2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
23 #include <asm/pgtable.h>
26 #include <linux/hugetlb.h>
29 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
33 static int max_hstate
;
34 unsigned int default_hstate_idx
;
35 struct hstate hstates
[HUGE_MAX_HSTATE
];
37 __initdata
LIST_HEAD(huge_boot_pages
);
39 /* for command line parsing */
40 static struct hstate
* __initdata parsed_hstate
;
41 static unsigned long __initdata default_hstate_max_huge_pages
;
42 static unsigned long __initdata default_hstate_size
;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock
);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
67 struct list_head link
;
72 static long region_add(struct list_head
*head
, long f
, long t
)
74 struct file_region
*rg
, *nrg
, *trg
;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg
, head
, link
)
81 /* Round our left edge to the current segment if it encloses us. */
85 /* Check for and consume any regions we now overlap with. */
87 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
88 if (&rg
->link
== head
)
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
108 static long region_chg(struct list_head
*head
, long f
, long t
)
110 struct file_region
*rg
, *nrg
;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg
, head
, link
)
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg
->link
== head
|| t
< rg
->from
) {
122 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
127 INIT_LIST_HEAD(&nrg
->link
);
128 list_add(&nrg
->link
, rg
->link
.prev
);
133 /* Round our left edge to the current segment if it encloses us. */
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
140 if (&rg
->link
== head
)
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
152 chg
-= rg
->to
- rg
->from
;
157 static long region_truncate(struct list_head
*head
, long end
)
159 struct file_region
*rg
, *trg
;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg
, head
, link
)
166 if (&rg
->link
== head
)
169 /* If we are in the middle of a region then adjust it. */
170 if (end
> rg
->from
) {
173 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
178 if (&rg
->link
== head
)
180 chg
+= rg
->to
- rg
->from
;
187 static long region_count(struct list_head
*head
, long f
, long t
)
189 struct file_region
*rg
;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg
, head
, link
) {
202 seg_from
= max(rg
->from
, f
);
203 seg_to
= min(rg
->to
, t
);
205 chg
+= seg_to
- seg_from
;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
216 struct vm_area_struct
*vma
, unsigned long address
)
218 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
219 (vma
->vm_pgoff
>> huge_page_order(h
));
223 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
224 * bits of the reservation map pointer, which are always clear due to
227 #define HPAGE_RESV_OWNER (1UL << 0)
228 #define HPAGE_RESV_UNMAPPED (1UL << 1)
229 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
232 * These helpers are used to track how many pages are reserved for
233 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
234 * is guaranteed to have their future faults succeed.
236 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
237 * the reserve counters are updated with the hugetlb_lock held. It is safe
238 * to reset the VMA at fork() time as it is not in use yet and there is no
239 * chance of the global counters getting corrupted as a result of the values.
241 * The private mapping reservation is represented in a subtly different
242 * manner to a shared mapping. A shared mapping has a region map associated
243 * with the underlying file, this region map represents the backing file
244 * pages which have ever had a reservation assigned which this persists even
245 * after the page is instantiated. A private mapping has a region map
246 * associated with the original mmap which is attached to all VMAs which
247 * reference it, this region map represents those offsets which have consumed
248 * reservation ie. where pages have been instantiated.
250 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
252 return (unsigned long)vma
->vm_private_data
;
255 static void set_vma_private_data(struct vm_area_struct
*vma
,
258 vma
->vm_private_data
= (void *)value
;
263 struct list_head regions
;
266 static struct resv_map
*resv_map_alloc(void)
268 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
272 kref_init(&resv_map
->refs
);
273 INIT_LIST_HEAD(&resv_map
->regions
);
278 static void resv_map_release(struct kref
*ref
)
280 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
282 /* Clear out any active regions before we release the map. */
283 region_truncate(&resv_map
->regions
, 0);
287 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
289 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
290 if (!(vma
->vm_flags
& VM_SHARED
))
291 return (struct resv_map
*)(get_vma_private_data(vma
) &
296 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
298 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
299 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
301 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
302 HPAGE_RESV_MASK
) | (unsigned long)map
);
305 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
307 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
308 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
310 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
313 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
315 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
317 return (get_vma_private_data(vma
) & flag
) != 0;
320 /* Decrement the reserved pages in the hugepage pool by one */
321 static void decrement_hugepage_resv_vma(struct hstate
*h
,
322 struct vm_area_struct
*vma
)
324 if (vma
->vm_flags
& VM_NORESERVE
)
327 if (vma
->vm_flags
& VM_SHARED
) {
328 /* Shared mappings always use reserves */
329 h
->resv_huge_pages
--;
330 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
332 * Only the process that called mmap() has reserves for
335 h
->resv_huge_pages
--;
339 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
340 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
342 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
343 if (!(vma
->vm_flags
& VM_SHARED
))
344 vma
->vm_private_data
= (void *)0;
347 /* Returns true if the VMA has associated reserve pages */
348 static int vma_has_reserves(struct vm_area_struct
*vma
)
350 if (vma
->vm_flags
& VM_SHARED
)
352 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
357 static void clear_huge_page(struct page
*page
,
358 unsigned long addr
, unsigned long sz
)
363 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
365 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
369 static void copy_huge_page(struct page
*dst
, struct page
*src
,
370 unsigned long addr
, struct vm_area_struct
*vma
)
373 struct hstate
*h
= hstate_vma(vma
);
376 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
378 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
382 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
384 int nid
= page_to_nid(page
);
385 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
386 h
->free_huge_pages
++;
387 h
->free_huge_pages_node
[nid
]++;
390 static struct page
*dequeue_huge_page(struct hstate
*h
)
393 struct page
*page
= NULL
;
395 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
396 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
397 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
399 list_del(&page
->lru
);
400 h
->free_huge_pages
--;
401 h
->free_huge_pages_node
[nid
]--;
408 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
409 struct vm_area_struct
*vma
,
410 unsigned long address
, int avoid_reserve
)
413 struct page
*page
= NULL
;
414 struct mempolicy
*mpol
;
415 nodemask_t
*nodemask
;
416 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
417 htlb_alloc_mask
, &mpol
, &nodemask
);
422 * A child process with MAP_PRIVATE mappings created by their parent
423 * have no page reserves. This check ensures that reservations are
424 * not "stolen". The child may still get SIGKILLed
426 if (!vma_has_reserves(vma
) &&
427 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
430 /* If reserves cannot be used, ensure enough pages are in the pool */
431 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
434 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
435 MAX_NR_ZONES
- 1, nodemask
) {
436 nid
= zone_to_nid(zone
);
437 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
438 !list_empty(&h
->hugepage_freelists
[nid
])) {
439 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
441 list_del(&page
->lru
);
442 h
->free_huge_pages
--;
443 h
->free_huge_pages_node
[nid
]--;
446 decrement_hugepage_resv_vma(h
, vma
);
455 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
460 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
461 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
462 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
463 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
464 1 << PG_private
| 1<< PG_writeback
);
466 set_compound_page_dtor(page
, NULL
);
467 set_page_refcounted(page
);
468 arch_release_hugepage(page
);
469 __free_pages(page
, huge_page_order(h
));
472 struct hstate
*size_to_hstate(unsigned long size
)
477 if (huge_page_size(h
) == size
)
483 static void free_huge_page(struct page
*page
)
486 * Can't pass hstate in here because it is called from the
487 * compound page destructor.
489 struct hstate
*h
= page_hstate(page
);
490 int nid
= page_to_nid(page
);
491 struct address_space
*mapping
;
493 mapping
= (struct address_space
*) page_private(page
);
494 set_page_private(page
, 0);
495 BUG_ON(page_count(page
));
496 INIT_LIST_HEAD(&page
->lru
);
498 spin_lock(&hugetlb_lock
);
499 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
500 update_and_free_page(h
, page
);
501 h
->surplus_huge_pages
--;
502 h
->surplus_huge_pages_node
[nid
]--;
504 enqueue_huge_page(h
, page
);
506 spin_unlock(&hugetlb_lock
);
508 hugetlb_put_quota(mapping
, 1);
512 * Increment or decrement surplus_huge_pages. Keep node-specific counters
513 * balanced by operating on them in a round-robin fashion.
514 * Returns 1 if an adjustment was made.
516 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
522 VM_BUG_ON(delta
!= -1 && delta
!= 1);
524 nid
= next_node(nid
, node_online_map
);
525 if (nid
== MAX_NUMNODES
)
526 nid
= first_node(node_online_map
);
528 /* To shrink on this node, there must be a surplus page */
529 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
531 /* Surplus cannot exceed the total number of pages */
532 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
533 h
->nr_huge_pages_node
[nid
])
536 h
->surplus_huge_pages
+= delta
;
537 h
->surplus_huge_pages_node
[nid
] += delta
;
540 } while (nid
!= prev_nid
);
546 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
548 set_compound_page_dtor(page
, free_huge_page
);
549 spin_lock(&hugetlb_lock
);
551 h
->nr_huge_pages_node
[nid
]++;
552 spin_unlock(&hugetlb_lock
);
553 put_page(page
); /* free it into the hugepage allocator */
556 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
560 if (h
->order
>= MAX_ORDER
)
563 page
= alloc_pages_node(nid
,
564 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
565 __GFP_REPEAT
|__GFP_NOWARN
,
568 if (arch_prepare_hugepage(page
)) {
569 __free_pages(page
, huge_page_order(h
));
572 prep_new_huge_page(h
, page
, nid
);
579 * Use a helper variable to find the next node and then
580 * copy it back to hugetlb_next_nid afterwards:
581 * otherwise there's a window in which a racer might
582 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
583 * But we don't need to use a spin_lock here: it really
584 * doesn't matter if occasionally a racer chooses the
585 * same nid as we do. Move nid forward in the mask even
586 * if we just successfully allocated a hugepage so that
587 * the next caller gets hugepages on the next node.
589 static int hstate_next_node(struct hstate
*h
)
592 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
593 if (next_nid
== MAX_NUMNODES
)
594 next_nid
= first_node(node_online_map
);
595 h
->hugetlb_next_nid
= next_nid
;
599 static int alloc_fresh_huge_page(struct hstate
*h
)
606 start_nid
= h
->hugetlb_next_nid
;
609 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
612 next_nid
= hstate_next_node(h
);
613 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
616 count_vm_event(HTLB_BUDDY_PGALLOC
);
618 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
623 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
624 struct vm_area_struct
*vma
, unsigned long address
)
629 if (h
->order
>= MAX_ORDER
)
633 * Assume we will successfully allocate the surplus page to
634 * prevent racing processes from causing the surplus to exceed
637 * This however introduces a different race, where a process B
638 * tries to grow the static hugepage pool while alloc_pages() is
639 * called by process A. B will only examine the per-node
640 * counters in determining if surplus huge pages can be
641 * converted to normal huge pages in adjust_pool_surplus(). A
642 * won't be able to increment the per-node counter, until the
643 * lock is dropped by B, but B doesn't drop hugetlb_lock until
644 * no more huge pages can be converted from surplus to normal
645 * state (and doesn't try to convert again). Thus, we have a
646 * case where a surplus huge page exists, the pool is grown, and
647 * the surplus huge page still exists after, even though it
648 * should just have been converted to a normal huge page. This
649 * does not leak memory, though, as the hugepage will be freed
650 * once it is out of use. It also does not allow the counters to
651 * go out of whack in adjust_pool_surplus() as we don't modify
652 * the node values until we've gotten the hugepage and only the
653 * per-node value is checked there.
655 spin_lock(&hugetlb_lock
);
656 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
657 spin_unlock(&hugetlb_lock
);
661 h
->surplus_huge_pages
++;
663 spin_unlock(&hugetlb_lock
);
665 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
666 __GFP_REPEAT
|__GFP_NOWARN
,
669 if (page
&& arch_prepare_hugepage(page
)) {
670 __free_pages(page
, huge_page_order(h
));
674 spin_lock(&hugetlb_lock
);
677 * This page is now managed by the hugetlb allocator and has
678 * no users -- drop the buddy allocator's reference.
680 put_page_testzero(page
);
681 VM_BUG_ON(page_count(page
));
682 nid
= page_to_nid(page
);
683 set_compound_page_dtor(page
, free_huge_page
);
685 * We incremented the global counters already
687 h
->nr_huge_pages_node
[nid
]++;
688 h
->surplus_huge_pages_node
[nid
]++;
689 __count_vm_event(HTLB_BUDDY_PGALLOC
);
692 h
->surplus_huge_pages
--;
693 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
695 spin_unlock(&hugetlb_lock
);
701 * Increase the hugetlb pool such that it can accomodate a reservation
704 static int gather_surplus_pages(struct hstate
*h
, int delta
)
706 struct list_head surplus_list
;
707 struct page
*page
, *tmp
;
709 int needed
, allocated
;
711 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
713 h
->resv_huge_pages
+= delta
;
718 INIT_LIST_HEAD(&surplus_list
);
722 spin_unlock(&hugetlb_lock
);
723 for (i
= 0; i
< needed
; i
++) {
724 page
= alloc_buddy_huge_page(h
, NULL
, 0);
727 * We were not able to allocate enough pages to
728 * satisfy the entire reservation so we free what
729 * we've allocated so far.
731 spin_lock(&hugetlb_lock
);
736 list_add(&page
->lru
, &surplus_list
);
741 * After retaking hugetlb_lock, we need to recalculate 'needed'
742 * because either resv_huge_pages or free_huge_pages may have changed.
744 spin_lock(&hugetlb_lock
);
745 needed
= (h
->resv_huge_pages
+ delta
) -
746 (h
->free_huge_pages
+ allocated
);
751 * The surplus_list now contains _at_least_ the number of extra pages
752 * needed to accomodate the reservation. Add the appropriate number
753 * of pages to the hugetlb pool and free the extras back to the buddy
754 * allocator. Commit the entire reservation here to prevent another
755 * process from stealing the pages as they are added to the pool but
756 * before they are reserved.
759 h
->resv_huge_pages
+= delta
;
762 /* Free the needed pages to the hugetlb pool */
763 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
766 list_del(&page
->lru
);
767 enqueue_huge_page(h
, page
);
770 /* Free unnecessary surplus pages to the buddy allocator */
771 if (!list_empty(&surplus_list
)) {
772 spin_unlock(&hugetlb_lock
);
773 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
774 list_del(&page
->lru
);
776 * The page has a reference count of zero already, so
777 * call free_huge_page directly instead of using
778 * put_page. This must be done with hugetlb_lock
779 * unlocked which is safe because free_huge_page takes
780 * hugetlb_lock before deciding how to free the page.
782 free_huge_page(page
);
784 spin_lock(&hugetlb_lock
);
791 * When releasing a hugetlb pool reservation, any surplus pages that were
792 * allocated to satisfy the reservation must be explicitly freed if they were
795 static void return_unused_surplus_pages(struct hstate
*h
,
796 unsigned long unused_resv_pages
)
800 unsigned long nr_pages
;
803 * We want to release as many surplus pages as possible, spread
804 * evenly across all nodes. Iterate across all nodes until we
805 * can no longer free unreserved surplus pages. This occurs when
806 * the nodes with surplus pages have no free pages.
808 unsigned long remaining_iterations
= num_online_nodes();
810 /* Uncommit the reservation */
811 h
->resv_huge_pages
-= unused_resv_pages
;
813 /* Cannot return gigantic pages currently */
814 if (h
->order
>= MAX_ORDER
)
817 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
819 while (remaining_iterations
-- && nr_pages
) {
820 nid
= next_node(nid
, node_online_map
);
821 if (nid
== MAX_NUMNODES
)
822 nid
= first_node(node_online_map
);
824 if (!h
->surplus_huge_pages_node
[nid
])
827 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
828 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
830 list_del(&page
->lru
);
831 update_and_free_page(h
, page
);
832 h
->free_huge_pages
--;
833 h
->free_huge_pages_node
[nid
]--;
834 h
->surplus_huge_pages
--;
835 h
->surplus_huge_pages_node
[nid
]--;
837 remaining_iterations
= num_online_nodes();
843 * Determine if the huge page at addr within the vma has an associated
844 * reservation. Where it does not we will need to logically increase
845 * reservation and actually increase quota before an allocation can occur.
846 * Where any new reservation would be required the reservation change is
847 * prepared, but not committed. Once the page has been quota'd allocated
848 * an instantiated the change should be committed via vma_commit_reservation.
849 * No action is required on failure.
851 static int vma_needs_reservation(struct hstate
*h
,
852 struct vm_area_struct
*vma
, unsigned long addr
)
854 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
855 struct inode
*inode
= mapping
->host
;
857 if (vma
->vm_flags
& VM_SHARED
) {
858 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
859 return region_chg(&inode
->i_mapping
->private_list
,
862 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
867 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
868 struct resv_map
*reservations
= vma_resv_map(vma
);
870 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
876 static void vma_commit_reservation(struct hstate
*h
,
877 struct vm_area_struct
*vma
, unsigned long addr
)
879 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
880 struct inode
*inode
= mapping
->host
;
882 if (vma
->vm_flags
& VM_SHARED
) {
883 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
884 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
886 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
887 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
888 struct resv_map
*reservations
= vma_resv_map(vma
);
890 /* Mark this page used in the map. */
891 region_add(&reservations
->regions
, idx
, idx
+ 1);
895 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
896 unsigned long addr
, int avoid_reserve
)
898 struct hstate
*h
= hstate_vma(vma
);
900 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
901 struct inode
*inode
= mapping
->host
;
905 * Processes that did not create the mapping will have no reserves and
906 * will not have accounted against quota. Check that the quota can be
907 * made before satisfying the allocation
908 * MAP_NORESERVE mappings may also need pages and quota allocated
909 * if no reserve mapping overlaps.
911 chg
= vma_needs_reservation(h
, vma
, addr
);
915 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
916 return ERR_PTR(-ENOSPC
);
918 spin_lock(&hugetlb_lock
);
919 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
920 spin_unlock(&hugetlb_lock
);
923 page
= alloc_buddy_huge_page(h
, vma
, addr
);
925 hugetlb_put_quota(inode
->i_mapping
, chg
);
926 return ERR_PTR(-VM_FAULT_OOM
);
930 set_page_refcounted(page
);
931 set_page_private(page
, (unsigned long) mapping
);
933 vma_commit_reservation(h
, vma
, addr
);
938 __attribute__((weak
)) int alloc_bootmem_huge_page(struct hstate
*h
)
940 struct huge_bootmem_page
*m
;
941 int nr_nodes
= nodes_weight(node_online_map
);
946 addr
= __alloc_bootmem_node_nopanic(
947 NODE_DATA(h
->hugetlb_next_nid
),
948 huge_page_size(h
), huge_page_size(h
), 0);
952 * Use the beginning of the huge page to store the
953 * huge_bootmem_page struct (until gather_bootmem
954 * puts them into the mem_map).
966 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
967 /* Put them into a private list first because mem_map is not up yet */
968 list_add(&m
->list
, &huge_boot_pages
);
973 /* Put bootmem huge pages into the standard lists after mem_map is up */
974 static void __init
gather_bootmem_prealloc(void)
976 struct huge_bootmem_page
*m
;
978 list_for_each_entry(m
, &huge_boot_pages
, list
) {
979 struct page
*page
= virt_to_page(m
);
980 struct hstate
*h
= m
->hstate
;
981 __ClearPageReserved(page
);
982 WARN_ON(page_count(page
) != 1);
983 prep_compound_page(page
, h
->order
);
984 prep_new_huge_page(h
, page
, page_to_nid(page
));
988 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
992 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
993 if (h
->order
>= MAX_ORDER
) {
994 if (!alloc_bootmem_huge_page(h
))
996 } else if (!alloc_fresh_huge_page(h
))
999 h
->max_huge_pages
= i
;
1002 static void __init
hugetlb_init_hstates(void)
1006 for_each_hstate(h
) {
1007 /* oversize hugepages were init'ed in early boot */
1008 if (h
->order
< MAX_ORDER
)
1009 hugetlb_hstate_alloc_pages(h
);
1013 static char * __init
memfmt(char *buf
, unsigned long n
)
1015 if (n
>= (1UL << 30))
1016 sprintf(buf
, "%lu GB", n
>> 30);
1017 else if (n
>= (1UL << 20))
1018 sprintf(buf
, "%lu MB", n
>> 20);
1020 sprintf(buf
, "%lu KB", n
>> 10);
1024 static void __init
report_hugepages(void)
1028 for_each_hstate(h
) {
1030 printk(KERN_INFO
"HugeTLB registered %s page size, "
1031 "pre-allocated %ld pages\n",
1032 memfmt(buf
, huge_page_size(h
)),
1033 h
->free_huge_pages
);
1037 #ifdef CONFIG_HIGHMEM
1038 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1042 if (h
->order
>= MAX_ORDER
)
1045 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1046 struct page
*page
, *next
;
1047 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1048 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1049 if (count
>= h
->nr_huge_pages
)
1051 if (PageHighMem(page
))
1053 list_del(&page
->lru
);
1054 update_and_free_page(h
, page
);
1055 h
->free_huge_pages
--;
1056 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1061 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1066 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1067 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1069 unsigned long min_count
, ret
;
1071 if (h
->order
>= MAX_ORDER
)
1072 return h
->max_huge_pages
;
1075 * Increase the pool size
1076 * First take pages out of surplus state. Then make up the
1077 * remaining difference by allocating fresh huge pages.
1079 * We might race with alloc_buddy_huge_page() here and be unable
1080 * to convert a surplus huge page to a normal huge page. That is
1081 * not critical, though, it just means the overall size of the
1082 * pool might be one hugepage larger than it needs to be, but
1083 * within all the constraints specified by the sysctls.
1085 spin_lock(&hugetlb_lock
);
1086 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1087 if (!adjust_pool_surplus(h
, -1))
1091 while (count
> persistent_huge_pages(h
)) {
1093 * If this allocation races such that we no longer need the
1094 * page, free_huge_page will handle it by freeing the page
1095 * and reducing the surplus.
1097 spin_unlock(&hugetlb_lock
);
1098 ret
= alloc_fresh_huge_page(h
);
1099 spin_lock(&hugetlb_lock
);
1106 * Decrease the pool size
1107 * First return free pages to the buddy allocator (being careful
1108 * to keep enough around to satisfy reservations). Then place
1109 * pages into surplus state as needed so the pool will shrink
1110 * to the desired size as pages become free.
1112 * By placing pages into the surplus state independent of the
1113 * overcommit value, we are allowing the surplus pool size to
1114 * exceed overcommit. There are few sane options here. Since
1115 * alloc_buddy_huge_page() is checking the global counter,
1116 * though, we'll note that we're not allowed to exceed surplus
1117 * and won't grow the pool anywhere else. Not until one of the
1118 * sysctls are changed, or the surplus pages go out of use.
1120 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1121 min_count
= max(count
, min_count
);
1122 try_to_free_low(h
, min_count
);
1123 while (min_count
< persistent_huge_pages(h
)) {
1124 struct page
*page
= dequeue_huge_page(h
);
1127 update_and_free_page(h
, page
);
1129 while (count
< persistent_huge_pages(h
)) {
1130 if (!adjust_pool_surplus(h
, 1))
1134 ret
= persistent_huge_pages(h
);
1135 spin_unlock(&hugetlb_lock
);
1139 #define HSTATE_ATTR_RO(_name) \
1140 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1142 #define HSTATE_ATTR(_name) \
1143 static struct kobj_attribute _name##_attr = \
1144 __ATTR(_name, 0644, _name##_show, _name##_store)
1146 static struct kobject
*hugepages_kobj
;
1147 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1149 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1152 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1153 if (hstate_kobjs
[i
] == kobj
)
1159 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1160 struct kobj_attribute
*attr
, char *buf
)
1162 struct hstate
*h
= kobj_to_hstate(kobj
);
1163 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1165 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1166 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1169 unsigned long input
;
1170 struct hstate
*h
= kobj_to_hstate(kobj
);
1172 err
= strict_strtoul(buf
, 10, &input
);
1176 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1180 HSTATE_ATTR(nr_hugepages
);
1182 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1183 struct kobj_attribute
*attr
, char *buf
)
1185 struct hstate
*h
= kobj_to_hstate(kobj
);
1186 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1188 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1189 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1192 unsigned long input
;
1193 struct hstate
*h
= kobj_to_hstate(kobj
);
1195 err
= strict_strtoul(buf
, 10, &input
);
1199 spin_lock(&hugetlb_lock
);
1200 h
->nr_overcommit_huge_pages
= input
;
1201 spin_unlock(&hugetlb_lock
);
1205 HSTATE_ATTR(nr_overcommit_hugepages
);
1207 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1208 struct kobj_attribute
*attr
, char *buf
)
1210 struct hstate
*h
= kobj_to_hstate(kobj
);
1211 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1213 HSTATE_ATTR_RO(free_hugepages
);
1215 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1216 struct kobj_attribute
*attr
, char *buf
)
1218 struct hstate
*h
= kobj_to_hstate(kobj
);
1219 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1221 HSTATE_ATTR_RO(resv_hugepages
);
1223 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1224 struct kobj_attribute
*attr
, char *buf
)
1226 struct hstate
*h
= kobj_to_hstate(kobj
);
1227 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1229 HSTATE_ATTR_RO(surplus_hugepages
);
1231 static struct attribute
*hstate_attrs
[] = {
1232 &nr_hugepages_attr
.attr
,
1233 &nr_overcommit_hugepages_attr
.attr
,
1234 &free_hugepages_attr
.attr
,
1235 &resv_hugepages_attr
.attr
,
1236 &surplus_hugepages_attr
.attr
,
1240 static struct attribute_group hstate_attr_group
= {
1241 .attrs
= hstate_attrs
,
1244 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1248 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1250 if (!hstate_kobjs
[h
- hstates
])
1253 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1254 &hstate_attr_group
);
1256 kobject_put(hstate_kobjs
[h
- hstates
]);
1261 static void __init
hugetlb_sysfs_init(void)
1266 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1267 if (!hugepages_kobj
)
1270 for_each_hstate(h
) {
1271 err
= hugetlb_sysfs_add_hstate(h
);
1273 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1278 static void __exit
hugetlb_exit(void)
1282 for_each_hstate(h
) {
1283 kobject_put(hstate_kobjs
[h
- hstates
]);
1286 kobject_put(hugepages_kobj
);
1288 module_exit(hugetlb_exit
);
1290 static int __init
hugetlb_init(void)
1292 /* Some platform decide whether they support huge pages at boot
1293 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1294 * there is no such support
1296 if (HPAGE_SHIFT
== 0)
1299 if (!size_to_hstate(default_hstate_size
)) {
1300 default_hstate_size
= HPAGE_SIZE
;
1301 if (!size_to_hstate(default_hstate_size
))
1302 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1304 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1305 if (default_hstate_max_huge_pages
)
1306 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1308 hugetlb_init_hstates();
1310 gather_bootmem_prealloc();
1314 hugetlb_sysfs_init();
1318 module_init(hugetlb_init
);
1320 /* Should be called on processing a hugepagesz=... option */
1321 void __init
hugetlb_add_hstate(unsigned order
)
1326 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1327 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1330 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1332 h
= &hstates
[max_hstate
++];
1334 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1335 h
->nr_huge_pages
= 0;
1336 h
->free_huge_pages
= 0;
1337 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1338 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1339 h
->hugetlb_next_nid
= first_node(node_online_map
);
1340 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1341 huge_page_size(h
)/1024);
1346 static int __init
hugetlb_nrpages_setup(char *s
)
1349 static unsigned long *last_mhp
;
1352 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1353 * so this hugepages= parameter goes to the "default hstate".
1356 mhp
= &default_hstate_max_huge_pages
;
1358 mhp
= &parsed_hstate
->max_huge_pages
;
1360 if (mhp
== last_mhp
) {
1361 printk(KERN_WARNING
"hugepages= specified twice without "
1362 "interleaving hugepagesz=, ignoring\n");
1366 if (sscanf(s
, "%lu", mhp
) <= 0)
1370 * Global state is always initialized later in hugetlb_init.
1371 * But we need to allocate >= MAX_ORDER hstates here early to still
1372 * use the bootmem allocator.
1374 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1375 hugetlb_hstate_alloc_pages(parsed_hstate
);
1381 __setup("hugepages=", hugetlb_nrpages_setup
);
1383 static int __init
hugetlb_default_setup(char *s
)
1385 default_hstate_size
= memparse(s
, &s
);
1388 __setup("default_hugepagesz=", hugetlb_default_setup
);
1390 static unsigned int cpuset_mems_nr(unsigned int *array
)
1393 unsigned int nr
= 0;
1395 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1401 #ifdef CONFIG_SYSCTL
1402 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1403 struct file
*file
, void __user
*buffer
,
1404 size_t *length
, loff_t
*ppos
)
1406 struct hstate
*h
= &default_hstate
;
1410 tmp
= h
->max_huge_pages
;
1413 table
->maxlen
= sizeof(unsigned long);
1414 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1417 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1422 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1423 struct file
*file
, void __user
*buffer
,
1424 size_t *length
, loff_t
*ppos
)
1426 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1427 if (hugepages_treat_as_movable
)
1428 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1430 htlb_alloc_mask
= GFP_HIGHUSER
;
1434 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1435 struct file
*file
, void __user
*buffer
,
1436 size_t *length
, loff_t
*ppos
)
1438 struct hstate
*h
= &default_hstate
;
1442 tmp
= h
->nr_overcommit_huge_pages
;
1445 table
->maxlen
= sizeof(unsigned long);
1446 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1449 spin_lock(&hugetlb_lock
);
1450 h
->nr_overcommit_huge_pages
= tmp
;
1451 spin_unlock(&hugetlb_lock
);
1457 #endif /* CONFIG_SYSCTL */
1459 void hugetlb_report_meminfo(struct seq_file
*m
)
1461 struct hstate
*h
= &default_hstate
;
1463 "HugePages_Total: %5lu\n"
1464 "HugePages_Free: %5lu\n"
1465 "HugePages_Rsvd: %5lu\n"
1466 "HugePages_Surp: %5lu\n"
1467 "Hugepagesize: %8lu kB\n",
1471 h
->surplus_huge_pages
,
1472 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1475 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1477 struct hstate
*h
= &default_hstate
;
1479 "Node %d HugePages_Total: %5u\n"
1480 "Node %d HugePages_Free: %5u\n"
1481 "Node %d HugePages_Surp: %5u\n",
1482 nid
, h
->nr_huge_pages_node
[nid
],
1483 nid
, h
->free_huge_pages_node
[nid
],
1484 nid
, h
->surplus_huge_pages_node
[nid
]);
1487 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1488 unsigned long hugetlb_total_pages(void)
1490 struct hstate
*h
= &default_hstate
;
1491 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1494 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1498 spin_lock(&hugetlb_lock
);
1500 * When cpuset is configured, it breaks the strict hugetlb page
1501 * reservation as the accounting is done on a global variable. Such
1502 * reservation is completely rubbish in the presence of cpuset because
1503 * the reservation is not checked against page availability for the
1504 * current cpuset. Application can still potentially OOM'ed by kernel
1505 * with lack of free htlb page in cpuset that the task is in.
1506 * Attempt to enforce strict accounting with cpuset is almost
1507 * impossible (or too ugly) because cpuset is too fluid that
1508 * task or memory node can be dynamically moved between cpusets.
1510 * The change of semantics for shared hugetlb mapping with cpuset is
1511 * undesirable. However, in order to preserve some of the semantics,
1512 * we fall back to check against current free page availability as
1513 * a best attempt and hopefully to minimize the impact of changing
1514 * semantics that cpuset has.
1517 if (gather_surplus_pages(h
, delta
) < 0)
1520 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1521 return_unused_surplus_pages(h
, delta
);
1528 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1531 spin_unlock(&hugetlb_lock
);
1535 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1537 struct resv_map
*reservations
= vma_resv_map(vma
);
1540 * This new VMA should share its siblings reservation map if present.
1541 * The VMA will only ever have a valid reservation map pointer where
1542 * it is being copied for another still existing VMA. As that VMA
1543 * has a reference to the reservation map it cannot dissappear until
1544 * after this open call completes. It is therefore safe to take a
1545 * new reference here without additional locking.
1548 kref_get(&reservations
->refs
);
1551 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1553 struct hstate
*h
= hstate_vma(vma
);
1554 struct resv_map
*reservations
= vma_resv_map(vma
);
1555 unsigned long reserve
;
1556 unsigned long start
;
1560 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1561 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1563 reserve
= (end
- start
) -
1564 region_count(&reservations
->regions
, start
, end
);
1566 kref_put(&reservations
->refs
, resv_map_release
);
1569 hugetlb_acct_memory(h
, -reserve
);
1570 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
1576 * We cannot handle pagefaults against hugetlb pages at all. They cause
1577 * handle_mm_fault() to try to instantiate regular-sized pages in the
1578 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1581 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1587 struct vm_operations_struct hugetlb_vm_ops
= {
1588 .fault
= hugetlb_vm_op_fault
,
1589 .open
= hugetlb_vm_op_open
,
1590 .close
= hugetlb_vm_op_close
,
1593 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1600 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1602 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1604 entry
= pte_mkyoung(entry
);
1605 entry
= pte_mkhuge(entry
);
1610 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1611 unsigned long address
, pte_t
*ptep
)
1615 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1616 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1617 update_mmu_cache(vma
, address
, entry
);
1622 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1623 struct vm_area_struct
*vma
)
1625 pte_t
*src_pte
, *dst_pte
, entry
;
1626 struct page
*ptepage
;
1629 struct hstate
*h
= hstate_vma(vma
);
1630 unsigned long sz
= huge_page_size(h
);
1632 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1634 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1635 src_pte
= huge_pte_offset(src
, addr
);
1638 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1642 /* If the pagetables are shared don't copy or take references */
1643 if (dst_pte
== src_pte
)
1646 spin_lock(&dst
->page_table_lock
);
1647 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1648 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1650 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1651 entry
= huge_ptep_get(src_pte
);
1652 ptepage
= pte_page(entry
);
1654 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1656 spin_unlock(&src
->page_table_lock
);
1657 spin_unlock(&dst
->page_table_lock
);
1665 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1666 unsigned long end
, struct page
*ref_page
)
1668 struct mm_struct
*mm
= vma
->vm_mm
;
1669 unsigned long address
;
1674 struct hstate
*h
= hstate_vma(vma
);
1675 unsigned long sz
= huge_page_size(h
);
1678 * A page gathering list, protected by per file i_mmap_lock. The
1679 * lock is used to avoid list corruption from multiple unmapping
1680 * of the same page since we are using page->lru.
1682 LIST_HEAD(page_list
);
1684 WARN_ON(!is_vm_hugetlb_page(vma
));
1685 BUG_ON(start
& ~huge_page_mask(h
));
1686 BUG_ON(end
& ~huge_page_mask(h
));
1688 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1689 spin_lock(&mm
->page_table_lock
);
1690 for (address
= start
; address
< end
; address
+= sz
) {
1691 ptep
= huge_pte_offset(mm
, address
);
1695 if (huge_pmd_unshare(mm
, &address
, ptep
))
1699 * If a reference page is supplied, it is because a specific
1700 * page is being unmapped, not a range. Ensure the page we
1701 * are about to unmap is the actual page of interest.
1704 pte
= huge_ptep_get(ptep
);
1705 if (huge_pte_none(pte
))
1707 page
= pte_page(pte
);
1708 if (page
!= ref_page
)
1712 * Mark the VMA as having unmapped its page so that
1713 * future faults in this VMA will fail rather than
1714 * looking like data was lost
1716 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1719 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1720 if (huge_pte_none(pte
))
1723 page
= pte_page(pte
);
1725 set_page_dirty(page
);
1726 list_add(&page
->lru
, &page_list
);
1728 spin_unlock(&mm
->page_table_lock
);
1729 flush_tlb_range(vma
, start
, end
);
1730 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1731 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1732 list_del(&page
->lru
);
1737 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1738 unsigned long end
, struct page
*ref_page
)
1740 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1741 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1742 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1746 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1747 * mappping it owns the reserve page for. The intention is to unmap the page
1748 * from other VMAs and let the children be SIGKILLed if they are faulting the
1751 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1752 struct page
*page
, unsigned long address
)
1754 struct vm_area_struct
*iter_vma
;
1755 struct address_space
*mapping
;
1756 struct prio_tree_iter iter
;
1760 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1761 * from page cache lookup which is in HPAGE_SIZE units.
1763 address
= address
& huge_page_mask(hstate_vma(vma
));
1764 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1765 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1766 mapping
= (struct address_space
*)page_private(page
);
1768 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1769 /* Do not unmap the current VMA */
1770 if (iter_vma
== vma
)
1774 * Unmap the page from other VMAs without their own reserves.
1775 * They get marked to be SIGKILLed if they fault in these
1776 * areas. This is because a future no-page fault on this VMA
1777 * could insert a zeroed page instead of the data existing
1778 * from the time of fork. This would look like data corruption
1780 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1781 unmap_hugepage_range(iter_vma
,
1782 address
, address
+ HPAGE_SIZE
,
1789 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1790 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1791 struct page
*pagecache_page
)
1793 struct hstate
*h
= hstate_vma(vma
);
1794 struct page
*old_page
, *new_page
;
1796 int outside_reserve
= 0;
1798 old_page
= pte_page(pte
);
1801 /* If no-one else is actually using this page, avoid the copy
1802 * and just make the page writable */
1803 avoidcopy
= (page_count(old_page
) == 1);
1805 set_huge_ptep_writable(vma
, address
, ptep
);
1810 * If the process that created a MAP_PRIVATE mapping is about to
1811 * perform a COW due to a shared page count, attempt to satisfy
1812 * the allocation without using the existing reserves. The pagecache
1813 * page is used to determine if the reserve at this address was
1814 * consumed or not. If reserves were used, a partial faulted mapping
1815 * at the time of fork() could consume its reserves on COW instead
1816 * of the full address range.
1818 if (!(vma
->vm_flags
& VM_SHARED
) &&
1819 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1820 old_page
!= pagecache_page
)
1821 outside_reserve
= 1;
1823 page_cache_get(old_page
);
1824 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1826 if (IS_ERR(new_page
)) {
1827 page_cache_release(old_page
);
1830 * If a process owning a MAP_PRIVATE mapping fails to COW,
1831 * it is due to references held by a child and an insufficient
1832 * huge page pool. To guarantee the original mappers
1833 * reliability, unmap the page from child processes. The child
1834 * may get SIGKILLed if it later faults.
1836 if (outside_reserve
) {
1837 BUG_ON(huge_pte_none(pte
));
1838 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1839 BUG_ON(page_count(old_page
) != 1);
1840 BUG_ON(huge_pte_none(pte
));
1841 goto retry_avoidcopy
;
1846 return -PTR_ERR(new_page
);
1849 spin_unlock(&mm
->page_table_lock
);
1850 copy_huge_page(new_page
, old_page
, address
, vma
);
1851 __SetPageUptodate(new_page
);
1852 spin_lock(&mm
->page_table_lock
);
1854 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1855 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1857 huge_ptep_clear_flush(vma
, address
, ptep
);
1858 set_huge_pte_at(mm
, address
, ptep
,
1859 make_huge_pte(vma
, new_page
, 1));
1860 /* Make the old page be freed below */
1861 new_page
= old_page
;
1863 page_cache_release(new_page
);
1864 page_cache_release(old_page
);
1868 /* Return the pagecache page at a given address within a VMA */
1869 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1870 struct vm_area_struct
*vma
, unsigned long address
)
1872 struct address_space
*mapping
;
1875 mapping
= vma
->vm_file
->f_mapping
;
1876 idx
= vma_hugecache_offset(h
, vma
, address
);
1878 return find_lock_page(mapping
, idx
);
1881 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1882 unsigned long address
, pte_t
*ptep
, int write_access
)
1884 struct hstate
*h
= hstate_vma(vma
);
1885 int ret
= VM_FAULT_SIGBUS
;
1889 struct address_space
*mapping
;
1893 * Currently, we are forced to kill the process in the event the
1894 * original mapper has unmapped pages from the child due to a failed
1895 * COW. Warn that such a situation has occured as it may not be obvious
1897 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
1899 "PID %d killed due to inadequate hugepage pool\n",
1904 mapping
= vma
->vm_file
->f_mapping
;
1905 idx
= vma_hugecache_offset(h
, vma
, address
);
1908 * Use page lock to guard against racing truncation
1909 * before we get page_table_lock.
1912 page
= find_lock_page(mapping
, idx
);
1914 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1917 page
= alloc_huge_page(vma
, address
, 0);
1919 ret
= -PTR_ERR(page
);
1922 clear_huge_page(page
, address
, huge_page_size(h
));
1923 __SetPageUptodate(page
);
1925 if (vma
->vm_flags
& VM_SHARED
) {
1927 struct inode
*inode
= mapping
->host
;
1929 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
1937 spin_lock(&inode
->i_lock
);
1938 inode
->i_blocks
+= blocks_per_huge_page(h
);
1939 spin_unlock(&inode
->i_lock
);
1945 * If we are going to COW a private mapping later, we examine the
1946 * pending reservations for this page now. This will ensure that
1947 * any allocations necessary to record that reservation occur outside
1950 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
))
1951 if (vma_needs_reservation(h
, vma
, address
) < 0) {
1953 goto backout_unlocked
;
1956 spin_lock(&mm
->page_table_lock
);
1957 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1962 if (!huge_pte_none(huge_ptep_get(ptep
)))
1965 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
1966 && (vma
->vm_flags
& VM_SHARED
)));
1967 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
1969 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
1970 /* Optimization, do the COW without a second fault */
1971 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
1974 spin_unlock(&mm
->page_table_lock
);
1980 spin_unlock(&mm
->page_table_lock
);
1987 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1988 unsigned long address
, int write_access
)
1993 struct page
*pagecache_page
= NULL
;
1994 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
1995 struct hstate
*h
= hstate_vma(vma
);
1997 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
1999 return VM_FAULT_OOM
;
2002 * Serialize hugepage allocation and instantiation, so that we don't
2003 * get spurious allocation failures if two CPUs race to instantiate
2004 * the same page in the page cache.
2006 mutex_lock(&hugetlb_instantiation_mutex
);
2007 entry
= huge_ptep_get(ptep
);
2008 if (huge_pte_none(entry
)) {
2009 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
2016 * If we are going to COW the mapping later, we examine the pending
2017 * reservations for this page now. This will ensure that any
2018 * allocations necessary to record that reservation occur outside the
2019 * spinlock. For private mappings, we also lookup the pagecache
2020 * page now as it is used to determine if a reservation has been
2023 if (write_access
&& !pte_write(entry
)) {
2024 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2029 if (!(vma
->vm_flags
& VM_SHARED
))
2030 pagecache_page
= hugetlbfs_pagecache_page(h
,
2034 spin_lock(&mm
->page_table_lock
);
2035 /* Check for a racing update before calling hugetlb_cow */
2036 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2037 goto out_page_table_lock
;
2041 if (!pte_write(entry
)) {
2042 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2044 goto out_page_table_lock
;
2046 entry
= pte_mkdirty(entry
);
2048 entry
= pte_mkyoung(entry
);
2049 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, write_access
))
2050 update_mmu_cache(vma
, address
, entry
);
2052 out_page_table_lock
:
2053 spin_unlock(&mm
->page_table_lock
);
2055 if (pagecache_page
) {
2056 unlock_page(pagecache_page
);
2057 put_page(pagecache_page
);
2061 mutex_unlock(&hugetlb_instantiation_mutex
);
2066 /* Can be overriden by architectures */
2067 __attribute__((weak
)) struct page
*
2068 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2069 pud_t
*pud
, int write
)
2075 static int huge_zeropage_ok(pte_t
*ptep
, int write
, int shared
)
2077 if (!ptep
|| write
|| shared
)
2080 return huge_pte_none(huge_ptep_get(ptep
));
2083 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2084 struct page
**pages
, struct vm_area_struct
**vmas
,
2085 unsigned long *position
, int *length
, int i
,
2088 unsigned long pfn_offset
;
2089 unsigned long vaddr
= *position
;
2090 int remainder
= *length
;
2091 struct hstate
*h
= hstate_vma(vma
);
2092 int zeropage_ok
= 0;
2093 int shared
= vma
->vm_flags
& VM_SHARED
;
2095 spin_lock(&mm
->page_table_lock
);
2096 while (vaddr
< vma
->vm_end
&& remainder
) {
2101 * Some archs (sparc64, sh*) have multiple pte_ts to
2102 * each hugepage. We have to make * sure we get the
2103 * first, for the page indexing below to work.
2105 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2106 if (huge_zeropage_ok(pte
, write
, shared
))
2110 (huge_pte_none(huge_ptep_get(pte
)) && !zeropage_ok
) ||
2111 (write
&& !pte_write(huge_ptep_get(pte
)))) {
2114 spin_unlock(&mm
->page_table_lock
);
2115 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
2116 spin_lock(&mm
->page_table_lock
);
2117 if (!(ret
& VM_FAULT_ERROR
))
2126 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2127 page
= pte_page(huge_ptep_get(pte
));
2131 pages
[i
] = ZERO_PAGE(0);
2133 pages
[i
] = page
+ pfn_offset
;
2144 if (vaddr
< vma
->vm_end
&& remainder
&&
2145 pfn_offset
< pages_per_huge_page(h
)) {
2147 * We use pfn_offset to avoid touching the pageframes
2148 * of this compound page.
2153 spin_unlock(&mm
->page_table_lock
);
2154 *length
= remainder
;
2160 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2161 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2163 struct mm_struct
*mm
= vma
->vm_mm
;
2164 unsigned long start
= address
;
2167 struct hstate
*h
= hstate_vma(vma
);
2169 BUG_ON(address
>= end
);
2170 flush_cache_range(vma
, address
, end
);
2172 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2173 spin_lock(&mm
->page_table_lock
);
2174 for (; address
< end
; address
+= huge_page_size(h
)) {
2175 ptep
= huge_pte_offset(mm
, address
);
2178 if (huge_pmd_unshare(mm
, &address
, ptep
))
2180 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2181 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2182 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2183 set_huge_pte_at(mm
, address
, ptep
, pte
);
2186 spin_unlock(&mm
->page_table_lock
);
2187 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2189 flush_tlb_range(vma
, start
, end
);
2192 int hugetlb_reserve_pages(struct inode
*inode
,
2194 struct vm_area_struct
*vma
)
2197 struct hstate
*h
= hstate_inode(inode
);
2199 if (vma
&& vma
->vm_flags
& VM_NORESERVE
)
2203 * Shared mappings base their reservation on the number of pages that
2204 * are already allocated on behalf of the file. Private mappings need
2205 * to reserve the full area even if read-only as mprotect() may be
2206 * called to make the mapping read-write. Assume !vma is a shm mapping
2208 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2209 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2211 struct resv_map
*resv_map
= resv_map_alloc();
2217 set_vma_resv_map(vma
, resv_map
);
2218 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2224 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2226 ret
= hugetlb_acct_memory(h
, chg
);
2228 hugetlb_put_quota(inode
->i_mapping
, chg
);
2231 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2232 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2236 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2238 struct hstate
*h
= hstate_inode(inode
);
2239 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2241 spin_lock(&inode
->i_lock
);
2242 inode
->i_blocks
-= blocks_per_huge_page(h
);
2243 spin_unlock(&inode
->i_lock
);
2245 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2246 hugetlb_acct_memory(h
, -(chg
- freed
));