%s: Firmware revision %i.%i.%i "
773 "up and running\n", dev
->name
,
774 (tmp
>> 16), ((tmp
>> 8) & 0xff), (tmp
& 0xff));
775 rrpriv
->fw_running
= 1;
776 writel(RX_RING_ENTRIES
- 1, ®s
->IpRxPi
);
780 printk(KERN_INFO
"%s: Optical link ON\n", dev
->name
);
783 printk(KERN_INFO
"%s: Optical link OFF\n", dev
->name
);
786 printk(KERN_WARNING
"%s: RX data not moving\n",
790 printk(KERN_INFO
"%s: The watchdog is here to see "
794 printk(KERN_ERR
"%s: HIPPI Internal NIC error\n",
796 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
801 printk(KERN_ERR
"%s: Host software error\n",
803 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
811 printk(KERN_WARNING
"%s: Connection rejected\n",
813 rrpriv
->stats
.tx_aborted_errors
++;
816 printk(KERN_WARNING
"%s: Connection timeout\n",
820 printk(KERN_WARNING
"%s: HIPPI disconnect error\n",
822 rrpriv
->stats
.tx_aborted_errors
++;
825 printk(KERN_ERR
"%s: HIPPI Internal Parity error\n",
827 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
832 printk(KERN_WARNING
"%s: Transmitter idle\n",
836 printk(KERN_WARNING
"%s: Link lost during transmit\n",
838 rrpriv
->stats
.tx_aborted_errors
++;
839 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
844 printk(KERN_ERR
"%s: Invalid send ring block\n",
846 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
851 printk(KERN_ERR
"%s: Invalid send buffer address\n",
853 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
858 printk(KERN_ERR
"%s: Invalid descriptor address\n",
860 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
868 printk(KERN_INFO
"%s: Receive ring full\n", dev
->name
);
872 printk(KERN_WARNING
"%s: Receive parity error\n",
876 printk(KERN_WARNING
"%s: Receive LLRC error\n",
880 printk(KERN_WARNING
"%s: Receive packet length "
881 "error\n", dev
->name
);
884 printk(KERN_WARNING
"%s: Data checksum error\n",
888 printk(KERN_WARNING
"%s: Unexpected short burst "
889 "error\n", dev
->name
);
892 printk(KERN_WARNING
"%s: Recv. state transition"
893 " error\n", dev
->name
);
896 printk(KERN_WARNING
"%s: Unexpected data error\n",
900 printk(KERN_WARNING
"%s: Link lost error\n",
904 printk(KERN_WARNING
"%s: Framming Error\n",
908 printk(KERN_WARNING
"%s: Flag sync. lost during"
909 "packet\n", dev
->name
);
912 printk(KERN_ERR
"%s: Invalid receive buffer "
913 "address\n", dev
->name
);
914 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
919 printk(KERN_ERR
"%s: Invalid receive descriptor "
920 "address\n", dev
->name
);
921 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
926 printk(KERN_ERR
"%s: Invalid ring block\n",
928 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
933 /* Label packet to be dropped.
934 * Actual dropping occurs in rx
937 * The index of packet we get to drop is
938 * the index of the packet following
939 * the bad packet. -kbf
942 u16 index
= rrpriv
->evt_ring
[eidx
].index
;
943 index
= (index
+ (RX_RING_ENTRIES
- 1)) %
945 rrpriv
->rx_ring
[index
].mode
|=
946 (PACKET_BAD
| PACKET_END
);
950 printk(KERN_WARNING
"%s: Unhandled event 0x%02x\n",
951 dev
->name
, rrpriv
->evt_ring
[eidx
].code
);
953 eidx
= (eidx
+ 1) % EVT_RING_ENTRIES
;
956 rrpriv
->info
->evt_ctrl
.pi
= eidx
;
962 static void rx_int(struct net_device
*dev
, u32 rxlimit
, u32 index
)
964 struct rr_private
*rrpriv
= netdev_priv(dev
);
965 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
968 struct rx_desc
*desc
;
971 desc
= &(rrpriv
->rx_ring
[index
]);
972 pkt_len
= desc
->size
;
974 printk("index %i, rxlimit %i\n", index
, rxlimit
);
975 printk("len %x, mode %x\n", pkt_len
, desc
->mode
);
977 if ( (rrpriv
->rx_ring
[index
].mode
& PACKET_BAD
) == PACKET_BAD
){
978 rrpriv
->stats
.rx_dropped
++;
983 struct sk_buff
*skb
, *rx_skb
;
985 rx_skb
= rrpriv
->rx_skbuff
[index
];
987 if (pkt_len
< PKT_COPY_THRESHOLD
) {
988 skb
= alloc_skb(pkt_len
, GFP_ATOMIC
);
990 printk(KERN_WARNING
"%s: Unable to allocate skb (%i bytes), deferring packet\n", dev
->name
, pkt_len
);
991 rrpriv
->stats
.rx_dropped
++;
994 pci_dma_sync_single_for_cpu(rrpriv
->pci_dev
,
999 memcpy(skb_put(skb
, pkt_len
),
1000 rx_skb
->data
, pkt_len
);
1002 pci_dma_sync_single_for_device(rrpriv
->pci_dev
,
1005 PCI_DMA_FROMDEVICE
);
1008 struct sk_buff
*newskb
;
1010 newskb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
,
1015 pci_unmap_single(rrpriv
->pci_dev
,
1016 desc
->addr
.addrlo
, dev
->mtu
+
1017 HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
1019 skb_put(skb
, pkt_len
);
1020 rrpriv
->rx_skbuff
[index
] = newskb
;
1021 addr
= pci_map_single(rrpriv
->pci_dev
,
1023 dev
->mtu
+ HIPPI_HLEN
,
1024 PCI_DMA_FROMDEVICE
);
1025 set_rraddr(&desc
->addr
, addr
);
1027 printk("%s: Out of memory, deferring "
1028 "packet\n", dev
->name
);
1029 rrpriv
->stats
.rx_dropped
++;
1034 skb
->protocol
= hippi_type_trans(skb
, dev
);
1036 netif_rx(skb
); /* send it up */
1038 dev
->last_rx
= jiffies
;
1039 rrpriv
->stats
.rx_packets
++;
1040 rrpriv
->stats
.rx_bytes
+= pkt_len
;
1044 desc
->size
= dev
->mtu
+ HIPPI_HLEN
;
1046 if ((index
& 7) == 7)
1047 writel(index
, ®s
->IpRxPi
);
1049 index
= (index
+ 1) % RX_RING_ENTRIES
;
1050 } while(index
!= rxlimit
);
1052 rrpriv
->cur_rx
= index
;
1057 static irqreturn_t
rr_interrupt(int irq
, void *dev_id
, struct pt_regs
*ptregs
)
1059 struct rr_private
*rrpriv
;
1060 struct rr_regs __iomem
*regs
;
1061 struct net_device
*dev
= (struct net_device
*)dev_id
;
1062 u32 prodidx
, rxindex
, eidx
, txcsmr
, rxlimit
, txcon
;
1064 rrpriv
= netdev_priv(dev
);
1065 regs
= rrpriv
->regs
;
1067 if (!(readl(®s
->HostCtrl
) & RR_INT
))
1070 spin_lock(&rrpriv
->lock
);
1072 prodidx
= readl(®s
->EvtPrd
);
1073 txcsmr
= (prodidx
>> 8) & 0xff;
1074 rxlimit
= (prodidx
>> 16) & 0xff;
1078 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev
->name
,
1079 prodidx
, rrpriv
->info
->evt_ctrl
.pi
);
1082 * Order here is important. We must handle events
1083 * before doing anything else in order to catch
1084 * such things as LLRC errors, etc -kbf
1087 eidx
= rrpriv
->info
->evt_ctrl
.pi
;
1088 if (prodidx
!= eidx
)
1089 eidx
= rr_handle_event(dev
, prodidx
, eidx
);
1091 rxindex
= rrpriv
->cur_rx
;
1092 if (rxindex
!= rxlimit
)
1093 rx_int(dev
, rxlimit
, rxindex
);
1095 txcon
= rrpriv
->dirty_tx
;
1096 if (txcsmr
!= txcon
) {
1098 /* Due to occational firmware TX producer/consumer out
1099 * of sync. error need to check entry in ring -kbf
1101 if(rrpriv
->tx_skbuff
[txcon
]){
1102 struct tx_desc
*desc
;
1103 struct sk_buff
*skb
;
1105 desc
= &(rrpriv
->tx_ring
[txcon
]);
1106 skb
= rrpriv
->tx_skbuff
[txcon
];
1108 rrpriv
->stats
.tx_packets
++;
1109 rrpriv
->stats
.tx_bytes
+= skb
->len
;
1111 pci_unmap_single(rrpriv
->pci_dev
,
1112 desc
->addr
.addrlo
, skb
->len
,
1114 dev_kfree_skb_irq(skb
);
1116 rrpriv
->tx_skbuff
[txcon
] = NULL
;
1118 set_rraddr(&rrpriv
->tx_ring
[txcon
].addr
, 0);
1121 txcon
= (txcon
+ 1) % TX_RING_ENTRIES
;
1122 } while (txcsmr
!= txcon
);
1125 rrpriv
->dirty_tx
= txcon
;
1126 if (rrpriv
->tx_full
&& rr_if_busy(dev
) &&
1127 (((rrpriv
->info
->tx_ctrl
.pi
+ 1) % TX_RING_ENTRIES
)
1128 != rrpriv
->dirty_tx
)){
1129 rrpriv
->tx_full
= 0;
1130 netif_wake_queue(dev
);
1134 eidx
|= ((txcsmr
<< 8) | (rxlimit
<< 16));
1135 writel(eidx
, ®s
->EvtCon
);
1138 spin_unlock(&rrpriv
->lock
);
1142 static inline void rr_raz_tx(struct rr_private
*rrpriv
,
1143 struct net_device
*dev
)
1147 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
1148 struct sk_buff
*skb
= rrpriv
->tx_skbuff
[i
];
1151 struct tx_desc
*desc
= &(rrpriv
->tx_ring
[i
]);
1153 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1154 skb
->len
, PCI_DMA_TODEVICE
);
1156 set_rraddr(&desc
->addr
, 0);
1158 rrpriv
->tx_skbuff
[i
] = NULL
;
1164 static inline void rr_raz_rx(struct rr_private
*rrpriv
,
1165 struct net_device
*dev
)
1169 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
1170 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
1173 struct rx_desc
*desc
= &(rrpriv
->rx_ring
[i
]);
1175 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1176 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
1178 set_rraddr(&desc
->addr
, 0);
1180 rrpriv
->rx_skbuff
[i
] = NULL
;
1185 static void rr_timer(unsigned long data
)
1187 struct net_device
*dev
= (struct net_device
*)data
;
1188 struct rr_private
*rrpriv
= netdev_priv(dev
);
1189 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1190 unsigned long flags
;
1192 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
1193 printk("%s: Restarting nic\n", dev
->name
);
1194 memset(rrpriv
->rx_ctrl
, 0, 256 * sizeof(struct ring_ctrl
));
1195 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1198 rr_raz_tx(rrpriv
, dev
);
1199 rr_raz_rx(rrpriv
, dev
);
1201 if (rr_init1(dev
)) {
1202 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1203 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
1205 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1208 rrpriv
->timer
.expires
= RUN_AT(5*HZ
);
1209 add_timer(&rrpriv
->timer
);
1213 static int rr_open(struct net_device
*dev
)
1215 struct rr_private
*rrpriv
= netdev_priv(dev
);
1216 struct pci_dev
*pdev
= rrpriv
->pci_dev
;
1217 struct rr_regs __iomem
*regs
;
1219 unsigned long flags
;
1220 dma_addr_t dma_addr
;
1222 regs
= rrpriv
->regs
;
1224 if (rrpriv
->fw_rev
< 0x00020000) {
1225 printk(KERN_WARNING
"%s: trying to configure device with "
1226 "obsolete firmware\n", dev
->name
);
1231 rrpriv
->rx_ctrl
= pci_alloc_consistent(pdev
,
1232 256 * sizeof(struct ring_ctrl
),
1234 if (!rrpriv
->rx_ctrl
) {
1238 rrpriv
->rx_ctrl_dma
= dma_addr
;
1239 memset(rrpriv
->rx_ctrl
, 0, 256*sizeof(struct ring_ctrl
));
1241 rrpriv
->info
= pci_alloc_consistent(pdev
, sizeof(struct rr_info
),
1243 if (!rrpriv
->info
) {
1247 rrpriv
->info_dma
= dma_addr
;
1248 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1251 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1252 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1253 readl(®s
->HostCtrl
);
1254 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1256 if (request_irq(dev
->irq
, rr_interrupt
, SA_SHIRQ
, dev
->name
, dev
)) {
1257 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1258 dev
->name
, dev
->irq
);
1263 if ((ecode
= rr_init1(dev
)))
1266 /* Set the timer to switch to check for link beat and perhaps switch
1267 to an alternate media type. */
1268 init_timer(&rrpriv
->timer
);
1269 rrpriv
->timer
.expires
= RUN_AT(5*HZ
); /* 5 sec. watchdog */
1270 rrpriv
->timer
.data
= (unsigned long)dev
;
1271 rrpriv
->timer
.function
= &rr_timer
; /* timer handler */
1272 add_timer(&rrpriv
->timer
);
1274 netif_start_queue(dev
);
1279 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1280 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1281 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1284 pci_free_consistent(pdev
, sizeof(struct rr_info
), rrpriv
->info
,
1286 rrpriv
->info
= NULL
;
1288 if (rrpriv
->rx_ctrl
) {
1289 pci_free_consistent(pdev
, sizeof(struct ring_ctrl
),
1290 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1291 rrpriv
->rx_ctrl
= NULL
;
1294 netif_stop_queue(dev
);
1300 static void rr_dump(struct net_device
*dev
)
1302 struct rr_private
*rrpriv
;
1303 struct rr_regs __iomem
*regs
;
1308 rrpriv
= netdev_priv(dev
);
1309 regs
= rrpriv
->regs
;
1311 printk("%s: dumping NIC TX rings\n", dev
->name
);
1313 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1314 readl(®s
->RxPrd
), readl(®s
->TxPrd
),
1315 readl(®s
->EvtPrd
), readl(®s
->TxPi
),
1316 rrpriv
->info
->tx_ctrl
.pi
);
1318 printk("Error code 0x%x\n", readl(®s
->Fail1
));
1320 index
= (((readl(®s
->EvtPrd
) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES
;
1321 cons
= rrpriv
->dirty_tx
;
1322 printk("TX ring index %i, TX consumer %i\n",
1325 if (rrpriv
->tx_skbuff
[index
]){
1326 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[index
]->len
);
1327 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index
, len
, rrpriv
->tx_ring
[index
].size
);
1328 for (i
= 0; i
< len
; i
++){
1331 printk("%02x ", (unsigned char) rrpriv
->tx_skbuff
[index
]->data
[i
]);
1336 if (rrpriv
->tx_skbuff
[cons
]){
1337 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[cons
]->len
);
1338 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons
, len
, rrpriv
->tx_skbuff
[cons
]->len
);
1339 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1340 rrpriv
->tx_ring
[cons
].mode
,
1341 rrpriv
->tx_ring
[cons
].size
,
1342 (unsigned long long) rrpriv
->tx_ring
[cons
].addr
.addrlo
,
1343 (unsigned long)rrpriv
->tx_skbuff
[cons
]->data
,
1344 (unsigned int)rrpriv
->tx_skbuff
[cons
]->truesize
);
1345 for (i
= 0; i
< len
; i
++){
1348 printk("%02x ", (unsigned char)rrpriv
->tx_ring
[cons
].size
);
1353 printk("dumping TX ring info:\n");
1354 for (i
= 0; i
< TX_RING_ENTRIES
; i
++)
1355 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1356 rrpriv
->tx_ring
[i
].mode
,
1357 rrpriv
->tx_ring
[i
].size
,
1358 (unsigned long long) rrpriv
->tx_ring
[i
].addr
.addrlo
);
1363 static int rr_close(struct net_device
*dev
)
1365 struct rr_private
*rrpriv
;
1366 struct rr_regs __iomem
*regs
;
1367 unsigned long flags
;
1371 netif_stop_queue(dev
);
1373 rrpriv
= netdev_priv(dev
);
1374 regs
= rrpriv
->regs
;
1377 * Lock to make sure we are not cleaning up while another CPU
1378 * is handling interrupts.
1380 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1382 tmp
= readl(®s
->HostCtrl
);
1383 if (tmp
& NIC_HALTED
){
1384 printk("%s: NIC already halted\n", dev
->name
);
1387 tmp
|= HALT_NIC
| RR_CLEAR_INT
;
1388 writel(tmp
, ®s
->HostCtrl
);
1389 readl(®s
->HostCtrl
);
1392 rrpriv
->fw_running
= 0;
1394 del_timer_sync(&rrpriv
->timer
);
1396 writel(0, ®s
->TxPi
);
1397 writel(0, ®s
->IpRxPi
);
1399 writel(0, ®s
->EvtCon
);
1400 writel(0, ®s
->EvtPrd
);
1402 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1403 writel(0, ®s
->CmdRing
[i
]);
1405 rrpriv
->info
->tx_ctrl
.entries
= 0;
1406 rrpriv
->info
->cmd_ctrl
.pi
= 0;
1407 rrpriv
->info
->evt_ctrl
.pi
= 0;
1408 rrpriv
->rx_ctrl
[4].entries
= 0;
1410 rr_raz_tx(rrpriv
, dev
);
1411 rr_raz_rx(rrpriv
, dev
);
1413 pci_free_consistent(rrpriv
->pci_dev
, 256 * sizeof(struct ring_ctrl
),
1414 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1415 rrpriv
->rx_ctrl
= NULL
;
1417 pci_free_consistent(rrpriv
->pci_dev
, sizeof(struct rr_info
),
1418 rrpriv
->info
, rrpriv
->info_dma
);
1419 rrpriv
->info
= NULL
;
1421 free_irq(dev
->irq
, dev
);
1422 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1428 static int rr_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1430 struct rr_private
*rrpriv
= netdev_priv(dev
);
1431 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1432 struct hippi_cb
*hcb
= (struct hippi_cb
*) skb
->cb
;
1433 struct ring_ctrl
*txctrl
;
1434 unsigned long flags
;
1435 u32 index
, len
= skb
->len
;
1437 struct sk_buff
*new_skb
;
1439 if (readl(®s
->Mode
) & FATAL_ERR
)
1440 printk("error codes Fail1 %02x, Fail2 %02x\n",
1441 readl(®s
->Fail1
), readl(®s
->Fail2
));
1444 * We probably need to deal with tbusy here to prevent overruns.
1447 if (skb_headroom(skb
) < 8){
1448 printk("incoming skb too small - reallocating\n");
1449 if (!(new_skb
= dev_alloc_skb(len
+ 8))) {
1451 netif_wake_queue(dev
);
1454 skb_reserve(new_skb
, 8);
1455 skb_put(new_skb
, len
);
1456 memcpy(new_skb
->data
, skb
->data
, len
);
1461 ifield
= (u32
*)skb_push(skb
, 8);
1464 ifield
[1] = hcb
->ifield
;
1467 * We don't need the lock before we are actually going to start
1468 * fiddling with the control blocks.
1470 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1472 txctrl
= &rrpriv
->info
->tx_ctrl
;
1476 rrpriv
->tx_skbuff
[index
] = skb
;
1477 set_rraddr(&rrpriv
->tx_ring
[index
].addr
, pci_map_single(
1478 rrpriv
->pci_dev
, skb
->data
, len
+ 8, PCI_DMA_TODEVICE
));
1479 rrpriv
->tx_ring
[index
].size
= len
+ 8; /* include IFIELD */
1480 rrpriv
->tx_ring
[index
].mode
= PACKET_START
| PACKET_END
;
1481 txctrl
->pi
= (index
+ 1) % TX_RING_ENTRIES
;
1483 writel(txctrl
->pi
, ®s
->TxPi
);
1485 if (txctrl
->pi
== rrpriv
->dirty_tx
){
1486 rrpriv
->tx_full
= 1;
1487 netif_stop_queue(dev
);
1490 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1492 dev
->trans_start
= jiffies
;
1497 static struct net_device_stats
*rr_get_stats(struct net_device
*dev
)
1499 struct rr_private
*rrpriv
;
1501 rrpriv
= netdev_priv(dev
);
1503 return(&rrpriv
->stats
);
1508 * Read the firmware out of the EEPROM and put it into the SRAM
1509 * (or from user space - later)
1511 * This operation requires the NIC to be halted and is performed with
1512 * interrupts disabled and with the spinlock hold.
1514 static int rr_load_firmware(struct net_device
*dev
)
1516 struct rr_private
*rrpriv
;
1517 struct rr_regs __iomem
*regs
;
1518 unsigned long eptr
, segptr
;
1520 u32 localctrl
, sptr
, len
, tmp
;
1521 u32 p2len
, p2size
, nr_seg
, revision
, io
, sram_size
;
1522 struct eeprom
*hw
= NULL
;
1524 rrpriv
= netdev_priv(dev
);
1525 regs
= rrpriv
->regs
;
1527 if (dev
->flags
& IFF_UP
)
1530 if (!(readl(®s
->HostCtrl
) & NIC_HALTED
)){
1531 printk("%s: Trying to load firmware to a running NIC.\n",
1536 localctrl
= readl(®s
->LocalCtrl
);
1537 writel(0, ®s
->LocalCtrl
);
1539 writel(0, ®s
->EvtPrd
);
1540 writel(0, ®s
->RxPrd
);
1541 writel(0, ®s
->TxPrd
);
1544 * First wipe the entire SRAM, otherwise we might run into all
1545 * kinds of trouble ... sigh, this took almost all afternoon
1548 io
= readl(®s
->ExtIo
);
1549 writel(0, ®s
->ExtIo
);
1550 sram_size
= rr_read_eeprom_word(rrpriv
, (void *)8);
1552 for (i
= 200; i
< sram_size
/ 4; i
++){
1553 writel(i
* 4, ®s
->WinBase
);
1555 writel(0, ®s
->WinData
);
1558 writel(io
, ®s
->ExtIo
);
1561 eptr
= (unsigned long)rr_read_eeprom_word(rrpriv
,
1562 &hw
->rncd_info
.AddrRunCodeSegs
);
1563 eptr
= ((eptr
& 0x1fffff) >> 3);
1565 p2len
= rr_read_eeprom_word(rrpriv
, (void *)(0x83*4));
1566 p2len
= (p2len
<< 2);
1567 p2size
= rr_read_eeprom_word(rrpriv
, (void *)(0x84*4));
1568 p2size
= ((p2size
& 0x1fffff) >> 3);
1570 if ((eptr
< p2size
) || (eptr
> (p2size
+ p2len
))){
1571 printk("%s: eptr is invalid\n", dev
->name
);
1575 revision
= rr_read_eeprom_word(rrpriv
, &hw
->manf
.HeaderFmt
);
1578 printk("%s: invalid firmware format (%i)\n",
1579 dev
->name
, revision
);
1583 nr_seg
= rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1586 printk("%s: nr_seg %i\n", dev
->name
, nr_seg
);
1589 for (i
= 0; i
< nr_seg
; i
++){
1590 sptr
= rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1592 len
= rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1594 segptr
= (unsigned long)rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1595 segptr
= ((segptr
& 0x1fffff) >> 3);
1598 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1599 dev
->name
, i
, sptr
, len
, segptr
);
1601 for (j
= 0; j
< len
; j
++){
1602 tmp
= rr_read_eeprom_word(rrpriv
, (void *)segptr
);
1603 writel(sptr
, ®s
->WinBase
);
1605 writel(tmp
, ®s
->WinData
);
1613 writel(localctrl
, ®s
->LocalCtrl
);
1619 static int rr_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1621 struct rr_private
*rrpriv
;
1622 unsigned char *image
, *oldimage
;
1623 unsigned long flags
;
1625 int error
= -EOPNOTSUPP
;
1627 rrpriv
= netdev_priv(dev
);
1631 if (!capable(CAP_SYS_RAWIO
)){
1635 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1637 printk(KERN_ERR
"%s: Unable to allocate memory "
1638 "for EEPROM image\n", dev
->name
);
1643 if (rrpriv
->fw_running
){
1644 printk("%s: Firmware already running\n", dev
->name
);
1649 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1650 i
= rr_read_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1651 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1652 if (i
!= EEPROM_BYTES
){
1653 printk(KERN_ERR
"%s: Error reading EEPROM\n",
1658 error
= copy_to_user(rq
->ifr_data
, image
, EEPROM_BYTES
);
1666 if (!capable(CAP_SYS_RAWIO
)){
1670 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1671 oldimage
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1672 if (!image
|| !oldimage
) {
1673 printk(KERN_ERR
"%s: Unable to allocate memory "
1674 "for EEPROM image\n", dev
->name
);
1679 error
= copy_from_user(image
, rq
->ifr_data
, EEPROM_BYTES
);
1685 if (rrpriv
->fw_running
){
1686 printk("%s: Firmware already running\n", dev
->name
);
1691 printk("%s: Updating EEPROM firmware\n", dev
->name
);
1693 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1694 error
= write_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1696 printk(KERN_ERR
"%s: Error writing EEPROM\n",
1699 i
= rr_read_eeprom(rrpriv
, 0, oldimage
, EEPROM_BYTES
);
1700 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1702 if (i
!= EEPROM_BYTES
)
1703 printk(KERN_ERR
"%s: Error reading back EEPROM "
1704 "image\n", dev
->name
);
1706 error
= memcmp(image
, oldimage
, EEPROM_BYTES
);
1708 printk(KERN_ERR
"%s: Error verifying EEPROM image\n",
1718 return put_user(0x52523032, (int __user
*)rq
->ifr_data
);
1724 static struct pci_device_id rr_pci_tbl
[] = {
1725 { PCI_VENDOR_ID_ESSENTIAL
, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER
,
1726 PCI_ANY_ID
, PCI_ANY_ID
, },
1729 MODULE_DEVICE_TABLE(pci
, rr_pci_tbl
);
1731 static struct pci_driver rr_driver
= {
1733 .id_table
= rr_pci_tbl
,
1734 .probe
= rr_init_one
,
1735 .remove
= __devexit_p(rr_remove_one
),
1738 static int __init
rr_init_module(void)
1740 return pci_module_init(&rr_driver
);
1743 static void __exit
rr_cleanup_module(void)
1745 pci_unregister_driver(&rr_driver
);
1748 module_init(rr_init_module
);
1749 module_exit(rr_cleanup_module
);
1753 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"