hugetlb: balance freeing of huge pages across nodes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob38dab558682725ee7abaa1c90d0a2a71851bd6a9
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
26 #include <linux/hugetlb.h>
27 #include "internal.h"
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
37 __initdata LIST_HEAD(huge_boot_pages);
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct file_region {
67 struct list_head link;
68 long from;
69 long to;
72 static long region_add(struct list_head *head, long f, long t)
74 struct file_region *rg, *nrg, *trg;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
108 static long region_chg(struct list_head *head, long f, long t)
110 struct file_region *rg, *nrg;
111 long chg = 0;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
130 return t - f;
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
152 chg -= rg->to - rg->from;
154 return chg;
157 static long region_truncate(struct list_head *head, long end)
159 struct file_region *rg, *trg;
160 long chg = 0;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
184 return chg;
187 static long region_count(struct list_head *head, long f, long t)
189 struct file_region *rg;
190 long chg = 0;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
205 chg += seg_to - seg_from;
208 return chg;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228 struct hstate *hstate;
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
233 hstate = hstate_vma(vma);
235 return 1UL << (hstate->order + PAGE_SHIFT);
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248 return vma_kernel_pagesize(vma);
250 #endif
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
255 * alignment.
257 #define HPAGE_RESV_OWNER (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282 return (unsigned long)vma->vm_private_data;
285 static void set_vma_private_data(struct vm_area_struct *vma,
286 unsigned long value)
288 vma->vm_private_data = (void *)value;
291 struct resv_map {
292 struct kref refs;
293 struct list_head regions;
296 static struct resv_map *resv_map_alloc(void)
298 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299 if (!resv_map)
300 return NULL;
302 kref_init(&resv_map->refs);
303 INIT_LIST_HEAD(&resv_map->regions);
305 return resv_map;
308 static void resv_map_release(struct kref *ref)
310 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map->regions, 0);
314 kfree(resv_map);
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319 VM_BUG_ON(!is_vm_hugetlb_page(vma));
320 if (!(vma->vm_flags & VM_MAYSHARE))
321 return (struct resv_map *)(get_vma_private_data(vma) &
322 ~HPAGE_RESV_MASK);
323 return NULL;
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328 VM_BUG_ON(!is_vm_hugetlb_page(vma));
329 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331 set_vma_private_data(vma, (get_vma_private_data(vma) &
332 HPAGE_RESV_MASK) | (unsigned long)map);
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337 VM_BUG_ON(!is_vm_hugetlb_page(vma));
338 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
347 return (get_vma_private_data(vma) & flag) != 0;
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352 struct vm_area_struct *vma)
354 if (vma->vm_flags & VM_NORESERVE)
355 return;
357 if (vma->vm_flags & VM_MAYSHARE) {
358 /* Shared mappings always use reserves */
359 h->resv_huge_pages--;
360 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362 * Only the process that called mmap() has reserves for
363 * private mappings.
365 h->resv_huge_pages--;
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372 VM_BUG_ON(!is_vm_hugetlb_page(vma));
373 if (!(vma->vm_flags & VM_MAYSHARE))
374 vma->vm_private_data = (void *)0;
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
380 if (vma->vm_flags & VM_MAYSHARE)
381 return 1;
382 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383 return 1;
384 return 0;
387 static void clear_gigantic_page(struct page *page,
388 unsigned long addr, unsigned long sz)
390 int i;
391 struct page *p = page;
393 might_sleep();
394 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395 cond_resched();
396 clear_user_highpage(p, addr + i * PAGE_SIZE);
399 static void clear_huge_page(struct page *page,
400 unsigned long addr, unsigned long sz)
402 int i;
404 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405 clear_gigantic_page(page, addr, sz);
406 return;
409 might_sleep();
410 for (i = 0; i < sz/PAGE_SIZE; i++) {
411 cond_resched();
412 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417 unsigned long addr, struct vm_area_struct *vma)
419 int i;
420 struct hstate *h = hstate_vma(vma);
421 struct page *dst_base = dst;
422 struct page *src_base = src;
423 might_sleep();
424 for (i = 0; i < pages_per_huge_page(h); ) {
425 cond_resched();
426 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428 i++;
429 dst = mem_map_next(dst, dst_base, i);
430 src = mem_map_next(src, src_base, i);
433 static void copy_huge_page(struct page *dst, struct page *src,
434 unsigned long addr, struct vm_area_struct *vma)
436 int i;
437 struct hstate *h = hstate_vma(vma);
439 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440 copy_gigantic_page(dst, src, addr, vma);
441 return;
444 might_sleep();
445 for (i = 0; i < pages_per_huge_page(h); i++) {
446 cond_resched();
447 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
453 int nid = page_to_nid(page);
454 list_add(&page->lru, &h->hugepage_freelists[nid]);
455 h->free_huge_pages++;
456 h->free_huge_pages_node[nid]++;
459 static struct page *dequeue_huge_page_vma(struct hstate *h,
460 struct vm_area_struct *vma,
461 unsigned long address, int avoid_reserve)
463 int nid;
464 struct page *page = NULL;
465 struct mempolicy *mpol;
466 nodemask_t *nodemask;
467 struct zonelist *zonelist = huge_zonelist(vma, address,
468 htlb_alloc_mask, &mpol, &nodemask);
469 struct zone *zone;
470 struct zoneref *z;
473 * A child process with MAP_PRIVATE mappings created by their parent
474 * have no page reserves. This check ensures that reservations are
475 * not "stolen". The child may still get SIGKILLed
477 if (!vma_has_reserves(vma) &&
478 h->free_huge_pages - h->resv_huge_pages == 0)
479 return NULL;
481 /* If reserves cannot be used, ensure enough pages are in the pool */
482 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 return NULL;
485 for_each_zone_zonelist_nodemask(zone, z, zonelist,
486 MAX_NR_ZONES - 1, nodemask) {
487 nid = zone_to_nid(zone);
488 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 !list_empty(&h->hugepage_freelists[nid])) {
490 page = list_entry(h->hugepage_freelists[nid].next,
491 struct page, lru);
492 list_del(&page->lru);
493 h->free_huge_pages--;
494 h->free_huge_pages_node[nid]--;
496 if (!avoid_reserve)
497 decrement_hugepage_resv_vma(h, vma);
499 break;
502 mpol_cond_put(mpol);
503 return page;
506 static void update_and_free_page(struct hstate *h, struct page *page)
508 int i;
510 VM_BUG_ON(h->order >= MAX_ORDER);
512 h->nr_huge_pages--;
513 h->nr_huge_pages_node[page_to_nid(page)]--;
514 for (i = 0; i < pages_per_huge_page(h); i++) {
515 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517 1 << PG_private | 1<< PG_writeback);
519 set_compound_page_dtor(page, NULL);
520 set_page_refcounted(page);
521 arch_release_hugepage(page);
522 __free_pages(page, huge_page_order(h));
525 struct hstate *size_to_hstate(unsigned long size)
527 struct hstate *h;
529 for_each_hstate(h) {
530 if (huge_page_size(h) == size)
531 return h;
533 return NULL;
536 static void free_huge_page(struct page *page)
539 * Can't pass hstate in here because it is called from the
540 * compound page destructor.
542 struct hstate *h = page_hstate(page);
543 int nid = page_to_nid(page);
544 struct address_space *mapping;
546 mapping = (struct address_space *) page_private(page);
547 set_page_private(page, 0);
548 BUG_ON(page_count(page));
549 INIT_LIST_HEAD(&page->lru);
551 spin_lock(&hugetlb_lock);
552 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553 update_and_free_page(h, page);
554 h->surplus_huge_pages--;
555 h->surplus_huge_pages_node[nid]--;
556 } else {
557 enqueue_huge_page(h, page);
559 spin_unlock(&hugetlb_lock);
560 if (mapping)
561 hugetlb_put_quota(mapping, 1);
564 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566 set_compound_page_dtor(page, free_huge_page);
567 spin_lock(&hugetlb_lock);
568 h->nr_huge_pages++;
569 h->nr_huge_pages_node[nid]++;
570 spin_unlock(&hugetlb_lock);
571 put_page(page); /* free it into the hugepage allocator */
574 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576 int i;
577 int nr_pages = 1 << order;
578 struct page *p = page + 1;
580 /* we rely on prep_new_huge_page to set the destructor */
581 set_compound_order(page, order);
582 __SetPageHead(page);
583 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
584 __SetPageTail(p);
585 p->first_page = page;
589 int PageHuge(struct page *page)
591 compound_page_dtor *dtor;
593 if (!PageCompound(page))
594 return 0;
596 page = compound_head(page);
597 dtor = get_compound_page_dtor(page);
599 return dtor == free_huge_page;
602 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
604 struct page *page;
606 if (h->order >= MAX_ORDER)
607 return NULL;
609 page = alloc_pages_exact_node(nid,
610 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
611 __GFP_REPEAT|__GFP_NOWARN,
612 huge_page_order(h));
613 if (page) {
614 if (arch_prepare_hugepage(page)) {
615 __free_pages(page, huge_page_order(h));
616 return NULL;
618 prep_new_huge_page(h, page, nid);
621 return page;
625 * Use a helper variable to find the next node and then
626 * copy it back to next_nid_to_alloc afterwards:
627 * otherwise there's a window in which a racer might
628 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
629 * But we don't need to use a spin_lock here: it really
630 * doesn't matter if occasionally a racer chooses the
631 * same nid as we do. Move nid forward in the mask even
632 * if we just successfully allocated a hugepage so that
633 * the next caller gets hugepages on the next node.
635 static int hstate_next_node_to_alloc(struct hstate *h)
637 int next_nid;
638 next_nid = next_node(h->next_nid_to_alloc, node_online_map);
639 if (next_nid == MAX_NUMNODES)
640 next_nid = first_node(node_online_map);
641 h->next_nid_to_alloc = next_nid;
642 return next_nid;
645 static int alloc_fresh_huge_page(struct hstate *h)
647 struct page *page;
648 int start_nid;
649 int next_nid;
650 int ret = 0;
652 start_nid = h->next_nid_to_alloc;
653 next_nid = start_nid;
655 do {
656 page = alloc_fresh_huge_page_node(h, next_nid);
657 if (page)
658 ret = 1;
659 next_nid = hstate_next_node_to_alloc(h);
660 } while (!page && next_nid != start_nid);
662 if (ret)
663 count_vm_event(HTLB_BUDDY_PGALLOC);
664 else
665 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
667 return ret;
671 * helper for free_pool_huge_page() - find next node
672 * from which to free a huge page
674 static int hstate_next_node_to_free(struct hstate *h)
676 int next_nid;
677 next_nid = next_node(h->next_nid_to_free, node_online_map);
678 if (next_nid == MAX_NUMNODES)
679 next_nid = first_node(node_online_map);
680 h->next_nid_to_free = next_nid;
681 return next_nid;
685 * Free huge page from pool from next node to free.
686 * Attempt to keep persistent huge pages more or less
687 * balanced over allowed nodes.
688 * Called with hugetlb_lock locked.
690 static int free_pool_huge_page(struct hstate *h)
692 int start_nid;
693 int next_nid;
694 int ret = 0;
696 start_nid = h->next_nid_to_free;
697 next_nid = start_nid;
699 do {
700 if (!list_empty(&h->hugepage_freelists[next_nid])) {
701 struct page *page =
702 list_entry(h->hugepage_freelists[next_nid].next,
703 struct page, lru);
704 list_del(&page->lru);
705 h->free_huge_pages--;
706 h->free_huge_pages_node[next_nid]--;
707 update_and_free_page(h, page);
708 ret = 1;
710 next_nid = hstate_next_node_to_free(h);
711 } while (!ret && next_nid != start_nid);
713 return ret;
716 static struct page *alloc_buddy_huge_page(struct hstate *h,
717 struct vm_area_struct *vma, unsigned long address)
719 struct page *page;
720 unsigned int nid;
722 if (h->order >= MAX_ORDER)
723 return NULL;
726 * Assume we will successfully allocate the surplus page to
727 * prevent racing processes from causing the surplus to exceed
728 * overcommit
730 * This however introduces a different race, where a process B
731 * tries to grow the static hugepage pool while alloc_pages() is
732 * called by process A. B will only examine the per-node
733 * counters in determining if surplus huge pages can be
734 * converted to normal huge pages in adjust_pool_surplus(). A
735 * won't be able to increment the per-node counter, until the
736 * lock is dropped by B, but B doesn't drop hugetlb_lock until
737 * no more huge pages can be converted from surplus to normal
738 * state (and doesn't try to convert again). Thus, we have a
739 * case where a surplus huge page exists, the pool is grown, and
740 * the surplus huge page still exists after, even though it
741 * should just have been converted to a normal huge page. This
742 * does not leak memory, though, as the hugepage will be freed
743 * once it is out of use. It also does not allow the counters to
744 * go out of whack in adjust_pool_surplus() as we don't modify
745 * the node values until we've gotten the hugepage and only the
746 * per-node value is checked there.
748 spin_lock(&hugetlb_lock);
749 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
750 spin_unlock(&hugetlb_lock);
751 return NULL;
752 } else {
753 h->nr_huge_pages++;
754 h->surplus_huge_pages++;
756 spin_unlock(&hugetlb_lock);
758 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
759 __GFP_REPEAT|__GFP_NOWARN,
760 huge_page_order(h));
762 if (page && arch_prepare_hugepage(page)) {
763 __free_pages(page, huge_page_order(h));
764 return NULL;
767 spin_lock(&hugetlb_lock);
768 if (page) {
770 * This page is now managed by the hugetlb allocator and has
771 * no users -- drop the buddy allocator's reference.
773 put_page_testzero(page);
774 VM_BUG_ON(page_count(page));
775 nid = page_to_nid(page);
776 set_compound_page_dtor(page, free_huge_page);
778 * We incremented the global counters already
780 h->nr_huge_pages_node[nid]++;
781 h->surplus_huge_pages_node[nid]++;
782 __count_vm_event(HTLB_BUDDY_PGALLOC);
783 } else {
784 h->nr_huge_pages--;
785 h->surplus_huge_pages--;
786 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
788 spin_unlock(&hugetlb_lock);
790 return page;
794 * Increase the hugetlb pool such that it can accomodate a reservation
795 * of size 'delta'.
797 static int gather_surplus_pages(struct hstate *h, int delta)
799 struct list_head surplus_list;
800 struct page *page, *tmp;
801 int ret, i;
802 int needed, allocated;
804 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
805 if (needed <= 0) {
806 h->resv_huge_pages += delta;
807 return 0;
810 allocated = 0;
811 INIT_LIST_HEAD(&surplus_list);
813 ret = -ENOMEM;
814 retry:
815 spin_unlock(&hugetlb_lock);
816 for (i = 0; i < needed; i++) {
817 page = alloc_buddy_huge_page(h, NULL, 0);
818 if (!page) {
820 * We were not able to allocate enough pages to
821 * satisfy the entire reservation so we free what
822 * we've allocated so far.
824 spin_lock(&hugetlb_lock);
825 needed = 0;
826 goto free;
829 list_add(&page->lru, &surplus_list);
831 allocated += needed;
834 * After retaking hugetlb_lock, we need to recalculate 'needed'
835 * because either resv_huge_pages or free_huge_pages may have changed.
837 spin_lock(&hugetlb_lock);
838 needed = (h->resv_huge_pages + delta) -
839 (h->free_huge_pages + allocated);
840 if (needed > 0)
841 goto retry;
844 * The surplus_list now contains _at_least_ the number of extra pages
845 * needed to accomodate the reservation. Add the appropriate number
846 * of pages to the hugetlb pool and free the extras back to the buddy
847 * allocator. Commit the entire reservation here to prevent another
848 * process from stealing the pages as they are added to the pool but
849 * before they are reserved.
851 needed += allocated;
852 h->resv_huge_pages += delta;
853 ret = 0;
854 free:
855 /* Free the needed pages to the hugetlb pool */
856 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
857 if ((--needed) < 0)
858 break;
859 list_del(&page->lru);
860 enqueue_huge_page(h, page);
863 /* Free unnecessary surplus pages to the buddy allocator */
864 if (!list_empty(&surplus_list)) {
865 spin_unlock(&hugetlb_lock);
866 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
867 list_del(&page->lru);
869 * The page has a reference count of zero already, so
870 * call free_huge_page directly instead of using
871 * put_page. This must be done with hugetlb_lock
872 * unlocked which is safe because free_huge_page takes
873 * hugetlb_lock before deciding how to free the page.
875 free_huge_page(page);
877 spin_lock(&hugetlb_lock);
880 return ret;
884 * When releasing a hugetlb pool reservation, any surplus pages that were
885 * allocated to satisfy the reservation must be explicitly freed if they were
886 * never used.
888 static void return_unused_surplus_pages(struct hstate *h,
889 unsigned long unused_resv_pages)
891 static int nid = -1;
892 struct page *page;
893 unsigned long nr_pages;
896 * We want to release as many surplus pages as possible, spread
897 * evenly across all nodes. Iterate across all nodes until we
898 * can no longer free unreserved surplus pages. This occurs when
899 * the nodes with surplus pages have no free pages.
901 unsigned long remaining_iterations = nr_online_nodes;
903 /* Uncommit the reservation */
904 h->resv_huge_pages -= unused_resv_pages;
906 /* Cannot return gigantic pages currently */
907 if (h->order >= MAX_ORDER)
908 return;
910 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
912 while (remaining_iterations-- && nr_pages) {
913 nid = next_node(nid, node_online_map);
914 if (nid == MAX_NUMNODES)
915 nid = first_node(node_online_map);
917 if (!h->surplus_huge_pages_node[nid])
918 continue;
920 if (!list_empty(&h->hugepage_freelists[nid])) {
921 page = list_entry(h->hugepage_freelists[nid].next,
922 struct page, lru);
923 list_del(&page->lru);
924 update_and_free_page(h, page);
925 h->free_huge_pages--;
926 h->free_huge_pages_node[nid]--;
927 h->surplus_huge_pages--;
928 h->surplus_huge_pages_node[nid]--;
929 nr_pages--;
930 remaining_iterations = nr_online_nodes;
936 * Determine if the huge page at addr within the vma has an associated
937 * reservation. Where it does not we will need to logically increase
938 * reservation and actually increase quota before an allocation can occur.
939 * Where any new reservation would be required the reservation change is
940 * prepared, but not committed. Once the page has been quota'd allocated
941 * an instantiated the change should be committed via vma_commit_reservation.
942 * No action is required on failure.
944 static long vma_needs_reservation(struct hstate *h,
945 struct vm_area_struct *vma, unsigned long addr)
947 struct address_space *mapping = vma->vm_file->f_mapping;
948 struct inode *inode = mapping->host;
950 if (vma->vm_flags & VM_MAYSHARE) {
951 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952 return region_chg(&inode->i_mapping->private_list,
953 idx, idx + 1);
955 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
956 return 1;
958 } else {
959 long err;
960 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
961 struct resv_map *reservations = vma_resv_map(vma);
963 err = region_chg(&reservations->regions, idx, idx + 1);
964 if (err < 0)
965 return err;
966 return 0;
969 static void vma_commit_reservation(struct hstate *h,
970 struct vm_area_struct *vma, unsigned long addr)
972 struct address_space *mapping = vma->vm_file->f_mapping;
973 struct inode *inode = mapping->host;
975 if (vma->vm_flags & VM_MAYSHARE) {
976 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
977 region_add(&inode->i_mapping->private_list, idx, idx + 1);
979 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
980 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
981 struct resv_map *reservations = vma_resv_map(vma);
983 /* Mark this page used in the map. */
984 region_add(&reservations->regions, idx, idx + 1);
988 static struct page *alloc_huge_page(struct vm_area_struct *vma,
989 unsigned long addr, int avoid_reserve)
991 struct hstate *h = hstate_vma(vma);
992 struct page *page;
993 struct address_space *mapping = vma->vm_file->f_mapping;
994 struct inode *inode = mapping->host;
995 long chg;
998 * Processes that did not create the mapping will have no reserves and
999 * will not have accounted against quota. Check that the quota can be
1000 * made before satisfying the allocation
1001 * MAP_NORESERVE mappings may also need pages and quota allocated
1002 * if no reserve mapping overlaps.
1004 chg = vma_needs_reservation(h, vma, addr);
1005 if (chg < 0)
1006 return ERR_PTR(chg);
1007 if (chg)
1008 if (hugetlb_get_quota(inode->i_mapping, chg))
1009 return ERR_PTR(-ENOSPC);
1011 spin_lock(&hugetlb_lock);
1012 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1013 spin_unlock(&hugetlb_lock);
1015 if (!page) {
1016 page = alloc_buddy_huge_page(h, vma, addr);
1017 if (!page) {
1018 hugetlb_put_quota(inode->i_mapping, chg);
1019 return ERR_PTR(-VM_FAULT_OOM);
1023 set_page_refcounted(page);
1024 set_page_private(page, (unsigned long) mapping);
1026 vma_commit_reservation(h, vma, addr);
1028 return page;
1031 int __weak alloc_bootmem_huge_page(struct hstate *h)
1033 struct huge_bootmem_page *m;
1034 int nr_nodes = nodes_weight(node_online_map);
1036 while (nr_nodes) {
1037 void *addr;
1039 addr = __alloc_bootmem_node_nopanic(
1040 NODE_DATA(h->next_nid_to_alloc),
1041 huge_page_size(h), huge_page_size(h), 0);
1043 if (addr) {
1045 * Use the beginning of the huge page to store the
1046 * huge_bootmem_page struct (until gather_bootmem
1047 * puts them into the mem_map).
1049 m = addr;
1050 goto found;
1052 hstate_next_node_to_alloc(h);
1053 nr_nodes--;
1055 return 0;
1057 found:
1058 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1059 /* Put them into a private list first because mem_map is not up yet */
1060 list_add(&m->list, &huge_boot_pages);
1061 m->hstate = h;
1062 return 1;
1065 static void prep_compound_huge_page(struct page *page, int order)
1067 if (unlikely(order > (MAX_ORDER - 1)))
1068 prep_compound_gigantic_page(page, order);
1069 else
1070 prep_compound_page(page, order);
1073 /* Put bootmem huge pages into the standard lists after mem_map is up */
1074 static void __init gather_bootmem_prealloc(void)
1076 struct huge_bootmem_page *m;
1078 list_for_each_entry(m, &huge_boot_pages, list) {
1079 struct page *page = virt_to_page(m);
1080 struct hstate *h = m->hstate;
1081 __ClearPageReserved(page);
1082 WARN_ON(page_count(page) != 1);
1083 prep_compound_huge_page(page, h->order);
1084 prep_new_huge_page(h, page, page_to_nid(page));
1088 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1090 unsigned long i;
1092 for (i = 0; i < h->max_huge_pages; ++i) {
1093 if (h->order >= MAX_ORDER) {
1094 if (!alloc_bootmem_huge_page(h))
1095 break;
1096 } else if (!alloc_fresh_huge_page(h))
1097 break;
1099 h->max_huge_pages = i;
1102 static void __init hugetlb_init_hstates(void)
1104 struct hstate *h;
1106 for_each_hstate(h) {
1107 /* oversize hugepages were init'ed in early boot */
1108 if (h->order < MAX_ORDER)
1109 hugetlb_hstate_alloc_pages(h);
1113 static char * __init memfmt(char *buf, unsigned long n)
1115 if (n >= (1UL << 30))
1116 sprintf(buf, "%lu GB", n >> 30);
1117 else if (n >= (1UL << 20))
1118 sprintf(buf, "%lu MB", n >> 20);
1119 else
1120 sprintf(buf, "%lu KB", n >> 10);
1121 return buf;
1124 static void __init report_hugepages(void)
1126 struct hstate *h;
1128 for_each_hstate(h) {
1129 char buf[32];
1130 printk(KERN_INFO "HugeTLB registered %s page size, "
1131 "pre-allocated %ld pages\n",
1132 memfmt(buf, huge_page_size(h)),
1133 h->free_huge_pages);
1137 #ifdef CONFIG_HIGHMEM
1138 static void try_to_free_low(struct hstate *h, unsigned long count)
1140 int i;
1142 if (h->order >= MAX_ORDER)
1143 return;
1145 for (i = 0; i < MAX_NUMNODES; ++i) {
1146 struct page *page, *next;
1147 struct list_head *freel = &h->hugepage_freelists[i];
1148 list_for_each_entry_safe(page, next, freel, lru) {
1149 if (count >= h->nr_huge_pages)
1150 return;
1151 if (PageHighMem(page))
1152 continue;
1153 list_del(&page->lru);
1154 update_and_free_page(h, page);
1155 h->free_huge_pages--;
1156 h->free_huge_pages_node[page_to_nid(page)]--;
1160 #else
1161 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1164 #endif
1167 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1168 * balanced by operating on them in a round-robin fashion.
1169 * Returns 1 if an adjustment was made.
1171 static int adjust_pool_surplus(struct hstate *h, int delta)
1173 int start_nid, next_nid;
1174 int ret = 0;
1176 VM_BUG_ON(delta != -1 && delta != 1);
1178 if (delta < 0)
1179 start_nid = h->next_nid_to_alloc;
1180 else
1181 start_nid = h->next_nid_to_free;
1182 next_nid = start_nid;
1184 do {
1185 int nid = next_nid;
1186 if (delta < 0) {
1187 next_nid = hstate_next_node_to_alloc(h);
1189 * To shrink on this node, there must be a surplus page
1191 if (!h->surplus_huge_pages_node[nid])
1192 continue;
1194 if (delta > 0) {
1195 next_nid = hstate_next_node_to_free(h);
1197 * Surplus cannot exceed the total number of pages
1199 if (h->surplus_huge_pages_node[nid] >=
1200 h->nr_huge_pages_node[nid])
1201 continue;
1204 h->surplus_huge_pages += delta;
1205 h->surplus_huge_pages_node[nid] += delta;
1206 ret = 1;
1207 break;
1208 } while (next_nid != start_nid);
1210 return ret;
1213 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1214 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1216 unsigned long min_count, ret;
1218 if (h->order >= MAX_ORDER)
1219 return h->max_huge_pages;
1222 * Increase the pool size
1223 * First take pages out of surplus state. Then make up the
1224 * remaining difference by allocating fresh huge pages.
1226 * We might race with alloc_buddy_huge_page() here and be unable
1227 * to convert a surplus huge page to a normal huge page. That is
1228 * not critical, though, it just means the overall size of the
1229 * pool might be one hugepage larger than it needs to be, but
1230 * within all the constraints specified by the sysctls.
1232 spin_lock(&hugetlb_lock);
1233 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1234 if (!adjust_pool_surplus(h, -1))
1235 break;
1238 while (count > persistent_huge_pages(h)) {
1240 * If this allocation races such that we no longer need the
1241 * page, free_huge_page will handle it by freeing the page
1242 * and reducing the surplus.
1244 spin_unlock(&hugetlb_lock);
1245 ret = alloc_fresh_huge_page(h);
1246 spin_lock(&hugetlb_lock);
1247 if (!ret)
1248 goto out;
1253 * Decrease the pool size
1254 * First return free pages to the buddy allocator (being careful
1255 * to keep enough around to satisfy reservations). Then place
1256 * pages into surplus state as needed so the pool will shrink
1257 * to the desired size as pages become free.
1259 * By placing pages into the surplus state independent of the
1260 * overcommit value, we are allowing the surplus pool size to
1261 * exceed overcommit. There are few sane options here. Since
1262 * alloc_buddy_huge_page() is checking the global counter,
1263 * though, we'll note that we're not allowed to exceed surplus
1264 * and won't grow the pool anywhere else. Not until one of the
1265 * sysctls are changed, or the surplus pages go out of use.
1267 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1268 min_count = max(count, min_count);
1269 try_to_free_low(h, min_count);
1270 while (min_count < persistent_huge_pages(h)) {
1271 if (!free_pool_huge_page(h))
1272 break;
1274 while (count < persistent_huge_pages(h)) {
1275 if (!adjust_pool_surplus(h, 1))
1276 break;
1278 out:
1279 ret = persistent_huge_pages(h);
1280 spin_unlock(&hugetlb_lock);
1281 return ret;
1284 #define HSTATE_ATTR_RO(_name) \
1285 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1287 #define HSTATE_ATTR(_name) \
1288 static struct kobj_attribute _name##_attr = \
1289 __ATTR(_name, 0644, _name##_show, _name##_store)
1291 static struct kobject *hugepages_kobj;
1292 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1294 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1296 int i;
1297 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1298 if (hstate_kobjs[i] == kobj)
1299 return &hstates[i];
1300 BUG();
1301 return NULL;
1304 static ssize_t nr_hugepages_show(struct kobject *kobj,
1305 struct kobj_attribute *attr, char *buf)
1307 struct hstate *h = kobj_to_hstate(kobj);
1308 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1310 static ssize_t nr_hugepages_store(struct kobject *kobj,
1311 struct kobj_attribute *attr, const char *buf, size_t count)
1313 int err;
1314 unsigned long input;
1315 struct hstate *h = kobj_to_hstate(kobj);
1317 err = strict_strtoul(buf, 10, &input);
1318 if (err)
1319 return 0;
1321 h->max_huge_pages = set_max_huge_pages(h, input);
1323 return count;
1325 HSTATE_ATTR(nr_hugepages);
1327 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1328 struct kobj_attribute *attr, char *buf)
1330 struct hstate *h = kobj_to_hstate(kobj);
1331 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1333 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1334 struct kobj_attribute *attr, const char *buf, size_t count)
1336 int err;
1337 unsigned long input;
1338 struct hstate *h = kobj_to_hstate(kobj);
1340 err = strict_strtoul(buf, 10, &input);
1341 if (err)
1342 return 0;
1344 spin_lock(&hugetlb_lock);
1345 h->nr_overcommit_huge_pages = input;
1346 spin_unlock(&hugetlb_lock);
1348 return count;
1350 HSTATE_ATTR(nr_overcommit_hugepages);
1352 static ssize_t free_hugepages_show(struct kobject *kobj,
1353 struct kobj_attribute *attr, char *buf)
1355 struct hstate *h = kobj_to_hstate(kobj);
1356 return sprintf(buf, "%lu\n", h->free_huge_pages);
1358 HSTATE_ATTR_RO(free_hugepages);
1360 static ssize_t resv_hugepages_show(struct kobject *kobj,
1361 struct kobj_attribute *attr, char *buf)
1363 struct hstate *h = kobj_to_hstate(kobj);
1364 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1366 HSTATE_ATTR_RO(resv_hugepages);
1368 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1369 struct kobj_attribute *attr, char *buf)
1371 struct hstate *h = kobj_to_hstate(kobj);
1372 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1374 HSTATE_ATTR_RO(surplus_hugepages);
1376 static struct attribute *hstate_attrs[] = {
1377 &nr_hugepages_attr.attr,
1378 &nr_overcommit_hugepages_attr.attr,
1379 &free_hugepages_attr.attr,
1380 &resv_hugepages_attr.attr,
1381 &surplus_hugepages_attr.attr,
1382 NULL,
1385 static struct attribute_group hstate_attr_group = {
1386 .attrs = hstate_attrs,
1389 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1391 int retval;
1393 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1394 hugepages_kobj);
1395 if (!hstate_kobjs[h - hstates])
1396 return -ENOMEM;
1398 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1399 &hstate_attr_group);
1400 if (retval)
1401 kobject_put(hstate_kobjs[h - hstates]);
1403 return retval;
1406 static void __init hugetlb_sysfs_init(void)
1408 struct hstate *h;
1409 int err;
1411 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1412 if (!hugepages_kobj)
1413 return;
1415 for_each_hstate(h) {
1416 err = hugetlb_sysfs_add_hstate(h);
1417 if (err)
1418 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1419 h->name);
1423 static void __exit hugetlb_exit(void)
1425 struct hstate *h;
1427 for_each_hstate(h) {
1428 kobject_put(hstate_kobjs[h - hstates]);
1431 kobject_put(hugepages_kobj);
1433 module_exit(hugetlb_exit);
1435 static int __init hugetlb_init(void)
1437 /* Some platform decide whether they support huge pages at boot
1438 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1439 * there is no such support
1441 if (HPAGE_SHIFT == 0)
1442 return 0;
1444 if (!size_to_hstate(default_hstate_size)) {
1445 default_hstate_size = HPAGE_SIZE;
1446 if (!size_to_hstate(default_hstate_size))
1447 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1449 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1450 if (default_hstate_max_huge_pages)
1451 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1453 hugetlb_init_hstates();
1455 gather_bootmem_prealloc();
1457 report_hugepages();
1459 hugetlb_sysfs_init();
1461 return 0;
1463 module_init(hugetlb_init);
1465 /* Should be called on processing a hugepagesz=... option */
1466 void __init hugetlb_add_hstate(unsigned order)
1468 struct hstate *h;
1469 unsigned long i;
1471 if (size_to_hstate(PAGE_SIZE << order)) {
1472 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1473 return;
1475 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1476 BUG_ON(order == 0);
1477 h = &hstates[max_hstate++];
1478 h->order = order;
1479 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1480 h->nr_huge_pages = 0;
1481 h->free_huge_pages = 0;
1482 for (i = 0; i < MAX_NUMNODES; ++i)
1483 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1484 h->next_nid_to_alloc = first_node(node_online_map);
1485 h->next_nid_to_free = first_node(node_online_map);
1486 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1487 huge_page_size(h)/1024);
1489 parsed_hstate = h;
1492 static int __init hugetlb_nrpages_setup(char *s)
1494 unsigned long *mhp;
1495 static unsigned long *last_mhp;
1498 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1499 * so this hugepages= parameter goes to the "default hstate".
1501 if (!max_hstate)
1502 mhp = &default_hstate_max_huge_pages;
1503 else
1504 mhp = &parsed_hstate->max_huge_pages;
1506 if (mhp == last_mhp) {
1507 printk(KERN_WARNING "hugepages= specified twice without "
1508 "interleaving hugepagesz=, ignoring\n");
1509 return 1;
1512 if (sscanf(s, "%lu", mhp) <= 0)
1513 *mhp = 0;
1516 * Global state is always initialized later in hugetlb_init.
1517 * But we need to allocate >= MAX_ORDER hstates here early to still
1518 * use the bootmem allocator.
1520 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1521 hugetlb_hstate_alloc_pages(parsed_hstate);
1523 last_mhp = mhp;
1525 return 1;
1527 __setup("hugepages=", hugetlb_nrpages_setup);
1529 static int __init hugetlb_default_setup(char *s)
1531 default_hstate_size = memparse(s, &s);
1532 return 1;
1534 __setup("default_hugepagesz=", hugetlb_default_setup);
1536 static unsigned int cpuset_mems_nr(unsigned int *array)
1538 int node;
1539 unsigned int nr = 0;
1541 for_each_node_mask(node, cpuset_current_mems_allowed)
1542 nr += array[node];
1544 return nr;
1547 #ifdef CONFIG_SYSCTL
1548 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1549 struct file *file, void __user *buffer,
1550 size_t *length, loff_t *ppos)
1552 struct hstate *h = &default_hstate;
1553 unsigned long tmp;
1555 if (!write)
1556 tmp = h->max_huge_pages;
1558 table->data = &tmp;
1559 table->maxlen = sizeof(unsigned long);
1560 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1562 if (write)
1563 h->max_huge_pages = set_max_huge_pages(h, tmp);
1565 return 0;
1568 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1569 struct file *file, void __user *buffer,
1570 size_t *length, loff_t *ppos)
1572 proc_dointvec(table, write, file, buffer, length, ppos);
1573 if (hugepages_treat_as_movable)
1574 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1575 else
1576 htlb_alloc_mask = GFP_HIGHUSER;
1577 return 0;
1580 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1581 struct file *file, void __user *buffer,
1582 size_t *length, loff_t *ppos)
1584 struct hstate *h = &default_hstate;
1585 unsigned long tmp;
1587 if (!write)
1588 tmp = h->nr_overcommit_huge_pages;
1590 table->data = &tmp;
1591 table->maxlen = sizeof(unsigned long);
1592 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1594 if (write) {
1595 spin_lock(&hugetlb_lock);
1596 h->nr_overcommit_huge_pages = tmp;
1597 spin_unlock(&hugetlb_lock);
1600 return 0;
1603 #endif /* CONFIG_SYSCTL */
1605 void hugetlb_report_meminfo(struct seq_file *m)
1607 struct hstate *h = &default_hstate;
1608 seq_printf(m,
1609 "HugePages_Total: %5lu\n"
1610 "HugePages_Free: %5lu\n"
1611 "HugePages_Rsvd: %5lu\n"
1612 "HugePages_Surp: %5lu\n"
1613 "Hugepagesize: %8lu kB\n",
1614 h->nr_huge_pages,
1615 h->free_huge_pages,
1616 h->resv_huge_pages,
1617 h->surplus_huge_pages,
1618 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1621 int hugetlb_report_node_meminfo(int nid, char *buf)
1623 struct hstate *h = &default_hstate;
1624 return sprintf(buf,
1625 "Node %d HugePages_Total: %5u\n"
1626 "Node %d HugePages_Free: %5u\n"
1627 "Node %d HugePages_Surp: %5u\n",
1628 nid, h->nr_huge_pages_node[nid],
1629 nid, h->free_huge_pages_node[nid],
1630 nid, h->surplus_huge_pages_node[nid]);
1633 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1634 unsigned long hugetlb_total_pages(void)
1636 struct hstate *h = &default_hstate;
1637 return h->nr_huge_pages * pages_per_huge_page(h);
1640 static int hugetlb_acct_memory(struct hstate *h, long delta)
1642 int ret = -ENOMEM;
1644 spin_lock(&hugetlb_lock);
1646 * When cpuset is configured, it breaks the strict hugetlb page
1647 * reservation as the accounting is done on a global variable. Such
1648 * reservation is completely rubbish in the presence of cpuset because
1649 * the reservation is not checked against page availability for the
1650 * current cpuset. Application can still potentially OOM'ed by kernel
1651 * with lack of free htlb page in cpuset that the task is in.
1652 * Attempt to enforce strict accounting with cpuset is almost
1653 * impossible (or too ugly) because cpuset is too fluid that
1654 * task or memory node can be dynamically moved between cpusets.
1656 * The change of semantics for shared hugetlb mapping with cpuset is
1657 * undesirable. However, in order to preserve some of the semantics,
1658 * we fall back to check against current free page availability as
1659 * a best attempt and hopefully to minimize the impact of changing
1660 * semantics that cpuset has.
1662 if (delta > 0) {
1663 if (gather_surplus_pages(h, delta) < 0)
1664 goto out;
1666 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1667 return_unused_surplus_pages(h, delta);
1668 goto out;
1672 ret = 0;
1673 if (delta < 0)
1674 return_unused_surplus_pages(h, (unsigned long) -delta);
1676 out:
1677 spin_unlock(&hugetlb_lock);
1678 return ret;
1681 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1683 struct resv_map *reservations = vma_resv_map(vma);
1686 * This new VMA should share its siblings reservation map if present.
1687 * The VMA will only ever have a valid reservation map pointer where
1688 * it is being copied for another still existing VMA. As that VMA
1689 * has a reference to the reservation map it cannot dissappear until
1690 * after this open call completes. It is therefore safe to take a
1691 * new reference here without additional locking.
1693 if (reservations)
1694 kref_get(&reservations->refs);
1697 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1699 struct hstate *h = hstate_vma(vma);
1700 struct resv_map *reservations = vma_resv_map(vma);
1701 unsigned long reserve;
1702 unsigned long start;
1703 unsigned long end;
1705 if (reservations) {
1706 start = vma_hugecache_offset(h, vma, vma->vm_start);
1707 end = vma_hugecache_offset(h, vma, vma->vm_end);
1709 reserve = (end - start) -
1710 region_count(&reservations->regions, start, end);
1712 kref_put(&reservations->refs, resv_map_release);
1714 if (reserve) {
1715 hugetlb_acct_memory(h, -reserve);
1716 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1722 * We cannot handle pagefaults against hugetlb pages at all. They cause
1723 * handle_mm_fault() to try to instantiate regular-sized pages in the
1724 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1725 * this far.
1727 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1729 BUG();
1730 return 0;
1733 struct vm_operations_struct hugetlb_vm_ops = {
1734 .fault = hugetlb_vm_op_fault,
1735 .open = hugetlb_vm_op_open,
1736 .close = hugetlb_vm_op_close,
1739 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1740 int writable)
1742 pte_t entry;
1744 if (writable) {
1745 entry =
1746 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1747 } else {
1748 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1750 entry = pte_mkyoung(entry);
1751 entry = pte_mkhuge(entry);
1753 return entry;
1756 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1757 unsigned long address, pte_t *ptep)
1759 pte_t entry;
1761 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1762 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1763 update_mmu_cache(vma, address, entry);
1768 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1769 struct vm_area_struct *vma)
1771 pte_t *src_pte, *dst_pte, entry;
1772 struct page *ptepage;
1773 unsigned long addr;
1774 int cow;
1775 struct hstate *h = hstate_vma(vma);
1776 unsigned long sz = huge_page_size(h);
1778 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1780 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1781 src_pte = huge_pte_offset(src, addr);
1782 if (!src_pte)
1783 continue;
1784 dst_pte = huge_pte_alloc(dst, addr, sz);
1785 if (!dst_pte)
1786 goto nomem;
1788 /* If the pagetables are shared don't copy or take references */
1789 if (dst_pte == src_pte)
1790 continue;
1792 spin_lock(&dst->page_table_lock);
1793 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1794 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1795 if (cow)
1796 huge_ptep_set_wrprotect(src, addr, src_pte);
1797 entry = huge_ptep_get(src_pte);
1798 ptepage = pte_page(entry);
1799 get_page(ptepage);
1800 set_huge_pte_at(dst, addr, dst_pte, entry);
1802 spin_unlock(&src->page_table_lock);
1803 spin_unlock(&dst->page_table_lock);
1805 return 0;
1807 nomem:
1808 return -ENOMEM;
1811 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1812 unsigned long end, struct page *ref_page)
1814 struct mm_struct *mm = vma->vm_mm;
1815 unsigned long address;
1816 pte_t *ptep;
1817 pte_t pte;
1818 struct page *page;
1819 struct page *tmp;
1820 struct hstate *h = hstate_vma(vma);
1821 unsigned long sz = huge_page_size(h);
1824 * A page gathering list, protected by per file i_mmap_lock. The
1825 * lock is used to avoid list corruption from multiple unmapping
1826 * of the same page since we are using page->lru.
1828 LIST_HEAD(page_list);
1830 WARN_ON(!is_vm_hugetlb_page(vma));
1831 BUG_ON(start & ~huge_page_mask(h));
1832 BUG_ON(end & ~huge_page_mask(h));
1834 mmu_notifier_invalidate_range_start(mm, start, end);
1835 spin_lock(&mm->page_table_lock);
1836 for (address = start; address < end; address += sz) {
1837 ptep = huge_pte_offset(mm, address);
1838 if (!ptep)
1839 continue;
1841 if (huge_pmd_unshare(mm, &address, ptep))
1842 continue;
1845 * If a reference page is supplied, it is because a specific
1846 * page is being unmapped, not a range. Ensure the page we
1847 * are about to unmap is the actual page of interest.
1849 if (ref_page) {
1850 pte = huge_ptep_get(ptep);
1851 if (huge_pte_none(pte))
1852 continue;
1853 page = pte_page(pte);
1854 if (page != ref_page)
1855 continue;
1858 * Mark the VMA as having unmapped its page so that
1859 * future faults in this VMA will fail rather than
1860 * looking like data was lost
1862 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1865 pte = huge_ptep_get_and_clear(mm, address, ptep);
1866 if (huge_pte_none(pte))
1867 continue;
1869 page = pte_page(pte);
1870 if (pte_dirty(pte))
1871 set_page_dirty(page);
1872 list_add(&page->lru, &page_list);
1874 spin_unlock(&mm->page_table_lock);
1875 flush_tlb_range(vma, start, end);
1876 mmu_notifier_invalidate_range_end(mm, start, end);
1877 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1878 list_del(&page->lru);
1879 put_page(page);
1883 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1884 unsigned long end, struct page *ref_page)
1886 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1887 __unmap_hugepage_range(vma, start, end, ref_page);
1888 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1892 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1893 * mappping it owns the reserve page for. The intention is to unmap the page
1894 * from other VMAs and let the children be SIGKILLed if they are faulting the
1895 * same region.
1897 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1898 struct page *page, unsigned long address)
1900 struct hstate *h = hstate_vma(vma);
1901 struct vm_area_struct *iter_vma;
1902 struct address_space *mapping;
1903 struct prio_tree_iter iter;
1904 pgoff_t pgoff;
1907 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1908 * from page cache lookup which is in HPAGE_SIZE units.
1910 address = address & huge_page_mask(h);
1911 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1912 + (vma->vm_pgoff >> PAGE_SHIFT);
1913 mapping = (struct address_space *)page_private(page);
1915 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1916 /* Do not unmap the current VMA */
1917 if (iter_vma == vma)
1918 continue;
1921 * Unmap the page from other VMAs without their own reserves.
1922 * They get marked to be SIGKILLed if they fault in these
1923 * areas. This is because a future no-page fault on this VMA
1924 * could insert a zeroed page instead of the data existing
1925 * from the time of fork. This would look like data corruption
1927 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1928 unmap_hugepage_range(iter_vma,
1929 address, address + huge_page_size(h),
1930 page);
1933 return 1;
1936 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1937 unsigned long address, pte_t *ptep, pte_t pte,
1938 struct page *pagecache_page)
1940 struct hstate *h = hstate_vma(vma);
1941 struct page *old_page, *new_page;
1942 int avoidcopy;
1943 int outside_reserve = 0;
1945 old_page = pte_page(pte);
1947 retry_avoidcopy:
1948 /* If no-one else is actually using this page, avoid the copy
1949 * and just make the page writable */
1950 avoidcopy = (page_count(old_page) == 1);
1951 if (avoidcopy) {
1952 set_huge_ptep_writable(vma, address, ptep);
1953 return 0;
1957 * If the process that created a MAP_PRIVATE mapping is about to
1958 * perform a COW due to a shared page count, attempt to satisfy
1959 * the allocation without using the existing reserves. The pagecache
1960 * page is used to determine if the reserve at this address was
1961 * consumed or not. If reserves were used, a partial faulted mapping
1962 * at the time of fork() could consume its reserves on COW instead
1963 * of the full address range.
1965 if (!(vma->vm_flags & VM_MAYSHARE) &&
1966 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1967 old_page != pagecache_page)
1968 outside_reserve = 1;
1970 page_cache_get(old_page);
1971 new_page = alloc_huge_page(vma, address, outside_reserve);
1973 if (IS_ERR(new_page)) {
1974 page_cache_release(old_page);
1977 * If a process owning a MAP_PRIVATE mapping fails to COW,
1978 * it is due to references held by a child and an insufficient
1979 * huge page pool. To guarantee the original mappers
1980 * reliability, unmap the page from child processes. The child
1981 * may get SIGKILLed if it later faults.
1983 if (outside_reserve) {
1984 BUG_ON(huge_pte_none(pte));
1985 if (unmap_ref_private(mm, vma, old_page, address)) {
1986 BUG_ON(page_count(old_page) != 1);
1987 BUG_ON(huge_pte_none(pte));
1988 goto retry_avoidcopy;
1990 WARN_ON_ONCE(1);
1993 return -PTR_ERR(new_page);
1996 spin_unlock(&mm->page_table_lock);
1997 copy_huge_page(new_page, old_page, address, vma);
1998 __SetPageUptodate(new_page);
1999 spin_lock(&mm->page_table_lock);
2001 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2002 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2003 /* Break COW */
2004 huge_ptep_clear_flush(vma, address, ptep);
2005 set_huge_pte_at(mm, address, ptep,
2006 make_huge_pte(vma, new_page, 1));
2007 /* Make the old page be freed below */
2008 new_page = old_page;
2010 page_cache_release(new_page);
2011 page_cache_release(old_page);
2012 return 0;
2015 /* Return the pagecache page at a given address within a VMA */
2016 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2017 struct vm_area_struct *vma, unsigned long address)
2019 struct address_space *mapping;
2020 pgoff_t idx;
2022 mapping = vma->vm_file->f_mapping;
2023 idx = vma_hugecache_offset(h, vma, address);
2025 return find_lock_page(mapping, idx);
2028 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2029 unsigned long address, pte_t *ptep, unsigned int flags)
2031 struct hstate *h = hstate_vma(vma);
2032 int ret = VM_FAULT_SIGBUS;
2033 pgoff_t idx;
2034 unsigned long size;
2035 struct page *page;
2036 struct address_space *mapping;
2037 pte_t new_pte;
2040 * Currently, we are forced to kill the process in the event the
2041 * original mapper has unmapped pages from the child due to a failed
2042 * COW. Warn that such a situation has occured as it may not be obvious
2044 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2045 printk(KERN_WARNING
2046 "PID %d killed due to inadequate hugepage pool\n",
2047 current->pid);
2048 return ret;
2051 mapping = vma->vm_file->f_mapping;
2052 idx = vma_hugecache_offset(h, vma, address);
2055 * Use page lock to guard against racing truncation
2056 * before we get page_table_lock.
2058 retry:
2059 page = find_lock_page(mapping, idx);
2060 if (!page) {
2061 size = i_size_read(mapping->host) >> huge_page_shift(h);
2062 if (idx >= size)
2063 goto out;
2064 page = alloc_huge_page(vma, address, 0);
2065 if (IS_ERR(page)) {
2066 ret = -PTR_ERR(page);
2067 goto out;
2069 clear_huge_page(page, address, huge_page_size(h));
2070 __SetPageUptodate(page);
2072 if (vma->vm_flags & VM_MAYSHARE) {
2073 int err;
2074 struct inode *inode = mapping->host;
2076 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2077 if (err) {
2078 put_page(page);
2079 if (err == -EEXIST)
2080 goto retry;
2081 goto out;
2084 spin_lock(&inode->i_lock);
2085 inode->i_blocks += blocks_per_huge_page(h);
2086 spin_unlock(&inode->i_lock);
2087 } else
2088 lock_page(page);
2092 * If we are going to COW a private mapping later, we examine the
2093 * pending reservations for this page now. This will ensure that
2094 * any allocations necessary to record that reservation occur outside
2095 * the spinlock.
2097 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2098 if (vma_needs_reservation(h, vma, address) < 0) {
2099 ret = VM_FAULT_OOM;
2100 goto backout_unlocked;
2103 spin_lock(&mm->page_table_lock);
2104 size = i_size_read(mapping->host) >> huge_page_shift(h);
2105 if (idx >= size)
2106 goto backout;
2108 ret = 0;
2109 if (!huge_pte_none(huge_ptep_get(ptep)))
2110 goto backout;
2112 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2113 && (vma->vm_flags & VM_SHARED)));
2114 set_huge_pte_at(mm, address, ptep, new_pte);
2116 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2117 /* Optimization, do the COW without a second fault */
2118 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2121 spin_unlock(&mm->page_table_lock);
2122 unlock_page(page);
2123 out:
2124 return ret;
2126 backout:
2127 spin_unlock(&mm->page_table_lock);
2128 backout_unlocked:
2129 unlock_page(page);
2130 put_page(page);
2131 goto out;
2134 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2135 unsigned long address, unsigned int flags)
2137 pte_t *ptep;
2138 pte_t entry;
2139 int ret;
2140 struct page *pagecache_page = NULL;
2141 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2142 struct hstate *h = hstate_vma(vma);
2144 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2145 if (!ptep)
2146 return VM_FAULT_OOM;
2149 * Serialize hugepage allocation and instantiation, so that we don't
2150 * get spurious allocation failures if two CPUs race to instantiate
2151 * the same page in the page cache.
2153 mutex_lock(&hugetlb_instantiation_mutex);
2154 entry = huge_ptep_get(ptep);
2155 if (huge_pte_none(entry)) {
2156 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2157 goto out_mutex;
2160 ret = 0;
2163 * If we are going to COW the mapping later, we examine the pending
2164 * reservations for this page now. This will ensure that any
2165 * allocations necessary to record that reservation occur outside the
2166 * spinlock. For private mappings, we also lookup the pagecache
2167 * page now as it is used to determine if a reservation has been
2168 * consumed.
2170 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2171 if (vma_needs_reservation(h, vma, address) < 0) {
2172 ret = VM_FAULT_OOM;
2173 goto out_mutex;
2176 if (!(vma->vm_flags & VM_MAYSHARE))
2177 pagecache_page = hugetlbfs_pagecache_page(h,
2178 vma, address);
2181 spin_lock(&mm->page_table_lock);
2182 /* Check for a racing update before calling hugetlb_cow */
2183 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2184 goto out_page_table_lock;
2187 if (flags & FAULT_FLAG_WRITE) {
2188 if (!pte_write(entry)) {
2189 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2190 pagecache_page);
2191 goto out_page_table_lock;
2193 entry = pte_mkdirty(entry);
2195 entry = pte_mkyoung(entry);
2196 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2197 flags & FAULT_FLAG_WRITE))
2198 update_mmu_cache(vma, address, entry);
2200 out_page_table_lock:
2201 spin_unlock(&mm->page_table_lock);
2203 if (pagecache_page) {
2204 unlock_page(pagecache_page);
2205 put_page(pagecache_page);
2208 out_mutex:
2209 mutex_unlock(&hugetlb_instantiation_mutex);
2211 return ret;
2214 /* Can be overriden by architectures */
2215 __attribute__((weak)) struct page *
2216 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2217 pud_t *pud, int write)
2219 BUG();
2220 return NULL;
2223 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2225 if (!ptep || write || shared)
2226 return 0;
2227 else
2228 return huge_pte_none(huge_ptep_get(ptep));
2231 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2232 struct page **pages, struct vm_area_struct **vmas,
2233 unsigned long *position, int *length, int i,
2234 int write)
2236 unsigned long pfn_offset;
2237 unsigned long vaddr = *position;
2238 int remainder = *length;
2239 struct hstate *h = hstate_vma(vma);
2240 int zeropage_ok = 0;
2241 int shared = vma->vm_flags & VM_SHARED;
2243 spin_lock(&mm->page_table_lock);
2244 while (vaddr < vma->vm_end && remainder) {
2245 pte_t *pte;
2246 struct page *page;
2249 * Some archs (sparc64, sh*) have multiple pte_ts to
2250 * each hugepage. We have to make * sure we get the
2251 * first, for the page indexing below to work.
2253 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2254 if (huge_zeropage_ok(pte, write, shared))
2255 zeropage_ok = 1;
2257 if (!pte ||
2258 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2259 (write && !pte_write(huge_ptep_get(pte)))) {
2260 int ret;
2262 spin_unlock(&mm->page_table_lock);
2263 ret = hugetlb_fault(mm, vma, vaddr, write);
2264 spin_lock(&mm->page_table_lock);
2265 if (!(ret & VM_FAULT_ERROR))
2266 continue;
2268 remainder = 0;
2269 if (!i)
2270 i = -EFAULT;
2271 break;
2274 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2275 page = pte_page(huge_ptep_get(pte));
2276 same_page:
2277 if (pages) {
2278 if (zeropage_ok)
2279 pages[i] = ZERO_PAGE(0);
2280 else
2281 pages[i] = mem_map_offset(page, pfn_offset);
2282 get_page(pages[i]);
2285 if (vmas)
2286 vmas[i] = vma;
2288 vaddr += PAGE_SIZE;
2289 ++pfn_offset;
2290 --remainder;
2291 ++i;
2292 if (vaddr < vma->vm_end && remainder &&
2293 pfn_offset < pages_per_huge_page(h)) {
2295 * We use pfn_offset to avoid touching the pageframes
2296 * of this compound page.
2298 goto same_page;
2301 spin_unlock(&mm->page_table_lock);
2302 *length = remainder;
2303 *position = vaddr;
2305 return i;
2308 void hugetlb_change_protection(struct vm_area_struct *vma,
2309 unsigned long address, unsigned long end, pgprot_t newprot)
2311 struct mm_struct *mm = vma->vm_mm;
2312 unsigned long start = address;
2313 pte_t *ptep;
2314 pte_t pte;
2315 struct hstate *h = hstate_vma(vma);
2317 BUG_ON(address >= end);
2318 flush_cache_range(vma, address, end);
2320 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2321 spin_lock(&mm->page_table_lock);
2322 for (; address < end; address += huge_page_size(h)) {
2323 ptep = huge_pte_offset(mm, address);
2324 if (!ptep)
2325 continue;
2326 if (huge_pmd_unshare(mm, &address, ptep))
2327 continue;
2328 if (!huge_pte_none(huge_ptep_get(ptep))) {
2329 pte = huge_ptep_get_and_clear(mm, address, ptep);
2330 pte = pte_mkhuge(pte_modify(pte, newprot));
2331 set_huge_pte_at(mm, address, ptep, pte);
2334 spin_unlock(&mm->page_table_lock);
2335 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2337 flush_tlb_range(vma, start, end);
2340 int hugetlb_reserve_pages(struct inode *inode,
2341 long from, long to,
2342 struct vm_area_struct *vma,
2343 int acctflag)
2345 long ret, chg;
2346 struct hstate *h = hstate_inode(inode);
2349 * Only apply hugepage reservation if asked. At fault time, an
2350 * attempt will be made for VM_NORESERVE to allocate a page
2351 * and filesystem quota without using reserves
2353 if (acctflag & VM_NORESERVE)
2354 return 0;
2357 * Shared mappings base their reservation on the number of pages that
2358 * are already allocated on behalf of the file. Private mappings need
2359 * to reserve the full area even if read-only as mprotect() may be
2360 * called to make the mapping read-write. Assume !vma is a shm mapping
2362 if (!vma || vma->vm_flags & VM_MAYSHARE)
2363 chg = region_chg(&inode->i_mapping->private_list, from, to);
2364 else {
2365 struct resv_map *resv_map = resv_map_alloc();
2366 if (!resv_map)
2367 return -ENOMEM;
2369 chg = to - from;
2371 set_vma_resv_map(vma, resv_map);
2372 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2375 if (chg < 0)
2376 return chg;
2378 /* There must be enough filesystem quota for the mapping */
2379 if (hugetlb_get_quota(inode->i_mapping, chg))
2380 return -ENOSPC;
2383 * Check enough hugepages are available for the reservation.
2384 * Hand back the quota if there are not
2386 ret = hugetlb_acct_memory(h, chg);
2387 if (ret < 0) {
2388 hugetlb_put_quota(inode->i_mapping, chg);
2389 return ret;
2393 * Account for the reservations made. Shared mappings record regions
2394 * that have reservations as they are shared by multiple VMAs.
2395 * When the last VMA disappears, the region map says how much
2396 * the reservation was and the page cache tells how much of
2397 * the reservation was consumed. Private mappings are per-VMA and
2398 * only the consumed reservations are tracked. When the VMA
2399 * disappears, the original reservation is the VMA size and the
2400 * consumed reservations are stored in the map. Hence, nothing
2401 * else has to be done for private mappings here
2403 if (!vma || vma->vm_flags & VM_MAYSHARE)
2404 region_add(&inode->i_mapping->private_list, from, to);
2405 return 0;
2408 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2410 struct hstate *h = hstate_inode(inode);
2411 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2413 spin_lock(&inode->i_lock);
2414 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2415 spin_unlock(&inode->i_lock);
2417 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2418 hugetlb_acct_memory(h, -(chg - freed));