2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * Only DMAC flow control is implemented
59 * - Break out common code from arch/arm/mach-s3c64xx and share
61 #include <linux/device.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/pci.h>
65 #include <linux/interrupt.h>
66 #include <linux/slab.h>
67 #include <linux/dmapool.h>
68 #include <linux/amba/bus.h>
69 #include <linux/dmaengine.h>
70 #include <linux/amba/pl08x.h>
71 #include <linux/debugfs.h>
72 #include <linux/seq_file.h>
74 #include <asm/hardware/pl080.h>
76 #include <asm/mach/dma.h>
77 #include <asm/atomic.h>
78 #include <asm/processor.h>
79 #include <asm/cacheflush.h>
81 #define DRIVER_NAME "pl08xdmac"
84 * struct vendor_data - vendor-specific config parameters
85 * for PL08x derivatives
86 * @name: the name of this specific variant
87 * @channels: the number of channels available in this variant
88 * @dualmaster: whether this version supports dual AHB masters
98 * PL08X private data structures
99 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
100 * start & end do not - their bus bit info is in cctl.
110 * struct pl08x_driver_data - the local state holder for the PL08x
111 * @slave: slave engine for this instance
112 * @memcpy: memcpy engine for this instance
113 * @base: virtual memory base (remapped) for the PL08x
114 * @adev: the corresponding AMBA (PrimeCell) bus entry
115 * @vd: vendor data for this PL08x variant
116 * @pd: platform data passed in from the platform/machine
117 * @phy_chans: array of data for the physical channels
118 * @pool: a pool for the LLI descriptors
119 * @pool_ctr: counter of LLIs in the pool
120 * @lock: a spinlock for this struct
122 struct pl08x_driver_data
{
123 struct dma_device slave
;
124 struct dma_device memcpy
;
126 struct amba_device
*adev
;
127 struct vendor_data
*vd
;
128 struct pl08x_platform_data
*pd
;
129 struct pl08x_phy_chan
*phy_chans
;
130 struct dma_pool
*pool
;
136 * PL08X specific defines
140 * Memory boundaries: the manual for PL08x says that the controller
141 * cannot read past a 1KiB boundary, so these defines are used to
142 * create transfer LLIs that do not cross such boundaries.
144 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
145 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
147 /* Minimum period between work queue runs */
148 #define PL08X_WQ_PERIODMIN 20
150 /* Size (bytes) of each LLI buffer allocated for one transfer */
151 # define PL08X_LLI_TSFR_SIZE 0x2000
153 /* Maximum times we call dma_pool_alloc on this pool without freeing */
154 #define PL08X_MAX_ALLOCS 0x40
155 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli))
156 #define PL08X_ALIGN 8
158 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
160 return container_of(chan
, struct pl08x_dma_chan
, chan
);
164 * Physical channel handling
167 /* Whether a certain channel is busy or not */
168 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
172 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
173 return val
& PL080_CONFIG_ACTIVE
;
177 * Set the initial DMA register values i.e. those for the first LLI
178 * The next LLI pointer and the configuration interrupt bit have
179 * been set when the LLIs were constructed
181 static void pl08x_set_cregs(struct pl08x_driver_data
*pl08x
,
182 struct pl08x_phy_chan
*ch
)
184 /* Wait for channel inactive */
185 while (pl08x_phy_channel_busy(ch
))
188 dev_vdbg(&pl08x
->adev
->dev
,
189 "WRITE channel %d: csrc=%08x, cdst=%08x, "
190 "cctl=%08x, clli=%08x, ccfg=%08x\n",
198 writel(ch
->csrc
, ch
->base
+ PL080_CH_SRC_ADDR
);
199 writel(ch
->cdst
, ch
->base
+ PL080_CH_DST_ADDR
);
200 writel(ch
->clli
, ch
->base
+ PL080_CH_LLI
);
201 writel(ch
->cctl
, ch
->base
+ PL080_CH_CONTROL
);
202 writel(ch
->ccfg
, ch
->base
+ PL080_CH_CONFIG
);
205 static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan
*plchan
)
207 struct pl08x_channel_data
*cd
= plchan
->cd
;
208 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
209 struct pl08x_txd
*txd
= plchan
->at
;
211 /* Copy the basic control register calculated at transfer config */
212 phychan
->csrc
= txd
->csrc
;
213 phychan
->cdst
= txd
->cdst
;
214 phychan
->clli
= txd
->clli
;
215 phychan
->cctl
= txd
->cctl
;
217 /* Assign the signal to the proper control registers */
218 phychan
->ccfg
= cd
->ccfg
;
219 phychan
->ccfg
&= ~PL080_CONFIG_SRC_SEL_MASK
;
220 phychan
->ccfg
&= ~PL080_CONFIG_DST_SEL_MASK
;
221 /* If it wasn't set from AMBA, ignore it */
222 if (txd
->direction
== DMA_TO_DEVICE
)
223 /* Select signal as destination */
225 (phychan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
);
226 else if (txd
->direction
== DMA_FROM_DEVICE
)
227 /* Select signal as source */
229 (phychan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
);
230 /* Always enable error interrupts */
231 phychan
->ccfg
|= PL080_CONFIG_ERR_IRQ_MASK
;
232 /* Always enable terminal interrupts */
233 phychan
->ccfg
|= PL080_CONFIG_TC_IRQ_MASK
;
237 * Enable the DMA channel
238 * Assumes all other configuration bits have been set
239 * as desired before this code is called
241 static void pl08x_enable_phy_chan(struct pl08x_driver_data
*pl08x
,
242 struct pl08x_phy_chan
*ch
)
247 * Do not access config register until channel shows as disabled
249 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << ch
->id
))
253 * Do not access config register until channel shows as inactive
255 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
256 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
257 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
259 writel(val
| PL080_CONFIG_ENABLE
, ch
->base
+ PL080_CH_CONFIG
);
263 * Overall DMAC remains enabled always.
265 * Disabling individual channels could lose data.
267 * Disable the peripheral DMA after disabling the DMAC
268 * in order to allow the DMAC FIFO to drain, and
269 * hence allow the channel to show inactive
272 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
276 /* Set the HALT bit and wait for the FIFO to drain */
277 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
278 val
|= PL080_CONFIG_HALT
;
279 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
281 /* Wait for channel inactive */
282 while (pl08x_phy_channel_busy(ch
))
286 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
290 /* Clear the HALT bit */
291 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
292 val
&= ~PL080_CONFIG_HALT
;
293 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
297 /* Stops the channel */
298 static void pl08x_stop_phy_chan(struct pl08x_phy_chan
*ch
)
302 pl08x_pause_phy_chan(ch
);
304 /* Disable channel */
305 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
306 val
&= ~PL080_CONFIG_ENABLE
;
307 val
&= ~PL080_CONFIG_ERR_IRQ_MASK
;
308 val
&= ~PL080_CONFIG_TC_IRQ_MASK
;
309 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
312 static inline u32
get_bytes_in_cctl(u32 cctl
)
314 /* The source width defines the number of bytes */
315 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
317 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
318 case PL080_WIDTH_8BIT
:
320 case PL080_WIDTH_16BIT
:
323 case PL080_WIDTH_32BIT
:
330 /* The channel should be paused when calling this */
331 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
333 struct pl08x_phy_chan
*ch
;
334 struct pl08x_txd
*txdi
= NULL
;
335 struct pl08x_txd
*txd
;
339 spin_lock_irqsave(&plchan
->lock
, flags
);
341 ch
= plchan
->phychan
;
345 * Next follow the LLIs to get the number of pending bytes in the
346 * currently active transaction.
349 struct lli
*llis_va
= txd
->llis_va
;
350 struct lli
*llis_bus
= (struct lli
*) txd
->llis_bus
;
351 u32 clli
= readl(ch
->base
+ PL080_CH_LLI
);
353 /* First get the bytes in the current active LLI */
354 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
359 /* Forward to the LLI pointed to by clli */
360 while ((clli
!= (u32
) &(llis_bus
[i
])) &&
361 (i
< MAX_NUM_TSFR_LLIS
))
365 bytes
+= get_bytes_in_cctl(llis_va
[i
].cctl
);
367 * A LLI pointer of 0 terminates the LLI list
369 clli
= llis_va
[i
].next
;
375 /* Sum up all queued transactions */
376 if (!list_empty(&plchan
->desc_list
)) {
377 list_for_each_entry(txdi
, &plchan
->desc_list
, node
) {
383 spin_unlock_irqrestore(&plchan
->lock
, flags
);
389 * Allocate a physical channel for a virtual channel
391 static struct pl08x_phy_chan
*
392 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
393 struct pl08x_dma_chan
*virt_chan
)
395 struct pl08x_phy_chan
*ch
= NULL
;
400 * Try to locate a physical channel to be used for
401 * this transfer. If all are taken return NULL and
402 * the requester will have to cope by using some fallback
403 * PIO mode or retrying later.
405 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
406 ch
= &pl08x
->phy_chans
[i
];
408 spin_lock_irqsave(&ch
->lock
, flags
);
411 ch
->serving
= virt_chan
;
413 spin_unlock_irqrestore(&ch
->lock
, flags
);
417 spin_unlock_irqrestore(&ch
->lock
, flags
);
420 if (i
== pl08x
->vd
->channels
) {
421 /* No physical channel available, cope with it */
428 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
429 struct pl08x_phy_chan
*ch
)
433 /* Stop the channel and clear its interrupts */
434 pl08x_stop_phy_chan(ch
);
435 writel((1 << ch
->id
), pl08x
->base
+ PL080_ERR_CLEAR
);
436 writel((1 << ch
->id
), pl08x
->base
+ PL080_TC_CLEAR
);
438 /* Mark it as free */
439 spin_lock_irqsave(&ch
->lock
, flags
);
441 spin_unlock_irqrestore(&ch
->lock
, flags
);
448 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
451 case PL080_WIDTH_8BIT
:
453 case PL080_WIDTH_16BIT
:
455 case PL080_WIDTH_32BIT
:
464 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
469 /* Remove all src, dst and transfer size bits */
470 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
471 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
472 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
474 /* Then set the bits according to the parameters */
477 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
480 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
483 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
492 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
495 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
498 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
505 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
510 * Autoselect a master bus to use for the transfer
511 * this prefers the destination bus if both available
512 * if fixed address on one bus the other will be chosen
514 void pl08x_choose_master_bus(struct pl08x_bus_data
*src_bus
,
515 struct pl08x_bus_data
*dst_bus
, struct pl08x_bus_data
**mbus
,
516 struct pl08x_bus_data
**sbus
, u32 cctl
)
518 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
521 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
525 if (dst_bus
->buswidth
== 4) {
528 } else if (src_bus
->buswidth
== 4) {
531 } else if (dst_bus
->buswidth
== 2) {
534 } else if (src_bus
->buswidth
== 2) {
538 /* src_bus->buswidth == 1 */
546 * Fills in one LLI for a certain transfer descriptor
547 * and advance the counter
549 int pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
550 struct pl08x_txd
*txd
, int num_llis
, int len
,
551 u32 cctl
, u32
*remainder
)
553 struct lli
*llis_va
= txd
->llis_va
;
554 struct lli
*llis_bus
= (struct lli
*) txd
->llis_bus
;
556 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
558 llis_va
[num_llis
].cctl
= cctl
;
559 llis_va
[num_llis
].src
= txd
->srcbus
.addr
;
560 llis_va
[num_llis
].dst
= txd
->dstbus
.addr
;
563 * On versions with dual masters, you can optionally AND on
564 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
565 * in new LLIs with that controller, but we always try to
566 * choose AHB1 to point into memory. The idea is to have AHB2
567 * fixed on the peripheral and AHB1 messing around in the
568 * memory. So we don't manipulate this bit currently.
571 llis_va
[num_llis
].next
=
572 (dma_addr_t
)((u32
) &(llis_bus
[num_llis
+ 1]));
574 if (cctl
& PL080_CONTROL_SRC_INCR
)
575 txd
->srcbus
.addr
+= len
;
576 if (cctl
& PL080_CONTROL_DST_INCR
)
577 txd
->dstbus
.addr
+= len
;
585 * Return number of bytes to fill to boundary, or len
587 static inline u32
pl08x_pre_boundary(u32 addr
, u32 len
)
591 boundary
= ((addr
>> PL08X_BOUNDARY_SHIFT
) + 1)
592 << PL08X_BOUNDARY_SHIFT
;
594 if (boundary
< addr
+ len
)
595 return boundary
- addr
;
601 * This fills in the table of LLIs for the transfer descriptor
602 * Note that we assume we never have to change the burst sizes
605 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
606 struct pl08x_txd
*txd
)
608 struct pl08x_channel_data
*cd
= txd
->cd
;
609 struct pl08x_bus_data
*mbus
, *sbus
;
613 int max_bytes_per_lli
;
616 struct lli
*llis_bus
;
619 dev_err(&pl08x
->adev
->dev
, "%s no descriptor\n", __func__
);
623 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
,
626 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
633 * Initialize bus values for this transfer
634 * from the passed optimal values
637 dev_err(&pl08x
->adev
->dev
, "%s no channel data\n", __func__
);
641 /* Get the default CCTL from the platform data */
645 * On the PL080 we have two bus masters and we
646 * should select one for source and one for
647 * destination. We try to use AHB2 for the
648 * bus which does not increment (typically the
649 * peripheral) else we just choose something.
651 cctl
&= ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
652 if (pl08x
->vd
->dualmaster
) {
653 if (cctl
& PL080_CONTROL_SRC_INCR
)
654 /* Source increments, use AHB2 for destination */
655 cctl
|= PL080_CONTROL_DST_AHB2
;
656 else if (cctl
& PL080_CONTROL_DST_INCR
)
657 /* Destination increments, use AHB2 for source */
658 cctl
|= PL080_CONTROL_SRC_AHB2
;
660 /* Just pick something, source AHB1 dest AHB2 */
661 cctl
|= PL080_CONTROL_DST_AHB2
;
664 /* Find maximum width of the source bus */
665 txd
->srcbus
.maxwidth
=
666 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
667 PL080_CONTROL_SWIDTH_SHIFT
);
669 /* Find maximum width of the destination bus */
670 txd
->dstbus
.maxwidth
=
671 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
672 PL080_CONTROL_DWIDTH_SHIFT
);
674 /* Set up the bus widths to the maximum */
675 txd
->srcbus
.buswidth
= txd
->srcbus
.maxwidth
;
676 txd
->dstbus
.buswidth
= txd
->dstbus
.maxwidth
;
677 dev_vdbg(&pl08x
->adev
->dev
,
678 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
679 __func__
, txd
->srcbus
.buswidth
, txd
->dstbus
.buswidth
);
683 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
685 max_bytes_per_lli
= min(txd
->srcbus
.buswidth
, txd
->dstbus
.buswidth
) *
686 PL080_CONTROL_TRANSFER_SIZE_MASK
;
687 dev_vdbg(&pl08x
->adev
->dev
,
688 "%s max bytes per lli = %d\n",
689 __func__
, max_bytes_per_lli
);
691 /* We need to count this down to zero */
692 remainder
= txd
->len
;
693 dev_vdbg(&pl08x
->adev
->dev
,
694 "%s remainder = %d\n",
695 __func__
, remainder
);
698 * Choose bus to align to
699 * - prefers destination bus if both available
700 * - if fixed address on one bus chooses other
701 * - modifies cctl to choose an appropriate master
703 pl08x_choose_master_bus(&txd
->srcbus
, &txd
->dstbus
,
708 * The lowest bit of the LLI register
709 * is also used to indicate which master to
710 * use for reading the LLIs.
713 if (txd
->len
< mbus
->buswidth
) {
715 * Less than a bus width available
716 * - send as single bytes
719 dev_vdbg(&pl08x
->adev
->dev
,
720 "%s single byte LLIs for a transfer of "
721 "less than a bus width (remain %08x)\n",
722 __func__
, remainder
);
723 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
725 pl08x_fill_lli_for_desc(pl08x
, txd
, num_llis
, 1,
731 * Make one byte LLIs until master bus is aligned
732 * - slave will then be aligned also
734 while ((mbus
->addr
) % (mbus
->buswidth
)) {
735 dev_vdbg(&pl08x
->adev
->dev
,
736 "%s adjustment lli for less than bus width "
738 __func__
, remainder
);
739 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
740 num_llis
= pl08x_fill_lli_for_desc
741 (pl08x
, txd
, num_llis
, 1, cctl
, &remainder
);
747 * - if slave is not then we must set its width down
749 if (sbus
->addr
% sbus
->buswidth
) {
750 dev_dbg(&pl08x
->adev
->dev
,
751 "%s set down bus width to one byte\n",
758 * Make largest possible LLIs until less than one bus
761 while (remainder
> (mbus
->buswidth
- 1)) {
762 int lli_len
, target_len
;
767 * If enough left try to send max possible,
768 * otherwise try to send the remainder
770 target_len
= remainder
;
771 if (remainder
> max_bytes_per_lli
)
772 target_len
= max_bytes_per_lli
;
775 * Set bus lengths for incrementing buses
776 * to number of bytes which fill to next memory
779 if (cctl
& PL080_CONTROL_SRC_INCR
)
780 txd
->srcbus
.fill_bytes
=
785 txd
->srcbus
.fill_bytes
=
788 if (cctl
& PL080_CONTROL_DST_INCR
)
789 txd
->dstbus
.fill_bytes
=
794 txd
->dstbus
.fill_bytes
=
800 lli_len
= min(txd
->srcbus
.fill_bytes
,
801 txd
->dstbus
.fill_bytes
);
803 BUG_ON(lli_len
> remainder
);
806 dev_err(&pl08x
->adev
->dev
,
807 "%s lli_len is %d, <= 0\n",
812 if (lli_len
== target_len
) {
814 * Can send what we wanted
819 lli_len
= (lli_len
/mbus
->buswidth
) *
824 * So now we know how many bytes to transfer
825 * to get to the nearest boundary
826 * The next LLI will past the boundary
827 * - however we may be working to a boundary
829 * We need to ensure the master stays aligned
831 odd_bytes
= lli_len
% mbus
->buswidth
;
833 * - and that we are working in multiples
836 lli_len
-= odd_bytes
;
842 * Check against minimum bus alignment:
843 * Calculate actual transfer size in relation
844 * to bus width an get a maximum remainder of
845 * the smallest bus width - 1
847 /* FIXME: use round_down()? */
848 tsize
= lli_len
/ min(mbus
->buswidth
,
850 lli_len
= tsize
* min(mbus
->buswidth
,
853 if (target_len
!= lli_len
) {
854 dev_vdbg(&pl08x
->adev
->dev
,
855 "%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n",
856 __func__
, target_len
, lli_len
, txd
->len
);
859 cctl
= pl08x_cctl_bits(cctl
,
860 txd
->srcbus
.buswidth
,
861 txd
->dstbus
.buswidth
,
864 dev_vdbg(&pl08x
->adev
->dev
,
865 "%s fill lli with single lli chunk of size %08x (remainder %08x)\n",
866 __func__
, lli_len
, remainder
);
867 num_llis
= pl08x_fill_lli_for_desc(pl08x
, txd
,
868 num_llis
, lli_len
, cctl
,
870 total_bytes
+= lli_len
;
876 * Creep past the boundary,
877 * maintaining master alignment
880 for (j
= 0; (j
< mbus
->buswidth
)
881 && (remainder
); j
++) {
882 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
883 dev_vdbg(&pl08x
->adev
->dev
,
884 "%s align with boundary, single byte (remain %08x)\n",
885 __func__
, remainder
);
887 pl08x_fill_lli_for_desc(pl08x
,
899 dev_err(&pl08x
->adev
->dev
, "%s remainder not fitted 0x%08x bytes\n",
900 __func__
, remainder
);
905 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
906 dev_vdbg(&pl08x
->adev
->dev
,
907 "%s align with boundary, single odd byte (remain %d)\n",
908 __func__
, remainder
);
909 num_llis
= pl08x_fill_lli_for_desc(pl08x
, txd
, num_llis
,
910 1, cctl
, &remainder
);
914 if (total_bytes
!= txd
->len
) {
915 dev_err(&pl08x
->adev
->dev
,
916 "%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n",
917 __func__
, total_bytes
, txd
->len
);
921 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
922 dev_err(&pl08x
->adev
->dev
,
923 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
924 __func__
, (u32
) MAX_NUM_TSFR_LLIS
);
928 * Decide whether this is a loop or a terminated transfer
930 llis_va
= txd
->llis_va
;
931 llis_bus
= (struct lli
*) txd
->llis_bus
;
933 if (cd
->circular_buffer
) {
935 * Loop the circular buffer so that the next element
936 * points back to the beginning of the LLI.
938 llis_va
[num_llis
- 1].next
=
939 (dma_addr_t
)((unsigned int)&(llis_bus
[0]));
942 * On non-circular buffers, the final LLI terminates
945 llis_va
[num_llis
- 1].next
= 0;
947 * The final LLI element shall also fire an interrupt
949 llis_va
[num_llis
- 1].cctl
|= PL080_CONTROL_TC_IRQ_EN
;
952 /* Now store the channel register values */
953 txd
->csrc
= llis_va
[0].src
;
954 txd
->cdst
= llis_va
[0].dst
;
956 txd
->clli
= llis_va
[0].next
;
960 txd
->cctl
= llis_va
[0].cctl
;
961 /* ccfg will be set at physical channel allocation time */
967 for (i
= 0; i
< num_llis
; i
++) {
968 dev_vdbg(&pl08x
->adev
->dev
,
969 "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n",
984 /* You should call this with the struct pl08x lock held */
985 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
986 struct pl08x_txd
*txd
)
989 dev_err(&pl08x
->adev
->dev
,
990 "%s no descriptor to free\n",
994 dma_pool_free(pl08x
->pool
, txd
->llis_va
,
1002 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1003 struct pl08x_dma_chan
*plchan
)
1005 struct pl08x_txd
*txdi
= NULL
;
1006 struct pl08x_txd
*next
;
1008 if (!list_empty(&plchan
->desc_list
)) {
1009 list_for_each_entry_safe(txdi
,
1010 next
, &plchan
->desc_list
, node
) {
1011 list_del(&txdi
->node
);
1012 pl08x_free_txd(pl08x
, txdi
);
1019 * The DMA ENGINE API
1021 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
1026 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1031 * This should be called with the channel plchan->lock held
1033 static int prep_phy_channel(struct pl08x_dma_chan
*plchan
,
1034 struct pl08x_txd
*txd
)
1036 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1037 struct pl08x_phy_chan
*ch
;
1040 /* Check if we already have a channel */
1041 if (plchan
->phychan
)
1044 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
1046 /* No physical channel available, cope with it */
1047 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
1052 * OK we have a physical channel: for memcpy() this is all we
1053 * need, but for slaves the physical signals may be muxed!
1054 * Can the platform allow us to use this channel?
1056 if (plchan
->slave
&&
1058 pl08x
->pd
->get_signal
) {
1059 ret
= pl08x
->pd
->get_signal(plchan
);
1061 dev_dbg(&pl08x
->adev
->dev
,
1062 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
1063 ch
->id
, plchan
->name
);
1064 /* Release physical channel & return */
1065 pl08x_put_phy_channel(pl08x
, ch
);
1071 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d and signal %d for xfer on %s\n",
1076 plchan
->phychan
= ch
;
1081 static dma_cookie_t
pl08x_tx_submit(struct dma_async_tx_descriptor
*tx
)
1083 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(tx
->chan
);
1085 atomic_inc(&plchan
->last_issued
);
1086 tx
->cookie
= atomic_read(&plchan
->last_issued
);
1087 /* This unlock follows the lock in the prep() function */
1088 spin_unlock_irqrestore(&plchan
->lock
, plchan
->lockflags
);
1093 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1094 struct dma_chan
*chan
, unsigned long flags
)
1096 struct dma_async_tx_descriptor
*retval
= NULL
;
1102 * Code accessing dma_async_is_complete() in a tight loop
1103 * may give problems - could schedule where indicated.
1104 * If slaves are relying on interrupts to signal completion this
1105 * function must not be called with interrupts disabled
1107 static enum dma_status
1108 pl08x_dma_tx_status(struct dma_chan
*chan
,
1109 dma_cookie_t cookie
,
1110 struct dma_tx_state
*txstate
)
1112 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1113 dma_cookie_t last_used
;
1114 dma_cookie_t last_complete
;
1115 enum dma_status ret
;
1118 last_used
= atomic_read(&plchan
->last_issued
);
1119 last_complete
= plchan
->lc
;
1121 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
1122 if (ret
== DMA_SUCCESS
) {
1123 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
1128 * schedule(); could be inserted here
1132 * This cookie not complete yet
1134 last_used
= atomic_read(&plchan
->last_issued
);
1135 last_complete
= plchan
->lc
;
1137 /* Get number of bytes left in the active transactions and queue */
1138 bytesleft
= pl08x_getbytes_chan(plchan
);
1140 dma_set_tx_state(txstate
, last_complete
, last_used
,
1143 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1146 /* Whether waiting or running, we're in progress */
1147 return DMA_IN_PROGRESS
;
1150 /* PrimeCell DMA extension */
1151 struct burst_table
{
1156 static const struct burst_table burst_sizes
[] = {
1159 .reg
= (PL080_BSIZE_256
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1160 (PL080_BSIZE_256
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1164 .reg
= (PL080_BSIZE_128
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1165 (PL080_BSIZE_128
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1169 .reg
= (PL080_BSIZE_64
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1170 (PL080_BSIZE_64
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1174 .reg
= (PL080_BSIZE_32
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1175 (PL080_BSIZE_32
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1179 .reg
= (PL080_BSIZE_16
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1180 (PL080_BSIZE_16
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1184 .reg
= (PL080_BSIZE_8
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1185 (PL080_BSIZE_8
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1189 .reg
= (PL080_BSIZE_4
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1190 (PL080_BSIZE_4
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1194 .reg
= (PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1195 (PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1199 static void dma_set_runtime_config(struct dma_chan
*chan
,
1200 struct dma_slave_config
*config
)
1202 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1203 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1204 struct pl08x_channel_data
*cd
= plchan
->cd
;
1205 enum dma_slave_buswidth addr_width
;
1208 /* Mask out all except src and dst channel */
1209 u32 ccfg
= cd
->ccfg
& 0x000003DEU
;
1212 /* Transfer direction */
1213 plchan
->runtime_direction
= config
->direction
;
1214 if (config
->direction
== DMA_TO_DEVICE
) {
1215 plchan
->runtime_addr
= config
->dst_addr
;
1216 cctl
|= PL080_CONTROL_SRC_INCR
;
1217 ccfg
|= PL080_FLOW_MEM2PER
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1218 addr_width
= config
->dst_addr_width
;
1219 maxburst
= config
->dst_maxburst
;
1220 } else if (config
->direction
== DMA_FROM_DEVICE
) {
1221 plchan
->runtime_addr
= config
->src_addr
;
1222 cctl
|= PL080_CONTROL_DST_INCR
;
1223 ccfg
|= PL080_FLOW_PER2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1224 addr_width
= config
->src_addr_width
;
1225 maxburst
= config
->src_maxburst
;
1227 dev_err(&pl08x
->adev
->dev
,
1228 "bad runtime_config: alien transfer direction\n");
1232 switch (addr_width
) {
1233 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1234 cctl
|= (PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1235 (PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1237 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1238 cctl
|= (PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1239 (PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1241 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1242 cctl
|= (PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1243 (PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1246 dev_err(&pl08x
->adev
->dev
,
1247 "bad runtime_config: alien address width\n");
1252 * Now decide on a maxburst:
1253 * If this channel will only request single transfers, set
1254 * this down to ONE element.
1256 if (plchan
->cd
->single
) {
1257 cctl
|= (PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1258 (PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
);
1260 while (i
< ARRAY_SIZE(burst_sizes
)) {
1261 if (burst_sizes
[i
].burstwords
<= maxburst
)
1265 cctl
|= burst_sizes
[i
].reg
;
1268 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1269 cctl
&= ~PL080_CONTROL_PROT_MASK
;
1270 cctl
|= PL080_CONTROL_PROT_SYS
;
1272 /* Modify the default channel data to fit PrimeCell request */
1276 dev_dbg(&pl08x
->adev
->dev
,
1277 "configured channel %s (%s) for %s, data width %d, "
1278 "maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n",
1279 dma_chan_name(chan
), plchan
->name
,
1280 (config
->direction
== DMA_FROM_DEVICE
) ? "RX" : "TX",
1287 * Slave transactions callback to the slave device to allow
1288 * synchronization of slave DMA signals with the DMAC enable
1290 static void pl08x_issue_pending(struct dma_chan
*chan
)
1292 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1293 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1294 unsigned long flags
;
1296 spin_lock_irqsave(&plchan
->lock
, flags
);
1297 /* Something is already active */
1299 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1303 /* Didn't get a physical channel so waiting for it ... */
1304 if (plchan
->state
== PL08X_CHAN_WAITING
)
1307 /* Take the first element in the queue and execute it */
1308 if (!list_empty(&plchan
->desc_list
)) {
1309 struct pl08x_txd
*next
;
1311 next
= list_first_entry(&plchan
->desc_list
,
1314 list_del(&next
->node
);
1316 plchan
->state
= PL08X_CHAN_RUNNING
;
1318 /* Configure the physical channel for the active txd */
1319 pl08x_config_phychan_for_txd(plchan
);
1320 pl08x_set_cregs(pl08x
, plchan
->phychan
);
1321 pl08x_enable_phy_chan(pl08x
, plchan
->phychan
);
1324 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1327 static int pl08x_prep_channel_resources(struct pl08x_dma_chan
*plchan
,
1328 struct pl08x_txd
*txd
)
1331 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1334 num_llis
= pl08x_fill_llis_for_desc(pl08x
, txd
);
1339 spin_lock_irqsave(&plchan
->lock
, plchan
->lockflags
);
1342 * If this device is not using a circular buffer then
1343 * queue this new descriptor for transfer.
1344 * The descriptor for a circular buffer continues
1345 * to be used until the channel is freed.
1347 if (txd
->cd
->circular_buffer
)
1348 dev_err(&pl08x
->adev
->dev
,
1349 "%s attempting to queue a circular buffer\n",
1352 list_add_tail(&txd
->node
,
1353 &plchan
->desc_list
);
1356 * See if we already have a physical channel allocated,
1357 * else this is the time to try to get one.
1359 ret
= prep_phy_channel(plchan
, txd
);
1362 * No physical channel available, we will
1363 * stack up the memcpy channels until there is a channel
1364 * available to handle it whereas slave transfers may
1365 * have been denied due to platform channel muxing restrictions
1366 * and since there is no guarantee that this will ever be
1367 * resolved, and since the signal must be acquired AFTER
1368 * acquiring the physical channel, we will let them be NACK:ed
1369 * with -EBUSY here. The drivers can alway retry the prep()
1370 * call if they are eager on doing this using DMA.
1372 if (plchan
->slave
) {
1373 pl08x_free_txd_list(pl08x
, plchan
);
1374 spin_unlock_irqrestore(&plchan
->lock
, plchan
->lockflags
);
1377 /* Do this memcpy whenever there is a channel ready */
1378 plchan
->state
= PL08X_CHAN_WAITING
;
1379 plchan
->waiting
= txd
;
1382 * Else we're all set, paused and ready to roll,
1383 * status will switch to PL08X_CHAN_RUNNING when
1384 * we call issue_pending(). If there is something
1385 * running on the channel already we don't change
1388 if (plchan
->state
== PL08X_CHAN_IDLE
)
1389 plchan
->state
= PL08X_CHAN_PAUSED
;
1392 * Notice that we leave plchan->lock locked on purpose:
1393 * it will be unlocked in the subsequent tx_submit()
1394 * call. This is a consequence of the current API.
1401 * Initialize a descriptor to be used by memcpy submit
1403 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1404 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1405 size_t len
, unsigned long flags
)
1407 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1408 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1409 struct pl08x_txd
*txd
;
1412 txd
= kzalloc(sizeof(struct pl08x_txd
), GFP_NOWAIT
);
1414 dev_err(&pl08x
->adev
->dev
,
1415 "%s no memory for descriptor\n", __func__
);
1419 dma_async_tx_descriptor_init(&txd
->tx
, chan
);
1420 txd
->direction
= DMA_NONE
;
1421 txd
->srcbus
.addr
= src
;
1422 txd
->dstbus
.addr
= dest
;
1424 /* Set platform data for m2m */
1425 txd
->cd
= &pl08x
->pd
->memcpy_channel
;
1426 /* Both to be incremented or the code will break */
1427 txd
->cd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1428 txd
->tx
.tx_submit
= pl08x_tx_submit
;
1429 txd
->tx
.callback
= NULL
;
1430 txd
->tx
.callback_param
= NULL
;
1433 INIT_LIST_HEAD(&txd
->node
);
1434 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1438 * NB: the channel lock is held at this point so tx_submit()
1439 * must be called in direct succession.
1445 struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1446 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1447 unsigned int sg_len
, enum dma_data_direction direction
,
1448 unsigned long flags
)
1450 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1451 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1452 struct pl08x_txd
*txd
;
1456 * Current implementation ASSUMES only one sg
1459 dev_err(&pl08x
->adev
->dev
, "%s prepared too long sglist\n",
1464 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1465 __func__
, sgl
->length
, plchan
->name
);
1467 txd
= kzalloc(sizeof(struct pl08x_txd
), GFP_NOWAIT
);
1469 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1473 dma_async_tx_descriptor_init(&txd
->tx
, chan
);
1475 if (direction
!= plchan
->runtime_direction
)
1476 dev_err(&pl08x
->adev
->dev
, "%s DMA setup does not match "
1477 "the direction configured for the PrimeCell\n",
1481 * Set up addresses, the PrimeCell configured address
1482 * will take precedence since this may configure the
1483 * channel target address dynamically at runtime.
1485 txd
->direction
= direction
;
1486 if (direction
== DMA_TO_DEVICE
) {
1487 txd
->srcbus
.addr
= sgl
->dma_address
;
1488 if (plchan
->runtime_addr
)
1489 txd
->dstbus
.addr
= plchan
->runtime_addr
;
1491 txd
->dstbus
.addr
= plchan
->cd
->addr
;
1492 } else if (direction
== DMA_FROM_DEVICE
) {
1493 if (plchan
->runtime_addr
)
1494 txd
->srcbus
.addr
= plchan
->runtime_addr
;
1496 txd
->srcbus
.addr
= plchan
->cd
->addr
;
1497 txd
->dstbus
.addr
= sgl
->dma_address
;
1499 dev_err(&pl08x
->adev
->dev
,
1500 "%s direction unsupported\n", __func__
);
1503 txd
->cd
= plchan
->cd
;
1504 txd
->tx
.tx_submit
= pl08x_tx_submit
;
1505 txd
->tx
.callback
= NULL
;
1506 txd
->tx
.callback_param
= NULL
;
1507 txd
->len
= sgl
->length
;
1508 INIT_LIST_HEAD(&txd
->node
);
1510 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1514 * NB: the channel lock is held at this point so tx_submit()
1515 * must be called in direct succession.
1521 static int pl08x_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1524 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1525 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1526 unsigned long flags
;
1529 /* Controls applicable to inactive channels */
1530 if (cmd
== DMA_SLAVE_CONFIG
) {
1531 dma_set_runtime_config(chan
,
1532 (struct dma_slave_config
*)
1538 * Anything succeeds on channels with no physical allocation and
1539 * no queued transfers.
1541 spin_lock_irqsave(&plchan
->lock
, flags
);
1542 if (!plchan
->phychan
&& !plchan
->at
) {
1543 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1548 case DMA_TERMINATE_ALL
:
1549 plchan
->state
= PL08X_CHAN_IDLE
;
1551 if (plchan
->phychan
) {
1552 pl08x_stop_phy_chan(plchan
->phychan
);
1555 * Mark physical channel as free and free any slave
1558 if ((plchan
->phychan
->signal
>= 0) &&
1559 pl08x
->pd
->put_signal
) {
1560 pl08x
->pd
->put_signal(plchan
);
1561 plchan
->phychan
->signal
= -1;
1563 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
1564 plchan
->phychan
= NULL
;
1566 /* Stop any pending tasklet */
1567 tasklet_disable(&plchan
->tasklet
);
1568 /* Dequeue jobs and free LLIs */
1570 pl08x_free_txd(pl08x
, plchan
->at
);
1573 /* Dequeue jobs not yet fired as well */
1574 pl08x_free_txd_list(pl08x
, plchan
);
1577 pl08x_pause_phy_chan(plchan
->phychan
);
1578 plchan
->state
= PL08X_CHAN_PAUSED
;
1581 pl08x_resume_phy_chan(plchan
->phychan
);
1582 plchan
->state
= PL08X_CHAN_RUNNING
;
1585 /* Unknown command */
1590 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1595 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1597 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1598 char *name
= chan_id
;
1600 /* Check that the channel is not taken! */
1601 if (!strcmp(plchan
->name
, name
))
1608 * Just check that the device is there and active
1609 * TODO: turn this bit on/off depending on the number of
1610 * physical channels actually used, if it is zero... well
1611 * shut it off. That will save some power. Cut the clock
1614 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1618 val
= readl(pl08x
->base
+ PL080_CONFIG
);
1619 val
&= ~(PL080_CONFIG_M2_BE
| PL080_CONFIG_M1_BE
| PL080_CONFIG_ENABLE
);
1620 /* We implicitly clear bit 1 and that means little-endian mode */
1621 val
|= PL080_CONFIG_ENABLE
;
1622 writel(val
, pl08x
->base
+ PL080_CONFIG
);
1625 static void pl08x_tasklet(unsigned long data
)
1627 struct pl08x_dma_chan
*plchan
= (struct pl08x_dma_chan
*) data
;
1628 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
1629 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1634 spin_lock(&plchan
->lock
);
1637 dma_async_tx_callback callback
=
1638 plchan
->at
->tx
.callback
;
1639 void *callback_param
=
1640 plchan
->at
->tx
.callback_param
;
1643 * Update last completed
1646 (plchan
->at
->tx
.cookie
);
1649 * Callback to signal completion
1652 callback(callback_param
);
1655 * Device callbacks should NOT clear
1656 * the current transaction on the channel
1657 * Linus: sometimes they should?
1663 * Free the descriptor if it's not for a device
1664 * using a circular buffer
1666 if (!plchan
->at
->cd
->circular_buffer
) {
1667 pl08x_free_txd(pl08x
, plchan
->at
);
1671 * else descriptor for circular
1672 * buffers only freed when
1673 * client has disabled dma
1677 * If a new descriptor is queued, set it up
1678 * plchan->at is NULL here
1680 if (!list_empty(&plchan
->desc_list
)) {
1681 struct pl08x_txd
*next
;
1683 next
= list_first_entry(&plchan
->desc_list
,
1686 list_del(&next
->node
);
1688 /* Configure the physical channel for the next txd */
1689 pl08x_config_phychan_for_txd(plchan
);
1690 pl08x_set_cregs(pl08x
, plchan
->phychan
);
1691 pl08x_enable_phy_chan(pl08x
, plchan
->phychan
);
1693 struct pl08x_dma_chan
*waiting
= NULL
;
1696 * No more jobs, so free up the physical channel
1697 * Free any allocated signal on slave transfers too
1699 if ((phychan
->signal
>= 0) && pl08x
->pd
->put_signal
) {
1700 pl08x
->pd
->put_signal(plchan
);
1701 phychan
->signal
= -1;
1703 pl08x_put_phy_channel(pl08x
, phychan
);
1704 plchan
->phychan
= NULL
;
1705 plchan
->state
= PL08X_CHAN_IDLE
;
1708 * And NOW before anyone else can grab that free:d
1709 * up physical channel, see if there is some memcpy
1710 * pending that seriously needs to start because of
1711 * being stacked up while we were choking the
1712 * physical channels with data.
1714 list_for_each_entry(waiting
, &pl08x
->memcpy
.channels
,
1716 if (waiting
->state
== PL08X_CHAN_WAITING
&&
1717 waiting
->waiting
!= NULL
) {
1720 /* This should REALLY not fail now */
1721 ret
= prep_phy_channel(waiting
,
1724 waiting
->state
= PL08X_CHAN_RUNNING
;
1725 waiting
->waiting
= NULL
;
1726 pl08x_issue_pending(&waiting
->chan
);
1732 spin_unlock(&plchan
->lock
);
1735 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1737 struct pl08x_driver_data
*pl08x
= dev
;
1742 val
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1745 * An error interrupt (on one or more channels)
1747 dev_err(&pl08x
->adev
->dev
,
1748 "%s error interrupt, register value 0x%08x\n",
1751 * Simply clear ALL PL08X error interrupts,
1752 * regardless of channel and cause
1753 * FIXME: should be 0x00000003 on PL081 really.
1755 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
1757 val
= readl(pl08x
->base
+ PL080_INT_STATUS
);
1758 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1759 if ((1 << i
) & val
) {
1760 /* Locate physical channel */
1761 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1762 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1764 /* Schedule tasklet on this channel */
1765 tasklet_schedule(&plchan
->tasklet
);
1771 * Clear only the terminal interrupts on channels we processed
1773 writel(mask
, pl08x
->base
+ PL080_TC_CLEAR
);
1775 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1779 * Initialise the DMAC memcpy/slave channels.
1780 * Make a local wrapper to hold required data
1782 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1783 struct dma_device
*dmadev
,
1784 unsigned int channels
,
1787 struct pl08x_dma_chan
*chan
;
1790 INIT_LIST_HEAD(&dmadev
->channels
);
1792 * Register as many many memcpy as we have physical channels,
1793 * we won't always be able to use all but the code will have
1794 * to cope with that situation.
1796 for (i
= 0; i
< channels
; i
++) {
1797 chan
= kzalloc(sizeof(struct pl08x_dma_chan
), GFP_KERNEL
);
1799 dev_err(&pl08x
->adev
->dev
,
1800 "%s no memory for channel\n", __func__
);
1805 chan
->state
= PL08X_CHAN_IDLE
;
1809 chan
->name
= pl08x
->pd
->slave_channels
[i
].bus_id
;
1810 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1812 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1813 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1819 dev_info(&pl08x
->adev
->dev
,
1820 "initialize virtual channel \"%s\"\n",
1823 chan
->chan
.device
= dmadev
;
1824 atomic_set(&chan
->last_issued
, 0);
1825 chan
->lc
= atomic_read(&chan
->last_issued
);
1827 spin_lock_init(&chan
->lock
);
1828 INIT_LIST_HEAD(&chan
->desc_list
);
1829 tasklet_init(&chan
->tasklet
, pl08x_tasklet
,
1830 (unsigned long) chan
);
1832 list_add_tail(&chan
->chan
.device_node
, &dmadev
->channels
);
1834 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1835 i
, slave
? "slave" : "memcpy");
1839 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1841 struct pl08x_dma_chan
*chan
= NULL
;
1842 struct pl08x_dma_chan
*next
;
1844 list_for_each_entry_safe(chan
,
1845 next
, &dmadev
->channels
, chan
.device_node
) {
1846 list_del(&chan
->chan
.device_node
);
1851 #ifdef CONFIG_DEBUG_FS
1852 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1855 case PL08X_CHAN_IDLE
:
1857 case PL08X_CHAN_RUNNING
:
1859 case PL08X_CHAN_PAUSED
:
1861 case PL08X_CHAN_WAITING
:
1866 return "UNKNOWN STATE";
1869 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1871 struct pl08x_driver_data
*pl08x
= s
->private;
1872 struct pl08x_dma_chan
*chan
;
1873 struct pl08x_phy_chan
*ch
;
1874 unsigned long flags
;
1877 seq_printf(s
, "PL08x physical channels:\n");
1878 seq_printf(s
, "CHANNEL:\tUSER:\n");
1879 seq_printf(s
, "--------\t-----\n");
1880 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1881 struct pl08x_dma_chan
*virt_chan
;
1883 ch
= &pl08x
->phy_chans
[i
];
1885 spin_lock_irqsave(&ch
->lock
, flags
);
1886 virt_chan
= ch
->serving
;
1888 seq_printf(s
, "%d\t\t%s\n",
1889 ch
->id
, virt_chan
? virt_chan
->name
: "(none)");
1891 spin_unlock_irqrestore(&ch
->lock
, flags
);
1894 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1895 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1896 seq_printf(s
, "--------\t------\n");
1897 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, chan
.device_node
) {
1898 seq_printf(s
, "%s\t\t\%s\n", chan
->name
,
1899 pl08x_state_str(chan
->state
));
1902 seq_printf(s
, "\nPL08x virtual slave channels:\n");
1903 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1904 seq_printf(s
, "--------\t------\n");
1905 list_for_each_entry(chan
, &pl08x
->slave
.channels
, chan
.device_node
) {
1906 seq_printf(s
, "%s\t\t\%s\n", chan
->name
,
1907 pl08x_state_str(chan
->state
));
1913 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
1915 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
1918 static const struct file_operations pl08x_debugfs_operations
= {
1919 .open
= pl08x_debugfs_open
,
1921 .llseek
= seq_lseek
,
1922 .release
= single_release
,
1925 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1927 /* Expose a simple debugfs interface to view all clocks */
1928 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
), S_IFREG
| S_IRUGO
,
1930 &pl08x_debugfs_operations
);
1934 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1939 static int pl08x_probe(struct amba_device
*adev
, struct amba_id
*id
)
1941 struct pl08x_driver_data
*pl08x
;
1942 struct vendor_data
*vd
= id
->data
;
1946 ret
= amba_request_regions(adev
, NULL
);
1950 /* Create the driver state holder */
1951 pl08x
= kzalloc(sizeof(struct pl08x_driver_data
), GFP_KERNEL
);
1957 /* Initialize memcpy engine */
1958 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
1959 pl08x
->memcpy
.dev
= &adev
->dev
;
1960 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1961 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
1962 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
1963 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1964 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
1965 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
1966 pl08x
->memcpy
.device_control
= pl08x_control
;
1968 /* Initialize slave engine */
1969 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
1970 pl08x
->slave
.dev
= &adev
->dev
;
1971 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1972 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
1973 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1974 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
1975 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
1976 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
1977 pl08x
->slave
.device_control
= pl08x_control
;
1979 /* Get the platform data */
1980 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
1982 dev_err(&adev
->dev
, "no platform data supplied\n");
1983 goto out_no_platdata
;
1986 /* Assign useful pointers to the driver state */
1990 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1991 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
1992 PL08X_LLI_TSFR_SIZE
, PL08X_ALIGN
, 0);
1995 goto out_no_lli_pool
;
1998 spin_lock_init(&pl08x
->lock
);
2000 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2003 goto out_no_ioremap
;
2006 /* Turn on the PL08x */
2007 pl08x_ensure_on(pl08x
);
2010 * Attach the interrupt handler
2012 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2013 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2015 ret
= request_irq(adev
->irq
[0], pl08x_irq
, IRQF_DISABLED
,
2018 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2019 __func__
, adev
->irq
[0]);
2023 /* Initialize physical channels */
2024 pl08x
->phy_chans
= kmalloc((vd
->channels
* sizeof(struct pl08x_phy_chan
)),
2026 if (!pl08x
->phy_chans
) {
2027 dev_err(&adev
->dev
, "%s failed to allocate "
2028 "physical channel holders\n",
2030 goto out_no_phychans
;
2033 for (i
= 0; i
< vd
->channels
; i
++) {
2034 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2037 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2038 spin_lock_init(&ch
->lock
);
2041 dev_info(&adev
->dev
,
2042 "physical channel %d is %s\n", i
,
2043 pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2046 /* Register as many memcpy channels as there are physical channels */
2047 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2048 pl08x
->vd
->channels
, false);
2050 dev_warn(&pl08x
->adev
->dev
,
2051 "%s failed to enumerate memcpy channels - %d\n",
2055 pl08x
->memcpy
.chancnt
= ret
;
2057 /* Register slave channels */
2058 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2059 pl08x
->pd
->num_slave_channels
,
2062 dev_warn(&pl08x
->adev
->dev
,
2063 "%s failed to enumerate slave channels - %d\n",
2067 pl08x
->slave
.chancnt
= ret
;
2069 ret
= dma_async_device_register(&pl08x
->memcpy
);
2071 dev_warn(&pl08x
->adev
->dev
,
2072 "%s failed to register memcpy as an async device - %d\n",
2074 goto out_no_memcpy_reg
;
2077 ret
= dma_async_device_register(&pl08x
->slave
);
2079 dev_warn(&pl08x
->adev
->dev
,
2080 "%s failed to register slave as an async device - %d\n",
2082 goto out_no_slave_reg
;
2085 amba_set_drvdata(adev
, pl08x
);
2086 init_pl08x_debugfs(pl08x
);
2087 dev_info(&pl08x
->adev
->dev
, "ARM(R) %s DMA block initialized @%08x\n",
2088 vd
->name
, adev
->res
.start
);
2092 dma_async_device_unregister(&pl08x
->memcpy
);
2094 pl08x_free_virtual_channels(&pl08x
->slave
);
2096 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2098 kfree(pl08x
->phy_chans
);
2100 free_irq(adev
->irq
[0], pl08x
);
2102 iounmap(pl08x
->base
);
2104 dma_pool_destroy(pl08x
->pool
);
2109 amba_release_regions(adev
);
2113 /* PL080 has 8 channels and the PL080 have just 2 */
2114 static struct vendor_data vendor_pl080
= {
2120 static struct vendor_data vendor_pl081
= {
2123 .dualmaster
= false,
2126 static struct amba_id pl08x_ids
[] = {
2131 .data
= &vendor_pl080
,
2137 .data
= &vendor_pl081
,
2139 /* Nomadik 8815 PL080 variant */
2143 .data
= &vendor_pl080
,
2148 static struct amba_driver pl08x_amba_driver
= {
2149 .drv
.name
= DRIVER_NAME
,
2150 .id_table
= pl08x_ids
,
2151 .probe
= pl08x_probe
,
2154 static int __init
pl08x_init(void)
2157 retval
= amba_driver_register(&pl08x_amba_driver
);
2159 printk(KERN_WARNING DRIVER_NAME
2160 "failed to register as an AMBA device (%d)\n",
2164 subsys_initcall(pl08x_init
);